JP4759226B2 - Tube expansion tool and tube expansion method using the same - Google Patents

Tube expansion tool and tube expansion method using the same Download PDF

Info

Publication number
JP4759226B2
JP4759226B2 JP2004108294A JP2004108294A JP4759226B2 JP 4759226 B2 JP4759226 B2 JP 4759226B2 JP 2004108294 A JP2004108294 A JP 2004108294A JP 2004108294 A JP2004108294 A JP 2004108294A JP 4759226 B2 JP4759226 B2 JP 4759226B2
Authority
JP
Japan
Prior art keywords
tube
fin
grooved tube
grooved
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004108294A
Other languages
Japanese (ja)
Other versions
JP2005288502A (en
Inventor
秀樹 岩本
伸明 日名子
主税 佐伯
Original Assignee
株式会社コベルコ マテリアル銅管
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ マテリアル銅管 filed Critical 株式会社コベルコ マテリアル銅管
Priority to JP2004108294A priority Critical patent/JP4759226B2/en
Publication of JP2005288502A publication Critical patent/JP2005288502A/en
Application granted granted Critical
Publication of JP4759226B2 publication Critical patent/JP4759226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Metal Extraction Processes (AREA)

Description

本発明は、エアコンおよび冷凍空調機器に用いられるプレートフィンチューブ型熱交換器の製造に際し、熱交換器に使用される金属管の拡径に用いる拡管用工具およびそれを使用した拡管方法に係り、特に、多数の溝および溝間に形成されたフィンをその内面に有する内面溝付管の拡径に用いる拡管用工具およびそれを使用した拡管方法に関する。   The present invention relates to a tube expansion tool used for expanding the diameter of a metal tube used in a heat exchanger and a tube expansion method using the same in the production of a plate fin tube type heat exchanger used in an air conditioner and a refrigeration air conditioner. In particular, the present invention relates to a tube expansion tool used for expanding the diameter of an internally grooved tube having a large number of grooves and fins formed between the grooves, and a tube expansion method using the same.

従来、熱交換器の製造、および、その際の金属管(内面溝付管)の拡管作業は、以下のように行われていた。図8に示すように、拡管用工具30として、内面溝付管1の内径より大きい外周面を有する拡管ビュレット32と、この拡管ビュレット32の後端部に接続されたマンドレル31とを備えたものが使用され、まず、複数の平行に配置されたフィンプレート11の貫通穴11aに内面溝付管1を挿入する。次に、この拡管用工具30を内面溝付管1内に圧入する。これによって、内面溝付管1が拡管して、内面溝付管1とフィンプレート11との間のクリアランスCがなくなり、内面溝付管1とフィンプレート11との密着性が高まる。次に、拡管用工具30を内面溝付管1から取り出す。これによって、内面溝付管1とフィンプレート11とが隙間なく接合した熱交換器が製造される。   Conventionally, the manufacture of a heat exchanger and the expansion work of a metal tube (inner grooved tube) at that time have been performed as follows. As shown in FIG. 8, the tube expansion tool 30 includes a tube expansion burette 32 having an outer peripheral surface larger than the inner diameter of the inner grooved tube 1 and a mandrel 31 connected to the rear end portion of the tube expansion burette 32. First, the inner grooved tube 1 is inserted into the through holes 11a of the fin plates 11 arranged in parallel. Next, the pipe expanding tool 30 is press-fitted into the inner grooved pipe 1. As a result, the inner grooved tube 1 is expanded, the clearance C between the inner grooved tube 1 and the fin plate 11 is eliminated, and the adhesion between the inner grooved tube 1 and the fin plate 11 is enhanced. Next, the tube expansion tool 30 is taken out from the inner grooved tube 1. As a result, a heat exchanger in which the inner grooved tube 1 and the fin plate 11 are joined without a gap is manufactured.

そして、エアコンの高性能化(COP向上)と低価格化に伴い、熱交換器用の内面溝付管には、高性能化及び軽量化が要求され、その溝形状が高リード・ハイフィン・スリムフィン化されてきている。このような高リード・ハイフィン・スリムフィン化された溝形状を有する内面溝付管においては、内面溝付管の拡管の際、図8に示すように、拡管ビュレット32の外周面32aの半径Rが小さいため、内面溝付管1の外径が急激に拡大される。これによって、内面溝付管1のフィン3と拡管ビュレット32との摩擦力が大きくなり、フィン3に変形が生じ易く、内面溝付管(熱交換器)の伝熱性能が低下するという問題があった。   And along with higher performance (COP improvement) and lower cost of air conditioners, inner grooved pipes for heat exchangers are required to have higher performance and lighter weight, and the groove shape has high leads, high fins, slim fins. It is becoming. In such an internally grooved tube having a groove shape that is formed into a high lead, high fin, and slim fin, when expanding the internally grooved tube, as shown in FIG. 8, the radius R of the outer peripheral surface 32a of the expanded bullet 32 is shown. Is small, the outer diameter of the internally grooved tube 1 is rapidly expanded. As a result, the frictional force between the fin 3 of the internally grooved tube 1 and the expanded burette 32 is increased, the fin 3 is likely to be deformed, and the heat transfer performance of the internally grooved tube (heat exchanger) is reduced. there were.

また、炭酸ガスなどの高圧冷媒が使用される内面溝付管として、管の肉厚が厚肉の内面溝付管が使用され始めている。このような内面溝付管は、管の底肉厚が厚くなり、熱交換器の製造に際し、内面溝付管の拡管荷重が過大となり、管内面のフィンが極度に変形してしまう。これによって、内面溝付管(熱交換器)の伝熱性能が低下するという問題があった。   In addition, as an inner grooved tube in which a high-pressure refrigerant such as carbon dioxide gas is used, an inner grooved tube having a thick wall has begun to be used. In such an internally grooved tube, the bottom wall thickness of the tube becomes thick, and when the heat exchanger is manufactured, the expansion load of the internally grooved tube becomes excessive, and the fin on the inner surface of the tube is extremely deformed. As a result, there has been a problem that the heat transfer performance of the internally grooved tube (heat exchanger) decreases.

前記のような管内面のフィンの変形を解決するために、内面溝付管の溝形状を特定することが、特許文献1で提案されている。すなわち、特許文献1では、内面溝付管の内面に形成されるフィンの傾きを、管内面に対してほぼ垂直になるように、内面溝付管を製造している。   In order to solve the deformation of the fin on the inner surface of the pipe as described above, it is proposed in Patent Document 1 to specify the groove shape of the inner grooved pipe. That is, in Patent Document 1, the inner grooved tube is manufactured so that the inclination of the fin formed on the inner surface of the inner grooved tube is substantially perpendicular to the inner surface of the tube.

また、内面溝付管の拡管方法を改善することが、特許文献2で提案されている。すなわち、特許文献2では、内面溝付管を拡管する際、予め内面溝付管の内部に管状のスペーサを挿入し、その内側から拡管用工具で内面溝付管を拡管している。
特開2001−74384号公報(段落0011、図1) 特開2000−218332号公報(段落0011、0012、図1ないし図3)
Further, Patent Document 2 proposes improving the method of expanding the inner grooved tube. That is, in Patent Document 2, when expanding the inner grooved tube, a tubular spacer is inserted into the inner grooved tube in advance, and the inner grooved tube is expanded from the inner side with a tube expanding tool.
JP 2001-74384 A (paragraph 0011, FIG. 1) JP 2000-218332 A (paragraphs 0011 and 0012, FIGS. 1 to 3)

しかしながら、特許文献1では、拡管の際の過剰のフィン変形は防止できるものの、依然としてフィン変形が発生するという問題があった。また、特許文献2では、拡管作業毎に、内面溝付管の内部にスペーサを挿入および取り出す作業が必要となり、作業性が低下するという問題があった。その結果、量産作業には適せず、実用性がなかった。   However, although Patent Document 1 can prevent excessive fin deformation during tube expansion, there is still a problem that fin deformation still occurs. Moreover, in patent document 2, the operation | work which inserts and takes out a spacer inside an internally grooved pipe | tube is needed for every pipe expansion work, and there existed a problem that workability | operativity fell. As a result, it was not suitable for mass production work and was not practical.

そこで、本発明は、かかる問題を鑑みてなされたもので、内面溝付管の溝形状が高リード・ハイフィン・スリムフィン化および底肉厚が厚肉化されても、拡管によるフィン変形が抑制されると共に、伝熱性能が低下せず、かつ、拡管作業の作業性が低下しない内面溝付管の拡管用工具およびそれを使用した拡管方法を提供することを目的とする。   Therefore, the present invention has been made in view of such problems, and even if the groove shape of the inner surface grooved tube is changed to high lead, high fin, slim fin and the bottom wall thickness is increased, fin deformation due to expansion of the tube is suppressed. It is another object of the present invention to provide a tool for expanding an internally grooved tube and a method of expanding the pipe using the same, in which the heat transfer performance does not deteriorate and the workability of the pipe expanding operation does not deteriorate.

前記課題を解決するため、請求項の発明は、熱交換器に使用される内面溝付管の内部に挿入し、前記内面溝付管の管軸方向に移動して、その内面溝付管を拡管率3%以上8%以下に拡管させる熱交換器用内面溝付管の拡管用工具であって、前記内面溝付管は、その内面に管軸方向に傾斜する方向に形成された多数の溝と、この溝間に形成されたフィンとを有する構成を備え、前記内面溝付管の管外径(D)は4mm以上10mm以下、前記溝の溝数は30以上100以下、前記溝と管軸とがなす溝リード角(θ)は10度以上50度以下、前記内面溝付管の管軸直交断面における内面溝付管の底肉厚(t)は0.2mm以上1.0mm以下、前記フィンのフィン高さ(h)は0.1mm以上であって前記底肉厚の1.2倍以下、フィン山頂角(δ)は5度以上45度以下、フィン根元半径(r)は前記フィン高さ(h)の20%以上50%以下であると共に、前記内面溝付管の内面に接触する円筒状の拡管ビュレットと、この拡管ビュレットの後端部に接続されたマンドレルとを備え、前記拡管ビュレットは、前記内面溝付管の内面と接触する曲面状の外周面を有し、前記外周面の半径(R)、前記内面溝付管の管外径(D)および管最小内径(d)を用いてα=R/(D/d)で計算される係数(α)が4.71以上15以下である熱交換器用内面溝付管の拡管用工具として構成したものである。 In order to solve the above-mentioned problem, the invention of claim 1 is inserted into an inner surface grooved tube used in a heat exchanger, moved in the axial direction of the inner surface grooved tube, and the inner surface grooved tube. Is a tube expansion tool for an inner surface grooved tube for a heat exchanger that expands the tube to a tube expansion ratio of 3% or more and 8% or less, and the inner surface grooved tube is formed on the inner surface in a direction inclined in the tube axis direction. A groove and a fin formed between the grooves, wherein the inner surface grooved tube has a tube outer diameter (D) of 4 mm to 10 mm, and the number of grooves is 30 to 100, The groove lead angle (θ) formed by the tube axis is 10 ° to 50 °, and the bottom wall thickness (t) of the internally grooved tube in the cross section perpendicular to the tube axis of the internally grooved tube is 0.2 mm to 1.0 mm. The fin height (h) of the fin is not less than 0.1 mm and not more than 1.2 times the bottom wall thickness. (Δ) is not less than 5 degrees and not more than 45 degrees, the fin base radius (r) is not less than 20% and not more than 50% of the fin height (h), and the cylindrical tube expansion is in contact with the inner surface of the inner grooved tube A burette and a mandrel connected to a rear end portion of the expanded burette. The expanded burette has a curved outer peripheral surface that contacts the inner surface of the inner grooved tube, and a radius (R ), The coefficient (α) calculated from α = R / (D / d) using the tube outer diameter (D) and the tube minimum inner diameter (d) of the inner grooved tube is 4.71 or more and 15 or less. It is configured as a tube expansion tool for an internally grooved tube for a heat exchanger.

このように構成すれば、内面溝付管内面と接触する外周面を特定することによって、内面溝付管の拡管において、拡管ビュレットと内面溝付管内面に形成されたフィンとの摩擦力が低減され、フィン変形が抑制されると共に、熱交換器のフィンプレートに隙間なく接合されるように内面溝付管が拡管し、しかも、フィンプレートに割れ等の不具合を発生させずに内面溝付管を拡管することができる。それによって、内面溝付管内に冷媒が供給された際に、内面溝付管内での冷媒の拡散が向上し、フィンプレートとの熱交換率も向上する。また、内面溝付管内面に形成される溝形状を特定することによって、内面溝付管の拡管における拡管ビュレットとフィンとの摩擦力がより一層低減され、フィン変形がより一層低減される。また、内面溝付管内に冷媒が供給された際に、内面溝付管内での冷媒の拡散がより一層向上する。 If comprised in this way, by identifying the outer peripheral surface which contacts an inner surface grooved tube inner surface, in the expansion of an inner surface grooved tube, the frictional force between the expanded burette and the fin formed on the inner surface grooved tube inner surface is reduced. The inner surface grooved tube is expanded so that the fin deformation is suppressed and the fin plate of the heat exchanger is joined without a gap, and the inner surface grooved tube does not cause a defect such as a crack in the fin plate. Can be expanded. Thereby, when the refrigerant is supplied into the inner grooved tube, the diffusion of the refrigerant in the inner grooved tube is improved, and the heat exchange rate with the fin plate is also improved. Further, by specifying the groove shape formed on the inner surface grooved tube inner surface, the frictional force between the expanded burette and the fin in the expansion of the inner surface grooved tube is further reduced, and the fin deformation is further reduced. Further, when the refrigerant is supplied into the inner grooved tube, the diffusion of the refrigerant in the inner grooved tube is further improved.

また、請求項の発明は、請求項1に記載の拡管用工具を使用して、熱交換器に使用され、多数の溝および溝間に形成されたフィンをその内面に有する内面溝付管を、拡管させる拡管方法であって、前記内面溝付管の管外径(D)の102%以上105%以下の貫通穴を有する板状のフィンプレートに前記内面溝付管を貫通させる第1工程と、貫通させた前記内面溝付管の内部に前記拡管用工具を挿入する第2工程と、挿入した前記拡管用工具を前記内面溝付管の管軸方向に移動して、前記内面溝付管を拡管する第3工程と、挿入した前記拡管用工具を拡管した前記内面溝付管の内部から取り出す第4工程とを含み、前記第4工程における拡管した前記内面溝付管のフィンのフィン高さは、前記第1工程における前記内面溝付管のフィンのフィン高さの90%以上である熱交換器用内面溝付管の拡管方法として構成したものである。 Further, the invention of claim 2 is an internally grooved tube which is used in a heat exchanger using the tube expansion tool according to claim 1 and has a plurality of grooves and fins formed between the grooves on the inner surface thereof. In which the inner grooved tube is passed through a plate-like fin plate having a through hole of 102% or more and 105% or less of the outer diameter (D) of the inner grooved tube. A second step of inserting the tube expansion tool into the inner grooved tube penetrated through the step, and moving the inserted tube expansion tool in the tube axis direction of the inner grooved tube, A third step of expanding the tube, and a fourth step of taking out the inserted tube expansion tool from the inside of the inner grooved tube, and expanding the fin of the inner grooved tube expanded in the fourth step. The fin height is the fin height of the inner grooved tube in the first step. Those configured as pipe expansion method for down height heat exchanger inner surface grooved tube is 90% or more.

このように構成すれば、内面溝付管の拡管作業において、内面溝付管内へのスペーサ等の挿入および取り出し等の煩雑な作業工程を行うことなく、簡単な機械拡管方法で、かつ、簡単な構成の拡管用工具を使用して、内面溝付管内に形成されたフィンのフィン変形を抑制しながら、フィンプレートと隙間なく接合すると共に、フィンプレートの割れ等の不具合を発生させずに、内面溝付管が拡管される。   If comprised in this way, in an expansion work of an inner surface grooved pipe, it is a simple mechanical pipe expansion method, without performing complicated work processes, such as insertion and extraction of a spacer etc. in an inner surface grooved pipe, and simple. Using the tube expansion tool with the structure, while suppressing the fin deformation of the fin formed in the inner surface grooved tube, it joins with the fin plate without gaps, and does not cause defects such as cracking of the fin plate. The grooved tube is expanded.

このような本発明によれば、内面溝付管の溝形状が高リード・ハイフィン・スリムフィン化および底肉厚が厚肉化されても、拡管によるフィン変形が抑制されると共に、伝熱性能が低下しない、かつ、拡管作業の作業性が低下しない内面溝付管の拡管用工具およびそれを使用した拡管方法を提供することができる。   According to the present invention as described above, even if the groove shape of the internally grooved tube is changed to high lead, high fin, slim fin and the bottom wall thickness is increased, fin deformation due to tube expansion is suppressed and heat transfer performance is achieved. It is possible to provide a tool for expanding a grooved tube with an inner surface and a method of expanding the pipe using the same.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。図1(a)は拡管用工具の構成を示す斜視図、(b)は側面図、図2は内面溝付管の拡管方法を模式的に示す断面図、図3は内面溝付管の構成を示す管軸方向の断面図、図4(a)は図3のX−X線断面図、(b)は(a)の部分拡大図、図5はプレートフィンの構成を示す平面図、図6(a)は内面溝付管を組み込んだ熱交換器の一部破断正面図、(b)は(a)の熱交換器をUベンド管側から見た図、(c)は(a)の熱交換器をヘアピン管側から見た図、図7(a)は熱交換器の伝熱性能を測定する際に使用する吸引型風洞の模式図、(b)は(a)の吸引型風洞に冷媒を供給する冷媒供給装置の模式図である。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. 1A is a perspective view showing the configuration of a tube expanding tool, FIG. 1B is a side view, FIG. 2 is a cross-sectional view schematically showing a method of expanding the inner grooved tube, and FIG. 3 is a configuration of the inner grooved tube. 4A is a sectional view taken along the line XX of FIG. 3, FIG. 4B is a partially enlarged view of FIG. 5A, and FIG. 5 is a plan view showing the configuration of the plate fins. 6 (a) is a partially broken front view of a heat exchanger incorporating an internally grooved tube, (b) is a view of the heat exchanger of (a) as viewed from the U-bend tube side, and (c) is (a). FIG. 7A is a schematic view of a suction type wind tunnel used when measuring the heat transfer performance of the heat exchanger, and FIG. 7B is a suction type of FIG. It is a schematic diagram of the refrigerant | coolant supply apparatus which supplies a refrigerant | coolant to a wind tunnel.

まず、本発明の拡管用工具について説明する。
1.拡管用工具
図2に示すように、拡管用工具20は、熱交換器に使用される内面溝付管1の内部に挿入し、内面溝付管1の管軸方向に移動して、その内面溝付管1を拡管率3%以上8%以下に拡管させるものである。ここで、拡管率(%)は[(拡管後の内面溝付管1の管外径D’−拡管前の内面溝付管1の管外径D)/拡管前の内面溝付管1の管外径D]×100で計算され、拡管率が3%未満であると内面溝付管1とフィンプレート11とが隙間なく接合されず、拡管率が8%を超えるとフィンプレート11に割れ等の不具合が生じ、いずれにおいても内面溝付管1とフィンプレート11との間の熱交換率が悪くなる。
First, the tube expansion tool of the present invention will be described.
1. 2. Tube expansion tool As shown in FIG. 2, the tube expansion tool 20 is inserted into the inner surface grooved tube 1 used in the heat exchanger, moved in the tube axis direction of the inner surface grooved tube 1, and the inner surface thereof. The grooved tube 1 is expanded to a tube expansion rate of 3% or more and 8% or less. Here, the tube expansion rate (%) is [(the tube outer diameter D ′ of the inner grooved tube 1 after the tube expansion−the tube outer diameter D of the inner grooved tube 1 before the tube expansion) / the inner grooved tube 1 before the tube expansion]. The tube outer diameter D] × 100 is calculated, and if the tube expansion rate is less than 3%, the inner grooved tube 1 and the fin plate 11 are not joined without a gap, and if the tube expansion rate exceeds 8%, the fin plate 11 is cracked. In any case, the heat exchange rate between the internally grooved tube 1 and the fin plate 11 is deteriorated.

そして、図1、図2に示すように、拡管用工具20は、内面溝付管1の内面に接触する円筒状の拡管ビュレット22と、この拡管ビュレット22の後端部に接続されたマンドレル21とを備える。
(拡管ビュレット)
拡管ビュレット22は、円筒状部材であって、超硬合金、ベアリング鋼またはステンレス鋼等から構成される。また、円筒状部材の大きさは以下のとおりである。直径A1は内面溝付管1の管最小内径dより小さく、直径A1が管最小内径d以上であると、内面溝付管1の拡管の際に、拡管ビュレット22を内面溝付管1内へ挿入しにくくなる(図4(a)参照)。また、直径A2は、内面溝付管1の拡管率、内面溝形状およびフィン3の変形度合いから適宜設定される。また、長さLは2mm以上20mm以下であって、長さLが2mm未満であると拡管ビュレット22の強度が不足し、長さLが20mmを超えると拡管作業のトラブルの原因になりやすい。そして、内面溝付管1の内面と接触する曲面上の外周面22aを有する。
As shown in FIGS. 1 and 2, the tube expansion tool 20 includes a cylindrical tube expansion burette 22 that contacts the inner surface of the inner grooved tube 1, and a mandrel 21 connected to the rear end portion of the tube expansion burette 22. With.
(Expanded burette)
The expanded burette 22 is a cylindrical member and is made of cemented carbide, bearing steel, stainless steel, or the like. The size of the cylindrical member is as follows. When the diameter A1 is smaller than the minimum inner diameter d of the inner surface grooved tube 1 and the diameter A1 is equal to or larger than the minimum tube inner diameter d, the expanded burette 22 is moved into the inner surface grooved tube 1 when the inner surface grooved tube 1 is expanded. It becomes difficult to insert (see FIG. 4A). Further, the diameter A2 is appropriately set based on the expansion ratio of the inner grooved tube 1, the inner groove shape, and the degree of deformation of the fins 3. Moreover, the length L is 2 mm or more and 20 mm or less, and if the length L is less than 2 mm, the strength of the tube expansion burette 22 is insufficient, and if the length L exceeds 20 mm, a trouble of tube expansion work tends to occur. And it has the outer peripheral surface 22a on the curved surface which contacts the inner surface of the inner surface grooved pipe 1.

そして、外周面22aの半径R、図4(a)の前記内面溝付管1の管外径Dおよび管最小内径dを用いてα=R/(D/d)計算される係数αが3以上15以下である。係数αが前記範囲内であると、外周面22aと内面溝付管1内面のフィン3との摩擦力が低減され、後記するように、フィン変形率が10%以下となり、フィン3の変形が抑制される。   The coefficient α calculated by α = R / (D / d) is 3 using the radius R of the outer peripheral surface 22a, the tube outer diameter D and the tube minimum inner diameter d of the inner grooved tube 1 in FIG. It is 15 or less. When the coefficient α is within the above range, the frictional force between the outer peripheral surface 22a and the fin 3 on the inner surface of the grooved tube 1 is reduced, and as will be described later, the fin deformation rate is 10% or less, and the fin 3 is deformed. It is suppressed.

ここで、係数αが3未満であると、内面溝付管1の管外径Dが急激に拡大し、拡管ビュレット22の外周面22aと内面溝付管1内面のフィン3との摩擦力が大きくなり、フィン3が大きく変形する(図8参照)。また、係数αが15を超えると、拡管ビュレット22の外周面22aとフィン3との摩擦力はほとんど低減されなくなり、フィン3の変形を抑制する効果がこれ以上向上しなくなる。さらに、内面溝付管1を拡管する際に、拡管ビュレット22の内面溝付管1内への挿入が困難になったり、拡管ビュレット22の長さLが長くなりすぎて、拡管作業のトラブルの原因になったりする。   Here, when the coefficient α is less than 3, the pipe outer diameter D of the inner surface grooved tube 1 rapidly increases, and the frictional force between the outer peripheral surface 22a of the expanded burette 22 and the fin 3 on the inner surface of the inner surface grooved tube 1 is increased. The fin 3 is greatly deformed (see FIG. 8). When the coefficient α exceeds 15, the frictional force between the outer peripheral surface 22a of the expanded burette 22 and the fin 3 is hardly reduced, and the effect of suppressing the deformation of the fin 3 is not further improved. Furthermore, when expanding the inner grooved tube 1, it becomes difficult to insert the expanded burette 22 into the inner grooved tube 1 or the length L of the expanded burette 22 becomes too long. It can be a cause.

(マンドレル)
マンドレル21は、その先端が拡管ビュレット22の後端部に接続され、末端は図示しない油圧装置または液圧装置に接続している。そして、拡管ビュレット22を内面溝付管1内に挿入する際のガイドであって、油圧装置または液圧装置の駆動により、拡管ビュレット22を内面溝付管1内の管軸方向に移動させる。また、マンドレル21は、径2mm以上8mm以下の棒状部材であって、超硬合金、ベアリング鋼またはステンレス鋼等から構成される。
(Mandrel)
The mandrel 21 has a tip connected to the rear end of the expanded burette 22 and a terminal connected to a hydraulic device or a hydraulic device (not shown). And it is a guide at the time of inserting the pipe expansion burette 22 in the inner surface grooved pipe 1, and the pipe expansion burette 22 is moved in the tube axis direction in the inner surface grooved pipe 1 by driving of a hydraulic device or a hydraulic device. The mandrel 21 is a rod-shaped member having a diameter of 2 mm or more and 8 mm or less, and is made of cemented carbide, bearing steel, stainless steel, or the like.

また、拡管用工具20は、以下の内面溝形状を有する内面溝付管1と組み合わせて、使用することが好ましい。   Moreover, it is preferable to use the tube expansion tool 20 in combination with the inner grooved tube 1 having the following inner groove shape.

(内面溝付管)
内面溝付管1は、エアコンおよび冷凍空調機器のプレートフィンチューブ型熱交換器に使用されることから、管の管外径Dは、4mm以上10mm以下のものが使用される。また、内面溝付管1の素管の材質としては、銅または銅合金などが使用され、例えばJISH3300に規定された合金番号C1220、C1201等のりん脱酸銅、またはC1020等の無酸素銅である。なお、内面溝付管1の内面溝形状の形成方法は、転造加工法、圧延法などがあるが、特に限定されるものではない。
(Inner grooved tube)
Since the inner grooved tube 1 is used for a plate fin tube type heat exchanger of an air conditioner and a refrigeration air conditioner, a tube outer diameter D of the tube is 4 mm or more and 10 mm or less. Moreover, as a material of the raw pipe of the inner surface grooved pipe 1, copper or a copper alloy is used, for example, phosphorus deoxidized copper such as alloy numbers C1220 and C1201 defined in JISH3300, or oxygen-free copper such as C1020. is there. In addition, although the formation method of the inner surface groove shape of the inner surface grooved pipe 1 includes a rolling method and a rolling method, it is not particularly limited.

そして、内面溝付管1は、図3、図4に示すように、その内面に管軸方向に傾斜する方向に形成された多数の溝2と、この溝2間に形成されたフィン3とを有する構成を備え、溝2の溝数は30以上100以下、溝2と管軸とがなす溝リード角θは10度以上50度以下、内面溝付管1の管軸直交断面における内面溝付管1の底肉厚Tは0.2mm以上1.0mm以下、前記フィンのフィン高さhは0.1mm以上であって底肉厚Tの1.2倍以下、フィン山頂角δは5度以上45度以下、フィン根元半径rはフィン高さhの20%以上50%以下である。   As shown in FIGS. 3 and 4, the inner surface grooved tube 1 includes a plurality of grooves 2 formed on the inner surface in a direction inclined in the tube axis direction, and fins 3 formed between the grooves 2. And the groove lead angle θ formed by the groove 2 and the tube axis is 10 degrees or more and 50 degrees or less, and the inner surface groove in the cross section perpendicular to the tube axis of the inner grooved tube 1. The bottom thickness T of the attached tube 1 is 0.2 mm or more and 1.0 mm or less, the fin height h of the fin is 0.1 mm or more and 1.2 times or less of the bottom thickness T, and the fin peak angle δ is 5 The fin base radius r is not less than 20% and not more than 50% of the fin height h.

次に、内面溝付管1の前記内面溝形状における数値限定について説明する。
(1)溝数:30以上100以下
溝数は、後記する内面溝形状の各諸元と組み合わせて、伝熱性能および単重等を考慮して、適宜決定されるものであるが、30以上100以下が好ましい。溝数が30未満であると溝成形性が悪くなりやすく、また、溝数が100を超えると溝付工具(溝付プラグ)の欠損が生じやすい。いずれも、内面溝付管1の量産性が低下しやすくなる。
Next, the numerical limitation in the inner surface groove shape of the inner surface grooved tube 1 will be described.
(1) Number of grooves: 30 or more and 100 or less The number of grooves is determined as appropriate in consideration of heat transfer performance, unit weight, etc. in combination with each specification of the inner surface groove shape described later. 100 or less is preferable. If the number of grooves is less than 30, the groove formability tends to deteriorate, and if the number of grooves exceeds 100, the grooved tool (grooved plug) tends to be damaged. In either case, the mass productivity of the internally grooved tube 1 is likely to decrease.

(2)溝リード角θ:10度以上50度以下
溝リード角θは、10度以上50度以下が好ましい。溝リード角θが10度未満であると、内面溝付管1(熱交換器)の伝熱性能が低下しやすい。また、溝リード角θが50度を超えると、内面溝付管1の量産性の確保および拡管によるフィン3の変形を抑制しにくくなる。
(3)底肉厚T:0.2mm以上1.0mm以下
底肉厚Tは0.2mm以上1.0mm以下が好ましい。底肉厚Tが前記範囲外であると、内面溝付管1の製造がしにくくなる。また、底肉厚Tが0.2mm未満であると、内面溝付管1の強度が低下しやすく、高圧冷媒としての炭酸ガス等を使用した際、耐圧力強度の保持が困難になりやすい。
(2) Groove lead angle θ: 10 degrees to 50 degrees The groove lead angle θ is preferably 10 degrees to 50 degrees. When the groove lead angle θ is less than 10 degrees, the heat transfer performance of the internally grooved tube 1 (heat exchanger) tends to be lowered. Further, when the groove lead angle θ exceeds 50 degrees, it becomes difficult to ensure the mass productivity of the internally grooved tube 1 and to suppress the deformation of the fin 3 due to the tube expansion.
(3) Bottom thickness T: 0.2 mm or more and 1.0 mm or less Bottom thickness T is preferably 0.2 mm or more and 1.0 mm or less. When the bottom wall thickness T is out of the above range, it becomes difficult to manufacture the inner grooved tube 1. In addition, when the bottom wall thickness T is less than 0.2 mm, the strength of the inner grooved tube 1 is likely to decrease, and when using carbon dioxide gas or the like as a high-pressure refrigerant, it is difficult to maintain the pressure resistance strength.

(4)フィン高さh:0.1mm以上(底肉厚T×1.2)mm以下
フィン高さhは、0.1mm以上(底肉厚T×1.2)mm以下が好ましい。フィン高さhが0.1mm未満であると、内面溝付管1(熱交換器)の伝熱性能が低下しやすい。また、フィン高さhが(底肉厚T×1.2)mmを超えると、内面溝付管1の量産性の確保および拡管によるフィン3の極度の変形を抑制しにくくなる。
(4) Fin height h: 0.1 mm or more (bottom thickness T × 1.2) mm or less The fin height h is preferably 0.1 mm or more (bottom thickness T × 1.2) mm or less. If the fin height h is less than 0.1 mm, the heat transfer performance of the internally grooved tube 1 (heat exchanger) tends to be lowered. Further, if the fin height h exceeds (bottom wall thickness T × 1.2) mm, it becomes difficult to ensure the mass productivity of the internally grooved tube 1 and to suppress the extreme deformation of the fin 3 due to the tube expansion.

(5)山頂角δ:5度以上45度以下
山頂角δは、5度以上45度以下が好ましい。山頂角δが5度未満であると、内面溝付管1の量産性の確保および拡管によるフィン3の変形を抑制しにくくなる。また、山頂角δが45度を超えると、内面溝付管1(熱交換器)の伝熱性能の維持および内面溝付管1の単重が過大となりやすい。
(5) Summit angle δ: 5 degrees or more and 45 degrees or less The summit angle δ is preferably 5 degrees or more and 45 degrees or less. When the peak angle δ is less than 5 degrees, it becomes difficult to ensure the mass productivity of the internally grooved tube 1 and to suppress the deformation of the fin 3 due to the tube expansion. In addition, when the summit angle δ exceeds 45 degrees, the maintenance of the heat transfer performance of the internally grooved tube 1 (heat exchanger) and the single weight of the internally grooved tube 1 tend to be excessive.

(6)フィン根元半径r:フィン高さhの20%以上50%以下
フィン根元半径rは、フィン高さhの20%以上50%以下が好ましい。フィン根元半径rがフィン高さhの20%未満であると、拡管によるフィン傾きが過大となりやすく、かつ、量産性が低下しやすい。また、フィン根元半径rがフィン高さhの50%を超えると、冷媒気液界面の有効伝熱面積が減少しやすく、内面溝付管1(熱交換器)の伝熱性能が低下しやすい。
(6) Fin root radius r: 20% to 50% of fin height h The fin root radius r is preferably 20% to 50% of the fin height h. When the fin root radius r is less than 20% of the fin height h, the fin inclination due to the tube expansion tends to be excessive, and the mass productivity tends to decrease. Moreover, if the fin root radius r exceeds 50% of the fin height h, the effective heat transfer area of the refrigerant gas-liquid interface tends to decrease, and the heat transfer performance of the inner grooved tube 1 (heat exchanger) tends to deteriorate. .

(熱交換器)
次に、本発明の拡管用工具を使用して製造される熱交換器について説明する。図5、図6はプレートフィンチューブ型熱交換器10の好適な例である。図5、図6に示すように、熱交換器10は、互いに平行に所定の間隔(フィンピッチPb)で配置された薄板状の複数のフィンプレート11と、これらのフィンプレート11に設けられた複数の貫通穴11aに挿入され、フィンプレート11と直交するように接合されたU字状に所定幅(曲げピッチPa)で加工された複数の内面溝付管1と、これら内面溝付管1の両端部に接合し、内面溝付管1をフィンプレート11の長手方向に所定の間隔(段方向ピッチ:前記曲げピッチPaと同間隔)で複数段、および所定の間隔(列ピッチPc)で複数列に直列に連結するUベント管12とを備える。
(Heat exchanger)
Next, the heat exchanger manufactured using the tube expansion tool of the present invention will be described. 5 and 6 are preferable examples of the plate fin tube type heat exchanger 10. As shown in FIGS. 5 and 6, the heat exchanger 10 is provided on a plurality of thin plate-like fin plates 11 arranged in parallel to each other at a predetermined interval (fin pitch Pb), and these fin plates 11. A plurality of internally grooved tubes 1 that are inserted into a plurality of through holes 11a and are processed to have a predetermined width (bending pitch Pa) in a U-shape joined so as to be orthogonal to the fin plate 11, and these internally grooved tubes 1 The inner grooved tube 1 is joined to the fin plate 11 in the longitudinal direction of the fin plate 11 at a predetermined interval (step direction pitch: the same interval as the bending pitch Pa), and at a predetermined interval (row pitch Pc). And a U vent pipe 12 connected in series in a plurality of rows.

また、フィンプレート11は、伝熱性能および軽量化を考慮して、アルミニウム(アルミニウム合金含む)または銅(銅合金含む)、好ましくはJISH4000に規定する1000系のアルミニウムからなり、その表面に多数の凹部11bが形成されている。この凹部11bの形成によって、フィンプレート11の表面積が増大し、伝熱性能が向上する。また、フィンプレート11に設けられた複数の貫通穴11aの外径は、内面溝付管1の管外径D(図4(a)参照)の102%以上105%以下である。貫通穴11aの外径が102%未満であると、内面溝付管1の接合の際の拡管によって、貫通穴11aの拡大率が過大となり、フィンプレート11に割れ等の不具合が生じる。また、105%を超えると、拡大率不足が生じる。いずれの場合も内面溝付管1とフィンプレート11の密着度が急激に減少し、熱交換器10の伝熱性能が低下する。   The fin plate 11 is made of aluminum (including an aluminum alloy) or copper (including a copper alloy), preferably 1000 series aluminum as defined in JISH4000, in consideration of heat transfer performance and weight reduction. A recess 11b is formed. The formation of the recess 11b increases the surface area of the fin plate 11 and improves the heat transfer performance. Further, the outer diameter of the plurality of through holes 11a provided in the fin plate 11 is 102% or more and 105% or less of the pipe outer diameter D of the inner grooved pipe 1 (see FIG. 4A). If the outer diameter of the through hole 11a is less than 102%, the expansion rate of the through hole 11a becomes excessive due to the expansion of the inner grooved tube 1, and problems such as cracks occur in the fin plate 11. On the other hand, if it exceeds 105%, the enlargement rate is insufficient. In either case, the degree of adhesion between the internally grooved tube 1 and the fin plate 11 rapidly decreases, and the heat transfer performance of the heat exchanger 10 decreases.

さらに、Uベント管12は、伝熱性能および軽量化を考慮して、アルミニウム(アルミニウク合金含む)または銅(銅合金含む)、好ましくはJISH4000に規定する1000系のアルミニウムからなる。   Further, the U vent pipe 12 is made of aluminum (including an aluminum alloy) or copper (including a copper alloy), preferably 1000 series aluminum as defined in JISH4000, in consideration of heat transfer performance and weight reduction.

2.拡管方法
次に、熱交換器の製造方法を説明することで、本発明の拡管方法について説明する。図2に示すように、以下の工程を含む。
(第1工程)
内面溝付管1の管外径(D)の102%以上105%以下の貫通穴11aを有する互いに平行に配置された複数のフィンプレート11に、あらかじめU字状に加工された複数の内面溝付管1を貫通させる。そして、図6(c)に示すように、内面溝付管1をフィンプレート11の長手方向に複数段、複数列に配置する。
(第2工程)
フィンプレート11に貫通し、複数段、複数列に配置された内面溝付管1の内部に拡管用工具20を挿入する。この作業は、図示しない油圧装置または液圧装置の駆動によって行う。
(第3工程)
挿入した拡管用工具20を内面溝付管1の管軸方向に移動して、内面溝付管1を拡管する。この作業によって、内面溝付管1が拡管率3%以上8%以下に拡管し、内面溝付管1とフィンプレート11が隙間なく接合される。
(第4工程)
図示しない油圧装置または液圧装置を駆動して、挿入した拡管用工具20を拡管した内面溝付管1の内部から取り出す。そして、フィンプレート11に接合された内面溝付管1の両端部に、図6(b)に示すように、Uベント管12を接合し、ろう付けすることによって、熱交換器10が製造される。
2. Tube expansion method Next, the tube expansion method of the present invention will be described by explaining a method for manufacturing a heat exchanger. As shown in FIG. 2, the following steps are included.
(First step)
A plurality of inner surface grooves processed in advance in a U-shape on a plurality of fin plates 11 arranged in parallel with each other and having through holes 11a of 102% to 105% of the outer diameter (D) of the inner surface grooved tube 1 The auxiliary tube 1 is penetrated. And as shown in FIG.6 (c), the inner surface grooved pipe | tube 1 is arrange | positioned to the longitudinal direction of the fin plate 11 in multiple steps and multiple rows.
(Second step)
The tube expansion tool 20 is inserted into the inner grooved tube 1 that penetrates the fin plate 11 and is arranged in a plurality of rows and rows. This operation is performed by driving a hydraulic device or a hydraulic device (not shown).
(Third step)
The inserted tube expansion tool 20 is moved in the tube axis direction of the internally grooved tube 1 to expand the internally grooved tube 1. By this operation, the inner grooved tube 1 is expanded to a tube expansion ratio of 3% or more and 8% or less, and the inner grooved tube 1 and the fin plate 11 are joined without a gap.
(4th process)
A hydraulic device or a hydraulic device (not shown) is driven to take out the inserted tube expansion tool 20 from the inside of the inner grooved tube 1 expanded. And the heat exchanger 10 is manufactured by joining the U vent pipe 12 to both ends of the inner surface grooved pipe 1 joined to the fin plate 11 and brazing as shown in FIG. The

そして、前記第2工程ないし第4工程における拡管用工具20が、前記した構成、すなわち、拡管ビュレット22の外周面22aの半径(R)、内面溝付管1の管外径Dおよび管最小内径dを用いてα=R/(D/d)で計算される係数αが3以上15以下であることによって(図1、図4参照)、図2に示すように、内面溝付管1の管外径Dが徐々に拡大され、拡管ビュレット22の外周面22aと内面溝付管1のフィン3との摩擦力が低減され、フィン3の変形が抑制される。その結果、前記第4工程における拡管した内面溝付管1のフィン高さは、前記第1工程における内面溝付管1のフィン高さの90%以上となる(フィン減少率10%以下)。   The tube expansion tool 20 in the second to fourth steps has the above-described configuration, that is, the radius (R) of the outer peripheral surface 22a of the tube expansion burette 22, the tube outer diameter D and the tube minimum inner diameter of the inner grooved tube 1. When the coefficient α calculated by α = R / (D / d) using d is not less than 3 and not more than 15 (see FIGS. 1 and 4), as shown in FIG. The pipe outer diameter D is gradually increased, the frictional force between the outer peripheral surface 22a of the pipe expansion burette 22 and the fin 3 of the inner grooved pipe 1 is reduced, and the deformation of the fin 3 is suppressed. As a result, the fin height of the inner grooved tube 1 expanded in the fourth step is 90% or more of the fin height of the inner grooved tube 1 in the first step (fin reduction rate of 10% or less).

第4工程におけるフィン高さが、第1工程のフィン高さの90%未満であると、フィン3が著しく変形していることとなり、内面溝付管1に供給される冷媒の拡散が著しく阻害され、内面溝付管1(熱交換器10)の伝熱性能が著しく低下する。   If the fin height in the fourth step is less than 90% of the fin height in the first step, the fins 3 are significantly deformed, and the diffusion of the refrigerant supplied to the inner grooved tube 1 is significantly hindered. Thus, the heat transfer performance of the internally grooved tube 1 (heat exchanger 10) is significantly reduced.

次に、本発明の効果を確認した実施例について説明する。
(第1の実施例)
図1に示す構成の拡管用ビュレットを超硬合金で作製し、本発明の請求範囲を満足する拡管用ビュレットを実施例1〜2とした。また、本発明の請求範囲を満足しない、すなわち、拡管用ビュレット22の外周面22aの半径Rが小さく、内面溝付管1の管外径D、管最小内径d(図1、図4(a)参照)とで計算される係数αが請求範囲の下限値未満の拡管用ビュレットを比較例1とした。各拡管用ビュレットの形状寸法を表2に示す。
Next, examples in which the effects of the present invention have been confirmed will be described.
(First embodiment)
The expansion burette having the configuration shown in FIG. 1 was made of cemented carbide, and the expansion burette satisfying the claims of the present invention was designated as Examples 1-2. Further, it does not satisfy the claims of the present invention, that is, the radius R of the outer peripheral surface 22a of the tube expansion burette 22 is small, the tube outer diameter D and the tube minimum inner diameter d of the inner grooved tube 1 (FIG. 1, FIG. The expansion burette in which the coefficient α calculated in (1) is less than the lower limit value of the claims is defined as Comparative Example 1. Table 2 shows the shape dimensions of each burette for tube expansion.

また、表1に示す溝形状(No.A)を有する内面溝付管1を作製した。内面溝付管1の作製方法は、先ず、JISH3300に規定された合金番号C1220のりん脱酸銅を溶解し、鋳造し、熱間押出し、冷間圧延し、冷間抽伸加工を施して素管を作製した。次に、前記素管に第1の縮径加工を施し、縮径された素管に前記内面溝形状の螺旋溝を形成しながら第2の縮径加工を施し、螺旋溝が形成された素管に第3の縮径加工を施して、管外径D7mmの内面溝付管1を作製した。   Further, an internally grooved tube 1 having a groove shape (No. A) shown in Table 1 was produced. The inner grooved tube 1 is manufactured by first melting phosphor deoxidized copper of alloy number C1220 specified in JISH3300, casting, hot extrusion, cold rolling, and cold drawing, and performing a cold drawing process. Was made. Next, a first diameter reduction process is performed on the element pipe, a second diameter reduction process is performed while forming the inner surface groove-shaped spiral groove on the diameter-reduced element pipe, and the element in which the spiral groove is formed. The tube was subjected to third diameter reduction processing to produce an internally grooved tube 1 having a tube outer diameter D of 7 mm.

次に、前記内面溝付管1を各拡管用ビュレットで拡管し、図5および図6に示すプレートフィンチューブ型の熱交換器10を作製した。なお、熱交換器10の仕様は以下の通りとした。
(熱交換器10)
外形は、高さ250mm×長さ250mm×幅25.4mmとした。
(フィンプレート11)
JISH4000に規定された合金番号1N30のアルミニウムからなる板材で、板材の表面を樹脂で被覆したものである。また、フィンプレート11の厚さは100μm、貫通穴11aの穴径は7.3mmとした。そして、200枚のフィンプレート11をフィンピッチPb1.25mmで平行に配置した。
(内面溝付管1の配置)
内面溝付管1をU字状に加工し、フィンプレート11に設けられた貫通穴11aに挿入し、2列12段(曲げピッチPa21mm、列方向ピッチPc12.7mm)に配置した(有効伝熱管長は約6.7mであった)。
Next, the inner grooved tube 1 was expanded with each expansion burette, and the plate fin tube type heat exchanger 10 shown in FIGS. 5 and 6 was produced. The specifications of the heat exchanger 10 were as follows.
(Heat exchanger 10)
The outer shape was 250 mm high × 250 mm long × 25.4 mm wide.
(Fin plate 11)
A plate material made of aluminum having an alloy number of 1N30 specified in JISH4000, and the surface of the plate material is coated with a resin. Further, the thickness of the fin plate 11 was 100 μm, and the diameter of the through hole 11a was 7.3 mm. Then, 200 fin plates 11 were arranged in parallel at a fin pitch Pb of 1.25 mm.
(Arrangement of inner grooved tube 1)
The inner grooved tube 1 is processed into a U shape, inserted into a through hole 11a provided in the fin plate 11, and arranged in two rows and 12 steps (bending pitch Pa21mm, row direction pitch Pc12.7mm) (effective heat transfer tube) The length was about 6.7 m).

次に、この熱交換器10の内面溝付管1を用いて、内面溝付管1のフィン減少率を測定した。ここで、フィン減少率(%)は[((拡管後のフィン高さ)−(拡管前のフィン高さ))/(拡管前のフィン高さ)]×100で計算し、その結果を表2に示した。フィン減少率10%以下で、拡管後のフィン高さが、拡管前のフィン高さの90%以上となり、フィン変形が生じていないと判断した。   Next, the fin reduction rate of the inner surface grooved tube 1 was measured using the inner surface grooved tube 1 of the heat exchanger 10. Here, the fin reduction rate (%) is calculated by [((fin height after pipe expansion) − (fin height before pipe expansion)) / (fin height before pipe expansion)] × 100, and the result is shown in Table 1. It was shown in 2. When the fin reduction rate was 10% or less, the fin height after tube expansion was 90% or more of the fin height before tube expansion, and it was determined that no fin deformation occurred.

そして、この熱交換器10を用いて伝熱性能(蒸発性能、凝縮性能)を測定し、その結果を表2に示した。ここで、蒸発性能および凝縮性能は、各々、総括熱伝達率を測定し、比較例1を「100」とした場合の比率で記載した。   And heat transfer performance (evaporation performance, condensation performance) was measured using this heat exchanger 10, and the result was shown in Table 2. Here, the evaporating performance and the condensing performance are described as ratios when the overall heat transfer coefficient is measured and the comparative example 1 is set to “100”.

また、図7(a)、(b)に伝熱性能を測定する測定装置の模式図を示す。図7(a)に示すように、測定装置は、恒温恒湿機能付きの吸引型風洞100、冷媒供給装置110(図7(b)参照)及び空調機(図示せず)からなる。この吸引型風洞100においては、空気流入口108から流入されて空気排出口109から排出される空気の流通経路に熱交換器10が配置され、この熱交換器10の上流側および下流側に夫々エアーサンプラ101、102が配置されている。このエアーサンプラ101、102には夫々温湿度計測箱103、104が連結されている。この温湿度計測箱103、104は夫々エアーサンプラ101、102により採取された空気の乾球温度および湿球温度を測定することにより、この空気の温度及び湿度を測定するものである。また、エアーサンプラ102の下流側には誘引ファン105が設けられ、空気排出口109に空気を排出している。また、熱交換器10とエアーサンプラ102との間、およびエアーサンプラ102と誘引ファン105との間には、熱交換器10を通過した空気を整流する整流器106、106が設けられている。   Moreover, the schematic diagram of the measuring apparatus which measures heat-transfer performance to Fig.7 (a), (b) is shown. As shown to Fig.7 (a), a measuring apparatus consists of the suction type wind tunnel 100 with a constant temperature and humidity function, the refrigerant | coolant supply apparatus 110 (refer FIG.7 (b)), and an air conditioner (not shown). In the suction type wind tunnel 100, the heat exchanger 10 is arranged in the flow path of the air that flows in from the air inlet 108 and is discharged from the air outlet 109, and upstream and downstream of the heat exchanger 10, respectively. Air samplers 101 and 102 are arranged. The air samplers 101 and 102 are connected to temperature and humidity measuring boxes 103 and 104, respectively. The temperature and humidity measuring boxes 103 and 104 measure the temperature and humidity of the air by measuring the dry bulb temperature and the wet bulb temperature of the air collected by the air samplers 101 and 102, respectively. An induction fan 105 is provided on the downstream side of the air sampler 102 and discharges air to the air discharge port 109. Rectifiers 106 and 106 for rectifying the air that has passed through the heat exchanger 10 are provided between the heat exchanger 10 and the air sampler 102 and between the air sampler 102 and the induction fan 105.

また、図7(b)に冷媒供給装置110の模式図を示す。図7(b)において、107は冷媒配管、111はサイトグラス、112は液(冷媒)加熱および冷却用熱交換器、113はドライヤー、114は受液(冷媒)器、115は溶栓、116は凝縮器、117はオイルセパレータ、118はコンプレッサー、119はアキュームレータ、120は蒸発器、121は膨張弁、122は流量計である。そして、冷媒配管107を通じて、吸引型風洞100内に備えられた熱交換器10の内面溝付管1(図6参照)の内部に、圧力および温度を調節した冷媒が供給される。また、熱交換器10の入口及び出口には、冷媒の温度および圧力を測定する圧力計123(温度は測定圧力相当飽和温度とする)が設けられている。さらに、空調機(図示せず)は、吸引型風洞100の空気流入口108に温度および湿度が制御された空気を供給するものである。   Moreover, the schematic diagram of the refrigerant | coolant supply apparatus 110 is shown in FIG.7 (b). In FIG. 7B, 107 is a refrigerant pipe, 111 is a sight glass, 112 is a heat exchanger for liquid (refrigerant) heating and cooling, 113 is a dryer, 114 is a liquid receiver (refrigerant), 115 is a fusing plug, 116 Is a condenser, 117 is an oil separator, 118 is a compressor, 119 is an accumulator, 120 is an evaporator, 121 is an expansion valve, and 122 is a flow meter. And the refrigerant | coolant which adjusted the pressure and temperature is supplied through the refrigerant | coolant piping 107 into the inside grooved pipe 1 (refer FIG. 6) of the heat exchanger 10 with which the suction type wind tunnel 100 was equipped. In addition, a pressure gauge 123 (the temperature is a saturation temperature corresponding to the measured pressure) is provided at the inlet and outlet of the heat exchanger 10 to measure the temperature and pressure of the refrigerant. Further, the air conditioner (not shown) supplies air with controlled temperature and humidity to the air inlet 108 of the suction type wind tunnel 100.

そして、測定条件は表3に示す通りとし、冷媒としてはR410Aを使用し、冷媒流量30kg/hとした。また、蒸発性能測定の際の冷媒の流れと、凝縮性能測定の際の冷媒の流れとは、互いに異なる方向とした(図7(b)に示す冷媒供給装置110の冷媒の流れ方向は、蒸発性能測定の際の冷媒の流れ方向を示している)。   The measurement conditions were as shown in Table 3, R410A was used as the refrigerant, and the refrigerant flow rate was 30 kg / h. In addition, the flow of the refrigerant at the time of measuring the evaporation performance and the flow of the refrigerant at the time of measuring the condensation performance are different from each other (the flow direction of the refrigerant in the refrigerant supply device 110 shown in FIG. 7B is evaporation). Shows the flow direction of the refrigerant during the performance measurement).

Figure 0004759226
Figure 0004759226

Figure 0004759226
Figure 0004759226

Figure 0004759226
Figure 0004759226

表2の結果より、本発明の実施例1〜2は、比較例1に比べて、フィン減少率および伝熱性能(蒸発性能および凝縮性能)が優れていることが確認された。   From the results in Table 2, it was confirmed that Examples 1-2 of the present invention were superior in fin reduction rate and heat transfer performance (evaporation performance and condensation performance) as compared with Comparative Example 1.

(第2の実施例)
第1の実施例と同様にして、本発明の請求範囲を満足する拡管用ビュレットを実施例3〜4とし、本発明の請求範囲を満足しない拡管用ビュレットを比較例2とした。各拡管用ビュレットの形状寸法を表4に示す。また、第1の実施例と同様にして、表1に示す溝形状(No.B)を有する内面溝付管1を作製した。
(Second embodiment)
Similarly to the first example, the expansion burette satisfying the claims of the present invention was designated as Examples 3 to 4, and the expansion burette satisfying the claims of the present invention was designated as Comparative Example 2. Table 4 shows the shape dimensions of each burette for tube expansion. Further, in the same manner as in the first example, an internally grooved tube 1 having a groove shape (No. B) shown in Table 1 was produced.

次に、第1の実施例と同様にして、熱交換器10を作製して、内面溝付管1のフィン減少率を測定した。また、熱交換器10を用いて吸引型風洞100(冷媒供給装置110)で伝熱性能(蒸発性能、凝縮性能)を測定した。その結果を表4に示した。ここで、蒸発性能および凝縮性能は、各々、総括熱伝達率を測定し、比較例2を「100」とした場合の比率で記載した。   Next, the heat exchanger 10 was produced in the same manner as in the first example, and the fin reduction rate of the inner grooved tube 1 was measured. Further, the heat transfer performance (evaporation performance, condensation performance) was measured with the suction type wind tunnel 100 (refrigerant supply device 110) using the heat exchanger 10. The results are shown in Table 4. Here, the evaporating performance and the condensing performance are described as ratios when the overall heat transfer coefficient is measured and the comparative example 2 is set to “100”.

Figure 0004759226
表4の結果より、本発明の実施例3〜4は、比較例2に比べて、フィン減少率および伝熱性能(蒸発性能および凝縮性能)が優れていることが確認された。
Figure 0004759226
From the results of Table 4, it was confirmed that Examples 3 to 4 of the present invention were superior in fin reduction rate and heat transfer performance (evaporation performance and condensation performance) as compared with Comparative Example 2.

(a)は本発明に係る拡管用工具の構成を示す斜視図、(b)は側面図である。(A) is a perspective view which shows the structure of the tool for pipe expansion concerning this invention, (b) is a side view. 本発明に係る内面溝付管の拡管方法を模式的に示す断面図である。It is sectional drawing which shows typically the pipe expansion method of the internal grooved pipe which concerns on this invention. 内面溝付管の構成を示す管軸方向の断面図である。It is sectional drawing of the pipe-axis direction which shows the structure of an internal grooved pipe | tube. (a)は図3のX−X線断面図、(b)は(a)の部分拡大図である。(A) is the XX sectional drawing of FIG. 3, (b) is the elements on larger scale of (a). プレートフィンの構成を示す平面図である。It is a top view which shows the structure of a plate fin. (a)は内面溝付管を組み込んだ熱交換器の一部破断正面図、(b)は(a)の熱交換器をUベンド管側から見た図、(c)は(a)の熱交換器をヘアピン管側から見た図である。(A) is a partially broken front view of a heat exchanger incorporating an internally grooved tube, (b) is a view of the heat exchanger of (a) seen from the U-bend tube side, and (c) is of (a). It is the figure which looked at the heat exchanger from the hairpin tube side. (a)は熱交換器の伝熱性能を測定する際に使用する吸引型風洞の模式図、(b)は(a)の吸引型風洞に冷媒を供給する冷媒供給装置の模式図である。(A) is a schematic diagram of the suction type wind tunnel used when measuring the heat transfer performance of the heat exchanger, and (b) is a schematic diagram of a refrigerant supply device for supplying a refrigerant to the suction type wind tunnel of (a). 従来の内面溝付管の拡管方法を模式的に示す断面図である。It is sectional drawing which shows typically the pipe expansion method of the conventional internal grooved pipe.

符号の説明Explanation of symbols

1 内面溝付管
10 熱交換器
20 拡管用工具
21 マンドレル
22 拡管ビュレット
22a 外周面
R 半径
D 管外径
d 管最小内径
DESCRIPTION OF SYMBOLS 1 Internal grooved tube 10 Heat exchanger 20 Tube expansion tool 21 Mandrel 22 Tube expansion bullet 22a Outer peripheral surface R Radius D Tube outer diameter d Tube minimum inner diameter

Claims (2)

熱交換器に使用される内面溝付管の内部に挿入し、前記内面溝付管の管軸方向に移動して、その内面溝付管を拡管率3%以上8%以下に拡管させる熱交換器用内面溝付管の拡管用工具であって、
前記内面溝付管は、その内面に管軸方向に傾斜する方向に形成された多数の溝と、この溝間に形成されたフィンとを有する構成を備え、前記内面溝付管の管外径(D)は4mm以上10mm以下、前記溝の溝数は30以上100以下、前記溝と管軸とがなす溝リード角(θ)は10度以上50度以下、前記内面溝付管の管軸直交断面における内面溝付管の底肉厚(T)は0.2mm以上1.0mm以下、前記フィンのフィン高さ(h)は0.1mm以上であって前記底肉厚の1.2倍以下、フィン山頂角(δ)は5度以上45度以下、フィン根元半径(r)は前記フィン高さ(h)の20%以上50%以下であると共に、
前記内面溝付管の内面に接触する円筒状の拡管ビュレットと、この拡管ビュレットの後端部に接続されたマンドレルとを備え、
前記拡管ビュレットは、前記内面溝付管の内面と接触する曲面状の外周面を有し、前記外周面の半径(R)、前記内面溝付管の管外径(D)および管最小内径(d)を用いてα=R/(D/d)で計算される係数(α)が4.71以上15以下であることを特徴とする熱交換器用内面溝付管の拡管用工具。
Heat exchange that is inserted into the inner grooved tube used in the heat exchanger and moves in the axial direction of the inner grooved tube to expand the inner grooved tube to a tube expansion rate of 3% to 8%. A tool for expanding a grooved pipe for internal use,
The inner surface grooved tube has a structure having a large number of grooves formed on the inner surface in a direction inclined in the tube axis direction, and fins formed between the grooves, and the tube outer diameter of the inner surface grooved tube (D) is 4 mm or more and 10 mm or less, the number of grooves of the groove is 30 or more and 100 or less, the groove lead angle (θ) formed by the groove and the tube axis is 10 degrees or more and 50 degrees or less, and the tube axis of the inner grooved tube The bottom wall thickness (T) of the internally grooved tube in the orthogonal cross section is 0.2 mm or more and 1.0 mm or less, and the fin height (h) of the fin is 0.1 mm or more and 1.2 times the bottom wall thickness. Hereinafter, the fin peak angle (δ) is not less than 5 degrees and not more than 45 degrees, the fin root radius (r) is not less than 20% and not more than 50% of the fin height (h),
A cylindrical tube expansion burette that contacts the inner surface of the inner grooved tube, and a mandrel connected to the rear end of the tube expansion burette,
The expanded burette has a curved outer peripheral surface that comes into contact with the inner surface of the inner grooved tube, the radius (R) of the outer peripheral surface, the outer diameter (D) of the inner grooved tube, and the minimum inner diameter of the tube ( A tube expansion tool for an internally grooved tube for a heat exchanger, wherein the coefficient (α) calculated by α = R / (D / d) using d) is 4.71 or more and 15 or less.
請求項1に記載の拡管用工具を使用して、熱交換器に使用され、多数の溝および溝間に形成されたフィンをその内面に有する内面溝付管を、拡管させる拡管方法であって、
前記内面溝付管の管外径(D)の102%以上105%以下の貫通穴を有する板状のフィンプレートに前記内面溝付管を貫通させる第1工程と、
貫通させた前記内面溝付管の内部に前記拡管用工具を挿入する第2工程と、
挿入した前記拡管用工具を前記内面溝付管の管軸方向に移動して、前記内面溝付管を拡管する第3工程と、
挿入した前記拡管用工具を拡管した前記内面溝付管の内部から取り出す第4工程とを含み、
前記第4工程における拡管した前記内面溝付管のフィンのフィン高さは、前記第1工程における前記内面溝付管のフィンのフィン高さの90%以上であることを特徴とする熱交換器用内面溝付管の拡管方法。
A tube expansion method using the tube expansion tool according to claim 1 for expanding an internally grooved tube having a plurality of grooves and fins formed between the grooves used on a heat exchanger. ,
A first step of allowing the inner grooved tube to pass through a plate-like fin plate having a through hole of 102% or more and 105% or less of the outer diameter (D) of the inner grooved tube;
A second step of inserting the tube expansion tool into the inner grooved tube penetrated;
A third step of expanding the inner grooved tube by moving the inserted tube expanding tool in the tube axis direction of the inner grooved tube;
A fourth step of taking out the inserted tool for expanding the tube from the inside of the inner grooved tube expanded,
The fin height of the fin of the inner grooved tube expanded in the fourth step is 90% or more of the fin height of the fin of the inner grooved tube in the first step. Method of expanding inner grooved tube.
JP2004108294A 2004-03-31 2004-03-31 Tube expansion tool and tube expansion method using the same Expired - Lifetime JP4759226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108294A JP4759226B2 (en) 2004-03-31 2004-03-31 Tube expansion tool and tube expansion method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108294A JP4759226B2 (en) 2004-03-31 2004-03-31 Tube expansion tool and tube expansion method using the same

Publications (2)

Publication Number Publication Date
JP2005288502A JP2005288502A (en) 2005-10-20
JP4759226B2 true JP4759226B2 (en) 2011-08-31

Family

ID=35322044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108294A Expired - Lifetime JP4759226B2 (en) 2004-03-31 2004-03-31 Tube expansion tool and tube expansion method using the same

Country Status (1)

Country Link
JP (1) JP4759226B2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913371B2 (en) * 2004-10-04 2012-04-11 古河電気工業株式会社 Manufacturing method of heat exchanger
JP2007218566A (en) * 2006-02-20 2007-08-30 Daikin Ind Ltd Tube with grooves on inner surface and its manufacturing method, and fluted plug
JP2007255742A (en) * 2006-03-20 2007-10-04 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner surface groove
JP2007271123A (en) * 2006-03-30 2007-10-18 Kobelco & Materials Copper Tube Inc Inner face-grooved heat transfer tube
KR20090022841A (en) * 2007-08-31 2009-03-04 엘지전자 주식회사 Heat exchanger of cycling apparatus and tube of the same and manufacturing method of the same
JP5255249B2 (en) * 2007-09-10 2013-08-07 古河電気工業株式会社 Heat transfer tube with internal fin
JP2009250562A (en) * 2008-04-09 2009-10-29 Panasonic Corp Heat exchanger
WO2009131072A1 (en) * 2008-04-24 2009-10-29 三菱電機株式会社 Heat exchanger and air conditioner using the same
JP2010038502A (en) * 2008-08-08 2010-02-18 Mitsubishi Electric Corp Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle device and air conditioning device
JP2010078289A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the same
KR20100060225A (en) * 2008-11-27 2010-06-07 엘에스엠트론 주식회사 Heat exchanger for air conditioner
US9939209B2 (en) 2009-02-23 2018-04-10 Mitsubishi Heavy Industries, Ltd. Gas cooler
JP5094771B2 (en) * 2009-03-16 2012-12-12 三菱電機株式会社 Manufacturing method of heat exchanger and air conditioner using the heat exchanger
JP5495601B2 (en) * 2009-03-31 2014-05-21 株式会社コベルコ マテリアル銅管 Heat transfer tube with inner groove for evaporator
US8429818B2 (en) * 2009-07-13 2013-04-30 Lennox Industries Inc. Rod holder for the assembly of heat exchangers
US20130298632A1 (en) * 2011-01-24 2013-11-14 Eric Konkle Expansion bullet for heat exchanger tube
KR101061974B1 (en) * 2011-04-22 2011-09-05 고수정공(주) Method of fabricating heat exchange module
CN103203420B (en) * 2013-04-25 2014-12-03 东方电气集团东方锅炉股份有限公司 Expanding connection method between heat exchange pipe and pipe plate and between heat exchange pipe and anti-scouring sleeve
JP6288581B2 (en) * 2013-08-29 2018-03-07 三菱アルミニウム株式会社 Method of expanding aluminum or aluminum alloy heat transfer tubes
JP6238063B2 (en) * 2013-12-27 2017-11-29 三菱アルミニウム株式会社 Expansion plug
JP6449032B2 (en) * 2015-01-28 2019-01-09 アクア株式会社 COOLER, MANUFACTURING METHOD THEREOF, AND REFRIGERATOR HAVING THE COOLER
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
BR112020010634A2 (en) 2017-12-18 2020-11-10 Daikin Industries, Ltd. composition comprising refrigerant, use of the same, refrigeration machine having the same, and method for operating said refrigeration machine
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
EP3730593A4 (en) 2017-12-18 2021-10-27 Daikin Industries, Ltd. Refrigeration machine oil for refrigerant or refrigerant composition, method for using refrigeration machine oil, and use of refrigeration machine oil
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
CN217303714U (en) * 2021-03-01 2022-08-26 海德鲁挤压解决方案股份有限公司 System for installing an expandable tubular in a heat exchanger, expandable tubular and expansion bullet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222487A (en) * 2002-01-31 2003-08-08 Kobe Steel Ltd Pipe with inner face grooves for fin tube-type heat exchanger, and plate fin tube-type heat exchanger

Also Published As

Publication number Publication date
JP2005288502A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4759226B2 (en) Tube expansion tool and tube expansion method using the same
EP2042825B1 (en) Fin-and-tube type heat exchanger, and its return bend pipe
JP2008215733A (en) Fin and tube type heat exchanger
US9322602B2 (en) Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
US8037699B2 (en) Heat exchanger and air conditioner using the same
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2007271123A (en) Inner face-grooved heat transfer tube
JP4651366B2 (en) Internal grooved heat transfer tube for high-pressure refrigerant
JP4119836B2 (en) Internal grooved heat transfer tube
JP4550451B2 (en) Heat exchanger using inner surface grooved heat transfer tube and inner surface grooved heat transfer tube
JP4422590B2 (en) Return bend and fin-and-tube heat exchangers
JP2012002453A (en) Heat transfer tube with inner face groove, and heat exchanger
JP6053693B2 (en) Air conditioner
WO2017208419A1 (en) Fin-tube type heat exchanger, heat pump apparatus provided with fin-tube type heat exchanger, and method for manufacturing fin-tube type heat exchanger
JP4339665B2 (en) Manufacturing method of heat exchanger
JP2013096651A (en) Heat transfer tube with inner surface groove, heat exchanger including heat transfer tube with inner surface groove, and method of manufacturing the same
JP2008267779A (en) Heat transfer tube
JP2007271238A (en) Heat exchanger
JP6802697B2 (en) Inner surface grooved pipe
JP2010133668A (en) Inner helically grooved heat transfer tube and heat exchanger
JP4761719B2 (en) Cross fin tube heat exchanger
JP3964244B2 (en) Internal grooved tube
JP2014001869A (en) Heat exchanger and refrigeration cycle device
JP2007255742A (en) Heat transfer tube with inner surface groove
JP2015169363A (en) Inner-face grooved heat transfer tube for evaporator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Ref document number: 4759226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term