JPH01103824A - Laser annealing process - Google Patents

Laser annealing process

Info

Publication number
JPH01103824A
JPH01103824A JP15657688A JP15657688A JPH01103824A JP H01103824 A JPH01103824 A JP H01103824A JP 15657688 A JP15657688 A JP 15657688A JP 15657688 A JP15657688 A JP 15657688A JP H01103824 A JPH01103824 A JP H01103824A
Authority
JP
Japan
Prior art keywords
beams
energy
scanned
central
scanning line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15657688A
Other languages
Japanese (ja)
Inventor
Seiichiro Kawamura
河村 誠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15657688A priority Critical patent/JPH01103824A/en
Publication of JPH01103824A publication Critical patent/JPH01103824A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the single-crystallization by a method wherein an element is scanned by multiple energy beams so that the energy intensity in the central part of irradiating region by the energy beams may be lower than that in the outer parts. CONSTITUTION:Multiple energy beams are applied to the irradiating region 1 of energy beams with the energy intensity distributed as shown in figure to start setting process from the central part. For example, an element is irradi ated with three concentrated reference beams to be scanned likewise for setting from the central scanning line enabling the setting at both ends to be delayed. When scanned in the arrow direction, the preceding beams 10A located on the central scanning line melt down or preheat the central part while the laser beams 10B, 10C symmetrically located behind on both sides of the central scan ning line melt down the both ends at a time lag. If the element is scanned by such beams, the element is set from the central scanning line toward both sides to be easily single-crystallized while enabling the scanning width to be widened to 100-150mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザビームによって多結晶粒を粗大にし、単
結晶化するレーザアニールの改善方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for improving laser annealing in which polycrystalline grains are coarsened by a laser beam to form a single crystal.

レーザ光は光通信t−初めとして、測長機などの検査用
機器に広く使用されており、又レーザ光のエネルギーを
利用して浴接・切断などの加工機や手術用メスも開発さ
れている。半導体装置を製造する場合にも、不純物イオ
ンを注入した後、半導体基板結晶内に生じた歪を除去す
るためのアニールにレーザ光のエネルギーが利用されて
おシ、更に扛非晶質絶縁物上に被着させた多結晶質の材
料をレーザアニールにより単結晶化する方法も提案され
ている。
Laser light is widely used in optical communication and inspection equipment such as length measuring machines, and processing machines such as bath welding and cutting, as well as surgical scalpels, have also been developed using the energy of laser light. There is. When manufacturing semiconductor devices, the energy of laser light is used for annealing to remove the strain that occurs in the semiconductor substrate crystal after impurity ions are implanted. A method has also been proposed in which a polycrystalline material deposited on a substrate is made into a single crystal by laser annealing.

〔従来の技術〕[Conventional technology]

本発明はこのようなレーザアニール方法の後者、即ち多
結晶質を単結晶化する方法の実際的な改善提案でらる。
The present invention proposes a practical improvement to the latter of such laser annealing methods, that is, a method for converting polycrystalline materials into single crystals.

周知のようにレーザ光はレーザ発振゛器より発射され、
レンズ系で絞られて直径数10μm1jI のレーザビ
ームとなって、試料上を照射し、これ全走査(スキャン
ニング)して、その照射エネルギーによって多結晶を溶
融し、固化させて単結晶化するのであるが、一般にビー
ムのエネルギー分布はガウス分布でろって、円形ビーム
の中心部のエネルギーが強く、中心から遠くなる程エネ
ルギーは低い状態にある。
As is well known, laser light is emitted from a laser oscillator,
The laser beam is narrowed down by a lens system to become a laser beam with a diameter of several tens of micrometers, and is irradiated onto the sample.The entire sample is scanned, and the irradiation energy melts the polycrystal, solidifies it, and turns it into a single crystal. However, the energy distribution of the beam is generally a Gaussian distribution, with the energy being strong at the center of a circular beam and decreasing as the distance from the center increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような標準的なレーザビームを照射し、走査すれば
、ビームの周囲部分から中心部に向って固化し、結晶化
するため結晶粒界が互に干渉し合って、結晶が拡大して
単結晶化することを防害し、単結晶化することが甚だ困
難な状況にある。
When such a standard laser beam is irradiated and scanned, the beam solidifies and crystallizes from the periphery toward the center, causing the grain boundaries to interfere with each other, causing the crystal to expand and form a single crystal. It is extremely difficult to prevent crystallization and convert it into single crystals.

本発明はこのような問題点を解消し、容易に結晶が拡大
され単結晶化することを課題とする。
An object of the present invention is to solve these problems and easily expand the crystal to form a single crystal.

〔課題を解決するための手段〕[Means to solve the problem]

前記a題は、非単結晶半導体層にエネルギービームを照
射して走査し単結晶化するに際して、前記エネルギービ
ームの照射領域の中央部のエネルギー強度がその外側の
エネルギー強度よりも小さくなる様に複数本のエネルギ
ービームにより前記走査を行なうことを特徴とするレー
ザアニール方法によって解決される。
The problem is that when a non-single-crystal semiconductor layer is irradiated with an energy beam and scanned to form a single crystal, multiple beams are applied so that the energy intensity at the center of the irradiation area of the energy beam is smaller than the energy intensity at the outside. The problem is solved by a laser annealing method characterized in that the scanning is performed with a beam of energy.

〔作用〕[Effect]

前述の様に複数本のエネルギービームを合成して照射す
ることにより、ビームの走査線中央部分が早く固化し、
両側端部分が遅く固化されるので、結晶粒界が互いに干
渉しあうことがなく、広範囲の領域を容易に単結晶化す
ることができる。
As mentioned above, by combining and irradiating multiple energy beams, the central part of the beam scanning line solidifies quickly.
Since both end portions are solidified slowly, grain boundaries do not interfere with each other, and a wide range of regions can be easily formed into single crystals.

〔実施例〕〔Example〕

以下図面を参照して本発明の一実施例をよシ詳しく説明
する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例におけるエネルギー強度分布
を示す因である。本笑施例では、エネルギービームの照
射領域1のエネルギー強度分布を第1図の如くして、中
央部より固化が始まる様に複数本のエネルギービームを
用いる。
FIG. 1 is a diagram showing the energy intensity distribution in one embodiment of the present invention. In this embodiment, a plurality of energy beams are used so that the energy intensity distribution of the energy beam irradiation area 1 is as shown in FIG. 1, and solidification starts from the center.

例えば3つの標準レーザビーム(標準とはエネルギーが
ガウス分布した一般的なものと云う意味である)を集合
したレーザビームで照射し、走査して同様に走査線中央
を早く凝固させ、両側端の固化を遅くすることが可能で
ある。第2図はかようなレーザビームの照射形状を示し
、矢印方向に走査すれば、走査線中央に位置して先行す
るビーム10人が中央部分を溶融又は予備加熱し、久い
て走査線中心の両側に対称して後置したレーザビームI
OB、IOCが両側を時間的に遅れて溶融する。
For example, three standard laser beams (standard means a general beam with Gaussian energy distribution) are irradiated with a collective laser beam and scanned, similarly solidifying the center of the scanning line quickly, and solidifying the center of the scanning line quickly, and It is possible to slow down solidification. Figure 2 shows the irradiation shape of such a laser beam.If the laser beam is scanned in the direction of the arrow, the 10 leading beams located at the center of the scanning line will melt or preheat the central part, and then the laser beam at the center of the scanning line will melt or preheat. Laser beam I placed symmetrically on both sides
OB and IOC melt on both sides with a time delay.

走査スピードは例えば10cM/秒、全ビームエネルギ
ー10〜15ワット程度とし、試料を500℃に加熱し
た半導体基板とする。このようなビームで走査すれば、
走査線の中央から両側に向って固化するため、単結晶化
されやすく、又その走査中は100〜150μmと巾広
いものとなる。
The scanning speed is, for example, 10 cM/sec, the total beam energy is about 10 to 15 watts, and the sample is a semiconductor substrate heated to 500°C. If you scan with such a beam,
Since it solidifies from the center of the scanning line toward both sides, it is easy to form a single crystal, and the width becomes 100 to 150 μm during the scanning.

〔効果〕〔effect〕

以上のように、本発明はレーザビーム走査線の中央から
固化させて、単結晶化を促進する方法で、従来のビーム
走査によるレーザアニール方法では結晶を拡大すること
が難かしかったが、本発明によれば単結晶化が容易とな
シ、半導体装置の微細化、精密化に寄与し、特性向上に
役立つものでおる。
As described above, the present invention is a method of promoting single crystallization by solidifying from the center of the laser beam scanning line. The invention facilitates single crystallization, contributes to miniaturization and precision of semiconductor devices, and is useful for improving characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にか\るレーザアニール方法に適用する
一実施例の照射領域のエネルギーモデル図、第2図は3
本のエネルギービームの照射形状を示す図である。 図中、1はレーザビームのエネルギー照射領域のエネル
ギー強度、10A〜IOCはそれぞれエネルギービーム
を示す。 ml:−7)。 悌11E3 審 2 罰
Figure 1 is an energy model diagram of the irradiation area in one embodiment applied to the laser annealing method according to the present invention, and Figure 2 is an energy model diagram of the irradiation area.
It is a figure showing the irradiation shape of the energy beam of the book. In the figure, 1 indicates the energy intensity of the energy irradiation area of the laser beam, and 10A to IOC indicate the energy beams, respectively. ml:-7).悌11E3 Judgment 2 Punishment

Claims (2)

【特許請求の範囲】[Claims] (1)非単結晶半導体層にエネルギービームを照射して
走査し単結晶化するに際して、前記エネルギービームの
照射領域の中央部のエネルギー強度がその外側のエネル
ギー強度よりも小さくなる様に複数本のエネルギービー
ムにより前記走査を行なうことを特徴とするレーザアニ
ール方法。
(1) When irradiating and scanning a non-single-crystal semiconductor layer with an energy beam to form a single crystal, multiple rays are A laser annealing method characterized in that the scanning is performed with an energy beam.
(2)前記複数本のエネルギービームを第1、第2、第
3のエネルギービームで構成し、そのうち前記第1のエ
ネルギービームを走査線の中央に位置させ、前記第2、
3のエネルギービームを前記第1のエネルギービームの
走査線の両側に位置させ、且つ前記第1のエネルギービ
ームより遅らせて走査することを特徴とする特許請求の
範囲第1項記載のレーザアニール方法。
(2) The plurality of energy beams are composed of first, second, and third energy beams, of which the first energy beam is located at the center of the scanning line, and the second,
2. The laser annealing method according to claim 1, wherein the three energy beams are positioned on both sides of the scanning line of the first energy beam and are scanned later than the first energy beam.
JP15657688A 1988-06-24 1988-06-24 Laser annealing process Pending JPH01103824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15657688A JPH01103824A (en) 1988-06-24 1988-06-24 Laser annealing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15657688A JPH01103824A (en) 1988-06-24 1988-06-24 Laser annealing process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56120376A Division JPS5821319A (en) 1981-07-30 1981-07-30 Annealing by laser

Publications (1)

Publication Number Publication Date
JPH01103824A true JPH01103824A (en) 1989-04-20

Family

ID=15630783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15657688A Pending JPH01103824A (en) 1988-06-24 1988-06-24 Laser annealing process

Country Status (1)

Country Link
JP (1) JPH01103824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503313A (en) * 2008-09-16 2012-02-02 東京エレクトロン株式会社 Dielectric material processing system and method of operating the system
US8895942B2 (en) 2008-09-16 2014-11-25 Tokyo Electron Limited Dielectric treatment module using scanning IR radiation source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LASER AND ELECTRON-BEAM SOLID INTERACTIONS AND MATERIALS PROCESSING=1981 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503313A (en) * 2008-09-16 2012-02-02 東京エレクトロン株式会社 Dielectric material processing system and method of operating the system
US8895942B2 (en) 2008-09-16 2014-11-25 Tokyo Electron Limited Dielectric treatment module using scanning IR radiation source

Similar Documents

Publication Publication Date Title
JPS5821319A (en) Annealing by laser
JP2002524874A (en) Double pulse laser crystallization of thin semiconductor films
JPH07187890A (en) Laser annealing method
JPH01103824A (en) Laser annealing process
JPS62160781A (en) Laser light projecting apparatus
JPS5925215A (en) Manufacture of semiconductor device
JPS5839012A (en) Single-crystalization of non-single crystal semiconductor layer
JPS5892213A (en) Manufacture of semiconductor single crystalline film
JPS63233518A (en) Apparatus for forming single crystal thin film
JPH03284828A (en) Crystallizing method for semiconductor thin-film
JPH03289128A (en) Manufacture of semiconductor thin film crystal layer
JPS6247114A (en) Manufacture of semiconductor single crystal film
JPS63142810A (en) Manufacture of semiconductor device
JP2740281B2 (en) Method for producing crystalline silicon
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPS60191090A (en) Manufacture of semiconductor device
JPS6265410A (en) Formation of single crystal thin film
JPS59119822A (en) Manufacture of semiconductor device
JPH0449250B2 (en)
JPH0754798B2 (en) Beam annealing method
JPS6221789A (en) Recrystallization
JPH0382014A (en) Manufacture of semiconductor thin-film
JPS59119824A (en) Manufacture of semiconductor device
JPH0793260B2 (en) Single crystal thin film forming equipment
JPS62226621A (en) Forming method for single crystal silicon thin film