JPH03145716A - Manufacture of semiconductor thin film - Google Patents

Manufacture of semiconductor thin film

Info

Publication number
JPH03145716A
JPH03145716A JP28413289A JP28413289A JPH03145716A JP H03145716 A JPH03145716 A JP H03145716A JP 28413289 A JP28413289 A JP 28413289A JP 28413289 A JP28413289 A JP 28413289A JP H03145716 A JPH03145716 A JP H03145716A
Authority
JP
Japan
Prior art keywords
film
amorphous
polycrystalline silicon
silicon film
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28413289A
Other languages
Japanese (ja)
Inventor
Noritoshi Yamaguchi
文紀 山口
Kiyonari Tanaka
聖也 田中
Yoshiteru Nitta
新田 佳照
Masatoki Tomita
賢時 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP28413289A priority Critical patent/JPH03145716A/en
Publication of JPH03145716A publication Critical patent/JPH03145716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a single crystal semiconductor thin film of good quality having no cracks and the like by a method wherein an amorphous or polycrystalline silicon film is formed in narrow-strip shape on an insulated substrate, and said polycrystalline film is brought into the state of single crystal by scanning a laser beam in the direction intersecting with the polycrystalline silicon film. CONSTITUTION:A base layer 2 such as a silicon oxide film, a silicon carbide film, an aluminum oxide film and the like, for example, is formed on an insulated substrate 1 consisting of a quartz substrate and the like, an amorphous or polycrystalline silicon film 3 are formed thereon in band-like shape, and besides, a protective film 4 consisting of silicon oxide, silicon carbide or aluminum oxide and the like is formed thereon. Then, the amorphous or polycrystalline silicon film 3 is single-crystallized by scanningly projecting a laser beam in the direction intersecting with the band-like amorphous or polycrystalline silicon film 3 from the side of the protective film 4 or from the side of the insulated substrate. According to this method, the scanning length of the laser beam on the amorphous or polycrystalline silicon film can be made short, the condition of crystallization can be stabilized, and as a result, a single crystal of good quality can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体薄膜の製造方法に関し、特にシリコン膜
にレーザビームを照射して半導体薄膜を単結晶化する半
導体薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor thin film, and more particularly to a method for manufacturing a semiconductor thin film in which a silicon film is irradiated with a laser beam to monocrystallize the semiconductor thin film.

(従来の技術及び問題点) 従来から、多結晶又は非晶質シリコンにレーザビームを
照射して単結晶化するレーザビーム結晶化法がある。こ
のレーザビーム結晶化法において多結晶又は非晶質シリ
コン膜からクラックが発生しない良質な単結晶化膜を得
るために種々の試みが為されている。
(Prior Art and Problems) Conventionally, there is a laser beam crystallization method in which polycrystalline or amorphous silicon is irradiated with a laser beam to form a single crystal. In this laser beam crystallization method, various attempts have been made to obtain a high-quality single-crystalline film free from cracks from a polycrystalline or amorphous silicon film.

即ち、レーザビーム結晶化法においては、レーザが照射
されて溶融したシリコンが固化するときに、融点から常
温まで冷却する間の絶縁基板とシリコン膜との熱膨張係
数の差が歪みとなる。そして絶縁基板に比べてシリコン
膜の厚みは極めて薄いため、平面方向の伸び縮みは基板
により決まり、シリコン膜中には引っ張り歪みが発生す
る。この引っ張り歪みを絶縁基板とシリコン膜との間に
、例えば酸化シリコン膜等を介在させて緩和しようとす
るが、緩和仕切れずに、シリコン膜自体で緩和するため
にシリコン膜にマイクロクラックが発生してしまうので
ある。
That is, in the laser beam crystallization method, when molten silicon is solidified by laser irradiation, the difference in thermal expansion coefficient between the insulating substrate and the silicon film during cooling from the melting point to room temperature causes distortion. Since the thickness of the silicon film is extremely thin compared to the insulating substrate, expansion and contraction in the plane direction is determined by the substrate, and tensile strain occurs in the silicon film. Attempts are made to alleviate this tensile strain by interposing, for example, a silicon oxide film between the insulating substrate and the silicon film, but the relaxation is not completely resolved and microcracks occur in the silicon film due to the relaxation being done by the silicon film itself. That's what happens.

このような単結晶化時の引1張り歪みを緩和するために
、特開昭51−210638号では、絶縁物上に、非晶
質若しくは多結晶シリコン膜を形成した後に、この非晶
質若しくは多結晶シリコン膜を通常のフォトリングラフ
ィ技術で島状に分離して被単結晶化膜を小面積にするこ
とによって、小面積単位で完全に単結晶化することが提
案されている。
In order to alleviate such tensile strain during single crystallization, Japanese Patent Laid-Open No. 51-210638 discloses that after forming an amorphous or polycrystalline silicon film on an insulator, It has been proposed to separate a polycrystalline silicon film into islands using ordinary photolithography technology to reduce the area of the film to be single-crystallized, thereby achieving complete single-crystallization in small-area units.

ところが、この従来の半導体薄膜の製造方法では、島状
に分離された非晶質若しくは多結晶シリコン膜の領域上
にレーザビームを正確に位置合わせして照射しなければ
ならず、極めて高度な製造技術が要求されることになる
However, in this conventional method for manufacturing semiconductor thin films, the laser beam must be precisely positioned and irradiated onto regions of the amorphous or polycrystalline silicon film separated into islands, which requires extremely advanced manufacturing. Technology will be required.

(発明の目的) 本発明は、このような従来技術の問題点に鑑みて案出さ
れたものであり、レーザビームを照射した半導体薄膜に
クラック等が走ることのない良質な半導体薄膜単結晶を
得ることができる半導体薄膜の製造方法を提供すること
を目的とするものである。
(Purpose of the Invention) The present invention was devised in view of the problems of the prior art, and provides a semiconductor thin film single crystal of high quality that does not cause cracks or the like to occur in the semiconductor thin film irradiated with a laser beam. The object of the present invention is to provide a method for manufacturing a semiconductor thin film that can be obtained.

(問題点を解決するための手段) 本発明によれば、絶縁基板上に形成した非晶質若しくは
多結晶シリコン膜にレーザービームを照射して非晶質若
しくは多結晶シリコン膜を溶融・固化させることにより
単結晶化する半導体薄膜の製造方法において、前記絶縁
基板上に非晶質若しくは多結晶シリコン膜を帯状に形成
すると共に、この帯状の非晶質若しくは多結晶シリコン
膜と交差する方向に前記レーザビームを走査して単結晶
化することを特徴とする半導体薄膜の製造方法が提供さ
れ、そのことにより上記目的が達成される。
(Means for solving the problem) According to the present invention, a laser beam is irradiated onto an amorphous or polycrystalline silicon film formed on an insulating substrate to melt and solidify the amorphous or polycrystalline silicon film. In the method of manufacturing a semiconductor thin film which is made into a single crystal by forming a band-shaped amorphous or polycrystalline silicon film on the insulating substrate, the amorphous or polycrystalline silicon film is There is provided a method for manufacturing a semiconductor thin film characterized by single crystallization by scanning a laser beam, thereby achieving the above object.

(実施例) 以下、本発明を添付図面に基づき詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail based on the accompanying drawings.

第1図は、本発明に係る半導体薄膜の製造方法に用いる
半導体薄膜の膜構成を説明するための断面図であり、1
は絶縁基板、2は下地層、3は非晶質若しくは多結晶シ
リコン膜、4は保護膜である。
FIG. 1 is a cross-sectional view for explaining the film structure of a semiconductor thin film used in the method of manufacturing a semiconductor thin film according to the present invention.
2 is an insulating substrate, 2 is a base layer, 3 is an amorphous or polycrystalline silicon film, and 4 is a protective film.

前記絶縁基板1は、#7059ガラスや石英基板等で構
成される。
The insulating substrate 1 is made of #7059 glass, a quartz substrate, or the like.

前記絶縁基板1上に、下地層2を形成する。この下地層
2は、レーザビームを照射した際に、後述する被単結晶
化膜が絶縁基板1から汚染されるのを防止したり、熱衝
撃を緩和するために設けられる。このような下地層2と
しては、例えば酸化シリコン(SiO2)、炭化シリコ
ン(SiC)、酸化アルミニウム(AI 203 )膜
等が好適に用いられる。この下地層2を酸化シリコン膜
で形成する場合は、例えばCVD法で厚み0.05〜2
゜0μm程度に形成され、炭化シリコン膜で形成する場
合は、例えばプラズマCVD法で厚み0.05〜2μm
程度に形成され、酸化アルミニウム膜で形成する場合は
、例えばスパッタリング法で厚み1μm程度に形成され
る。
A base layer 2 is formed on the insulating substrate 1. This base layer 2 is provided to prevent a film to be single-crystallized, which will be described later, from being contaminated by the insulating substrate 1 and to alleviate thermal shock when irradiated with a laser beam. As such a base layer 2, for example, silicon oxide (SiO2), silicon carbide (SiC), aluminum oxide (AI203) film, etc. are suitably used. When forming the base layer 2 with a silicon oxide film, for example, a thickness of 0.05 to 2
If it is formed with a silicon carbide film, it is formed with a thickness of about 0.05 to 2 μm using a plasma CVD method, for example.
In the case of forming an aluminum oxide film, it is formed to a thickness of about 1 μm by sputtering, for example.

前記下地層2上に、非晶質若しくは多結晶シリコン膜3
を形成する。この非晶質若しくは多結晶シリコン膜3は
複数本の帯状に形成されている。
On the base layer 2, an amorphous or polycrystalline silicon film 3 is formed.
form. This amorphous or polycrystalline silicon film 3 is formed into a plurality of strips.

このシリコン膜3は、例えば5〜1000μm程度の幅
に形成される。
This silicon film 3 is formed to have a width of, for example, about 5 to 1000 μm.

このシリコン膜3を非晶質シリコン膜で形成する場合は
、プラズマCVD法で厚み0.05〜2μm程度に形成
され、多結晶シリコン膜で形成する場合は、LPCVD
法で厚み0.05〜2μm程度に形成される。この非晶
質シリコン膜若しくは多結晶シリコン膜を下地層2上の
全面に形成してフォトレジストを塗布してマスクを形成
し、1〜10%のフッ硝酸溶液(HNO3+HF)中に
数秒〜数分程度浸漬して所定部分をエツチング除去する
ことにより、帯状に形成する。
When this silicon film 3 is formed of an amorphous silicon film, it is formed to a thickness of about 0.05 to 2 μm using a plasma CVD method, and when it is formed using a polycrystalline silicon film, it is formed using an LPCVD method.
It is formed to a thickness of about 0.05 to 2 μm using a method. This amorphous silicon film or polycrystalline silicon film is formed on the entire surface of the base layer 2, a photoresist is applied to form a mask, and the film is immersed in a 1 to 10% fluoro-nitric acid solution (HNO3+HF) for several seconds to several minutes. It is formed into a band shape by immersing it for a certain amount of time and etching away a predetermined portion.

次に、500〜600℃の温度で2時間程度加熱して、
非晶質若しくは多結晶シリコン膜中の水素を排出する。
Next, heat at a temperature of 500 to 600°C for about 2 hours,
Hydrogen in the amorphous or polycrystalline silicon film is discharged.

次に、前記非晶質若しくは多結晶シリコン膜3上に酸化
シリコン(S ] 02 )−炭化シリコン(SiC)
、或いは酸化アルミニウム(A I 203 )等から
なる保護膜4を形成する。
Next, silicon oxide (S]02)-silicon carbide (SiC) is deposited on the amorphous or polycrystalline silicon film 3.
Alternatively, a protective film 4 made of aluminum oxide (A I 203 ) or the like is formed.

次に、第2図に示すように、保護膜4側か°ら、若しく
は絶縁基板1側からレーザ光を、上記帯状の非晶質若し
くは多結晶シリコン膜3と交差する方向に走査して照射
することにより非晶質若しくは多結晶シリコン膜3を単
結晶化する。尚、レーザの走査方向は、帯状の非晶質若
しくは多結晶シリコンと直交する方向に限らず、所定角
度をもって交差するように走査してもよい、また、レー
ザとしては、例えばビームスポットが20〜100μm
でパワー〇、5〜20Wの連続発振アルゴンレーザ等が
好適に用いられ、走査速度は1〜20cm/sec程度
である。また、レーザのビーム強度分布はいわゆる双峰
型の強度分布を有するものが好適に用いられる。
Next, as shown in FIG. 2, a laser beam is scanned and irradiated from the protective film 4 side or from the insulating substrate 1 side in a direction intersecting the band-shaped amorphous or polycrystalline silicon film 3. By doing so, the amorphous or polycrystalline silicon film 3 is made into a single crystal. Note that the scanning direction of the laser is not limited to the direction perpendicular to the band-shaped amorphous or polycrystalline silicon, but may also be scanned so as to intersect at a predetermined angle. 100μm
A continuous wave argon laser with a power of 0 and a power of 5 to 20 W is preferably used, and the scanning speed is about 1 to 20 cm/sec. Furthermore, a laser beam having a so-called bimodal intensity distribution is preferably used.

なお、第3図に示すように、レーザとして、レーザビー
ムの走査方向における両側部分のビーム強度を中央部分
より強くして、非晶質若しくは多結晶シリコン膜のレー
ザビームの走査方向の両側部分を溶断しながら走査する
ようにしてもよい、即ち、例えば1本のレーザ光をフレ
ネルレンズで分割してビーム形状をいわゆる双峰型とし
、次にアパーチャーを通過させて双峰の両側の裾野部分
をカットすることによってビームの両端を急峻化させ、
最後にビームの中央部にNDフィルタをかけて両側部分
のビーム強度を中央部分よりも強くして両側部分を溶断
てきるようにする。このようなレーザビームを帯状の非
晶質若しくは多結晶シリコン膜3と交差すように走査す
ると、レーザビームを走査すると同時に、島状の単結晶
化領域を形成することができる。また、レーザビーム走
査後、溶融したシリコン膜は中央部分から固化を始め、
しかもレーザビーム走査方向の両側部分のシリコン膜は
溶断して単結晶化すべき部分の横方向への熱放散が抑制
されると共に、両端側からの多結晶の成長が抑制され、
頗る高品質の単結晶化膜を得ることができ、さらにトラ
ンジスタ等の能動素子を形成する場合、単結晶化膜は既
に島状に分離されていることから、工程を簡略化できる
As shown in Fig. 3, the beam intensity on both sides of the laser beam in the scanning direction is made stronger than the central part, so that the laser beam intensity on both sides of the laser beam in the scanning direction of the amorphous or polycrystalline silicon film is increased. For example, one laser beam may be split with a Fresnel lens to form a so-called bimodal beam shape, and then passed through an aperture to scan the base portions on both sides of the bimodal beam. By cutting, both ends of the beam are made steeper,
Finally, an ND filter is applied to the center of the beam to make the beam intensity on both sides stronger than the center so that both sides can be fused. When such a laser beam is scanned so as to intersect with the band-shaped amorphous or polycrystalline silicon film 3, an island-shaped single crystal region can be formed at the same time as the laser beam is scanned. In addition, after laser beam scanning, the molten silicon film begins to solidify from the center.
Moreover, the silicon film on both sides in the laser beam scanning direction is fused and the heat dissipation in the lateral direction of the part to be made into a single crystal is suppressed, and the growth of polycrystals from both ends is suppressed.
A single crystallized film of extremely high quality can be obtained, and furthermore, when forming active elements such as transistors, the process can be simplified because the single crystallized film has already been separated into island shapes.

(発明の効果) 以上のように、本発明に係る半導体薄膜の製造方法によ
れば、絶縁基板上に非晶質若しくは多結晶シリコン膜を
帯状に形成すると共に、この帯状の非晶質若しくは多結
晶シリコン膜と交差する方向に前記レーザビームを走査
して単結晶化することから、非晶質若しくは多結晶シリ
コン股上におけるレーザビームの走査長が短くなって結
晶化の□7 8□ 条件が安定することから、良質な単結晶膜を得ることが
できると共に、レーザビームの走査位置もそれ程厳密に
調整することなく簡単に単結晶薄膜を製造することがで
きる。
(Effects of the Invention) As described above, according to the method of manufacturing a semiconductor thin film according to the present invention, an amorphous or polycrystalline silicon film is formed in a band shape on an insulating substrate, and the band-shaped amorphous or polycrystalline silicon film is Since the laser beam is scanned in a direction intersecting the crystalline silicon film to form a single crystal, the scanning length of the laser beam on the amorphous or polycrystalline silicon becomes short, making the conditions for crystallization stable. Therefore, not only can a high-quality single crystal film be obtained, but also the single crystal thin film can be easily manufactured without adjusting the scanning position of the laser beam very precisely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザビームで単結晶化するための膜構成を示
す断面図、第2図はレーザビームの走査状況を説明する
ための図、第3図は他のレーザビームの走査状況を説明
するための図である。 1、絶縁基板    2、下地層 3、非晶質若しくは多結晶シリコン膜 4、保護膜
Figure 1 is a cross-sectional view showing the film structure for single crystallization with a laser beam, Figure 2 is a diagram to explain the scanning situation of the laser beam, and Figure 3 is a diagram to explain the scanning situation of other laser beams. This is a diagram for 1, Insulating substrate 2, Underlayer 3, Amorphous or polycrystalline silicon film 4, Protective film

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上に形成した非晶質若しくは多結晶シリコン
膜にレーザービームを照射して溶融・固化させることに
より単結晶化する半導体薄膜の製造方法において、前記
絶縁基板上に非晶質若しくは多結晶シリコン膜を帯状に
形成すると共に、この帯状の非晶質若しくは多結晶シリ
コン膜と交差する方向に前記レーザビームを走査して単
結晶化することを特徴とする半導体薄膜の製造方法。
In a method for manufacturing a semiconductor thin film in which amorphous or polycrystalline silicon film formed on an insulating substrate is made into a single crystal by irradiating a laser beam to melt and solidify the amorphous or polycrystalline silicon film, the amorphous or polycrystalline silicon film is formed on the insulating substrate. 1. A method for manufacturing a semiconductor thin film, comprising forming a film in a band shape and scanning the laser beam in a direction intersecting the band-shaped amorphous or polycrystalline silicon film to convert the film into a single crystal.
JP28413289A 1989-10-31 1989-10-31 Manufacture of semiconductor thin film Pending JPH03145716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28413289A JPH03145716A (en) 1989-10-31 1989-10-31 Manufacture of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28413289A JPH03145716A (en) 1989-10-31 1989-10-31 Manufacture of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH03145716A true JPH03145716A (en) 1991-06-20

Family

ID=17674582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28413289A Pending JPH03145716A (en) 1989-10-31 1989-10-31 Manufacture of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH03145716A (en)

Similar Documents

Publication Publication Date Title
JPS62206816A (en) Manufacture of semiconductor crystal layer
JPH03145716A (en) Manufacture of semiconductor thin film
JPS5886717A (en) Forming of single crystal silicon film
JPS60143624A (en) Manufacture of semiconductor device
JPS61185917A (en) Manufacture of semiconductor device
JPH03116924A (en) Manufacture of single crystal semiconductor thin film
JPS5825220A (en) Manufacture of semiconductor substrate
JPS6144787A (en) Manufacture of thin film of semiconductor single crystal
JPH0136972B2 (en)
JPH03284829A (en) Forming method for semiconductor crystallized film
JPH02177534A (en) Manufacture of semiconductor device
JPS59158515A (en) Manufacture of semiconductor device
JPS6017911A (en) Manufacture of semiconductor device
JPS59154016A (en) Formation of thin film crystal
JPS59121826A (en) Fabrication of semiconductor single crystal film
JPS6254910A (en) Manufacturing semiconductor device
JPH0382014A (en) Manufacture of semiconductor thin-film
JPS6112019A (en) Manufacture of semiconductor device
JPS59184518A (en) Method for forming semiconductor thin film on insulating substrate
JPS5919311A (en) Manufacture of semiconductor device
JPS63142810A (en) Manufacture of semiconductor device
JPS6126598A (en) Preparation of germanium thin film crystal
JPH03293720A (en) Manufacture of crystalline semiconductor thin film
JPS60106124A (en) Formation of semiconductor thin film on insulating substrate
JPH0797555B2 (en) Method for manufacturing SOI substrate