JP5495601B2 - Heat transfer tube with inner groove for evaporator - Google Patents

Heat transfer tube with inner groove for evaporator Download PDF

Info

Publication number
JP5495601B2
JP5495601B2 JP2009087522A JP2009087522A JP5495601B2 JP 5495601 B2 JP5495601 B2 JP 5495601B2 JP 2009087522 A JP2009087522 A JP 2009087522A JP 2009087522 A JP2009087522 A JP 2009087522A JP 5495601 B2 JP5495601 B2 JP 5495601B2
Authority
JP
Japan
Prior art keywords
tube
fin
heat transfer
refrigerant
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009087522A
Other languages
Japanese (ja)
Other versions
JP2010236836A (en
Inventor
智之 立山
秀樹 岩本
明彦 石橋
恒夫 羽場
伸明 日名子
Original Assignee
株式会社コベルコ マテリアル銅管
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ マテリアル銅管 filed Critical 株式会社コベルコ マテリアル銅管
Priority to JP2009087522A priority Critical patent/JP5495601B2/en
Publication of JP2010236836A publication Critical patent/JP2010236836A/en
Application granted granted Critical
Publication of JP5495601B2 publication Critical patent/JP5495601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明はフィンアンドチューブ式熱交換器の蒸発器用内面溝付管に関し、特に、冷凍機油としてポリアルキレングリコール系油等を0.1乃至10%含有する二酸化炭素冷媒を使用する蒸発器用内面溝付伝熱管に関する。   TECHNICAL FIELD The present invention relates to an internally grooved tube for an evaporator of a fin-and-tube heat exchanger, and more particularly to an internally grooved evaporator for an evaporator using a carbon dioxide refrigerant containing 0.1 to 10% of a polyalkylene glycol oil as a refrigerating machine oil. It relates to heat transfer tubes.

従来、空調機、カーエアコン、冷蔵庫、冷凍機、給湯器及び自動販売機等に設けられている熱交換器には、フロン系の冷媒が使用されていたが、近時フロン系冷媒は地球温暖化に影響を与える物質として排出が規制されており、毒性及び可燃性が小さく安全で、安価で、さらに環境への負荷が小さい自然冷媒が注目されている。   Conventionally, chlorofluorocarbon refrigerants have been used in heat exchangers installed in air conditioners, car air conditioners, refrigerators, refrigerators, water heaters and vending machines. Emissions are regulated as substances that affect liquefaction, and natural refrigerants with low toxicity and flammability, are safe, inexpensive, and have a low environmental impact are drawing attention.

このような自然冷媒の一種である二酸化炭素は、熱特性に大きく影響を与える液定圧比熱及び液熱伝達率が高く、熱交換効率が高いため、フロン系冷媒よりも伝熱性能が優れている。また、二酸化炭素は、表面張力が小さいため、フロン系冷媒よりも気泡が発生しやすく、核沸騰が促進されるため、冷媒として二酸化炭素を使用すると、フロン系冷媒を使用したときよりも伝熱性能が向上する。更に、二酸化炭素はフロン系冷媒よりも液粘性率及び密度が小さいため、二酸化炭素を冷媒として熱交換器に使用すると、冷媒の通流速度を大きくしても圧力損失を小さく抑えることが可能であり、高い熱伝導率が得られる。更にまた、二酸化炭素は蒸気密度及び潜熱が大きく、単位排除容積あたりの冷凍効果がフロン系冷媒より大きいため、二酸化炭素を冷媒とする熱交換器はコンパクト化に有利である。   Carbon dioxide, a kind of such natural refrigerant, has high liquid constant pressure specific heat and liquid heat transfer coefficient that greatly affect the thermal characteristics, and has a high heat exchange efficiency, and therefore has better heat transfer performance than CFC refrigerant. . Also, since carbon dioxide has a low surface tension, bubbles are more likely to be generated than chlorofluorocarbon refrigerants, and nucleate boiling is promoted. Therefore, when carbon dioxide is used as the refrigerant, heat transfer is greater than when chlorofluorocarbon refrigerants are used. Performance is improved. Furthermore, since carbon dioxide has a lower liquid viscosity and density than chlorofluorocarbon refrigerants, if carbon dioxide is used as a refrigerant in a heat exchanger, pressure loss can be kept small even if the flow rate of the refrigerant is increased. Yes, high thermal conductivity can be obtained. Furthermore, since the carbon dioxide has a large vapor density and latent heat and the refrigeration effect per unit excluded volume is larger than that of the chlorofluorocarbon refrigerant, the heat exchanger using carbon dioxide as a refrigerant is advantageous for downsizing.

一方、二酸化炭素は臨界温度が低く、二酸化炭素を冷媒とするエアコンの高圧側では放熱を伴った凝縮が行われず、更に蒸発器入り口での乾き度が高くなるため、冷房及び暖房の単純サイクルにおける理論性能が低いという問題点がある。このため二酸化炭素を冷媒として使用する場合は、冷媒が通過する伝熱管に高い伝熱性能が求められる。   On the other hand, carbon dioxide has a low critical temperature, and on the high-pressure side of an air conditioner using carbon dioxide as a refrigerant, condensation accompanying heat dissipation is not performed, and the dryness at the entrance of the evaporator is increased, so in a simple cycle of cooling and heating There is a problem that the theoretical performance is low. For this reason, when using carbon dioxide as a refrigerant, high heat transfer performance is required for the heat transfer tube through which the refrigerant passes.

そこで、CO冷媒を使用した熱交換器においては、銅又は銅合金製の伝熱管の内面に溝を形成した内面溝付管が使用されており、この内面溝により伝熱管と冷媒との接触面積を増大し、伝熱性能を向上させている。 Therefore, in a heat exchanger using a CO 2 refrigerant, an internally grooved tube in which a groove is formed on the inner surface of a heat transfer tube made of copper or copper alloy is used, and contact between the heat transfer tube and the refrigerant is made by this inner surface groove. The area is increased and the heat transfer performance is improved.

例えば、特許文献1には、内面溝付伝熱管の管外径と底肉厚との関係、溝深さと単位溝当たりの溝断面積との関係、及び溝条数と管最大内径との関係を最適化することにより、十分な耐圧強度を保ちながら、管内熱伝達率を向上させたクロスフィンチューブ式熱交換器用内面溝付伝熱管が開示されている。   For example, Patent Document 1 discloses the relationship between the tube outer diameter and the bottom wall thickness of the internally grooved heat transfer tube, the relationship between the groove depth and the groove sectional area per unit groove, and the relationship between the number of grooves and the maximum tube inner diameter. By optimizing the above, an internally grooved heat transfer tube for a cross fin tube type heat exchanger is disclosed in which the heat transfer coefficient in the tube is improved while maintaining sufficient pressure resistance.

ここで、冷凍機油は冷凍空調機における圧縮機の潤滑、摩耗低減及び内部シールを目的として用いられる。冷凍機油には、析出物を発生させにくく、冷媒がよく溶解し、低温環境下における高い流動性があることが求められる。即ち、油の劣化、低温環境下での析出物の生成、又は溶媒の溶解量が少ない低温環境下における冷凍機油の凝固が発生してはならない。例えば、ポリアルキレングリコール系油は圧縮性及び熱伝導性及び流動性に優れており、鉄や銅と反応して析出物を生じることがないため、冷凍機油として好適に使用される。   Here, the refrigeration oil is used for the purpose of lubrication, wear reduction, and internal sealing of the compressor in the refrigeration air conditioner. Refrigerating machine oil is required to have a high fluidity in a low-temperature environment because it is difficult to generate precipitates, the refrigerant dissolves well. That is, the deterioration of the oil, the formation of precipitates in a low temperature environment, or the solidification of the refrigerating machine oil in a low temperature environment with a small amount of solvent dissolution should not occur. For example, polyalkylene glycol oils are excellent in compressibility, thermal conductivity, and fluidity, and do not react with iron or copper to form precipitates, so that they are suitably used as refrigerating machine oils.

この冷凍機油を含む二酸化炭素を冷媒とする熱交換器では、CO冷媒は蒸発器において液体から気体になるが、蒸発器入り口において、液体のCOと潤滑剤(冷凍機油)の液体とは混合せず二層分離して供給される。特許文献1に記載の伝熱管には、管外径と底肉厚の組み合わせによって、前記二層分離した冷凍機油が管表面に付着してCO液の蒸発を阻害する場合がある。 In the heat exchanger using carbon dioxide containing the refrigerating machine oil as the refrigerant, the CO 2 refrigerant is changed from a liquid to a gas in the evaporator, but at the inlet of the evaporator, the liquid CO 2 and the liquid of the lubricant (refrigerating machine oil) are Two layers are separated and supplied without mixing. In the heat transfer tube described in Patent Document 1, depending on the combination of the tube outer diameter and the bottom wall thickness, the two-layer separated refrigerating machine oil may adhere to the tube surface and inhibit CO 2 liquid evaporation.

また、特許文献2には、外径が3乃至7mmの内面溝付伝熱管において、溝深さ及び管軸と内面溝とがなすリード角を最適化することにより、冷凍機油を含む二酸化炭素冷媒を使用する場合でも、圧力損失が増加せず、蒸発伝熱性能が優れた蒸発器用内面溝付伝熱管が提案されている。   Patent Document 2 discloses a carbon dioxide refrigerant containing refrigerating machine oil by optimizing the groove depth and the lead angle formed by the tube shaft and the inner surface groove in the inner surface grooved heat transfer tube having an outer diameter of 3 to 7 mm. Even in the case of using an evaporator, an internally grooved heat transfer tube for an evaporator has been proposed which does not increase pressure loss and has excellent evaporation heat transfer performance.

しかしながら、特許文献2に開示された小径の蒸発器用内面溝付管を使用する場合、管内に溝を形成することによって溝間にフィンが形成され、管の流路断面積が減少して冷媒の流速が増加し、圧力損失が増大する。また、特許文献2に開示された内面溝付管においても、二酸化炭素冷媒に含まれる冷凍機油が滞留して、管内面が冷凍機油膜で覆われやすくなり、その結果、管壁の熱抵抗が増大し、蒸発性能を低下させてしまう。   However, when the small-diameter evaporator inner grooved tube disclosed in Patent Document 2 is used, fins are formed between the grooves by forming the grooves in the tube, and the cross-sectional area of the flow path of the tube is reduced. The flow rate increases and the pressure loss increases. Also, in the internally grooved tube disclosed in Patent Document 2, the refrigeration oil contained in the carbon dioxide refrigerant stays and the inner surface of the tube is easily covered with the refrigeration oil film. As a result, the thermal resistance of the tube wall is reduced. Increases and lowers the evaporation performance.

本願発明者等は、特許文献3において、小径の内面溝付管においても管内面に冷凍機油膜が形成されることを最小限に抑制し、油膜による伝熱性能の低下を防止する蒸発器用内面溝付管を提案した。これらの特許文献2及び3に提案された内面溝付管は、管外径が小さいためコンパクト化に有利である。   In the patent document 3, the inventors of the present application minimize the formation of a refrigerator oil film on the inner surface of a small-diameter inner grooved tube, and prevent the heat transfer performance from being deteriorated by the oil film. A grooved tube was proposed. These internally grooved pipes proposed in Patent Documents 2 and 3 are advantageous for downsizing because the pipe outer diameter is small.

エアコン、熱交換器等に使用されるフィンアンドチューブ式熱交換器は、アルミニウム又はステンレス等の板(これを熱交換器フィンという)を複数枚適長間隔をおいて平行に配置し、これらの熱交換器フィンに共通の貫通孔を設け、これらの貫通孔に伝熱管を通した後、伝熱管内に押し広げ工具(以下、ビュレット)を挿通し、ビュレットにより管内面を機械的に拡管して伝熱管と熱交換器フィンとを密着させることにより、製造したものである。伝熱管外部に熱交換器フィンを設けることで伝熱管と管外部流体との接触面積は増大し、伝熱管内部を通流させる流体と管外部熱交換器フィン側に通流させる流体との間の交換熱量が増大するが、この伝熱管に前述の内面溝付管を用いることで、伝熱性能は更に向上する。   Fin-and-tube heat exchangers used in air conditioners, heat exchangers, etc. are made of aluminum or stainless steel plates (referred to as heat exchanger fins) arranged in parallel at an appropriate length. A common through hole is provided in the heat exchanger fins, and after passing through the heat transfer tubes, a spreading tool (hereinafter referred to as a burette) is inserted into the heat transfer tube, and the inner surface of the tube is mechanically expanded by the burette. The heat transfer tube and the heat exchanger fin are brought into close contact with each other. By providing heat exchanger fins outside the heat transfer tubes, the contact area between the heat transfer tubes and the fluid outside the tubes is increased, and between the fluid that flows through the heat transfer tubes and the fluid that flows through the heat exchanger fins side. However, heat transfer performance is further improved by using the above-mentioned internally grooved tube for this heat transfer tube.

このような製造方法によって製造されるフィンアンドチューブ式熱交換器に内面溝付管を使用する場合、管内面に形成されたフィンが十分な強度を有していないと、ビュレットによる機械拡管時にフィン潰れ及びフィン倒れが発生する。特に、底肉厚が増大した伝熱管を機械拡管する際にはフィン潰れ及びフィン倒れが発生しやすく、フィンアンドチューブ式熱交換器を組立てたときに伝熱性能が低下してしまうという問題点がある。   When an internally grooved tube is used in a fin-and-tube heat exchanger manufactured by such a manufacturing method, if the fin formed on the tube inner surface does not have sufficient strength, the fin is expanded during mechanical tube expansion by a burette. Crushing and fin collapse occur. In particular, when a heat transfer tube with an increased bottom wall thickness is mechanically expanded, fin collapse and fin collapse are likely to occur, and heat transfer performance deteriorates when a fin-and-tube heat exchanger is assembled. There is.

一方、業務用のエアコン、冷蔵庫等は機器の熱容量が大きく、これらの熱交換器に使用される管内には、多量の冷媒を通流する必要がある。しかしながら、上述の特許文献2及び3に開示された内面溝付管は、外径が7mm以下と小径である。そして、これらの小径の内面溝付管内部に多量の冷媒を通流させた場合、管内面を流れる冷媒の流速が増大し、管内面に形成されたフィンが抵抗として作用して圧力損失が増大し、却って蒸発性能が低下してしまうという問題点がある。   On the other hand, commercial air conditioners, refrigerators, etc. have a large heat capacity, and it is necessary to pass a large amount of refrigerant through the tubes used for these heat exchangers. However, the inner grooved tubes disclosed in Patent Documents 2 and 3 described above have a small outer diameter of 7 mm or less. When a large amount of refrigerant is allowed to flow inside these small-diameter inner grooved tubes, the flow velocity of the refrigerant flowing on the inner surface of the tube increases, and fins formed on the inner surface of the tube act as resistance to increase pressure loss. However, there is a problem that the evaporation performance deteriorates.

また、内面溝付管が熱容量の大きな機器に組み込まれる場合、一定の性能を確保するためには、管外表面積に対する管内表面積比をある程度大きく設定することが必要である。そして、内面溝付管の外径を大きくした場合、底肉厚を増大させざるを得ない。その結果、管内面にフィンを転造加工する際の加工性が低下したり、内面溝付管にヘアピン曲げ等の2次加工を施す際の加工性が低下するという問題点がある。   Further, when the inner grooved tube is incorporated in a device having a large heat capacity, it is necessary to set the ratio of the surface area in the tube to the surface area outside the tube to a certain extent in order to ensure a certain performance. When the outer diameter of the inner grooved tube is increased, the bottom wall thickness must be increased. As a result, there is a problem that workability at the time of rolling the fin on the inner surface of the pipe is deteriorated, and workability at the time of performing secondary processing such as hairpin bending on the inner grooved pipe.

即ち、熱容量の大きな機器に使用される内面溝付管は、管内に通流される冷媒の量が多く、管が小径であると、圧力損失の増大によって蒸発性能が低下する。そして、蒸発性能を確保するために管外径を大きくすると、底肉厚の増大によって機械拡管時にフィン潰れ及びフィン倒れが発生し、更に、管の2次加工性が低下する。上述の特許文献1乃至3は、径が大きくなった管に固有の課題を解決するためのものではない。   That is, the inner surface grooved tube used in a device having a large heat capacity has a large amount of refrigerant flowing through the tube, and if the tube has a small diameter, the evaporation performance decreases due to an increase in pressure loss. When the outer diameter of the pipe is increased in order to ensure the evaporation performance, fin collapse and fin collapse occur during mechanical pipe expansion due to an increase in the bottom wall thickness, and further, the secondary workability of the pipe decreases. The above-mentioned Patent Documents 1 to 3 are not intended to solve the problems inherent in the pipe having a large diameter.

特開2006−162100号公報JP 2006-162100 A 特開2006−64311号公報JP 2006-64311 A 特開2006−20166号公報JP 2006-20166 A

本願発明者等は、熱交換器製造の際の機械拡管工程において発生するフィン潰れ及びフィン倒れを防止するために、特願2008−072266号において、冷凍機油が滞留しにくく、十分なCO蒸発伝熱性能を保ちながら、フィン潰れ及びフィン倒れが発生しにくい内面溝付伝熱管を提案した。 In the Japanese Patent Application No. 2008-072266, in order to prevent fin collapse and fin collapse that occur in the machine expansion process during heat exchanger manufacture, the inventors of the present application are not able to retain the refrigerating machine oil and have sufficient CO 2 evaporation. We proposed an internally grooved heat transfer tube that is less susceptible to fin crushing and fin collapse while maintaining heat transfer performance.

しかしながら、特許文献2及び3と同様に、この先行出願の発明も小径管に関するものであり、冷媒流量が大きな業務用エアコン等に使用される場合の圧力損失の増大、蒸発性能の低下という大径管に固有の課題を解決するものではない。   However, similarly to Patent Documents 2 and 3, the invention of this prior application also relates to a small-diameter pipe, and has a large diameter that increases pressure loss and decreases evaporation performance when used in a commercial air conditioner having a large refrigerant flow rate. It does not solve the problems inherent to tubes.

本発明はかかる問題点に鑑みてなされたものであって、大径化しても十分なCO蒸発伝熱性能を保ちつつ、加工性が良好な内面溝付伝熱管を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide an internally grooved heat transfer tube with good workability while maintaining sufficient CO 2 evaporation heat transfer performance even when the diameter is increased. To do.

本発明に係る蒸発器用内面溝付伝熱管は、二酸化炭素を冷媒として使用するフィンアンドチューブ式熱交換器の蒸発器用内面溝付伝熱管において、管内面に管軸と平行又は傾斜する方向に伸びる複数個の溝が形成され、これらの各溝間にフィンが形成されており、管外径Dが7.94乃至13mm、前記フィンの高さHが0.1乃至0.4mm、前記フィンのリード角βが0乃至35°、前記フィン高さHと管外径Dとの比H/Dが0.01乃至0.05、前記溝の数Nが40乃至100個、前記溝の斜面がなす頂角θが10乃至40°であり、管材料の引張強さをσB[N/mm]、フィンの根元半径をR[mm]、管の溝底部における肉厚である底肉厚をt[mm]としたとき、前記H/Dに底肉厚tを乗じたパラメータα=(H/D)×tが0.022乃至0.04、フィン高さHとフィン根元半径Rとの比に底肉厚tを乗じたパラメータγ=(H/R)×tが1.93乃至4.0、底肉厚tがt≧25.5×D/[2×(0.8×σB+25.5)]であることを特徴とする。 An inner grooved heat transfer tube for an evaporator according to the present invention is an inner grooved heat transfer tube for an evaporator of a fin-and-tube heat exchanger that uses carbon dioxide as a refrigerant, and extends in a direction parallel to or inclined with respect to the tube axis. A plurality of grooves are formed, and fins are formed between these grooves. The outer diameter D of the tube is 7.94 to 13 mm , the height H of the fin is 0.1 to 0.4 mm, The lead angle β is 0 to 35 °, the ratio H / D of the fin height H to the tube outer diameter D is 0.01 to 0.05, the number N of the grooves is 40 to 100, and the slopes of the grooves are The apex angle θ is 10 to 40 °, the tensile strength of the pipe material is σB [N / mm 2 ], the root radius of the fin is R [mm], and the bottom wall thickness that is the wall thickness at the bottom of the groove of the pipe is When t [mm], parameter α = (H / D) obtained by multiplying the above H / D by the bottom wall thickness t t = 0.022 to 0.04, the ratio of the fin height H to the fin root radius R multiplied by the bottom wall thickness t. γ = (H / R) × t is 1.93 to 4.0, the bottom The wall thickness t is t ≧ 25.5 × D / [2 × (0.8 × σB + 25.5)].

本発明の蒸発器用内面溝付伝熱管によれば、管外径D、フィン高さH、リード角β、溝数N、及び山頂角θを最適化することにより、外径が7mmを超える内面溝付管においても十分なCO蒸発伝熱性能を得ることができる。また、本発明の蒸発器用内面溝付伝熱管は、フィン高さH、管外径D、フィン根元半径R、及び底肉厚tを相互に連関させてこれらの最適値を規定することにより、内面溝付管に加工する際だけでなく、2次加工においても加工性が良好である。そして、フィン根元のR値を規定することによって伝熱管を機械拡管する際に発生するフィン潰れ及びフィン倒れが防止されるため、本発明の蒸発器用内面溝付き伝熱管は、フィンアンドチューブ式熱交換器に組み込まれた場合においても、優れた蒸発伝熱性能を得ることができる。 According to the inner surface grooved heat transfer tube for an evaporator of the present invention, by optimizing the tube outer diameter D, fin height H, lead angle β, number of grooves N, and peak angle θ, the inner surface having an outer diameter exceeding 7 mm. Even in a grooved tube, sufficient CO 2 evaporation heat transfer performance can be obtained. Moreover, the inner surface grooved heat transfer tube for an evaporator of the present invention defines these optimum values by associating the fin height H, the tube outer diameter D, the fin root radius R, and the bottom wall thickness t with each other. The workability is good not only when machining into an internally grooved tube but also during secondary machining. And by defining the R value of the fin base, the fin crushing and the fin collapse that occur when the heat transfer tube is mechanically expanded are prevented. Even when incorporated in an exchanger, excellent heat transfer performance can be obtained.

(a)は、本発明の実施形態に係る内面溝付伝熱管における管軸を含む縦断面図、(b)は管軸直交断面における内面溝付伝熱管の一部を示す断面図である。(A) is a longitudinal cross-sectional view including the tube axis | shaft in the inner surface grooved heat exchanger tube which concerns on embodiment of this invention, (b) is sectional drawing which shows a part of inner surface grooved heat exchanger tube in a tube axis orthogonal cross section. フィン根元のR部を示す図である。It is a figure which shows the R part of a fin base. 熱伝達率及び圧力損失の測定に使用した装置の構成を示す図である。It is a figure which shows the structure of the apparatus used for the measurement of a heat transfer rate and a pressure loss. 図3に示す蒸発器の構成を示す図である。It is a figure which shows the structure of the evaporator shown in FIG.

以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。図1(a)は、本発明の実施の形態に係る内面溝付伝熱管における管軸を含む縦断面図、図1(b)は管軸直交断面における内面溝付伝熱管の一部を示す断面図、図2は図1(b)の一部拡大断面図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. Fig.1 (a) is a longitudinal cross-sectional view including the tube axis in the internally grooved heat transfer tube according to the embodiment of the present invention, and Fig.1 (b) shows a part of the internally grooved heat transfer tube in the tube axis orthogonal cross section. A sectional view and FIG. 2 are partially enlarged sectional views of FIG.

内面溝付伝熱管21は、管内面に複数の溝22が螺旋状に形成されており、この螺旋溝22間の突起として螺旋状に伸びるフィン23が形成されている。溝22及びフィン23が形成されていることによって伝熱管内面と冷媒との接触面積が増え、伝熱性能が向上する。   In the internally grooved heat transfer tube 21, a plurality of grooves 22 are formed in a spiral shape on the tube inner surface, and a fin 23 extending in a spiral shape is formed as a protrusion between the spiral grooves 22. The formation of the grooves 22 and the fins 23 increases the contact area between the inner surface of the heat transfer tube and the refrigerant, thereby improving the heat transfer performance.

次に、本発明の内面溝付伝熱管の形状について説明する。図1(a)に示すように、溝22の管軸方向に対するリード角をβとし、図1(b)に示すように、管21の外径をD、管軸直交断面においてフィン23の高さをH、底肉厚をt、フィン23の頂角をθとし、図2に示すように、フィン23の根元半径をRとする。このとき、本発明においては、管21の外径Dは7mmを超え13mm以下であり、フィン23の高さHは0.1乃至0.4mm、溝22が管軸に対して有するリード角βは0乃至35°である。また、フィン高さHと管外径Dとの比H/Dが0.01乃至0.05であり、管内に形成される溝22の数Nが40乃至100個、溝22の斜面がなす頂角θが10乃至40°である。更に、前記H/Dに底肉厚tを乗じたパラメータα=(H/D)×tが0.04以下であり、フィン高さHとフィン根元半径Rとの比に底肉厚tを乗じたパラメータγ=(H/R)×tが0.5乃至4.0である。   Next, the shape of the internally grooved heat transfer tube of the present invention will be described. As shown in FIG. 1A, the lead angle of the groove 22 with respect to the tube axis direction is β, and the outer diameter of the tube 21 is D as shown in FIG. The height is H, the bottom wall thickness is t, the apex angle of the fin 23 is θ, and the root radius of the fin 23 is R as shown in FIG. At this time, in the present invention, the outer diameter D of the tube 21 is more than 7 mm and not more than 13 mm, the height H of the fin 23 is 0.1 to 0.4 mm, and the lead angle β that the groove 22 has with respect to the tube axis. Is 0 to 35 °. Further, the ratio H / D between the fin height H and the tube outer diameter D is 0.01 to 0.05, the number N of grooves 22 formed in the tube is 40 to 100, and the inclined surfaces of the grooves 22 form. The apex angle θ is 10 to 40 °. Further, the parameter α = (H / D) × t obtained by multiplying the H / D by the bottom wall thickness t is 0.04 or less, and the ratio of the fin height H and the fin root radius R is set to the bottom wall thickness t. The multiplied parameter γ = (H / R) × t is 0.5 to 4.0.

更にまた、管材料の引張強さをσB[N/mm]として底肉厚tはt≧25.5×D/[2×(0.8×σB+25.5)]を満足する。ここで、管材料としてりん脱酸銅が使用される場合、管材料の引張強さσBは、冷凍保安規則関係例示基準より240.5[N/mm]である。 Furthermore, assuming that the tensile strength of the pipe material is σB [N / mm 2 ], the bottom wall thickness t satisfies t ≧ 25.5 × D / [2 × (0.8 × σB + 25.5)]. Here, when phosphorous-deoxidized copper is used as the pipe material, the tensile strength σB of the pipe material is 240.5 [N / mm 2 ] based on the refrigeration security rule related illustration standard.

以下、上記数値限定の理由について説明する。   Hereinafter, the reason for the above numerical limitation will be described.

「管外径D:7mmを超え13mm以下」
伝熱管を内面溝付管とすることにより管内の伝熱面積が増大し、更に、管内に形成されたフィンによりCO冷媒が撹拌されるため、伝熱性能が向上する。内面溝付管は後述するように、縮径された管に対し、管内に縮径プラグと回転自在に連結されて配置された溝付プラグの位置にて、管外面を転造ボール又は転造ロールによって押圧することによって、管内面に溝形状を転写する転造加工により製造される。この溝形状が転写された内面溝付管に縮径加工を施すことによって、所定の径の内面溝付管が製造される。内面溝付管は管断面における管肉部の断面積が小さい程伝熱性能が高くなるため、管外径が小さい方が伝熱性能の点では有利である。しかしながら、本発明は業務用エアコン等、比較的容量の大きい熱交換器に使用される蒸発器用内面溝付管を対象とする。従って、内面溝付管の外径は7mmを超えていることを前提とする。内面溝付管の管内を通流する冷媒の使用圧力を一定とするとき、伝熱管が冷媒の使用圧力で破壊しないようにするため、その肉厚は外径に比例して大きくする必要がある。管外径が13mmを超えるとコンパクト化に不利であるとともに、管の耐圧強度を確保するために肉厚を大きく確保する必要があるため、内面溝付管を組み込む蒸発器の質量が増大し、軽量化に不利となる。また、管の肉厚が増大すると、管内面への溝加工及び管の縮径加工時に工具負荷が大きくなって、内面溝付管の生産性が悪くなる。よって、管外径Dは7mmを超え13mm以下である。
"Pipe outer diameter D: Over 7mm and 13mm or less"
By making the heat transfer tube an internally grooved tube, the heat transfer area in the tube is increased, and furthermore, the CO 2 refrigerant is agitated by the fins formed in the tube, so the heat transfer performance is improved. As will be described later, the inner surface grooved tube is formed by rolling the outer surface of the tube at the position of the grooved plug that is rotatably connected to the reduced diameter plug in the tube. It is manufactured by a rolling process in which the groove shape is transferred to the inner surface of the pipe by pressing with a roll. By subjecting the inner surface grooved tube to which the groove shape has been transferred to a diameter reduction process, an inner surface grooved tube having a predetermined diameter is manufactured. Since the inner grooved tube has a higher heat transfer performance as the cross-sectional area of the tube wall portion in the tube cross section is smaller, a smaller tube outer diameter is advantageous in terms of heat transfer performance. However, the present invention is directed to an internally grooved tube for an evaporator used in a heat exchanger having a relatively large capacity such as a commercial air conditioner. Therefore, it is assumed that the inner diameter of the inner grooved tube exceeds 7 mm. When the working pressure of the refrigerant flowing through the inner grooved pipe is constant, the thickness of the heat transfer pipe must be increased in proportion to the outer diameter so that the heat transfer pipe does not break down due to the working pressure of the refrigerant. . If the outer diameter of the tube exceeds 13 mm, it is disadvantageous for downsizing, and it is necessary to ensure a large thickness in order to ensure the pressure resistance of the tube, so the mass of the evaporator incorporating the inner grooved tube increases, It is disadvantageous for weight reduction. Further, when the thickness of the pipe increases, the tool load increases during the grooving to the inner surface of the pipe and the diameter reduction processing of the pipe, and the productivity of the inner grooved pipe becomes worse. Therefore, the tube outer diameter D is more than 7 mm and not more than 13 mm.

「フィン高さH:0.1乃至0.4mm」
フィン高さを高くすれば伝熱管と冷媒との接触面積が増えて伝熱性能が向上する。しかしながら、フィン高さが0.4mmを超えると、フィンが管内の冷媒の流れを妨げる抵抗となって圧力損失を増やしてしまうため、結果として蒸発伝熱性能は低下する。一方、フィン高さが0.1mm未満の場合、伝熱管と冷媒との接触面積は増大するが、フィンが冷媒を攪拌する効果が小さくなり、熱伝達率の向上につながらない。従って、フィン高さHは0.1乃至0.4mmである。更に、圧力損失の低減を重視するなら、フィン高さHは0.30mm以下であることが好ましい。
“Fin height H: 0.1 to 0.4 mm”
If fin height is made high, the contact area of a heat exchanger tube and a refrigerant will increase, and heat transfer performance will improve. However, if the fin height exceeds 0.4 mm, the fin becomes a resistance that hinders the flow of the refrigerant in the pipe and increases the pressure loss. As a result, the evaporation heat transfer performance decreases. On the other hand, when the fin height is less than 0.1 mm, the contact area between the heat transfer tube and the refrigerant increases, but the effect of the fins stirring the refrigerant is reduced, and the heat transfer coefficient is not improved. Accordingly, the fin height H is 0.1 to 0.4 mm. Furthermore, if importance is placed on the reduction of pressure loss, the fin height H is preferably 0.30 mm or less.

「リード角β:0乃至35°」
内面溝付管の蒸発伝熱性能は、管内面に形成される溝が管軸に対してなすリード角による影響が大きく、伝熱管のフィンが管軸に対してリード角βを有することで、管内を流れる冷媒のフィンに対して垂直な速度成分が生じるため、伝熱面積が増大し、伝熱性能が向上する。しかし、リード角が35°を超えるとフィン自身が管内の冷媒の流れを妨げる抵抗として働き、蒸発伝熱性能の向上よりも圧力損失増加の方が大きくなる。従って、リード角βは0乃至35°である。
“Lead angle β: 0 to 35 °”
The evaporative heat transfer performance of the internally grooved tube is greatly influenced by the lead angle formed by the groove formed on the tube inner surface with respect to the tube axis, and the fin of the heat transfer tube has a lead angle β with respect to the tube axis. Since a velocity component perpendicular to the fins of the refrigerant flowing in the pipe is generated, the heat transfer area is increased and the heat transfer performance is improved. However, if the lead angle exceeds 35 °, the fin itself acts as a resistance that hinders the flow of the refrigerant in the pipe, and the pressure loss increases more than the improvement of the evaporation heat transfer performance. Therefore, the lead angle β is 0 to 35 °.

「フィン高さHと外径Dとの比H/D:0.01乃至0.05」
管外径Dに対するフィン高さHの比が0.01未満であると、熱伝達率は向上せず、平滑管と同等の蒸発伝熱性能しか得られない。一方、管外径Dに対するフィン高さHの比が0.05を超えると、伝熱面積が増大して伝熱性能は向上するが、管外径に対するフィン高さの割合が高くなり、機械拡管時のフィン潰れ、フィン倒れが発生しやすくなる。従って、フィン高さHと外径Dとの比H/Dは0.01乃至0.05である。
“Ratio H / D of fin height H to outer diameter D: 0.01 to 0.05”
When the ratio of the fin height H to the tube outer diameter D is less than 0.01, the heat transfer coefficient is not improved, and only the evaporation heat transfer performance equivalent to that of the smooth tube can be obtained. On the other hand, if the ratio of the fin height H to the pipe outer diameter D exceeds 0.05, the heat transfer area is increased and the heat transfer performance is improved, but the ratio of the fin height to the pipe outer diameter is increased. Fin collapse and fin collapse during tube expansion are likely to occur. Therefore, the ratio H / D between the fin height H and the outer diameter D is 0.01 to 0.05.

「管内面の溝数N:40乃至100個」
管内面に存在する溝の数が多いほど、管内面の内表面積が大きくなり伝熱量が大きくなる。しかし、溝数が100を超えると、フィンが管内の冷媒の流れを妨げる抵抗となり、伝熱面積の増大による熱伝達率の向上よりも圧力損失の増加の方が顕著となり、蒸発伝熱性能が低下する。一方、溝数が40未満であると、伝熱面積の増大が熱伝達率の向上につながらず、平滑管と同等の蒸発伝熱性能しか得られない。従って、管内面の溝数Nは40乃至100個である。
“Number of grooves on the inner surface of tube: 40 to 100”
As the number of grooves present on the inner surface of the tube increases, the inner surface area of the inner surface of the tube increases and the amount of heat transfer increases. However, if the number of grooves exceeds 100, the fin becomes a resistance that obstructs the flow of the refrigerant in the pipe, and the increase in the pressure loss becomes more remarkable than the improvement in the heat transfer coefficient due to the increase in the heat transfer area. descend. On the other hand, if the number of grooves is less than 40, an increase in the heat transfer area does not lead to an improvement in the heat transfer coefficient, and only an evaporation heat transfer performance equivalent to that of the smooth tube can be obtained. Accordingly, the number N of grooves on the inner surface of the tube is 40 to 100.

「フィンの頂角θ:10乃至40°」
フィンの頂角が小さいほど溝底幅が広くなり、溝部に保持しうる冷媒の量が増え、更に伝熱面積も増えるため熱伝達率が向上し、更に、管内の冷媒の流れに直交するフィンの断面積が減り圧力損失が減少するため、蒸発伝熱性能が高くなる。しかし、山頂角が10°未満になるとフィン幅が小さくなるため、熱交換器フィンと内面溝付管とを密着させる機械拡管の際、フィン潰れ、フィン倒れが発生し、伝熱面積が減少して蒸発伝熱性能は低下してしまう。一方、山頂角が40°を超えると溝底幅が小さくなるため、隣接する溝間を流れる冷媒の量が減り、蒸発伝熱性能が低下する。更に、管内の冷媒の流れに直交するフィンの断面積が増えて圧力損失が増大するため、蒸発伝熱性能は低下する。従って、フィンの頂角θは10乃至40°である。
“Fine vertical angle θ: 10 to 40 °”
The smaller the top angle of the fin, the wider the groove bottom width, the more refrigerant can be held in the groove, and the more the heat transfer area, the higher the heat transfer rate, and the fins orthogonal to the refrigerant flow in the pipe. Evaporative heat transfer performance is improved because the cross-sectional area is reduced and the pressure loss is reduced. However, if the peak angle is less than 10 °, the fin width becomes smaller. Therefore, when the machine is expanded to bring the heat exchanger fin and the inner grooved tube into close contact, fin collapse and fin collapse occur, reducing the heat transfer area. As a result, the heat transfer performance is reduced. On the other hand, if the peak angle exceeds 40 °, the groove bottom width decreases, so the amount of refrigerant flowing between adjacent grooves decreases, and the evaporation heat transfer performance decreases. Furthermore, since the cross-sectional area of the fins orthogonal to the refrigerant flow in the pipe increases and the pressure loss increases, the evaporation heat transfer performance decreases. Accordingly, the apex angle θ of the fin is 10 to 40 °.

「フィン高さHと外径Dとの比H/Dに底肉厚tを乗じたパラメータα=(H/D)×t:0.04以下」
内面溝付管と熱交換器フィンとを密着させる際に行う機械拡管工程において、底肉厚tが大きくなる程拡管に要する力が大きくなり、フィン高さHが高くなる程拡管時にフィンに負荷される力が大きくなるため、フィン潰れ及びフィン倒れが発生しやすくなる。本発明においては、適正な底肉厚及びフィン高さを規定するためにフィン高さと外径との比H/Dに底肉厚tを乗じたパラメータαを用いることとする。即ち、底肉厚が大きい程拡管に必要な力が大きくなるため、フィン高さを小さくする必要があり、フィン高さが高い程フィン根元にかかる力が大きくなるため、管の外径を大きくする必要がある。αが0.04を上回ると、機械拡管時のフィン潰れ、倒れが生じ、蒸発伝熱性能が急激に低下する。従って、フィン高さHと外径Dとの比H/Dに底肉厚tを乗じたパラメータα=(H/D)×tは0.04以下である。
“Parameter α = (H / D) × t: 0.04 or less” obtained by multiplying ratio H / D of fin height H and outer diameter D by bottom wall thickness t
In the mechanical pipe expansion process performed when the inner grooved pipe and the heat exchanger fin are brought into close contact with each other, the force required for the pipe expansion increases as the bottom wall thickness t increases, and the higher the fin height H, the more the load is applied to the fin. Since the applied force increases, fin collapse and fin collapse tend to occur. In the present invention, in order to define an appropriate bottom thickness and fin height, a parameter α obtained by multiplying the ratio H / D between the fin height and the outer diameter by the bottom thickness t is used. That is, the greater the bottom wall thickness, the greater the force required for pipe expansion, so the fin height must be reduced. The higher the fin height, the greater the force applied to the fin base, so the outer diameter of the pipe is increased. There is a need to. If α exceeds 0.04, the fins are collapsed and collapsed during mechanical pipe expansion, and the evaporation heat transfer performance is drastically reduced. Accordingly, the parameter α = (H / D) × t obtained by multiplying the ratio H / D between the fin height H and the outer diameter D by the bottom wall thickness t is 0.04 or less.

「フィン高さHとフィン根元半径Rとの比H/Rに底肉厚tを乗じたパラメータγ=(H/R)×t:0.5乃至4.0」
内面溝付管と熱交換器フィンとを密着させる際に行う機械拡管工程において、底肉厚tが大きくなる程拡管に要する力が大きくなり、フィン高さHが高くなる程拡管時にフィンに負荷される力が大きくなるため、フィン潰れ及びフィン倒れが発生しやすくなる。そこで、フィン斜面と溝底部とを滑らかな弧で結ぶことにより、フィンの潰れ及びフィン倒れに対する抗力を高める。本発明においては、適正なR値を規定するために、フィン高さHとフィン根元半径Rとの比H/Rに底肉厚tを乗じたパラメータγ=(H/R)×tを用いることとする。つまり、機械拡管に必要な力が大きい程、又はフィン高さが高くなる程、フィン根元半径Rを大きくする必要があるため、フィン根元半径Rは底肉厚t及びフィン高さHに比例する値であると規定する。γが0.5未満である場合、底肉厚及びフィン高さに比してフィン根元半径Rが大きくなるため、管の内表面積が減少し、伝熱量が低下する。一方、γが4.0より大きいと、底肉厚及びフィン高さに比してフィン根元半径Rが小さくなって、フィン潰れ及びフィン倒れが発生し、蒸発伝熱性能が急激に低下する。従って、フィン高さHとフィン根元半径Rとの比H/Rに底肉厚tを乗じたパラメータγ=(H/R)×tは0.5乃至4.0である。
“Parameter γ = (H / R) × t: 0.5 to 4.0 obtained by multiplying ratio H / R of fin height H and fin root radius R by bottom wall thickness t”
In the mechanical pipe expansion process performed when the inner grooved pipe and the heat exchanger fin are brought into close contact with each other, the force required for the pipe expansion increases as the bottom wall thickness t increases, and the higher the fin height H, the more the load is applied to the fin. Since the applied force increases, fin collapse and fin collapse tend to occur. Therefore, the resistance against the collapse of the fin and the collapse of the fin is enhanced by connecting the fin slope and the groove bottom with a smooth arc. In the present invention, in order to define an appropriate R value, a parameter γ = (H / R) × t obtained by multiplying the ratio H / R between the fin height H and the fin root radius R by the bottom wall thickness t is used. I will do it. That is, the fin root radius R is proportional to the bottom wall thickness t and the fin height H because the fin root radius R needs to be increased as the force required for machine pipe expansion increases or the fin height increases. It is defined as a value. When γ is less than 0.5, the fin base radius R is larger than the bottom wall thickness and fin height, so that the inner surface area of the tube is reduced and the amount of heat transfer is reduced. On the other hand, if γ is larger than 4.0, the fin base radius R becomes smaller than the bottom wall thickness and the fin height, the fin crushing and the fin collapse occur, and the evaporation heat transfer performance decreases rapidly. Therefore, the parameter γ = (H / R) × t obtained by multiplying the ratio H / R between the fin height H and the fin base radius R by the bottom wall thickness t is 0.5 to 4.0.

次に、この管の製造方法について説明する。製造装置は縮径部、転造部、整径部からなる。銅又は銅合金からなる素管は、まず縮径部に挿入され、テーパ状に内径が減少する縮径ダイス及び管内に挿入される縮径プラグによって縮径される。縮径された素管は転造部に入り、管内面に配置された溝付プラグの位置において管外面に転接しながら遊星回転する転造ボール又は転造ロールによって縮径及び溝加工が施される。このとき、溝付プラグは縮径プラグと回転可能に連結され、素管の引き抜き力に抗してフローティング状態でその位置に保持されており、管外面を転造ボール又は転造ロールによって押圧することにより、溝付プラグの外面に形成された螺旋状の溝内に素管内面の管肉が侵入して管内面に溝が形成される。そして、溝加工を施された管は、整径部で縮径され、所定の外径の内面溝付管となる。素管の外径、肉厚、縮径部における縮径率、転造部における縮径率、及び整径部における縮径率を適当に組合わせることにより、所定の外径、肉厚の内面溝付管を製造することができる。   Next, the manufacturing method of this pipe | tube is demonstrated. The manufacturing apparatus includes a reduced diameter portion, a rolled portion, and a diameter adjusting portion. An element pipe made of copper or a copper alloy is first inserted into a reduced diameter portion, and is reduced in diameter by a reduced diameter die whose inner diameter is tapered and a reduced diameter plug inserted into the pipe. The diameter-reduced element pipe enters the rolling section, and is subjected to diameter reduction and groove processing by a rolling ball or a rolling roll that rotates planetarily while being in rolling contact with the outer surface of the pipe at the position of the grooved plug disposed on the inner surface of the pipe. The At this time, the grooved plug is rotatably connected to the reduced-diameter plug and is held in that position in a floating state against the pulling force of the raw tube, and the outer surface of the tube is pressed by a rolling ball or a rolling roll. As a result, the tube wall on the inner surface of the raw tube enters the spiral groove formed on the outer surface of the grooved plug, and a groove is formed on the inner surface of the tube. Then, the grooved tube is reduced in diameter by the diameter adjusting portion, and becomes an internally grooved tube having a predetermined outer diameter. By appropriately combining the outer diameter, the wall thickness, the diameter reduction ratio in the reduced diameter section, the diameter reduction ratio in the rolled section, and the diameter reduction ratio in the diameter adjusting section, the inner surface of the predetermined outer diameter and wall thickness. Grooved tubes can be manufactured.

以下、本発明の実施例の効果について比較例と対比して説明する。下記表1乃至表3は、実施例及び比較例の形状条件を示す。実施例及び比較例の内面溝付管の製造には、引張強さσBが240.5[N/mm]のりん脱酸銅又は267.0[N/mm](実施例8)の銅合金を使用し、縮径部における縮径率、転造加工時に管内に挿入する溝付プラグの種類、整形部における縮径率を変化させることによって、種々の形状の実施例及び比較例の内面溝付管を得た。また、管内面に溝を転造加工した後、溝の成形性を調査した。管内に形成された溝(フィン)の形状が良好であったものを○、良好ではなかったものを×として表1乃至表3に示す。 The effects of the embodiments of the present invention will be described below in comparison with comparative examples. Tables 1 to 3 below show the shape conditions of Examples and Comparative Examples. For the production of the internally grooved pipes of Examples and Comparative Examples, the phosphorus deoxidized copper having a tensile strength σB of 240.5 [N / mm 2 ] or 267.0 [N / mm 2 ] (Example 8). By using a copper alloy and changing the diameter reduction ratio in the reduced diameter part, the type of grooved plug to be inserted into the tube during the rolling process, and the diameter reduction ratio in the shaping part, various examples and comparative examples An internally grooved tube was obtained. Moreover, after rolling the groove on the inner surface of the tube, the formability of the groove was investigated. Tables 1 to 3 show the case where the shape of the groove (fin) formed in the tube was good, and the case where it was not good as x.

性能比の評価は、同一の径及び底肉厚の平滑管と比較したときの熱伝達率によって行った。熱伝達率測定は図3に示される装置を使用して行った。図4はその蒸発器の構成を示す。図3に示されるように、本実施例で使用した測定装置には、CO冷媒を圧縮する事により高温にする圧縮機2と、凝縮器であるガス冷却器4と、CO冷媒を膨張させて低温にする膨張弁7と、試験部である蒸発器1が設けられている。また、圧縮機2の出口には、冷媒中の冷凍機油を分離するオイルセパレータ3aが設けられており、更に、圧縮機2の入口及びガス冷却器4の出口には夫々冷媒の脈動をなくすアキュームレータ5a及び5bが設けられている。 The performance ratio was evaluated based on the heat transfer coefficient when compared with a smooth tube having the same diameter and bottom wall thickness. The heat transfer coefficient measurement was performed using the apparatus shown in FIG. FIG. 4 shows the configuration of the evaporator. As shown in FIG. 3, the expansion to the measuring apparatus used in this embodiment includes a compressor 2 to a high temperature by compressing a CO 2 refrigerant, the gas cooler 4 is a condenser, a CO 2 refrigerant An expansion valve 7 for lowering the temperature and an evaporator 1 as a test unit are provided. An oil separator 3a that separates refrigeration oil in the refrigerant is provided at the outlet of the compressor 2, and an accumulator that eliminates pulsation of the refrigerant at the inlet of the compressor 2 and the outlet of the gas cooler 4, respectively. 5a and 5b are provided.

本実施例においては、圧縮機用の冷凍機油としてポリアルキレングリコール系油を使用し、蒸発器1の出口に設けたオイルセパレータ3bによってCO冷媒中の冷凍機油を分離し、この分離した冷凍機油をオイル冷却器10で冷却した後、オイルポンプ11及び流量計12を経由して再度CO冷媒中に添加することにより、蒸発器1の直前の部分における冷凍機油含有量を0.1質量%に調節した。なお、CO冷媒中の冷凍機油含有量は、予熱器8の直前のサンプリングポート14においてCO冷媒を採取し、精密化学天秤によりその質量を測定することにより求めた。本実施例において、CO冷媒中の冷凍機油含有量の好ましい範囲は0.2質量%以下である。 In this embodiment, polyalkylene glycol-based oil is used as the compressor oil for the compressor, and the oil separator 3b provided at the outlet of the evaporator 1 is used to separate the refrigerator oil in the CO 2 refrigerant. Is cooled by the oil cooler 10 and then added to the CO 2 refrigerant again via the oil pump 11 and the flow meter 12, so that the refrigerator oil content in the portion immediately before the evaporator 1 is 0.1 mass%. Adjusted. Incidentally, the refrigerating machine oil content of CO 2 in the refrigerant, the CO 2 refrigerant is collected in the sampling port 14 immediately before the preheater 8, was determined by measuring its mass by a precision analytical balance. In this example, the preferred range of the refrigeration oil content in the CO 2 refrigerant is 0.2% by mass or less.

また、図4に示されるように蒸発器1に実施例又は比較例の内面溝付管を内部に配置した二重管3本を直列に接続し、実施例又は比較例の内面溝付管の内部にCOを通流させ、これらの伝熱管と外管の間には冷却水を通流させた。その際、CO冷媒の通流方向は冷却水の通流方向と逆になるようにし、この冷却水の入側と出側の温度を測定する事により交換熱量を測定した。この交換熱量を用いて、管の熱伝達率を測定した。 Further, as shown in FIG. 4, three double pipes in which the internal grooved pipes of the example or the comparative example are arranged in the evaporator 1 are connected in series, and the internal grooved pipes of the examples or comparative examples are connected. CO 2 was allowed to flow inside, and cooling water was allowed to flow between these heat transfer tubes and outer tubes. At that time, the flow direction of the CO 2 refrigerant was made opposite to the flow direction of the cooling water, and the exchange heat quantity was measured by measuring the temperatures on the inlet side and the outlet side of the cooling water. Using this exchange heat quantity, the heat transfer coefficient of the tube was measured.

性能比を内面溝付管の熱伝達率/平滑管の熱伝達率とする。   The performance ratio is the heat transfer coefficient of the internally grooved tube / heat transfer coefficient of the smooth tube.

拡管性の評価は、実施例又は比較例の内面溝付管とアルミニウム製熱交換器フィンとを機械拡管することにより密着させ、拡管後の管の内面形状を調査し、フィン潰れ、倒れの有無を確認することによって行った。   Pipe expandability is evaluated by mechanically expanding the inner grooved tube of the example or comparative example and the aluminum heat exchanger fins, and investigating the inner surface shape of the tube after the tube expansion, and whether the fin is crushed or collapsed Made by confirming.

Figure 0005495601
Figure 0005495601

Figure 0005495601
Figure 0005495601

Figure 0005495601
Figure 0005495601

これらの表1乃至表3に示すように、実施例1乃至8は管外径Dが本発明の範囲を満足するので、本発明の範囲を満足しない比較例1及び2に比して対平滑管の性能比が高い。比較例8は管外径Dが本発明の範囲を超え、溝成形性及び拡管性が低下した。また、実施例1乃至8はフィン高さHが本発明の範囲を満足するので、フィン高さHが本発明の範囲を下回る比較例14に比して性能が優れており、フィン高さHが本発明の範囲を超える比較例10に比して溝成形性が優れている。比較例17は、リード角βが本発明の範囲を超え、溝成形性及び拡管性が低下した。実施例1乃至8は、溝数Nが本発明の範囲を満足するので、本発明の範囲を満足しない比較例3及び4に比して性能が高い。比較例9は、山頂角θが本発明の範囲を超え、性能が低下した。一方、比較例6は、山頂角θが本発明の範囲を下回り、管内に溝を成形する際に成形不良となり、拡管性の評価及び性能比の評価を実施することができなかった。   As shown in Tables 1 to 3, since Examples 1 to 8 have a tube outer diameter D that satisfies the scope of the present invention, they are less smooth than Comparative Examples 1 and 2 that do not satisfy the scope of the present invention. The performance ratio of the pipe is high. In Comparative Example 8, the tube outer diameter D exceeded the range of the present invention, and the groove formability and tube expandability were lowered. Moreover, since the fin height H satisfies the range of the present invention in Examples 1 to 8, the fin height H is superior in performance to the comparative example 14 in which the fin height H is lower than the range of the present invention. However, the groove formability is excellent as compared with Comparative Example 10 exceeding the range of the present invention. In Comparative Example 17, the lead angle β exceeded the range of the present invention, and the groove formability and tube expandability deteriorated. In Examples 1 to 8, since the number N of grooves satisfies the range of the present invention, the performance is higher than Comparative Examples 3 and 4 that do not satisfy the range of the present invention. In Comparative Example 9, the peak angle θ exceeded the range of the present invention, and the performance deteriorated. On the other hand, in Comparative Example 6, the summit angle θ was below the range of the present invention, and when forming a groove in the pipe, it was poorly formed, and the evaluation of the tube expandability and the performance ratio could not be performed.

実施例1乃至8は、フィン高さHと外径Dとの比H/Dが本発明の範囲を満足し、本発明の範囲を下回る比較例15に比して性能が高く、本発明の範囲を超える比較例11に比して拡管性が優れている。また、比較例12は、フィン高さHと外径Dとの比H/Dが本発明の範囲を満足するものの、H/Dに底肉厚tを乗じたパラメータαが本発明の範囲を超え、溝成形性及び拡管性が低下した。実施例1乃至8は、フィン高さHとフィン根元半径Rとの比に底肉厚tを乗じたパラメータγが本発明の範囲を満足するので、本発明の範囲を下回る比較例16に比して性能が高い。一方、比較例7及び13は、フィン高さHとフィン根元半径Rとの比に底肉厚tを乗じたパラメータγが本発明の範囲を超えるので、溝成形性及び拡管性が低下した。このうち、比較例7については、管内に溝を成形する際に成形不良となり、拡管性の評価及び性能比の評価を実施することができなかった。比較例5及び8は、フィン高さHが本発明の範囲を超えることによって、他のパラメータが大きくなり、溝成形性及び拡管性が低下した。   In Examples 1 to 8, the ratio H / D between the fin height H and the outer diameter D satisfies the range of the present invention, and the performance is higher than that of Comparative Example 15 that falls below the range of the present invention. The tube expandability is superior to Comparative Example 11 exceeding the range. In Comparative Example 12, the ratio H / D between the fin height H and the outer diameter D satisfies the range of the present invention, but the parameter α obtained by multiplying H / D by the bottom wall thickness t satisfies the range of the present invention. The groove formability and tube expandability deteriorated. In Examples 1 to 8, since the parameter γ obtained by multiplying the ratio of the fin height H and the fin base radius R by the bottom wall thickness t satisfies the range of the present invention, it is compared with Comparative Example 16 which is less than the range of the present invention. And the performance is high. On the other hand, in Comparative Examples 7 and 13, since the parameter γ obtained by multiplying the ratio of the fin height H and the fin base radius R by the bottom wall thickness t exceeds the range of the present invention, the groove formability and the tube expandability are deteriorated. Among these, about the comparative example 7, it became a molding defect when shape | molding a groove | channel in a pipe | tube, and evaluation of pipe expandability and evaluation of performance ratio were not able to be implemented. In Comparative Examples 5 and 8, when the fin height H exceeded the range of the present invention, other parameters increased, and the groove formability and tube expandability deteriorated.

1;蒸発器、2;圧縮機、3a、3b;オイルセパレータ、4;ガス冷却器、5a、5b;アキュームレータ、6、12;流量計、7;膨張弁、8;予熱器、9;過熱器、10;オイル冷却器、11;オイルポンプ、13;熱源、14;サンプリングポート、15a〜15c;二重管、16a〜16f;熱源水混合室、17a〜17d;差圧変換器、18a〜18e;冷媒混合室、19a〜19e;熱電対、20a〜20e;圧力変換器、21:内面溝付伝熱管、22:溝、23:フィン、β:リード角、D:管内径、H:フィン高さ、t:底肉厚、θ:山頂角、R:フィン根元半径   DESCRIPTION OF SYMBOLS 1; Evaporator, 2; Compressor, 3a, 3b; Oil separator, 4; Gas cooler, 5a, 5b; Accumulator, 6, 12; Flow meter, 7: Expansion valve, 8: Preheater, 9; DESCRIPTION OF SYMBOLS 10; Oil cooler, 11; Oil pump, 13; Heat source, 14; Sampling port, 15a-15c; Double pipe, 16a-16f; Heat source water mixing chamber, 17a-17d; Differential pressure converter, 18a-18e Refrigerant mixing chamber, 19a to 19e; thermocouple, 20a to 20e; pressure converter, 21: heat transfer tube with inner groove, 22: groove, 23: fin, β: lead angle, D: tube inner diameter, H: fin height T, bottom thickness, θ: peak angle, R: fin root radius

Claims (1)

二酸化炭素を冷媒として使用するフィンアンドチューブ式熱交換器の蒸発器用内面溝付伝熱管において、管内面に管軸と平行又は傾斜する方向に伸びる複数個の溝が形成され、これらの各溝間にフィンが形成されており、管外径Dが7.94乃至13mm、前記フィンの高さHが0.1乃至0.4mm、前記フィンのリード角βが0乃至35°、前記フィン高さHと管外径Dとの比H/Dが0.01乃至0.05、前記溝の数Nが40乃至100個、前記溝の斜面がなす頂角θが10乃至40°であり、管材料の引張強さをσB[N/mm]、フィンの根元半径をR[mm]、管の溝底部における肉厚である底肉厚をt[mm]としたとき、前記H/Dに底肉厚tを乗じたパラメータα=(H/D)×tが0.022乃至0.04、フィン高さHとフィン根元半径Rとの比に底肉厚tを乗じたパラメータγ=(H/R)×tが1.93乃至4.0、底肉厚tがt≧25.5×D/[2×(0.8×σB+25.5)]であることを特徴とする蒸発器用内面溝付伝熱管。 In a heat transfer tube with an inner surface groove for an evaporator of a fin-and-tube heat exchanger using carbon dioxide as a refrigerant, a plurality of grooves extending in a direction parallel to or inclined with respect to the tube axis are formed on the inner surface of the tube, and between these grooves Fins are formed, the tube outer diameter D is 7.94 to 13 mm , the fin height H is 0.1 to 0.4 mm, the fin lead angle β is 0 to 35 °, and the fin height. The ratio H / D of H to the outer diameter D of the pipe is 0.01 to 0.05, the number N of the grooves is 40 to 100, and the apex angle θ formed by the inclined surfaces of the grooves is 10 to 40 °. When the tensile strength of the material is σB [N / mm 2 ], the base radius of the fin is R [mm], and the bottom wall thickness that is the wall thickness at the groove bottom of the tube is t [mm], the above H / D Parameter α = (H / D) × t multiplied by bottom wall thickness t is 0.022 to 0.04, fin height Parameter γ = (H / R) × t obtained by multiplying the ratio of H to fin root radius R by bottom wall thickness t is 1.93 to 4.0, and bottom wall thickness t is t ≧ 25.5 × D / [ 2 × (0.8 × σB + 25.5)], an internally grooved heat transfer tube for an evaporator.
JP2009087522A 2009-03-31 2009-03-31 Heat transfer tube with inner groove for evaporator Active JP5495601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087522A JP5495601B2 (en) 2009-03-31 2009-03-31 Heat transfer tube with inner groove for evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087522A JP5495601B2 (en) 2009-03-31 2009-03-31 Heat transfer tube with inner groove for evaporator

Publications (2)

Publication Number Publication Date
JP2010236836A JP2010236836A (en) 2010-10-21
JP5495601B2 true JP5495601B2 (en) 2014-05-21

Family

ID=43091310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087522A Active JP5495601B2 (en) 2009-03-31 2009-03-31 Heat transfer tube with inner groove for evaporator

Country Status (1)

Country Link
JP (1) JP5495601B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759226B2 (en) * 2004-03-31 2011-08-31 株式会社コベルコ マテリアル銅管 Tube expansion tool and tube expansion method using the same
JP2007271123A (en) * 2006-03-30 2007-10-18 Kobelco & Materials Copper Tube Inc Inner face-grooved heat transfer tube

Also Published As

Publication number Publication date
JP2010236836A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
KR100918216B1 (en) Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
JP4759226B2 (en) Tube expansion tool and tube expansion method using the same
JP2008215733A (en) Fin and tube type heat exchanger
JP2007271122A (en) Heat exchanger
JP2008020166A (en) Inner surface grooved heat-transfer tube for evaporator
JP2006322661A (en) Heat transfer tube for heat dissipation, and radiator
JP4386813B2 (en) Heat transfer tube with inner groove for evaporator
JP2009243722A (en) Internally grooved pipe
JP2008267791A (en) Leakage detecting tube and heat exchanger using the same
JP2008309361A (en) Refrigerating cycle device
JP4422590B2 (en) Return bend and fin-and-tube heat exchangers
JP5495601B2 (en) Heat transfer tube with inner groove for evaporator
JP2007271220A (en) Heat transfer tube with inner groove for gas cooler
JP2009228929A (en) Internally-grooved heat transfer pipe for evaporator
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
WO2013094084A1 (en) Air conditioner
JPWO2017208419A1 (en) Fin tube type heat exchanger and heat pump device provided with the fin tube type heat exchanger
Zeng et al. Experimental investigation on oil transport, heat transfer and distribution performances of R32/oil mixture in microchannel evaporators
JP3829648B2 (en) Internal grooved heat transfer tube
JP2008122059A (en) Heat exchanger and refrigeration system
JP5566001B2 (en) Internally grooved heat transfer tube for gas coolers using carbon dioxide refrigerant
JP2013096651A (en) Heat transfer tube with inner surface groove, heat exchanger including heat transfer tube with inner surface groove, and method of manufacturing the same
JP2012122692A (en) Heat transfer tube with grooved inner surface
JP5255249B2 (en) Heat transfer tube with internal fin
JP4119765B2 (en) Internal grooved heat transfer tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R150 Certificate of patent or registration of utility model

Ref document number: 5495601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250