JPS59195819A - Formation of semiconductor single crystal layer - Google Patents

Formation of semiconductor single crystal layer

Info

Publication number
JPS59195819A
JPS59195819A JP58071593A JP7159383A JPS59195819A JP S59195819 A JPS59195819 A JP S59195819A JP 58071593 A JP58071593 A JP 58071593A JP 7159383 A JP7159383 A JP 7159383A JP S59195819 A JPS59195819 A JP S59195819A
Authority
JP
Japan
Prior art keywords
laser beam
semiconductor
layer
crystal layer
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58071593A
Other languages
Japanese (ja)
Inventor
Shigeru Kusunoki
茂 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58071593A priority Critical patent/JPS59195819A/en
Publication of JPS59195819A publication Critical patent/JPS59195819A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To realize formation of semiconductor single crystal layer on the surface of insulator substrate by scanning the semiconductor layer with two energy beams in the direction at a right angle the straight line passing the center of these energy beams on said semiconductor layer. CONSTITUTION:The mirrors 4a, 5a, and mirrors 4b, 5b are set so that a part of laser beam 2a and a part of laser beam 2b cross each other on the polysilicon layer 7 and said mirrors moves interlockingly while such setting conditions are maintained. When the entire part of polysilicon layer 7 is scanned in the direction at a right angle to the straight line passing the center of laser beams 2a, 2b on the polysilicon layer 7 by the laser beams 2a, 2b so that the intensity at the intermediate point of the area where the laser beams 2a, 2b cross becomes almost equal to the minimum intensity for dissolving the polysilicon layer 7. Thereby, hardening of the polysilicon layer 7 while the melted part is recrystallized advances from the area corresponding to the intermediate point of melted area where the laser beams 2a, 2b are crossing and random growth of peripheral part from the crystal nucleus can be suppressed. Thus, the silicon single crystal layer can be formed on the surface of insulating substrate 6.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は絶縁体基板の表面上に半導体単結晶層を形成
する方法に関するものである0〔従来の技術〕 平面形ディスプレイ装量の画素゛である液晶を駆動する
MOS)ランジスタなどの素子を絶縁体基板上に形成す
る試みがなされている。そのために、例えば石英基板上
に多結晶または非晶質の半導体を堆積し、この堆積半導
体層を、レーザー光、電子線などのエネルギー線の照射
によって溶融させ再結晶させて、MOS トランジスタ
などの素子が形成される半導体結晶層を石英基板上に形
成する方法が用いられている。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a semiconductor single crystal layer on the surface of an insulating substrate.[Prior Art] Attempts have been made to form elements such as MOS transistors for driving certain liquid crystals on insulating substrates. For this purpose, for example, a polycrystalline or amorphous semiconductor is deposited on a quartz substrate, and this deposited semiconductor layer is melted and recrystallized by irradiation with energy beams such as laser light or electron beams, thereby forming devices such as MOS transistors. A method of forming a semiconductor crystal layer on a quartz substrate is used.

第1図はレーザー光によって絶縁体基板上に半導体結晶
層を形成する従来の方法(こ用いられる半導体結晶層形
成装置の一例の主要構成要素を模式的に示す構成図、第
2図(A)および(B)はそれぞれこの従来の方法に用
いられる装置におけるレーザー光の絶縁体基板上への照
射部を拡大して示す断面図およびレーザー光の照射部で
の強度分布を示す図である。
Figure 1 shows a conventional method of forming a semiconductor crystal layer on an insulating substrate using laser light (a configuration diagram schematically showing the main components of an example of a semiconductor crystal layer forming apparatus used in this method, and Figure 2 (A) and (B) are respectively an enlarged cross-sectional view showing the irradiation part of the laser beam onto the insulating substrate in the apparatus used in this conventional method, and a diagram showing the intensity distribution in the irradiation part of the laser beam.

図において、(1)はレーザー光発生源、(2)はレー
ザー光発生源+1+が発生するレーザー光、(3)はレ
ーザー光(2)を後述のポリシリコン層上に集束するレ
ンズ、(4)および(5)はレーザー光(2)を反射さ
せるミラー、(6)は絶縁体基板、(7)は絶縁体基板
(6)の表面上に減圧CVD法によって堆積されたポリ
シリコン層である。なお、ミラー(4)およびミラー(
5)はそれぞれレンズ(3)によって集束されたレーザ
ー光(2)をX方向およびY方向へ偏向させてレーザー
光(2)がポリシリコン層(7)の表面を照射しながら
走査するように構成されている。
In the figure, (1) is a laser beam generation source, (2) is a laser beam generated by a laser beam generation source +1+, (3) is a lens that focuses laser beam (2) on a polysilicon layer (described later), and (4) is a laser beam generated by a laser beam generation source +1+. ) and (5) are mirrors that reflect the laser beam (2), (6) is an insulating substrate, and (7) is a polysilicon layer deposited on the surface of the insulating substrate (6) by low pressure CVD method. . In addition, mirror (4) and mirror (
5) is configured such that the laser beam (2) focused by the lens (3) is deflected in the X direction and the Y direction so that the laser beam (2) scans while irradiating the surface of the polysilicon layer (7). has been done.

第2図(B)において、縦軸はレーザー光(2)のポリ
シリコン層(7)を照射する強度を示し、横軸はポリシ
リコン層(7)の表面のレーザー光(2)の照射部の中
心からの距離を示す。mpはレーザー光(2)のポリシ
リコンN(7)を溶融することが可能な最小強度である
In FIG. 2(B), the vertical axis indicates the intensity of the laser beam (2) irradiating the polysilicon layer (7), and the horizontal axis indicates the irradiated area of the laser beam (2) on the surface of the polysilicon layer (7). indicates the distance from the center of mp is the minimum intensity of the laser beam (2) that can melt the polysilicon N (7).

ところで、この従来の方法に用いられる装置では、ポリ
シリコン層(7)にレーザー光(2)を照射すると、こ
のポリシリコン層(7)のレーザー光(2)の照射部が
局部的に溶融し、その後このポリシリコン層(7)の溶
融部が固化するときに再結晶して結晶層になる0従って
、ミラー[411(51の作用によって、ポリシリコン
層(7)の全面をレーザー光(2)で走査すると、絶縁
体基板(6)の表面上にMOS )ランジスタなどの素
子を形成するシリコン再結晶層が形成される。しかし、
ポリシリコン層(7)へ照射するレーザー光(2)の強
度分布が、第2図CB)に示すように、ガウス形の分布
をしているために、ポリシリコン層(7)のレーザー光
(2)の照射による溶融部が再結晶する際の固化が、こ
の溶融部のランダムな結晶核が多数存在する周縁部から
進行するので、絶縁体基板(6)の表面上に複数個のシ
リコン結晶粒からなるシリコン結晶粒層が形成され、シ
リコン単結晶層を形成することができない。従って、こ
のシリコン結晶粒層にMOS トランジスタなどの素子
を形成する場合には、リーク電流が大きくなるなどの電
気的特性が悪いという欠点があった。
By the way, in the equipment used in this conventional method, when the polysilicon layer (7) is irradiated with the laser beam (2), the portion of the polysilicon layer (7) irradiated with the laser beam (2) is locally melted. Then, when the molten part of the polysilicon layer (7) solidifies, it recrystallizes and becomes a crystalline layer. ), a silicon recrystallization layer is formed on the surface of the insulating substrate (6) to form elements such as MOS (MOS) transistors. but,
Since the intensity distribution of the laser beam (2) irradiating the polysilicon layer (7) has a Gaussian distribution as shown in Figure 2 CB), the laser beam (2) irradiating the polysilicon layer (7) has a Gaussian distribution. Since the solidification of the recrystallization of the melted part caused by the irradiation in step 2) proceeds from the periphery of the melted part where many random crystal nuclei exist, a plurality of silicon crystals are formed on the surface of the insulating substrate (6). A silicon crystal grain layer consisting of grains is formed, and a silicon single crystal layer cannot be formed. Therefore, when forming an element such as a MOS transistor in this silicon crystal grain layer, there is a drawback that electrical characteristics such as increased leakage current are poor.

〔発明の概要〕[Summary of the invention]

この発明は、上述の欠点を改善する目的でなされたもの
で、絶縁体基板の表面上に形成された多結晶または非晶
質の半導体層の全面を二つのエネルギー線のそれぞれの
一部が上記半導体層上にて互いに交わりこの交わる部分
での上記エネルギー線の強度が上記半導体層の溶融可能
な最小値になるようにして上記二つのエネルギー線でこ
れらのエネルギー線の上記半導体層上での谷中心部を通
る直線と直角方向に走査し、上記半導体層を溶融させ再
結晶させることによって、上記絶縁体基板の表面上に半
導体単結晶層を形成することができる半導体単結晶層の
形成方法を提供するものでおる。
This invention was made for the purpose of improving the above-mentioned drawbacks, and the entire surface of a polycrystalline or amorphous semiconductor layer formed on the surface of an insulating substrate is exposed to a portion of each of two energy rays. The two energy rays intersect with each other on the semiconductor layer so that the intensity of the energy rays at this intersection becomes the minimum value that can melt the semiconductor layer. A method for forming a semiconductor single crystal layer, in which a semiconductor single crystal layer can be formed on the surface of the insulating substrate by scanning in a direction perpendicular to a straight line passing through the center, melting and recrystallizing the semiconductor layer. This is what we offer.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の第1の実施例の方法に用いられる半
導体結晶層形成5装置の主要構成要素を模式的に示す構
成図、第4図(A)および(B)はそれぞれこの第1の
実施例の方法に用いられる装置におけるレーザー光の絶
縁体基板上への照射部を拡大して示す断面図およびレー
ザー光の照射部での強度分布を示す図である。
FIG. 3 is a block diagram schematically showing the main components of the semiconductor crystal layer forming apparatus 5 used in the method of the first embodiment of the present invention, and FIGS. FIG. 2 is an enlarged cross-sectional view showing a portion where a laser beam is irradiated onto an insulating substrate in the apparatus used in the method of the example, and a diagram showing an intensity distribution at the portion where the laser beam is irradiated.

図において、第1図および第2図(こ示した符号と同一
符号は同等部分を示す。(1a)および(1b)はレー
ザー光発生源、(2a)および(2b)はそれぞれレー
ザー光発生源(1a)およびJ−サー元発生源(2b)
が発生するレーザー光、(’3a)および(3b)はそ
れぞれレーサー光(2a)およびレーザー光(2b)ヲ
ホリシリコン層(7)上に集束するレンズ、(4a)お
よび(5a)はそれぞれレーザー光(2a)を反射し第
1図に示した従来の方法に用いられる装置のミラー(4
)およびミラー(5)と同様の作用をするミラー、(4
b)および(5b)はそれぞれレーザー光(2b)を反
射し第1図に示した従来の方法に用いられる装置のミラ
ー(4)およびミラー(5)と同様の作用をするミラー
である。なお、ミラー(4a)、 (5a)およびミラ
ー(4b)、 (5b)はそれぞれレーザー光(2a)
の一部とレーザー光(2b)の一部とがポリシリコン層
(7)上にて互いに交わるように設定され、この設定状
態を保持しながら連動して作動するようになっている。
In the figures, in Figures 1 and 2 (the same symbols as those shown here indicate equivalent parts. (1a) and (1b) are laser light generation sources, (2a) and (2b) are respectively laser light generation sources. (1a) and J-Ser source (2b)
The laser beams ('3a) and (3b) are laser beams ('3a) and (3b), respectively, which focus the laser beams (2a) and (2b) onto the silicon layer (7), and (4a) and (5a), respectively, are laser beams ( 2a) of the apparatus used in the conventional method shown in FIG.
) and a mirror (4) which acts in the same way as mirror (5).
b) and (5b) are mirrors that respectively reflect the laser beam (2b) and function similarly to mirrors (4) and (5) of the device used in the conventional method shown in FIG. In addition, mirrors (4a), (5a) and mirrors (4b), (5b) are laser beams (2a), respectively.
A part of the laser beam (2b) and a part of the laser beam (2b) are set to intersect with each other on the polysilicon layer (7), and operate in conjunction with each other while maintaining this setting state.

第4図(B)において、縦軸はレーサー光(2a)、 
(2b)のポリシリコン層(7)を照射する強度を示し
、横軸はポリシリコン層(7)の表面のレーザー光(2
a)。
In Fig. 4(B), the vertical axis is the laser light (2a),
(2b) shows the intensity with which the polysilicon layer (7) is irradiated, and the horizontal axis is the laser beam (2) on the surface of the polysilicon layer (7).
a).

(2b)の各照射部の中心を通る直線上におけるレーザ
ー光(2a)、 (2b)の交わる部分の中点からの距
離を示す。
The distance from the midpoint of the intersection of laser beams (2a) and (2b) on a straight line passing through the center of each irradiation part in (2b) is shown.

この第1の実施例の方法に用いられる装置では、第4図
(B)に示すよう(こ、レーザー光(2a)、 (2b
)の交わる部分の中点における強度がポリシリコン層(
7)の溶融可能な最小強度mpと同一程度になるように
してレーザー光(2a)、 (2b)でポリシリコン層
(7)の全面をレーザー光(2a)、 (2b)のポリ
シリコン層(7)上での各中心部を通る直線と直角方向
に走査すれば、ポリシリコンN(7)のレーザー光(2
a)、 (2b)の照射による溶融部が再結晶する除の
固化が、この溶融部のレーサー光(2a)、 (2b)
の交わる部分の中点に対応する部分から進行し、周縁部
のランダムな結晶核からの成長が抑えられるので、絶縁
体基板(6)の表面上にシリコン単結晶層を形成するこ
とができる。
In the apparatus used in the method of this first embodiment, as shown in FIG. 4(B), laser light (2a), (2b
) is the strength at the midpoint of the intersection of the polysilicon layer (
The entire surface of the polysilicon layer (7) is irradiated with the laser beams (2a) and (2b) using laser beams (2a) and (2b) at the same level as the minimum melting intensity mp of 7). 7) By scanning in the direction perpendicular to the straight line passing through each center on the
The solidification caused by the recrystallization of the melted part due to the irradiation in a) and (2b) results in the laser light of this melted part (2a) and (2b).
The silicon single-crystal layer can be formed on the surface of the insulating substrate (6) because growth from random crystal nuclei at the periphery is suppressed.

第5図はこの発明の第2の実施例の方法に用いられる半
導体結晶層形成装置の主要構成要素を模式的に示す、構
成図である。
FIG. 5 is a configuration diagram schematically showing the main components of a semiconductor crystal layer forming apparatus used in the method of the second embodiment of the present invention.

図において、第1図および第3図に示した符号と同一符
号は同等部分を示す。(8)”はレーザー光(2)の半
分を透過さメーザ−光(2a)にし他の半分を反射させ
てレーザー光(2b)にする半透明ミラー、(9)は半
透明ミラー(8)を透過したレーザー光(2a)を反射
させてレーザー光(2a)の方向を変える固定ミラー、
(10)はレーザー光(2a)の半透明ミラー(8)を
透過した後の光路とレーザー光(2b)の光路との差を
補正するフィルターである。
In the figures, the same symbols as those shown in FIGS. 1 and 3 indicate equivalent parts. (8)" is a semi-transparent mirror that transmits half of the laser beam (2) to become maser light (2a) and reflects the other half to become laser light (2b); (9) is a semi-transparent mirror (8) a fixed mirror that changes the direction of the laser beam (2a) by reflecting the laser beam (2a) that has passed through the
(10) is a filter that corrects the difference between the optical path of the laser beam (2a) after passing through the semi-transparent mirror (8) and the optical path of the laser beam (2b).

この第2の実施例の方法に用いられる装置でも、第3図
に示した第1の実施例の方法に用いられる装置と同様の
効果がある。
The apparatus used in the method of this second embodiment also has the same effect as the apparatus used in the method of the first embodiment shown in FIG.

第6図はこの発明の第5の実施例の方法に用いられる半
導体結晶層形成装置の主要構成要素を模式的に示す構成
図である。
FIG. 6 is a block diagram schematically showing the main components of a semiconductor crystal layer forming apparatus used in the method of the fifth embodiment of the present invention.

図において、第3図に示した第1の実施例の方法および
第5図に示した第2の実施例の方法に用いられる装置の
符号と同一符号は同等部分を示す0(11)はレーザー
光(2)の半分を反射させてレーサー光(2b)にし他
の半分をレーサー光(2a)にする反射ミラーである。
In the figures, the same symbols as those of the apparatuses used in the method of the first embodiment shown in FIG. 3 and the method of the second embodiment shown in FIG. It is a reflecting mirror that reflects half of the light (2) into a racer light (2b) and the other half into a racer light (2a).

− この第3の実施例の方法に用いられる装置では、第5図
4こ示した第2の実施例の方法に用いられる装置におけ
る半透明ミラー(8)の替りに反射ミラー(n)を用い
たものであるので、第3図に示した第1の実施例の方法
に用いられる装置と同様の効果カダある。なお、これま
で、レーザー光を用いる場合について述べたが、この発
明はこれに眠らず、電子線などのエネルギー線を用いる
場合にも適用することができる。
- In the apparatus used in the method of this third embodiment, a reflective mirror (n) is used in place of the translucent mirror (8) in the apparatus used in the method of the second embodiment shown in FIG. Therefore, it has the same effect as the apparatus used in the method of the first embodiment shown in FIG. Although the case where a laser beam is used has been described so far, the present invention is not limited thereto and can also be applied to a case where an energy beam such as an electron beam is used.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、この発明の半導体結晶層の形成
方法では、絶縁体基板の表面上に形成された多結晶また
は非晶質の半導体層の全面を二つのエネルギー線のそれ
ぞれの一部が半導体層上にて交わりこの又わる部分での
上記エネルギー線の強度が上記半導体層の溶融可能な最
小値になるようにして上記二つのエネルギー線でこれら
のエネルギー線の上記半導体層上での各中心部を通る直
線と直角方向に走査し、上記半導体層を溶融させ再結晶
させるので、上記半導体層の上記エネルギー線の照射に
よる溶融部が再結晶゛する除の同化が、この播融部の上
記二つのエネルギー線の交わる部分に対応する部分から
進行し、周縁部のランダムな結晶核からの成長が抑えら
れる。従って、上記絶縁体基板の表面上に半導体結晶層
を形成することができる。
As explained above, in the method for forming a semiconductor crystal layer of the present invention, two energy rays partially cover the entire surface of a polycrystalline or amorphous semiconductor layer formed on the surface of an insulating substrate. The two energy rays intersect each other on the semiconductor layer so that the intensity of the energy rays at the crossing point becomes the minimum value that can melt the semiconductor layer. Since the semiconductor layer is scanned in a direction perpendicular to a straight line passing through the center, the semiconductor layer is melted and recrystallized. It progresses from the part corresponding to the intersection of the above two energy lines, and growth from random crystal nuclei at the periphery is suppressed. Therefore, a semiconductor crystal layer can be formed on the surface of the insulating substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法に用いられる半導体結晶層形成装置
の一例の主要構成要素を模式的に示す構成図、第2図(
A)および(B)はそれぞれ上記従来の方法に用いられ
る装置におけるレーザー光の絶縁体基板上への照射部を
拡大して示す断面図およびレーザー光の照射部での強度
分布を示す図、第3図はこの発明の゛第1の実施例の方
法に用いられる半導体結晶層形成装置の主要構成要素を
模式的に示す構成図、第4図(A)および(B)はそれ
ぞれ上記第1の実施例の方法に用いられる装置における
レーザー光の絶縁体基板上への照射部を拡大して示す断
面図およびレーザー光の照射部での強度分布を示す図、
第5図はこの発明の第2の実施例の方法に用いられる半
4体結晶層形成装置の主要構成要素を模式的に示す構成
図、第6図はこの発明の第3の実施列の方法に用いられ
る半導体結晶層形成装置の主要構成要素を模式的に示す
構成図である。 図に2いて、(2a)および(2b)はレーザー光(エ
ネルギーAM ) 、(6iは絶縁体基板、(7)はポ
リシリコン層(半導体層) 、(81は半透明ミラー、
(川は反射ミラーである。 なお、図中同一符号はそれぞれ同一または相当部分を示
す。 代理人 大岩増雄 第1図 第2図 (A’) (B) 第3図 40        2t) 第4図 (A) 第す図
Figure 1 is a block diagram schematically showing the main components of an example of a semiconductor crystal layer forming apparatus used in a conventional method, and Figure 2 (
A) and (B) are respectively an enlarged cross-sectional view showing the irradiation part of the laser beam onto the insulating substrate in the apparatus used in the conventional method, and a diagram showing the intensity distribution at the laser beam irradiation part. 3 is a block diagram schematically showing the main components of a semiconductor crystal layer forming apparatus used in the method of the first embodiment of the present invention, and FIGS. 4(A) and 4(B) are respectively A cross-sectional view showing an enlarged view of the irradiation part of the laser beam onto the insulating substrate in the apparatus used in the method of the example, and a diagram showing the intensity distribution in the irradiation part of the laser beam,
FIG. 5 is a block diagram schematically showing the main components of the semi-tetratramline crystal layer forming apparatus used in the method of the second embodiment of the present invention, and FIG. 6 is the method of the third embodiment of the present invention. 1 is a configuration diagram schematically showing the main components of a semiconductor crystal layer forming apparatus used for. In Figure 2, (2a) and (2b) are laser beams (energy AM), (6i is an insulator substrate, (7) is a polysilicon layer (semiconductor layer), (81 is a semi-transparent mirror,
(The river is a reflective mirror. The same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2 (A') (B) Figure 3 40 2t) Figure 4 ( A) Diagram

Claims (5)

【特許請求の範囲】[Claims] (1)絶縁体基板の表面上に多結晶または非晶質の半導
体層を形成し、二つのエネルギー線のそれぞれの一部が
上記半導体層上にて互いに交わりこの交わる部分での上
記エネルギー線の強度が上記半導体層の溶融可能な最小
値になるようにして上記二つのエネルギー線で上記半導
体層の全面を上記二つのエネルギー線の上記半導体層上
での各中心部を通る直線と直角方向Gこ走査し、上記半
導体層を溶融させ再結晶させることを特徴とする半導体
単結晶層の形成方法。
(1) A polycrystalline or amorphous semiconductor layer is formed on the surface of an insulating substrate, and a portion of each of the two energy rays intersects with each other on the semiconductor layer, and the energy rays at this intersection are The two energy rays cover the entire surface of the semiconductor layer in a direction G perpendicular to a straight line passing through each central portion of the semiconductor layer with the intensity at a minimum value capable of melting the semiconductor layer. A method for forming a semiconductor single crystal layer, characterized in that the semiconductor layer is melted and recrystallized by scanning the semiconductor layer.
(2)  エネルギー線が電子線であることを特徴とす
る特許請求の範囲第1項記載の半導体単結晶層の形成方
法。
(2) The method for forming a semiconductor single crystal layer according to claim 1, wherein the energy beam is an electron beam.
(3)  エネルギー線がレーザ光であることを特徴と
する特許請求の範囲第1項記載の半導体単結晶層の形成
方法。
(3) The method for forming a semiconductor single crystal layer according to claim 1, wherein the energy beam is a laser beam.
(4)  一つのレーザー光を半透明ミラーによって2
分割した二つのレーザー光を用いることを特徴とする特
許請求の範囲第3項記載の半導体単結晶層の形成方法。
(4) One laser beam is divided into two by a semi-transparent mirror.
The method for forming a semiconductor single crystal layer according to claim 3, characterized in that two divided laser beams are used.
(5)  一つのレーザー光を反射ミラーによって2分
割した二つのレーザー光を用いることを特徴とする特許
請求の範囲第3項記載の半導体単結晶層の形成方法。
(5) The method for forming a semiconductor single crystal layer according to claim 3, characterized in that one laser beam is divided into two by a reflecting mirror and two laser beams are used.
JP58071593A 1983-04-20 1983-04-20 Formation of semiconductor single crystal layer Pending JPS59195819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071593A JPS59195819A (en) 1983-04-20 1983-04-20 Formation of semiconductor single crystal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071593A JPS59195819A (en) 1983-04-20 1983-04-20 Formation of semiconductor single crystal layer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP26464188A Division JPH01125817A (en) 1988-10-19 1988-10-19 Formation of semiconductor single crystal layer

Publications (1)

Publication Number Publication Date
JPS59195819A true JPS59195819A (en) 1984-11-07

Family

ID=13465117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071593A Pending JPS59195819A (en) 1983-04-20 1983-04-20 Formation of semiconductor single crystal layer

Country Status (1)

Country Link
JP (1) JPS59195819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246819A (en) * 1988-03-28 1989-10-02 Tokyo Electron Ltd Beam annealing
JPH027422A (en) * 1988-06-24 1990-01-11 Ricoh Co Ltd High-temperature heat treatment by laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856411A (en) * 1981-09-30 1983-04-04 Fujitsu Ltd Laser annealing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856411A (en) * 1981-09-30 1983-04-04 Fujitsu Ltd Laser annealing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246819A (en) * 1988-03-28 1989-10-02 Tokyo Electron Ltd Beam annealing
JPH027422A (en) * 1988-06-24 1990-01-11 Ricoh Co Ltd High-temperature heat treatment by laser

Similar Documents

Publication Publication Date Title
CN100355026C (en) Method and apparatus for producing polysilicon film, semiconductor device, and manufacture thereof
JP4056577B2 (en) Laser irradiation method
TW546684B (en) Process and mask projection system for laser crystallization processing of semiconductor film regions on a substrate
JP2003022969A (en) Silicon crystallization method utilizing mask
KR20000011669A (en) beam homogenizer, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
JP2002313723A (en) Method of manufacturing lcd having mainly <100> oriented polycrystalline silicon regions
JPS59161014A (en) Crystallization of semiconductor thin film
JP4296762B2 (en) Laser irradiation apparatus and semiconductor thin film processing method
JP2000058478A (en) Excimer laser annealing system and production of semiconductor film
JPS59195819A (en) Formation of semiconductor single crystal layer
JPS6329819B2 (en)
JPS62160781A (en) Laser light projecting apparatus
JPH06140321A (en) Method of crystallizing of semiconductor film
JPS60143624A (en) Manufacture of semiconductor device
JPH01125817A (en) Formation of semiconductor single crystal layer
JPS5833822A (en) Preparation of semiconductor substrate
JPH11121765A (en) Manufacture of semiconductor device
JPS62206819A (en) Semiconductor device
JPS59151421A (en) Laser annealing device
JPH02177534A (en) Manufacture of semiconductor device
JPH01261820A (en) Laser irradiation apparatus
JPS58222521A (en) Forming method for semiconductor film
JPS59224121A (en) Laser annealing device
JPS6086817A (en) Manufacture of semiconductor device
JPH0330317A (en) Device for manufacturing soi substrate