JPH0352214B2 - - Google Patents

Info

Publication number
JPH0352214B2
JPH0352214B2 JP16346982A JP16346982A JPH0352214B2 JP H0352214 B2 JPH0352214 B2 JP H0352214B2 JP 16346982 A JP16346982 A JP 16346982A JP 16346982 A JP16346982 A JP 16346982A JP H0352214 B2 JPH0352214 B2 JP H0352214B2
Authority
JP
Japan
Prior art keywords
light
annealing
laser
single crystal
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16346982A
Other languages
Japanese (ja)
Other versions
JPS5952831A (en
Inventor
Junji Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16346982A priority Critical patent/JPS5952831A/en
Publication of JPS5952831A publication Critical patent/JPS5952831A/en
Publication of JPH0352214B2 publication Critical patent/JPH0352214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Description

【発明の詳細な説明】 (a) 発明の技術分野 光線、例えばレーザ光を用い基板上に形成され
た絶縁膜上の多結晶シリコン層を単結晶化する光
線アニールに係り、特に高速処理に有利なアニー
ル処理に関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention This invention relates to optical annealing for monocrystallizing a polycrystalline silicon layer on an insulating film formed on a substrate using a light beam, such as a laser beam, and is particularly advantageous for high-speed processing. Regarding the annealing process.

(b) 技術の背景 将来の三次元集積回路の基礎として非単結晶質
絶縁膜に単結晶を成長させる所謂SOI(Silicon
on Insulation)技術が注目されており、電気特
性に優れた多結晶シリコン(Poly−Crystal
Silicon:ポリシリコン)を単結晶化して能動素
子を形成させる方法が実用化されている。
(b) Background of the technology The so-called SOI (Silicon
polycrystalline silicon (on insulation) technology is attracting attention, and polycrystalline silicon (poly-crystalline silicon) has excellent electrical properties.
A method of forming active elements by monocrystalizing silicon (polysilicon) has been put into practical use.

主として水素還元法又は熱分解法による気相成
長法によつて得られる多結晶シリコン(以下ポリ
シリコンと呼称)は小さな単結晶が不規則に配列
されているためアニールにより規則性の単結晶に
置換するが連続発振モードのアルゴンイオンレー
ザ光を用いたスキヤニング方式が一般的に用いら
れている。
Polycrystalline silicon (hereinafter referred to as polysilicon), which is mainly obtained by vapor phase growth using hydrogen reduction or thermal decomposition, consists of small single crystals arranged irregularly, so they can be replaced with regular single crystals by annealing. However, a scanning method using continuous wave mode argon ion laser light is generally used.

(c) 従来技術と問題点 ポリシリコンの単結晶化にはCWAγ+レーザ光
のスキヤニングが最も適しているがレーザパワー
が最高でも20W程度でビーム寸法も100μφにしぼ
る必要があり従つて処理能力が低い。
(c) Conventional technology and problems Scanning with CWAγ + laser light is most suitable for single crystallization of polysilicon, but the maximum laser power is about 20W and the beam size needs to be reduced to 100μφ, which reduces processing capacity. low.

一方、微細加工技術の進展に伴い集積度が増加
するに従いポリシリコン領域も増大する傾向にあ
りアニール処理の高速化が要請される。このため
レーザ装置の大型化は高価となるだけでなくパワ
ー密度がなくなりポリシリコン層を破壊し、熱エ
ネルギーにより基板にダメージを与えることにな
る。均一なレーザアニールを行うためには少くと
も空間的なモードは単一モード(強度分布がガウ
ス型)かそれに近いモードであることが必要で更
にこのような単一モードを光学系を通して平坦な
強度分布に変換する必要がある。
On the other hand, as the degree of integration increases with the progress of microfabrication technology, the polysilicon area also tends to increase, necessitating a faster annealing process. For this reason, increasing the size of the laser device not only becomes expensive, but also results in loss of power density, destruction of the polysilicon layer, and damage to the substrate due to thermal energy. In order to perform uniform laser annealing, at least the spatial mode must be a single mode (with a Gaussian intensity distribution) or a mode close to it. It is necessary to convert it into a distribution.

(d) 発明の目的 本発明は上記の点に鑑み、複数のレーザビーム
を同時に集積回路基板上に重ねて照射し高速化を
計り、且つ任意の形状及び強度分布が得られる多
光線アニールの提供を目的とする。
(d) Purpose of the Invention In view of the above points, the present invention provides multi-beam annealing that simultaneously irradiates multiple laser beams onto an integrated circuit board in a superimposed manner to increase speed and obtain arbitrary shapes and intensity distributions. With the goal.

(e) 発明の構成 上記目的を達成するため本発明は集積回路基板
上に形成された絶縁膜上の非単結晶半導体層に光
線を照射して単結晶化する光線アニールにおい
て、複数の光線発生手段から出射する複数の光線
を放物面をなす全反射ミラーを介して前記基板上
にオーバラツプさせ円弧状に照射することによつ
て達せられる。
(e) Structure of the Invention In order to achieve the above object, the present invention provides a method for generating a plurality of light beams during light annealing in which a non-single crystal semiconductor layer on an insulating film formed on an integrated circuit substrate is irradiated with a light beam to form a single crystal. This is achieved by irradiating a plurality of light beams emitted from the means onto the substrate through a total reflection mirror having a parabolic surface in an overlapping arc shape.

(f) 発明の実施例 以下本発明の実施例を図面により詳述する。(f) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は集積回路基板上に形成したポリシリコ
ン層を示す断面図である。基板1上にCVD法に
よりCVD−Sio2膜又は高温加熱法によりSio2
を形成し、その絶縁膜2上にポリシリコン膜3を
水素還元法又は熱分解法による気相成長方法によ
つて成膜させてポリシリコン領域を形成する。こ
のポリシリコン領域を単結晶化するアニール処理
を行うものである。
FIG. 1 is a cross-sectional view showing a polysilicon layer formed on an integrated circuit substrate. A CVD-Sio 2 film or a Sio 2 film is formed on a substrate 1 by a CVD method or a high temperature heating method, and a polysilicon film 3 is formed on the insulating film 2 by a hydrogen reduction method or a vapor phase growth method using a thermal decomposition method. A film is deposited to form a polysilicon region. An annealing process is performed to make this polysilicon region into a single crystal.

第2図は本発明の光線アニールを用いた一実施
例を示す構成図である。
FIG. 2 is a block diagram showing an embodiment using light beam annealing of the present invention.

実施例では出力20W、ビーム寸法2.0mmφのC
−WAγ+レーザ4を10個整列性を持つて等間隔に
配設し、レーザビーム5の放射進行に全反射型の
放物面ミラー6を設置する。
In the example, C with an output of 20W and a beam size of 2.0mmφ
-WAγ + lasers 4 are arranged in 10 pieces at equal intervals with good alignment, and a total reflection type parabolic mirror 6 is installed in the radiation progress of the laser beam 5.

レーザ4からのレーザビーム5は放物面ミラー
6に1/2づつオーバラツプするように照射しその
反射光7を図のようにポリシリコン膜3上に焦点
合せをし、ビーム寸法はX方向7aに10μ、Y方
向7bに2mmをなす円弧状のイメージを作り凸方
向に基板1を5cm/secで走査することによつて
凹部後方に単結晶幅1cmが成長した。
The laser beam 5 from the laser 4 is irradiated onto the parabolic mirror 6 so as to overlap by 1/2, and the reflected light 7 is focused on the polysilicon film 3 as shown in the figure, and the beam dimension is in the X direction 7a. A single crystal with a width of 1 cm was grown at the rear of the concave portion by creating an arc-shaped image having a width of 10μ and a width of 2 mm in the Y direction 7b, and scanning the substrate 1 in the convex direction at a rate of 5 cm/sec.

レーザビームの強度分布8は図に示すように円
弧に沿つて台型となる。このように構成される多
光線アニールにおいて多数個のエネルギー線を同
時に放照し反射鏡によりオーバラツプさせること
によりビーム型状及び強度分布は任意に求められ
る利点がある。
The intensity distribution 8 of the laser beam has a trapezoidal shape along an arc as shown in the figure. In multi-beam annealing configured in this way, there is an advantage that the beam shape and intensity distribution can be determined arbitrarily by emitting a large number of energy rays simultaneously and overlapping them using a reflecting mirror.

即ちレーザの出力ビーム寸法及び反射鏡形状を
アニール試料に適する条件で選択組合せすること
により従来に比して高速で良質の単結晶化が可能
となる。
That is, by selectively combining the output beam size of the laser and the shape of the reflecting mirror under conditions suitable for the annealed sample, it becomes possible to produce a single crystal of high quality at a higher speed than in the past.

(g) 発明の効果 以上詳細に説明したように本発明の多光線アニ
ールにより従来に比して処理能力は向上する高速
性が得られ、しかも任意のビーム形状、強度分布
が得られ良質の単結晶化が可能となる等優れた効
果がある。
(g) Effects of the Invention As explained in detail above, the multi-beam annealing of the present invention improves processing capacity and high speed compared to the conventional method, and also provides high-quality single beams with arbitrary beam shapes and intensity distributions. It has excellent effects such as enabling crystallization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は集積回路基板上に形成したポリシリコ
ン層を示す断面図、第2図は本発明の多光線アニ
ールを用いた一実施例を示す構成図である。図中
1……集積回路基板、2……絶縁膜、3……ポリ
シリコン膜、4……CWAγ+レーザ、5……レー
ザビーム、6……放物面ミラー、7……反射光、
8……強度分布。
FIG. 1 is a cross-sectional view showing a polysilicon layer formed on an integrated circuit substrate, and FIG. 2 is a configuration diagram showing an embodiment using multi-beam annealing of the present invention. In the figure, 1... integrated circuit board, 2... insulating film, 3... polysilicon film, 4... CWAγ + laser, 5... laser beam, 6... parabolic mirror, 7... reflected light,
8...Intensity distribution.

Claims (1)

【特許請求の範囲】[Claims] 1 集積回路基板上に形成された絶縁膜上の非単
結晶半導体層に光線を照射して単結晶化する光線
アニールにおいて、複数の光線発生手段から出射
する複数の光線を放物面をなす全反射ミラーを介
して前記基板上にオーバラツプさせ円弧状に照射
することを特徴とする光線アニール方法。
1 In light beam annealing in which a non-single crystal semiconductor layer on an insulating film formed on an integrated circuit board is irradiated with light to form a single crystal, a plurality of light beams emitted from a plurality of light beam generating means are A light annealing method characterized in that the light beam is irradiated onto the substrate through a reflecting mirror in an overlapping arc shape.
JP16346982A 1982-09-20 1982-09-20 Beam annealing method Granted JPS5952831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16346982A JPS5952831A (en) 1982-09-20 1982-09-20 Beam annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16346982A JPS5952831A (en) 1982-09-20 1982-09-20 Beam annealing method

Publications (2)

Publication Number Publication Date
JPS5952831A JPS5952831A (en) 1984-03-27
JPH0352214B2 true JPH0352214B2 (en) 1991-08-09

Family

ID=15774460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16346982A Granted JPS5952831A (en) 1982-09-20 1982-09-20 Beam annealing method

Country Status (1)

Country Link
JP (1) JPS5952831A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282869A (en) * 1991-03-11 1992-10-07 G T C:Kk Manufacturing method of thin film semiconductor device and device for executing this
US6700096B2 (en) * 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
JP2021111725A (en) * 2020-01-14 2021-08-02 株式会社ブイ・テクノロジー Laser annealing device and laser annealing method

Also Published As

Publication number Publication date
JPS5952831A (en) 1984-03-27

Similar Documents

Publication Publication Date Title
US6437284B1 (en) Optical system and apparatus for laser heat treatment and method for producing semiconductor devices by using the same
KR101017848B1 (en) Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
US4439245A (en) Electromagnetic radiation annealing of semiconductor material
EP0071471B1 (en) Method of forming a single-crystal semiconductor film on an amorphous insulator
JP3347072B2 (en) Polycrystalline growth method
US4707217A (en) Single crystal thin films
JPH0732124B2 (en) Method for manufacturing semiconductor device
US4659422A (en) Process for producing monocrystalline layer on insulator
JPH10270379A (en) Method and device for laser irradiation
EP0080067A2 (en) Optical beam concentrator
US4719183A (en) Forming single crystal silicon on insulator by irradiating a laser beam having dual peak energy distribution onto polysilicon on a dielectric substrate having steps
JPH0352214B2 (en)
JPS62160781A (en) Laser light projecting apparatus
JPH027415A (en) Formation of soi thin film
JPS6226572B2 (en)
JPH0420254B2 (en)
JPS641046B2 (en)
JPH08203822A (en) Thin film semiconductor material forming apparatus
JPH03289128A (en) Manufacture of semiconductor thin film crystal layer
JPH0325920A (en) Forming method of single crystal thin-film
JPH0652712B2 (en) Semiconductor device
JPS59151421A (en) Laser annealing device
JPH0793261B2 (en) Single crystal thin film forming equipment
JPS60261126A (en) Manufacture of single crystal semiconductor film
JPS6170713A (en) Recrystallizing method of silicon film