JPH0382014A - Manufacture of semiconductor thin-film - Google Patents

Manufacture of semiconductor thin-film

Info

Publication number
JPH0382014A
JPH0382014A JP21823689A JP21823689A JPH0382014A JP H0382014 A JPH0382014 A JP H0382014A JP 21823689 A JP21823689 A JP 21823689A JP 21823689 A JP21823689 A JP 21823689A JP H0382014 A JPH0382014 A JP H0382014A
Authority
JP
Japan
Prior art keywords
film
semiconductor thin
single crystal
amorphous
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21823689A
Other languages
Japanese (ja)
Inventor
Noritoshi Yamaguchi
文紀 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21823689A priority Critical patent/JPH0382014A/en
Publication of JPH0382014A publication Critical patent/JPH0382014A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an excellent semiconductor thin-film single crystal, and to change a semiconductor thin-film into a single crystal while insularly isolating the semiconductor thin-film by making the beam intensity of both side sections in the direction of the scanning of laser beams stronger than a central section and turning the central section into the single crystal while melting an amorphous or polycrystalline silicon film in the direction of scanning. CONSTITUTION:In the manufacture of a semiconductor thin-film in which an amorphous or polycrystalline silicon film formed onto an insulating substrate is converted into a single crystal by irradiating the polycrystalline silicon film with laser beams and melting and solidifying the polycrystalline silicon film, the beam intensity of both side sections in the direction of the scanning of laser beams is made stronger than a central section, and the central section is changed into the single crystal while both side sections in the direction of the scanning of laser beams of the amorphous or polycrystalline silicon film are melted. The amorphous silicon layer is formed onto a glass substrate hardly containing sodium ions in thickness of approximately 0.05-2mum through a plasma CVD method, a silicon oxide film, etc., functioning as a cap layer is shaped onto the amorphous silicon layer, and the silicon oxide film is irradiated with said laser beams and melted and solidified and turned into the single crystal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体薄膜の製造方法に関し、特にシリコン膜
にレーザビームを照射して半導体薄膜を単結晶化する半
導体薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor thin film, and more particularly to a method for manufacturing a semiconductor thin film in which a silicon film is irradiated with a laser beam to monocrystallize the semiconductor thin film.

(従来の技術及び問題点) 従来から、多結晶又は非晶質シリコンにレーザビームを
照射して単結晶化するレーザビーム結晶化法がある。こ
のレーザビーム結晶化法において多結晶又は非晶質シリ
コンがち良質な単結晶膜を得るための種々の試みが為さ
れている。
(Prior Art and Problems) Conventionally, there is a laser beam crystallization method in which polycrystalline or amorphous silicon is irradiated with a laser beam to form a single crystal. Various attempts have been made to obtain high quality single crystal films of polycrystalline or amorphous silicon using this laser beam crystallization method.

例えば特開昭58−21319号公報では、例えば連続
発振アルゴンレーザのビーム形状をドーナツ型にして、
レーザビームの強度分布を所謂双峰型とすることによっ
てレーザビームの走査線中央部を早く冷却すると共に、
レーザビームの走査線の両1部分を遅く冷却し、もって
レーザビームの走査線の中央部分から両側部分に向かっ
て単結晶を成長させて高品質で大型の薄膜単結晶を形成
することが提案されている。
For example, in Japanese Patent Application Laid-Open No. 58-21319, the beam shape of a continuous wave argon laser is made into a donut shape,
By making the intensity distribution of the laser beam a so-called bimodal type, the central part of the scanning line of the laser beam can be cooled quickly, and
It has been proposed to slowly cool both parts of the laser beam scanning line, thereby growing the single crystal from the central part to both sides of the laser beam scanning line, thereby forming a high-quality, large-sized thin film single crystal. ing.

ところが、この従来の半導体薄膜の製造方法では、条件
的に不安定であり、中央部に粒界が走る場合がはεんど
である。すなわち、シリコンは熱伝導が良いため、レー
ザビームの走査線の中央部分から同化が始まっても、両
端間に達するまでに両端側からも冷却・固化が始まって
しまう、この場合、中央部から固化したものは単結晶と
なるが、両端部では固溶界面(レーザビームが通過した
部分とそうでない部分の界面)が多結晶又は非晶質のた
め単結晶は成長しない、結果的に両端側から成長した多
結晶と中央部から成長した単結晶が衝突することとなる
0両端側の多結晶部分の幅は、レーザパワー、レーザビ
ームの強度分布、或いはシリコン族の厚みなど多くのパ
ラメータが複雑に絡みあっており、条件的に不安定とな
るのである。
However, this conventional semiconductor thin film manufacturing method is unstable under certain conditions, and there are cases where grain boundaries run in the center. In other words, silicon has good thermal conductivity, so even if assimilation starts from the center of the laser beam scanning line, cooling and solidification will begin from both ends by the time the laser beam reaches between the two ends.In this case, the solidification will start from the center. However, since the solid solution interface (the interface between the part where the laser beam passed and the part where it did not pass) is polycrystalline or amorphous at both ends, the single crystal does not grow. The width of the polycrystalline parts at both ends, where the grown polycrystal and the single crystal grown from the center collide, is determined by many complicated parameters such as laser power, laser beam intensity distribution, and the thickness of the silicon group. They are intertwined, making them conditionally unstable.

一方、特開昭59−210638号には、絶縁物上に、
多結晶、非晶質、又は無定形半導体膜を形成した後に、
この半導体膜を通常のフォトリソグラフィ技術で島状に
分離した後にレーザビームを照射することによって、小
面積単位で完全に単結晶化することが提案されている。
On the other hand, in JP-A No. 59-210638, on an insulating material,
After forming a polycrystalline, amorphous, or amorphous semiconductor film,
It has been proposed that this semiconductor film be separated into islands using a conventional photolithography technique and then irradiated with a laser beam to completely form a single crystal in a small area unit.

ところが、この従来の半導体薄膜の製造方法では、半導
体薄膜にレーザビームを照射するに先立って半導体膜を
島状に分離することから、工程数が増加する。
However, in this conventional method for manufacturing a semiconductor thin film, the number of steps increases because the semiconductor film is separated into islands before irradiating the semiconductor thin film with a laser beam.

(発明の目的) 本発明は、このような従来技術の問題点に鑑みて案出さ
れたものであり、レーザビームを照射した半導体薄膜の
中央部に粒界等が走ることがなく、良質な半導体薄膜単
結晶を得ることができ、しかも半導体薄膜を単結晶化す
ると同時に島状に分離することができる半導体薄膜の製
造方法を提供することを目的とするものである。
(Objective of the Invention) The present invention was devised in view of the problems of the prior art, and is capable of producing high-quality semiconductor thin films without grain boundaries running through the center of the semiconductor thin film irradiated with a laser beam. It is an object of the present invention to provide a method for manufacturing a semiconductor thin film, which can obtain a semiconductor thin film single crystal, and can simultaneously separate the semiconductor thin film into single crystals and island shapes.

(問題点を解決するための手段) 本発明によれば、絶縁基板上に形成した非晶質若しくは
多結晶シリコン膜にレーザービームを照射して非晶質若
しくは多結晶シリコン族を溶融・固化させることにより
単結晶化する半導体薄膜の製造方法において、前記レー
ザビームの走査方向における両側部分のビーム強度を中
央部分より強くして、首記非晶質若しくは多結晶シリコ
ン族をレーザビームの走査方向に溶断しながら中央部分
を単結晶化することを特徴とする半導体′fsMの製造
方法が提供され、そのことにより上記目的が達成される
(Means for solving the problem) According to the present invention, a laser beam is irradiated onto an amorphous or polycrystalline silicon film formed on an insulating substrate to melt and solidify the amorphous or polycrystalline silicon group. In the method for manufacturing a semiconductor thin film which is made into a single crystal by making the beam intensity on both sides in the scanning direction of the laser beam stronger than the central part, A method for manufacturing a semiconductor 'fsM' is provided, which is characterized in that the central portion is made into a single crystal while being fused, thereby achieving the above object.

(作用) 上述のように構成することにより、レーザビーム走査後
、溶融した半導体薄膜は中央部分かち固化を始めるが一
1両側部分は溶断して半導体薄膜が引きちぎれ、横方向
への熱放散が抑制されると共に、両側部分からの悪影響
を与える多結晶の成長が抑制されて全面が単結晶化する
(Function) With the above configuration, after the laser beam scans, the molten semiconductor thin film begins to solidify at the center, but the two sides are fused and the semiconductor thin film is torn off, suppressing heat dissipation in the lateral direction. At the same time, the growth of polycrystals that have an adverse effect from both sides is suppressed, and the entire surface becomes a single crystal.

(実施例) 以下、本発明を添付図面に基づき詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail based on the accompanying drawings.

第1図(ωはレーザビームの強度分布を示す図であり、
第1図(日はレーザビームが照射される半導体薄膜の上
面図である。
Figure 1 (ω is a diagram showing the intensity distribution of the laser beam,
FIG. 1 is a top view of a semiconductor thin film irradiated with a laser beam.

本発明に係る半導体薄膜の製造方法では、レーザビーム
の走査方向の両側部分のビーム強度が中央部のそれに比
して2倍以上強いレーザビームが用いられる。但し、レ
ーザ光の走査速度や被単結晶化膜の厚みによっても異な
るので、両側部分のビーム強度が中央部分のそれに比し
て1.5倍程度でもよい場合もある。また、レーザビー
ムの走査方向における中央部分のビーム強度は半導体薄
膜を加熱して溶融するに足る強度であればよい。
In the method for manufacturing a semiconductor thin film according to the present invention, a laser beam is used in which the beam intensity on both sides of the laser beam in the scanning direction is twice or more stronger than that at the center. However, since it varies depending on the scanning speed of the laser beam and the thickness of the film to be single-crystallized, the beam intensity at both side portions may be about 1.5 times that at the central portion. The beam intensity at the center of the laser beam in the scanning direction may be sufficient to heat and melt the semiconductor thin film.

このような、強度分布を有するレーザビームは、例えば
1本のレーザ光をフレネルレンズで分光してビーム形状
をいわゆる双峰型とし、次にアパーチャーを通過させて
双峰の両側の裾野部分をカットすることによってビーム
の両端を急峻化させ、最後にビームの中央部にNDフィ
ルタをかけて例えば第1図(a)に示すような強度分布
を有するビーム形状にすることができる。この場合、中
央部分の幅は10〜100μm程度、両端部の幅は1〜
30μm程度となるようにビーム形状が整形される。
A laser beam with such an intensity distribution can be produced by, for example, splitting a single laser beam with a Fresnel lens to form a so-called bimodal beam shape, and then passing it through an aperture to cut the base portions on both sides of the bimodal shape. By doing so, both ends of the beam are made steeper, and finally, an ND filter is applied to the center of the beam to form a beam shape having an intensity distribution as shown in FIG. 1(a), for example. In this case, the width of the central part is about 10 to 100 μm, and the width of both ends is about 1 to 100 μm.
The beam shape is shaped to be about 30 μm.

尚、このレーザビームとしては、パワー0.5〜20W
の連続発振アルゴンレーザ等が好適に用いられ、例えば
l〜20cm/sec程度の走査速度で走査される。
Note that this laser beam has a power of 0.5 to 20W.
A continuous wave argon laser or the like is preferably used, and scanning is performed at a scanning speed of, for example, about 1 to 20 cm/sec.

本発明に係る半導体薄膜の製造方法では、例えばナトリ
ウムイオンをほとんど含有しないガラス基板上に、非晶
質シリコン層を例えばプラズマCVD法で厚み0.05
〜2μm程度に形成し、この非晶質シリコン層上に所謂
キャップ層として作用する酸化シリコン膜(Sin2)
等を形成して上述のようなレーザビームを照射して溶融
・固化させて単結晶化する。
In the method for manufacturing a semiconductor thin film according to the present invention, an amorphous silicon layer is formed to a thickness of 0.05 mm by plasma CVD, for example, on a glass substrate containing almost no sodium ions.
A silicon oxide film (Sin2) is formed to a thickness of about 2 μm and acts as a so-called cap layer on this amorphous silicon layer.
etc. is formed and irradiated with the laser beam as described above to melt and solidify to form a single crystal.

また、非晶質シリコン層に限らず、例えば多結晶シリコ
ン薄膜を石英基板上に例えばL P CV D法で形成
して、この多結晶シリコン層上に上述のようなレーザビ
ームを照射して溶融・固化させて単結晶化してもよい。
In addition, it is possible to form not only an amorphous silicon layer but also a polycrystalline silicon thin film on a quartz substrate by, for example, the L P CV D method, and melt the polycrystalline silicon layer by irradiating the laser beam as described above.・It may be solidified to form a single crystal.

尚、レーザビームを非晶質又は多結晶半導体股上で格子
状に走査すれば格子状に分離した一ψ結晶化領域を形成
することも可能であり、走査線の角度を可変することに
よって、単結晶化領域を平面視した場合に、六角形その
他の多角形状の多数の島に形成することもできる。
Note that by scanning a laser beam in a lattice pattern over an amorphous or polycrystalline semiconductor, it is also possible to form 1ψ crystallized regions separated in a lattice pattern. When viewed from above, the crystallized region can also be formed into a large number of islands having a hexagonal or other polygonal shape.

(発明の効果) 以上のように、本発明に係る半導体薄膜の製造方法によ
れば、レーザビームの走査方向における両側部分のビー
ム強度を中央部分より強くして、両端の非晶質若しくは
多結晶シリコン膜をレーザビームの走査方向に溶断しな
がら中央部分を単結晶化することから、レーザビーム走
査後、溶融した半導体薄膜は中央部分から固化を始め、
しからレーザビーム走査方向の画側部分はシリコン薄膜
が溶断して横方向への熱放散が抑制され6と共に、両端
側からの多結晶の成長が著しく抑制され、もってレーザ
ビームが走査した部分のほとんどの部分を広面積にわた
って単結晶化できる画期的な半導体薄膜のWI造方法の
提供が可能さなる。
(Effects of the Invention) As described above, according to the method for manufacturing a semiconductor thin film according to the present invention, the beam intensity at both sides in the scanning direction of the laser beam is made stronger than at the center, and the amorphous or polycrystalline film at both ends is Since the silicon film is melted in the scanning direction of the laser beam and the central part is made into a single crystal, after the laser beam scans, the molten semiconductor thin film begins to solidify from the central part.
However, in the area on the image side in the laser beam scanning direction, the silicon thin film is fused and heat dissipation in the lateral direction is suppressed6, and the growth of polycrystals from both end sides is significantly suppressed. It becomes possible to provide an innovative WI manufacturing method for a semiconductor thin film in which most parts can be single-crystalized over a wide area.

また、レーザビームを走査して半導体薄膜を単結晶化す
るL同時に半導体薄膜を島状に分離することができ、ト
ランジスタ等の能動素子を形成する場合に工程を簡略化
でき著しく有利となる。
Furthermore, it is possible to separate the semiconductor thin film into islands at the same time that the semiconductor thin film is single-crystalized by scanning the laser beam, which is extremely advantageous in simplifying the process when forming active elements such as transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(ωは本発明に係る半導体薄膜の製造方法に用い
られるレーザビームの強度分布を示す図、第1図(Oは
同じ(単結晶化される半導体薄膜の上面図である。 第 ( 〉 − 図 ハ
Figure 1 (ω is a diagram showing the intensity distribution of the laser beam used in the method of manufacturing a semiconductor thin film according to the present invention, Figure 1 (O is the same (top view of the semiconductor thin film to be made into a single crystal). 〉 − Figure C

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上に形成した非晶質若しくは多結晶シリコン膜
にレーザービームを照射して溶融・固化させることによ
り単結晶化する半導体薄膜の製造方法において、前記レ
ーザビームの走査方向における両側部分のビーム強度を
中央部分より強くして、前記非晶質若しくは多結晶シリ
コン膜のレーザビームの走査方向の両側部分を溶断しな
がら中央部分を単結晶化することを特徴とする半導体薄
膜の製造方法。
In a method for manufacturing a semiconductor thin film in which an amorphous or polycrystalline silicon film formed on an insulating substrate is irradiated with a laser beam and melted and solidified to form a single crystal, the beam intensity on both sides in the scanning direction of the laser beam 1. A method for manufacturing a semiconductor thin film, comprising: making the amorphous or polycrystalline silicon film stronger than the central portion, and converting the central portion into a single crystal while melting both portions of the amorphous or polycrystalline silicon film in the scanning direction of a laser beam.
JP21823689A 1989-08-24 1989-08-24 Manufacture of semiconductor thin-film Pending JPH0382014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21823689A JPH0382014A (en) 1989-08-24 1989-08-24 Manufacture of semiconductor thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21823689A JPH0382014A (en) 1989-08-24 1989-08-24 Manufacture of semiconductor thin-film

Publications (1)

Publication Number Publication Date
JPH0382014A true JPH0382014A (en) 1991-04-08

Family

ID=16716734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21823689A Pending JPH0382014A (en) 1989-08-24 1989-08-24 Manufacture of semiconductor thin-film

Country Status (1)

Country Link
JP (1) JPH0382014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173977B2 (en) 2006-10-03 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173977B2 (en) 2006-10-03 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method

Similar Documents

Publication Publication Date Title
JPH0454370B2 (en)
JPS5939790A (en) Production of single crystal
JPH0382014A (en) Manufacture of semiconductor thin-film
JPS5839012A (en) Single-crystalization of non-single crystal semiconductor layer
JPS5939791A (en) Production of single crystal
JP2679708B2 (en) Organic film fabrication method
JPS61251114A (en) Manufacture of single crystal silicon film
JPS5880831A (en) Manufacture of substrate for semiconductor device
JPH0453123A (en) Manufacture of semiconductor film
JPH046823A (en) Manufacture of crystalline semiconductor thin film
JPH03284829A (en) Forming method for semiconductor crystallized film
JPH03116924A (en) Manufacture of single crystal semiconductor thin film
JPH03145716A (en) Manufacture of semiconductor thin film
JPS63142810A (en) Manufacture of semiconductor device
JPS62250630A (en) Manufacture of semiconductor device
JPH0449250B2 (en)
JPH01103824A (en) Laser annealing process
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPH03116923A (en) Manufacture of semiconductor thin film
JPH0410213B2 (en)
JPS63147313A (en) Formation of soi film
JPS61144815A (en) Manufacture of semiconductor single crystal thin film
JPH0432221A (en) Manufacture of semiconductor single crystal film
JPS63150911A (en) Manufacture of semiconductor device
JPS59119822A (en) Manufacture of semiconductor device