JPS60145987A - Manufacture of thin film single crystal - Google Patents
Manufacture of thin film single crystalInfo
- Publication number
- JPS60145987A JPS60145987A JP24780283A JP24780283A JPS60145987A JP S60145987 A JPS60145987 A JP S60145987A JP 24780283 A JP24780283 A JP 24780283A JP 24780283 A JP24780283 A JP 24780283A JP S60145987 A JPS60145987 A JP S60145987A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- single crystal
- thin film
- polycrystalline
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B13/00—Single-crystal growth by zone-melting; Refining by zone-melting
- C30B13/16—Heating of the molten zone
- C30B13/22—Heating of the molten zone by irradiation or electric discharge
- C30B13/24—Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
/
本発明は、基体上に形成した多結晶半導体層又は非晶質
半導体層にし一一光を照射して結晶化させる薄膜単結晶
の製造方法に関する。Detailed Description of the Invention: Industrial Application Field: The present invention relates to a method for manufacturing a thin film single crystal, in which a polycrystalline semiconductor layer or an amorphous semiconductor layer formed on a substrate is irradiated with light to crystallize it. .
背景技術とその問題点
シリコンの単結晶薄膜を作り、この単結晶薄膜を用いて
例えば高速LSI(大規模半導体集積回路)、rスジレ
イ・デバイス、3次元IC(半導体集積回路)等のシリ
コン半導体装置を製作することが試みられている。この
だめ、現在、絶縁膜上に多結晶シリコン又は非晶質シリ
コンの薄膜を被着形成し、この薄膜をカービンヒータ、
レーザ光又は電子ビーム等によって加熱溶融させて後、
冷却して種結晶から再結晶化して薄膜単結晶を形成する
5KI(5ilicon on工n5ulator )
技術の開発が進められている。レーザ光または電子ビー
ムによる結晶化法は、第1図の斜視図及び第2図の断面
図に示すように、例えばシリコン結晶からなる基板(1
,)の上に絶縁膜としての5i02膜(2)を形成し、
更にその上に一部基板(1)に接する如く多結晶(又は
非晶質)シリコン膜(3)を被着形成し、この多結晶(
又は非晶質)シリコン膜(3)の表面にレーザ光、また
は電子ビームBを照射し且つ走査することによって、多
結晶(又は非晶質)シリコン膜(3)を溶融し、後冷却
しながら基板(1)を種結晶としてこれより結晶化させ
るものである。また、カーピンヒータによる結晶化法は
、第3図の斜視図及び第4図の断面図に示すように、例
えば石英またはシリコン基板(5)上に5i02膜(6
)、多結晶(又は非晶質)シリコン膜(7)、5i02
膜(6)、S i 3N4膜(8)を1@次被着し、基
板(5)の下に平板状のカーピンヒータα〔を配し、ま
たこの基板(5)の上には棒状のカーピンヒータUυを
配して、カーメンヒータ(1Bを移動して多結晶(又は
非晶質)シリコン膜(7)を結晶化させるものである。Background technology and its problems A single crystal thin film of silicon is made and this single crystal thin film is used to manufacture silicon semiconductor devices such as high-speed LSI (Large Scale Semiconductor Integrated Circuit), r-strip device, three-dimensional IC (Semiconductor Integrated Circuit), etc. Attempts are being made to create one. To solve this problem, currently a thin film of polycrystalline silicon or amorphous silicon is deposited on the insulating film, and this thin film is used as a carbine heater.
After heating and melting with laser light or electron beam,
5KI (5ilicon on engineering 5ulator) which is cooled and recrystallized from a seed crystal to form a thin film single crystal
The technology is being developed. As shown in the perspective view of FIG. 1 and the cross-sectional view of FIG.
, ), a 5i02 film (2) is formed as an insulating film,
Furthermore, a polycrystalline (or amorphous) silicon film (3) is deposited on top of it so as to partially contact the substrate (1), and this polycrystalline (or amorphous) silicon film (3)
The polycrystalline (or amorphous) silicon film (3) is melted by irradiating and scanning the surface of the polycrystalline (or amorphous) silicon film (3) with a laser beam or an electron beam B, and then while cooling. Crystallization is performed using the substrate (1) as a seed crystal. Furthermore, in the crystallization method using a Carpin heater, as shown in the perspective view of FIG. 3 and the cross-sectional view of FIG.
), polycrystalline (or amorphous) silicon film (7), 5i02
The film (6) and the Si 3N4 film (8) are firstly deposited, and a flat carpin heater α is arranged under the substrate (5), and a rod-shaped carpin heater α is placed on the substrate (5). The polycrystalline (or amorphous) silicon film (7) is crystallized by moving the Carmen heater (1B).
このSO工技術の問題点は絶縁膜上にいかに結晶性が良
く且つ大きな結晶薄膜を形成できるかという点である。The problem with this SO technology is how a large crystalline thin film with good crystallinity can be formed on an insulating film.
レーザ光を使用したSOI技術において、より良い単結
晶を得る方法として次の2つの方法がある。In SOI technology using laser light, there are the following two methods for obtaining better single crystals.
第1の方法は光エネルギー分布が双峰型のレーデビーム
を使用する方法である。これは、レーデビームを種々な
光学系を用いて双峰型ビームを作り、この双峰型ビーム
を走査することによって線状に単結晶膜を形成するもの
である。双峰型ビームを作ることで一つの種結晶が走査
方向に成長して行く状態になる。第2の方法は基板を加
工して熱の逃げを作る方法である。これはレーデビーム
の光エネルギー分布をガウス分布のままにして置き、熱
の逃げる膜及び基板を用いてその上に厚み差をつけた所
定・やターンの絶縁膜を被着し、この絶縁膜上に被着形
成した多結晶(又は非晶質)シリコン膜を上記レーデビ
ームで溶融し再結晶化させる。The first method uses a Lede beam with a bimodal optical energy distribution. In this method, a bimodal beam is created from a Lede beam using various optical systems, and a linear single crystal film is formed by scanning this bimodal beam. By creating a bimodal beam, a single seed crystal grows in the scanning direction. The second method is to process the substrate to allow heat to escape. This is done by leaving the light energy distribution of the Lede beam as a Gaussian distribution, using a heat dissipating film and a substrate, and depositing an insulating film with a predetermined number of turns with different thicknesses on top of the film and substrate. The deposited polycrystalline (or amorphous) silicon film is melted and recrystallized by the Lede beam.
この場合、薄い絶縁膜の部分より熱が逃げパターンに応
じた結晶膜が形成される。In this case, heat escapes from the thin insulating film portion, forming a crystal film according to the pattern.
ところで、双峰型レーデビームを用いて再結晶化する上
記第1の方法では、双峰型ビームであれば簡単に結晶性
の良い単結晶膜が得られるというものではなく、この双
峰型ビームによシ多結晶シリコン膜を溶融したときの同
相と液相の境界線の形が問題である。従来の単なる双峰
型ビームによる再結晶化によって得られる単結晶は結晶
性があまり良くなく、又大きな単結晶は得難い。By the way, in the first method of recrystallization using a bimodal Lede beam, it is not possible to easily obtain a single crystal film with good crystallinity using a bimodal beam; The problem is the shape of the boundary line between the same phase and the liquid phase when a polycrystalline silicon film is melted. Single crystals obtained by conventional recrystallization using a simple bimodal beam do not have very good crystallinity, and it is difficult to obtain large single crystals.
発明の目的
本発明は、上述の点に鑑みレーデビームを用いて再結晶
化させる薄膜単結晶の製造方法において、より確実に結
晶性のよい且つ大きな薄膜単結晶が得られる薄膜単結晶
の製造方法を提供するものである。Purpose of the Invention In view of the above-mentioned points, the present invention provides a method for producing a thin film single crystal that more reliably obtains a large thin film single crystal with good crystallinity in a method for producing a thin film single crystal by recrystallizing using a Lede beam. This is what we provide.
発明の概要
本発明は、絶縁体上に形成した多結晶半導体層又は非晶
質半導体層を加熱溶融した後、冷却して種結晶から単結
晶を成長させる薄膜単結晶の製造方法において、多結晶
半導体層又は非晶質半導体層を加熱した固液相界面形状
を加熱溶融方向に関して双峰形状となし、双峰形状の谷
の部分のなす角度が鋭角であるようにした薄膜単結晶の
製造方法である。Summary of the Invention The present invention provides a method for producing a thin film single crystal in which a polycrystalline semiconductor layer or an amorphous semiconductor layer formed on an insulator is heated and melted, and then cooled to grow a single crystal from a seed crystal. A method for producing a thin film single crystal in which the shape of the solid-liquid phase interface formed by heating a semiconductor layer or an amorphous semiconductor layer is bimodal in the direction of heating and melting, and the angle formed by the valley of the bimodal shape is an acute angle. It is.
この発明では、多結晶半導体層又は非晶質半導体層の再
結晶化に際して結晶性が良く、大きな単結晶が得られる
。In the present invention, a large single crystal with good crystallinity can be obtained during recrystallization of a polycrystalline semiconductor layer or an amorphous semiconductor layer.
実施例
以下、本発明による薄膜単結晶の製造方法の実施例を第
5図以下を参照して説明する。EXAMPLE Hereinafter, an example of the method for producing a thin film single crystal according to the present invention will be described with reference to FIG. 5 and subsequent figures.
第5図は本発明に適用される製造装置の一実施例である
。同図中、eυは例えばArのレーデビームBを発生さ
せるレーデビーム発生器であり、この発生器12υから
のレーデビームBはビームエキス・母ンダC!々によシ
ビーム径を拡大して後、遮光板123のスリット状の孔
(2ルを通過して双峰型ビーム光を作るレンズ系125
1に導かれる。レンズ系f29を透過したレーデビーム
Bは反射鏡Cので反射されたのち、X及びY方向に移動
可能なステージ127)上に載置した試料・2ip上に
照射される。試料12樟は例えば前述したようなガラス
またはシリコン結晶の基板上に5i02層を介して多結
晶シリコン膜又は非晶質シリコン膜が被着されて成るも
のである。FIG. 5 shows an embodiment of a manufacturing apparatus applied to the present invention. In the figure, eυ is a Lede beam generator that generates a Lede beam B of Ar, for example, and the Lede beam B from this generator 12υ is a beam extractor mother beam C! After enlarging the diameter of the beam, the lens system 125 passes through the slit-shaped hole (2) of the light shielding plate 123 to create a bimodal beam.
I am guided by 1. The Lede beam B transmitted through the lens system f29 is reflected by a reflecting mirror C, and then irradiated onto a sample 2ip placed on a stage 127) movable in the X and Y directions. Sample 12 is made by depositing a polycrystalline silicon film or an amorphous silicon film on a glass or silicon crystal substrate as described above through a 5i02 layer.
双峰型ビーム光を作るレンズ系(2ωの一例を第6図に
示す。この例では同一の曲率半径を有する2個の凸レン
ズを同一平面上で重ね合わせた場合における両レンズの
共有部分よシなる合成レンズを使用したものに相当しく
実線で囲まれた部分)、1枚の凸レンズの中心部を幅d
だけ削除した1対のレンズ片L1. L2を用意し、こ
のLlとL2を透明接着剤等で合体することにより作る
ことができる。この合成レンズLに対してレーデビーム
Bを照射すると、Llに入射した平行レーデビームBは
Flに集光し、L2に入射した平行レーデビームBはF
2に集光する。即ち、この合成レンズLによって、光軸
が互いにdだけづれた2本のレーデビームBが作られ、
合成レンズLに入射する前のレーデビームBは中心にピ
ークを有するガウス型の光エネルギー分布を持っている
ので、この合成レンズLを通過した後F’1’−F2の
位置の前後で光エネルギー分布の異なる双峰型ビームが
できる。例えば1i11−F2より前のA−A’の位置
では中心部の方にLl及びLlに入射したビームの端部
が入るので中心部の凹みの小さい双峰型ビームが得られ
、またFl−F2よシ後方のB −8’の位置では中心
部の凹みの大きい双峰型ビームが得られる。An example of a lens system (2ω) that creates a bimodal beam light is shown in Figure 6. In this example, when two convex lenses with the same radius of curvature are superimposed on the same plane, the shared part of both lenses is (The part surrounded by a solid line corresponds to a composite lens using
A pair of lens pieces L1. It can be made by preparing L2 and combining Ll and L2 with a transparent adhesive or the like. When the combined lens L is irradiated with the Lede beam B, the parallel Lede beam B incident on Ll is focused on Fl, and the parallel Lede beam B incident on L2 is focused on F1.
Focus the light on 2. That is, this composite lens L creates two Radhe beams B whose optical axes are offset from each other by d,
The Lede beam B before entering the composite lens L has a Gaussian optical energy distribution with a peak at the center, so after passing through the composite lens L, the optical energy distribution will be different before and after the position F'1'-F2. A bimodal beam with different values is created. For example, at the A-A' position before 1i11-F2, Ll and the end of the beam incident on Ll enter the center, so a bimodal beam with a small concavity in the center is obtained, and Fl-F2 At the far rear position B-8', a bimodal beam with a large concavity in the center is obtained.
さて、第5図の製造装置において、スリット状の孔(至
)を通過したレーデビームBは第7図に示す断面形状と
なシ、レンズ系(ハ)を透過して双峰型となって試料(
至)に照射される。このとき、レンズ系(ハ)の焦点よ
9手前に試料(至)を置くようにレンズ系i2!9と試
料210間の距離を調整すると、第8図に示すように2
分割されたレーデビームBが試料(至)上に照射される
。このレーザビームBの光エネルギー分布はガウス分布
を有しているので、試料(至)の多結晶(又は非晶質)
シリコン膜上において第9図に示す形状の溶融領域−が
形成される。この溶融領域−の形状は、遮光板t′2階
の孔(2力のスリット巾d1、試料(2樽に照射される
時のレーデビーム径D1、焦点のスノリット巾d2等に
よって、第10図及び第11図に示すように固液相界面
形状が加熱溶融方向aに関して双峰形状となり、その双
峰形状の谷の部分のなす角度θが鈍角になったり、鋭角
になったシする。第10図Aの鈍角の場合は、第10図
Bに示すように再結晶化した部分(刻が周辺部(30b
)で結晶粒界が密に入シ、中央部(30a)では粗にな
るがやはシ結晶粒界が入った結晶膜となる。第11図A
の鋭角の場合は、第11図Bに示すように再結晶化した
部分(至)が中央部(30a)では結晶粒界がほとんど
入らない単結晶膜となる。従って、再結晶化する際の溶
融領域(ハ)の形状としては加熱溶融方向に関して双峰
形状となす七共に、谷の部分のなす角度θが鋭角である
ような形状とするのがよい。Now, in the manufacturing apparatus shown in Fig. 5, the Radhe beam B that has passed through the slit-shaped hole (C) has the cross-sectional shape shown in Fig. 7, and passes through the lens system (C) to become a bimodal beam to be sampled. (
irradiated to). At this time, if the distance between the lens system i2!9 and the sample 210 is adjusted so that the sample (to) is placed 9 points in front of the focal point of the lens system (c), 2
The divided radar beam B is irradiated onto the sample. Since the optical energy distribution of this laser beam B has a Gaussian distribution, the polycrystalline (or amorphous)
A melted region having the shape shown in FIG. 9 is formed on the silicon film. The shape of this melting region is determined by the slit width d1 of the hole in the second floor of the light-shielding plate t', the diameter D1 of the Lede beam when irradiating the sample (two barrels), the snolit width d2 of the focal point, etc. As shown in Fig. 11, the solid-liquid phase interface shape has a bimodal shape with respect to the heating and melting direction a, and the angle θ formed by the valley portion of the bimodal shape becomes an obtuse angle or an acute angle. In the case of the obtuse angle shown in Figure A, the recrystallized part (notch is the peripheral part (30b) as shown in Figure 10B).
), the crystal grain boundaries are densely populated, and in the central region (30a), the crystal grain boundaries become coarse, but the result is a crystal film containing grain boundaries. Figure 11A
In the case of an acute angle of , the recrystallized portion (end) becomes a single crystal film with almost no grain boundaries in the central portion (30a), as shown in FIG. 11B. Therefore, the shape of the melted region (c) during recrystallization is preferably such that it has a bimodal shape in the direction of heating and melting, and the angle θ formed by the valley portion is an acute angle.
この理由は次のよ゛うに考えられる。第12図に示すよ
うに再結晶膜の結晶面(紙面)が(100)而の場合に
、線状の加熱源で多結晶シリコン膜又は非晶質シリコン
膜を加熱溶融した時の固液相界面が(110)方向の境
界線04を組合せたジグザグの山形となった境界線をも
つ。この性質を助長するようKなす為には符号(ト)で
示すように融点温度分布を(110)方向で決まる実際
の固液相界面の角度90°より鋭角な状態(θ≦90°
)にしてレーザビームを走査すればよい。このよう忙す
れば、結晶性のよい単結晶膜が得られる。The reason for this can be considered as follows. As shown in Figure 12, when the crystal plane (paper surface) of the recrystallized film is (100), the solid-liquid phase occurs when a polycrystalline silicon film or an amorphous silicon film is heated and melted with a linear heating source. The interface has a zigzag mountain-shaped boundary line that is a combination of boundary lines 04 in the (110) direction. In order to promote this property, the melting point temperature distribution must be set at an angle more acute than the actual angle of 90° at the solid-liquid phase interface determined by the (110) direction (θ≦90°), as shown by the symbol (G).
) and scan the laser beam. By doing so, a single crystal film with good crystallinity can be obtained.
発明の効果
上述した様に1本発明によれば多結晶半導体層又は非晶
質半導体層を加熱溶融した固液相界面形状を加熱溶融方
向に関して双峰形状となし、その双峰形状の谷の部分の
なす角度が鋭角となるように双峰型レーザビームを制御
して再結晶化することKより、結晶性の良い大きな単結
晶膜が得られる。Effects of the Invention As described above, according to the present invention, the shape of the solid-liquid phase interface obtained by heating and melting a polycrystalline semiconductor layer or an amorphous semiconductor layer is made bimodal in the direction of heating and melting, and the valleys of the bimodal shape are A large single crystal film with good crystallinity can be obtained by controlling the bimodal laser beam to perform recrystallization so that the angles formed by the parts become acute angles.
第1図乃至第4図は従来の製造方法の例を示す・鋼視図
及び断面図、第5図は本発明に適用される製造装置の一
実施例を示す構成図、第6図はそのレンズ系の一例を示
す説明図、第7図及び第8図は第5図の装置のスリット
状の孔及びレンズ系を透過後のレーザビーム断面を示す
断面図、第9図は試料上の溶融領域の形状を示す図、第
10図及び第11図は溶融領域の形状と再結晶状態の関
係を示す説明図、第12図は本発明の説明に供する線図
である。
(2υはレーデビーム発生器、(ハ)はビームエキス/
1ンダ、(財)は孔、(ハ)はレンズ系、(社)は試料
、CIは溶融領域、Bはレーデビームである。
代理人 伊藤 貞
同 松隈秀盛
第1図 第2図
第3図
第5図
2に
第6図
)習
第12図
手続補正書
昭和59年5月 101−1
1、事件の表示
昭和58年特許願第 247802号
2°発明n 名称 薄膜単結晶の製造方法3、補正をす
る者
事件との関係 ′11〒1i71:出願人住所 東京部
品用区北品用6丁目7番35号名称(218) ソニー
株式会社
代表取締役 大 賀 典 矛イf
4、代 理 人 東京揃僻11宿区西新宿1 ’T I
」8番1号Uritiヒル)置東京(03)343−5
82+ (代表)6、補止により増加する発明の数
8、袖1にの内容
(1)%許請求の範囲を別紙のように補正する。
(2) 明細書中、第3頁17行「種結晶」を1−結晶
核」と訂正する。
(3) 同、第5頁4行「種結晶から」を削除する。
以上
特許請求の範囲
絶縁体上に形成した多結晶半導体層又は非晶質半導体層
を加熱溶融した後、冷却し工率結晶を成長させる薄膜単
結晶の製造方法において、上記多結晶半導体層又は非晶
質半導体層を加熱溶融した固液相界面形状を加熱溶融方
向に関して双峰形状となし、上記双峰形状の谷の部分の
なす角度が鋭角であるようにした#膜単結晶の製造方法
。Figures 1 to 4 show examples of conventional manufacturing methods; steel perspective views and cross-sectional views; Figure 5 is a configuration diagram showing an embodiment of the manufacturing apparatus applied to the present invention; An explanatory diagram showing an example of a lens system. Figures 7 and 8 are cross-sectional views showing the cross section of the laser beam after passing through the slit-like hole and lens system of the apparatus in Figure 5. 10 and 11 are diagrams showing the shape of the region, FIGS. 10 and 11 are explanatory diagrams showing the relationship between the shape of the melted region and the recrystallized state, and FIG. 12 is a diagram used to explain the present invention. (2υ is the Lede beam generator, (c) is the beam extractor/
1. (Incorporated) is the hole, (C) is the lens system, (Incorporated) is the sample, CI is the molten region, and B is the Lede beam. Agent Sadado Ito Hidemori Matsukuma Figure 1 Figure 2 Figure 3 Figure 5 Figures 2 and 6) Xi Figure 12 Procedural Amendments May 1980 101-1 1. Indication of the case 1988 Patent application No. 247802 2° Invention n Name Method for manufacturing thin film single crystal 3, relationship to the amended case '11〒1i71: Applicant address 6-7-35, Kitashinyo, Tokyo Parts Co., Ltd. Name (218) Sony Co., Ltd. Representative Director Nori Oga F4, Agent Tokyo Shoribane 11-ku Nishi-Shinjuku 1 'T I
"8-1 Uriti Hill) Tokyo (03) 343-5
82+ (Representative) 6. Number of inventions increased by supplementation 8. Contents in sleeve 1 (1)% The scope of claims is amended as shown in the attached sheet. (2) In the specification, page 3, line 17, "seed crystal" is corrected to 1-crystal nucleus. (3) Same, page 5, line 4, “From seed crystal” is deleted. Claims A method for manufacturing a thin film single crystal in which a polycrystalline semiconductor layer or an amorphous semiconductor layer formed on an insulator is heated and melted, and then cooled to grow a high-efficiency crystal. A method for manufacturing a #film single crystal, in which the shape of the solid-liquid phase interface obtained by heating and melting a crystalline semiconductor layer is bimodal with respect to the heating and melting direction, and the angle formed by the valley portion of the bimodal shape is an acute angle.
Claims (1)
を加熱溶融した後、冷却して種結晶から単結晶を成長さ
せる薄膜単結晶の製造方法において、上記多結晶半導体
層又は非晶質半導体層を加熱溶融した固液相界面形状を
加熱溶融方向に関して双峰形状となし、上記双峰形状の
谷の部分のなす角度が鋭角であるようにした薄膜単結晶
の製造方法。In a method for manufacturing a thin film single crystal in which a polycrystalline semiconductor layer or an amorphous semiconductor layer formed on an insulator is heated and melted, and then cooled to grow a single crystal from a seed crystal, the polycrystalline semiconductor layer or amorphous semiconductor layer is A method for producing a thin film single crystal, in which the shape of the solid-liquid phase interface obtained by heating and melting a semiconductor layer is bimodal in the direction of heating and melting, and the angle formed by the valley of the bimodal shape is an acute angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24780283A JPS60145987A (en) | 1983-12-29 | 1983-12-29 | Manufacture of thin film single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24780283A JPS60145987A (en) | 1983-12-29 | 1983-12-29 | Manufacture of thin film single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60145987A true JPS60145987A (en) | 1985-08-01 |
Family
ID=17168867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24780283A Pending JPS60145987A (en) | 1983-12-29 | 1983-12-29 | Manufacture of thin film single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60145987A (en) |
-
1983
- 1983-12-29 JP JP24780283A patent/JPS60145987A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6137633A (en) | Laser irradiating apparatus and laser irradiating method | |
TWI331803B (en) | A single-shot semiconductor processing system and method having various irradiation patterns | |
JP4021135B2 (en) | Laser irradiation apparatus and method for manufacturing semiconductor device | |
JPS5821319A (en) | Annealing by laser | |
JP2004311906A (en) | Laser processing device and laser processing method | |
TW200522160A (en) | Crystallization apparatus and method, manufacturing method of electronic device, electronic device, and optical modulation element | |
JPS60257511A (en) | Heat treatment and apparatus therefor | |
KR100760600B1 (en) | Laser system, laser apparatus comprising such a laser system, and method of crystallising a semiconductor film in such a laser apparatus | |
JP2000058478A (en) | Excimer laser annealing system and production of semiconductor film | |
JPS60145987A (en) | Manufacture of thin film single crystal | |
US7361221B2 (en) | Light irradiation apparatus, crystallization apparatus, crystallization method, semiconductor device and light modulation element | |
US20070032050A1 (en) | Mask for sequential lateral solidification and method of manufacturing the same | |
JP2003109911A (en) | Device and method for treating thin film and thin film device | |
JP2003243322A (en) | Method of manufacturing semiconductor device | |
JPH04142030A (en) | Manufacture of semiconductor film | |
KR20220007139A (en) | MEHTOD AND OPTICAL SYSTEM FOR PROCESSING A SEMICONDUCTOR MATERIAL | |
JP3537423B2 (en) | Laser beam uniform irradiation optical system | |
JPH03289128A (en) | Manufacture of semiconductor thin film crystal layer | |
JP2555650B2 (en) | Laser annealing method | |
JPS61266387A (en) | Method for recrystallizing semiconductor thin film with laser | |
JPH02211617A (en) | Manufacture of semiconductor device | |
WO2021145176A1 (en) | Laser annealing device and laser annealing method | |
JP3762773B2 (en) | Laser beam uniform irradiation optical system | |
EP0770925B1 (en) | Photoprocessing method and apparatus | |
JPH03284828A (en) | Crystallizing method for semiconductor thin-film |