JPS5840822A - Formation of semiconductor single crystal film - Google Patents

Formation of semiconductor single crystal film

Info

Publication number
JPS5840822A
JPS5840822A JP13894481A JP13894481A JPS5840822A JP S5840822 A JPS5840822 A JP S5840822A JP 13894481 A JP13894481 A JP 13894481A JP 13894481 A JP13894481 A JP 13894481A JP S5840822 A JPS5840822 A JP S5840822A
Authority
JP
Japan
Prior art keywords
film
single crystal
grooves
crystal film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13894481A
Other languages
Japanese (ja)
Inventor
Masakazu Kimura
正和 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13894481A priority Critical patent/JPS5840822A/en
Publication of JPS5840822A publication Critical patent/JPS5840822A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a good accuracy single crystal film controled by grooves by a method wherein a plurality of insular grooves are firstly perforated in the surface of a substrate when an insular semiconductor single crystal film is formed on an amorphous insulator substrate and an amorphous or polycrystalline semiconductor film is accumulated on the whole surface of the substrate and the film is melted by irradiating continuous oscillating laser light at the film and the film existing at the outside of the grooves is also moved in the grooves. CONSTITUTION:Desired shaped grooves are formed on the surface of a quartz glass substrate 1 by etching and an amorphous or polycrystalline Si film 2 is covered on the whole surface including the grooves by a chemical vapor depositing method of SiH4 gas at about 650 deg.C. Next, laser light is irradiated at the film 2 to melt the film 2 and the film 2 is made as an Si molten substance 3. The substance 2 existing at the projected section of a substrate 1 is also moved in the grooves by scanning laser light and after cooling, the substance 3 is made as an Si angle crystal film 4. In this way, the shape of the insular single crystal film 4 is decided by the grooves and a crystal film with good dimension accuracy is obtained.

Description

【発明の詳細な説明】 本発明は島状の半導体単結晶膜の形成方法に関する。[Detailed description of the invention] The present invention relates to a method for forming an island-shaped semiconductor single crystal film.

非品質絶縁体基板上に半導体単結晶膜を形成する方法は
、高速デバイスや三次元LSIあるいは太陽電池等への
応゜用から注目されている。このような半導体単結晶膜
を形成する方法の一つとしてレーザ光を用いる方法があ
る。これは非品質絶縁体上に非品質又は多結晶半導体膜
を堆積しておきこれにレーザ照射して単結晶に成長させ
る方法である。この場合、単結晶ダレインを大きくする
必要性から、一般にレーザとしては連続発振レーザが用
いられる。又、基板面内の結晶方位をそろえるためにグ
ラフオエビタキシーと呼ばれる成長技術が利用される。
A method of forming a semiconductor single crystal film on a non-quality insulating substrate is attracting attention because of its application to high-speed devices, three-dimensional LSIs, solar cells, and the like. One method for forming such a semiconductor single crystal film is to use laser light. This is a method in which a non-quality or polycrystalline semiconductor film is deposited on a non-quality insulator and then irradiated with a laser to grow it into a single crystal. In this case, a continuous wave laser is generally used as the laser because of the need to increase the size of the single crystal dalein. Furthermore, a growth technique called graphoevitaxy is used to align the crystal orientation within the plane of the substrate.

この技術は非品質絶縁体基板表面に通常ミクロンオーダ
ーのサイズの複数イ固の溝を形成しておき、この溝の幾
何学的形状を利用してダレインの結晶方位を制御するも
のである。デバイスとして用いる場合には通常牛導体単
結晶膜を島状に形成し、そこにトランジスタ等を作成す
る。従ってレーザ照射により単結晶化した半導体膜をデ
バイスどして用いる場合には、レーザ照射前に非M、質
又は多結晶半導体膜を島状にしてその後にレーザ照射で
単結晶化するかあるいはレーザ照射した後に半導体膜を
島状にバターニングする方法がとられる。これらの方法
を用いて島状の半導体J1を結訊膜を形成する場合、連
続発振ンーザを用いて非晶質又は多結晶半導体膜を溶融
させると溶融体の移動によりレーザ照射後の半導体膜表
面は凹凸が大きくなる。そこで、溶融時の半導体の移動
を避けるために例えば非晶質絶縁体基板表面に溝を形成
してkき、この溝の内部にのみあらかじめ非晶質又は多
結晶半導体膜を埋め込んで島状にしてから、これをレー
ザ照射する方法がとられる。ところで、半導体膜を溝の
内部に埋め込む場合に、溝のパターンに合わせて半導体
膜をパターニングする方法が通常用いられるが、パター
ンの位置合)月土j]η常±Iμm程度のずれが伴うた
め、溝と半導体膜のパターンを一致させるのは容易でな
い。
This technique involves forming a plurality of grooves, usually on the order of microns, on the surface of a non-quality insulator substrate, and controlling the crystal orientation of the dalein by utilizing the geometry of the grooves. When used as a device, a conductor single crystal film is usually formed into an island shape, and transistors and the like are created there. Therefore, when using a semiconductor film that has been single-crystalized by laser irradiation as a device, a non-M, crystalline, or polycrystalline semiconductor film is made into an island shape before laser irradiation, and then it is single-crystalized by laser irradiation. A method is used in which the semiconductor film is patterned into island shapes after irradiation. When forming a condensed film on the island-shaped semiconductor J1 using these methods, if the amorphous or polycrystalline semiconductor film is melted using a continuous wave laser, the surface of the semiconductor film after laser irradiation will be reduced due to the movement of the melt. becomes more uneven. Therefore, in order to avoid the movement of the semiconductor during melting, for example, grooves are formed on the surface of an amorphous insulator substrate, and an amorphous or polycrystalline semiconductor film is buried in advance only inside these grooves to form islands. This is then irradiated with a laser. By the way, when embedding a semiconductor film inside a trench, a method is usually used in which the semiconductor film is patterned to match the pattern of the trench. However, it is not easy to match the pattern of the groove and the semiconductor film.

本発明の目的は、島状の半導体単結晶膜を形成する方法
に関するもので、上述したような従来の方法とは異なり
、半導体膜なあらかじめ島状に形成することなしに、非
晶質絶縁体ル板表[1i K形成した溝の内部にのみ半
導体単結晶膜をレーザ照射により形成する新しい半導体
単結晶膜形成方法を提供することにある。
An object of the present invention is to form a semiconductor single crystal film in the form of an island. An object of the present invention is to provide a new method for forming a semiconductor single crystal film in which a semiconductor single crystal film is formed only inside a formed groove by laser irradiation.

非晶質絶縁体例えばガラス上に堆積された半導体膜をレ
ーザ照射により溶融した場合、レーザパワーが強すぎる
と溶融体の移動が生じ、このため半導体膜表面に大きな
凹凸が生ずる。従って、通常はこの凹凸を小さくするよ
うな努力が払われる。
When a semiconductor film deposited on an amorphous insulator such as glass is melted by laser irradiation, if the laser power is too strong, movement of the melt will occur, resulting in large irregularities on the surface of the semiconductor film. Therefore, efforts are usually made to reduce these irregularities.

これに対して本発明の基本的な考え方は、このような従
来の考えとは全く異なり、溶融したときの半導体の移動
を積極的に活用したもので、表面に溝加工が施された非
晶質絶縁体基板の表面全体に非晶質又は多結晶半導体膜
を堆積し、その後連続発振レーザ照射により、溝の外部
(以後凸部と称す)に堆積された半導体膜を、溶融時に
溝の内部(凹部)に移動させることにより溝の内部にの
み半導体単結晶膜を形成し、溝パターンに応じた島状の
半導体単結晶膜を得ることを特徴としたものである。こ
のような方法を用いることにより、従来のようなγaパ
ターンと半導体膜パターンを一致させるという煩わしい
工程を用いずに島状の半導体単結晶)換を形成すること
ができる。
In contrast, the basic idea of the present invention is completely different from such conventional ideas, and actively utilizes the movement of semiconductors when they are melted. An amorphous or polycrystalline semiconductor film is deposited on the entire surface of a high quality insulator substrate, and then the semiconductor film deposited on the outside of the groove (hereinafter referred to as the convex part) is irradiated with a continuous wave laser to melt the semiconductor film inside the groove. The semiconductor single crystal film is formed only inside the groove by moving the semiconductor single crystal film to the recess (concave portion), thereby obtaining an island-shaped semiconductor single crystal film corresponding to the groove pattern. By using such a method, an island-shaped semiconductor single crystal layer can be formed without using the troublesome process of matching the γa pattern and the semiconductor film pattern as in the conventional method.

以下、実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図〜第2図に1本発明による方法の一例を示す。こ
こでは非晶質絶縁体基板及び半導体膜としてはそれぞれ
石英ガラス、シリコン膜を例にとって吠明する。
An example of the method according to the present invention is shown in FIGS. 1 and 2. Here, quartz glass and a silicon film are used as examples for the amorphous insulator substrate and semiconductor film, respectively.

第1図aydは島状のシリコン単結晶膜を形成する工程
を示す試料断面図である。1は石英ガラス、2は多結晶
シリコン膜、3はシリコン溶融体4はシリコン単結晶膜
である。
FIG. 1 ayd is a cross-sectional view of a sample showing the process of forming an island-shaped silicon single crystal film. 1 is a quartz glass, 2 is a polycrystalline silicon film, and 3 is a silicon melt 4 is a silicon single crystal film.

第2図は第1図d K相当する試料表面の様子を示した
ものである。
Figure 2 shows the state of the sample surface corresponding to Figure 1 dK.

石英ガラスlとして表面を鏡面研磨した厚さ約400μ
mのものを用いた。この石英ガラス1の表面に通常の微
細加工により例えば矩形状の溝を形成する(第1図a)
。溝の大きさは例えば5×7−μm程度で、深さは0.
4μm程度のものが用いられる。又凸部の幅としては例
えば2μm程度のものが用いられる。このような溝を形
成したのち、例えば化学気相堆積(CVD)法によりシ
リコン膜2を堆積する(第1図b)。例えばシラン(8
口I4)を原料ガスとして650℃程度で堆積すること
により多結晶シリコンが得られる。堆積すべきシリコン
膜の厚さくム)は、凸部の四部に対する面積比(α)及
び凹部に最終的に形成するシリコン単結晶膜厚(tl)
に依存し、次の(1)式で決められる。
Approximately 400μ thick with mirror polished surface as quartz glass
m was used. For example, rectangular grooves are formed on the surface of the quartz glass 1 by ordinary micromachining (Fig. 1a).
. The size of the groove is, for example, about 5 x 7-μm, and the depth is 0.
A material with a diameter of about 4 μm is used. Further, the width of the convex portion is, for example, about 2 μm. After forming such a groove, a silicon film 2 is deposited by, for example, chemical vapor deposition (CVD) (FIG. 1b). For example, silane (8
Polycrystalline silicon is obtained by depositing at about 650° C. using port I4) as a raw material gas. The thickness of the silicon film to be deposited is determined by the area ratio of the convex part to the four parts (α) and the thickness of the silicon single crystal film finally formed in the concave part (tl)
, and is determined by the following equation (1).

6ユーh−一・・・・・・・・・・・・・・・・・・ 
(111+α 但し、シリコン単結晶膜厚(tl)は溝の深さと同程度
の大きさに選ぶ。例えば凹部の大きさが5×7−μm、
凸部の幅が2μm、凹部に形成するシリコン単結晶膜厚
な0.6μmとした場合、約0.33μmの厚さにシリ
コン膜を堆積すればよい。シリコン膜2を堆積したのち
、レーザ照射によりシリコン膜2を溶融し、シリコン溶
融体3を形成するE同時に凸部の溶融体を溝の内部(四
部)に移動させる(i¥1図C)。レーザ照射は例えば
、直径500μm程度の連続発振ネオジムヤグ(Nd:
YAG)レーザにより]Qg@/socの速度で走査す
ることにより行われる。シリコン膜2が溶融するレーザ
パワーよりもやや高め、例えば2W程度高(・レーザパ
ワーでレーザ光を走査することにより凸部のシリコン溶
融体3を四部に移動させることができる。
6 u h-1・・・・・・・・・・・・・・・・・・
(111+α However, the silicon single crystal film thickness (tl) is selected to be about the same size as the depth of the groove. For example, if the size of the recess is 5 × 7-μm,
If the width of the convex portion is 2 μm and the thickness of the silicon single crystal film formed in the concave portion is 0.6 μm, it is sufficient to deposit the silicon film to a thickness of about 0.33 μm. After depositing the silicon film 2, the silicon film 2 is melted by laser irradiation to form a silicon melt 3. At the same time, the melt on the convex portion is moved to the inside (four parts) of the groove (Figure C). For example, the laser irradiation is performed using a continuous wave neodymium YAG (Nd:
YAG) laser] by scanning at a speed of Qg@/soc. By scanning the laser beam with a laser power that is slightly higher than the laser power that melts the silicon film 2, for example, about 2 W, the silicon melt 3 in the convex portion can be moved to the four parts.

凹部のシリコン溶融体3は溝内に閉じ込められているた
め移動はしない。凸部のシリコン溶融体3がある凹部に
かたよって移動しても、凹部の体積分よりも過剰の溶融
体3は凸部の場合と同様に他の安定な凹部に移動する。
The silicon melt 3 in the recess is confined within the groove and does not move. Even if the silicon melt 3 in the convex portion moves toward a certain concave portion, the melt 3 in excess of the volume of the concave portion moves to another stable concave portion, as in the case of the convex portion.

従って、凹部ではシリコン溶融体3の厚さは、はぼ溝の
深さに保たれる。
Therefore, the thickness of the silicon melt 3 in the recess is maintained at the depth of the groove.

このようにしてレーザ照射により溝の内部にのみシリコ
ン単結晶膜4が形成される(第1図d)。
In this way, the silicon single crystal film 4 is formed only inside the groove by laser irradiation (FIG. 1d).

非晶質又は多結晶シリコン膜の厚さが(1)式で得られ
る値よりも大きくなると、レーザ照射した場合、過剰の
シリコンのかたまりが点在しやすくなる。又、逆に小さ
すぎると、凹部でのシリコン単結晶膜厚のバラツキが大
きくなる。従つ【、堆積するシリコン膜の厚さは使用す
る溝の大きさ、深さ等に応じて選ぶことが必要である。
When the thickness of the amorphous or polycrystalline silicon film is larger than the value obtained by equation (1), excessive silicon lumps tend to be scattered during laser irradiation. On the other hand, if it is too small, variations in the silicon single crystal film thickness in the recessed portions will increase. Therefore, it is necessary to select the thickness of the silicon film to be deposited depending on the size, depth, etc. of the groove to be used.

本実施例では非晶質絶縁体として石英ガラスを例にとっ
たが、単結晶絶縁体基板上にシリコン酸化膜、シリコン
窒化膜等の非晶質絶縁膜を被覆したものを用いてもよい
。又、溝の形状として矩形を例にとったが、正方形や、
L字形のような矩形を複数個結合させたような形状のも
のでもよい。
Although quartz glass is used as an example of the amorphous insulator in this embodiment, a single crystal insulator substrate coated with an amorphous insulating film such as a silicon oxide film or a silicon nitride film may also be used. In addition, although we took a rectangular shape as an example of the shape of the groove, it is also possible to use a square,
It may also be shaped like a combination of a plurality of rectangles, such as an L-shape.

又、本発明は半導体膜の種類に応じてそれに適した連続
発振レーザ光を選ぶことによりシリコン以外の半導体、
例えばゲルマニラA (G?)やガリウム砒素(GaA
n )等にも適用できる。例えば、G&Allの場合に
は、ネオジムヤダ(Nd:YAG )レーザ光に対して
は透明なため、波長のより短いアルゴンCAr)レーザ
やクリプトン(介)レーザが使用される。又Geは波長
l、06μmに対しては吸収係数が大きいので、ネオジ
ムヤグレーザが使用でき、又これより波長の短いレーザ
もむろん使用できる。
Furthermore, the present invention can be applied to semiconductors other than silicon by selecting a continuous wave laser beam suitable for the type of semiconductor film.
For example, gel manila A (G?) and gallium arsenide (GaA
n), etc. For example, in the case of G&All, since it is transparent to neodymium Yadda (Nd:YAG) laser light, an argon (CAr) laser or krypton (YAG) laser, which has a shorter wavelength, is used. Furthermore, since Ge has a large absorption coefficient for wavelengths 1 and 06 μm, neodymium YAG lasers can be used, and lasers with shorter wavelengths can of course also be used.

以上述べたように、本発明は半導体膜をレーザ照射によ
り溶融した場合、レーザパワーが大きすぎるど、その溶
融体が移動しやすいという通常の概念では欠点とみなさ
れる性質を積極的に活用したもので、非晶質絶縁体基板
表面に溝を形成しておき、その上に所望の半導体膜を非
晶質、又は多結晶状態で全面にMト積し、レーザ照射に
より溝の外部に存在する半導体を溝の内部に移動させる
ことにより島状の半導体単結晶膜を形成する方法を提供
するものである。
As described above, the present invention actively utilizes the property that is considered a drawback in the conventional concept that when a semiconductor film is melted by laser irradiation, the molten material tends to move easily even though the laser power is too high. Then, grooves are formed on the surface of the amorphous insulating substrate, and a desired semiconductor film is deposited on the entire surface in an amorphous or polycrystalline state, and the semiconductor film that exists outside the grooves is irradiated with a laser. The present invention provides a method for forming an island-shaped semiconductor single crystal film by moving a semiconductor into a groove.

本発明を用いることにより基板表面の溝パターンと半導
体膜パターンを一致させるというわずられしい工程を用
いることなく、溝パターンに応じた島状の半導体単結晶
膜を容易に得ることができる。
By using the present invention, an island-shaped semiconductor single crystal film corresponding to the groove pattern can be easily obtained without using the troublesome process of matching the groove pattern on the substrate surface with the semiconductor film pattern.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による島状の半導体単結晶膜を形成す
る工程の一実施例を示す試料断面図である。第2図は、
半導体単結晶膜が島状に形成された試料表面の一例を示
したものである。 図において、1は石英ガラス、2は多結晶シリコン膜、
3はシリコン溶融体、4はシリコン単結晶膜     
 −、
FIG. 1 is a cross-sectional view of a sample showing an example of the process of forming an island-shaped semiconductor single crystal film according to the present invention. Figure 2 shows
This figure shows an example of a sample surface on which a semiconductor single crystal film is formed in an island shape. In the figure, 1 is quartz glass, 2 is polycrystalline silicon film,
3 is silicon melt, 4 is silicon single crystal film
-,

Claims (1)

【特許請求の範囲】 1、非晶質絶縁体基板上に島状の半導体単結晶膜を形成
する方法において、非晶質絶縁体基板表面に島状の溝を
複数個形成し、該非晶質絶縁体基板表面全体に非晶質又
は多結晶半導体膜を堆積させた後、連続発振レーザ光の
照射にJ、す、該半導体膜を溶融し、かつ溝の外部に存
在する半導体を溝の内部に移動させることKより、島状
の半導体単結晶膜を形成することを特徴とする半導体単
結晶膜形成法。 2、前記島状の溝は、非晶質絶縁体基板表面に垂直でか
つ隣合5面が互いに直交する4つ以上の平面に、基板表
面に平行な1つの平面で囲まれることを特徴とする特許 囲第+11項記載の半導体単結晶膜形成法。
[Claims] 1. In a method for forming an island-shaped semiconductor single crystal film on an amorphous insulator substrate, a plurality of island-shaped grooves are formed on the surface of the amorphous insulator substrate, and After depositing an amorphous or polycrystalline semiconductor film over the entire surface of the insulator substrate, continuous wave laser light is irradiated to melt the semiconductor film and remove the semiconductor existing outside the trench into the inside of the trench. 1. A method for forming a semiconductor single crystal film, characterized in that an island-shaped semiconductor single crystal film is formed by moving K. 2. The island-shaped groove is surrounded by four or more planes that are perpendicular to the surface of the amorphous insulator substrate and whose five adjacent planes are orthogonal to each other, and one plane that is parallel to the substrate surface. A method for forming a semiconductor single crystal film as described in Patent Enclosure No. +11.
JP13894481A 1981-09-03 1981-09-03 Formation of semiconductor single crystal film Pending JPS5840822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13894481A JPS5840822A (en) 1981-09-03 1981-09-03 Formation of semiconductor single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13894481A JPS5840822A (en) 1981-09-03 1981-09-03 Formation of semiconductor single crystal film

Publications (1)

Publication Number Publication Date
JPS5840822A true JPS5840822A (en) 1983-03-09

Family

ID=15233797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13894481A Pending JPS5840822A (en) 1981-09-03 1981-09-03 Formation of semiconductor single crystal film

Country Status (1)

Country Link
JP (1) JPS5840822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094714A (en) * 1985-09-17 1992-03-10 Mitsubishi Denki Kabushiki Kaisha Wafer structure for forming a semiconductor single crystal film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094714A (en) * 1985-09-17 1992-03-10 Mitsubishi Denki Kabushiki Kaisha Wafer structure for forming a semiconductor single crystal film

Similar Documents

Publication Publication Date Title
KR900003255B1 (en) Manufacture of single crystal thin film
US4543133A (en) Process for producing single crystalline semiconductor island on insulator
JPS6281709A (en) Manufacture of semiconductor device
JPH05507390A (en) Method for thinning etching of substrates
US4719183A (en) Forming single crystal silicon on insulator by irradiating a laser beam having dual peak energy distribution onto polysilicon on a dielectric substrate having steps
JPS62206816A (en) Manufacture of semiconductor crystal layer
US4737233A (en) Method for making semiconductor crystal films
JPH027415A (en) Formation of soi thin film
JPS5840822A (en) Formation of semiconductor single crystal film
JPS5886717A (en) Forming of single crystal silicon film
JP2898360B2 (en) Method for manufacturing semiconductor film
JPS5983993A (en) Growth of semiconductor layer of single crystal
JPS61135110A (en) Manufacture of semiconductor device
JPH0652712B2 (en) Semiconductor device
JPH0442358B2 (en)
JPS59121823A (en) Fabrication of single crystal silicon film
JPS61251115A (en) Growth of semiconductor single crystal on insulating film
JPS5856457A (en) Manufacture of semiconductor device
JPH0113209B2 (en)
JPH01162321A (en) Manufacture of semiconductor single crystal layer
JPH01297814A (en) Manufacture of single crystal
JP2004119902A (en) Crystalline semiconductor film and forming method thereof, and semiconductor device and manufacturing method thereof
JPS58212124A (en) Manufacture of single crystal thin film
JPS62250629A (en) Manufacture of semiconductor device
JPH0283915A (en) Manufacture of semiconductor single crystal thin film