JP2008122059A - Heat exchanger and refrigeration system - Google Patents

Heat exchanger and refrigeration system Download PDF

Info

Publication number
JP2008122059A
JP2008122059A JP2007133988A JP2007133988A JP2008122059A JP 2008122059 A JP2008122059 A JP 2008122059A JP 2007133988 A JP2007133988 A JP 2007133988A JP 2007133988 A JP2007133988 A JP 2007133988A JP 2008122059 A JP2008122059 A JP 2008122059A
Authority
JP
Japan
Prior art keywords
oil
heat transfer
transfer tube
heat exchanger
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007133988A
Other languages
Japanese (ja)
Inventor
Takashi Yoshioka
俊 吉岡
Genei Kin
鉉永 金
Kazunari Kasai
一成 笠井
Yoshio Oritani
好男 織谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007133988A priority Critical patent/JP2008122059A/en
Priority to PCT/JP2007/069260 priority patent/WO2008050587A1/en
Priority to CN2007800384283A priority patent/CN101523149B/en
Priority to EP07829000.4A priority patent/EP2077429A4/en
Publication of JP2008122059A publication Critical patent/JP2008122059A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deterioration of heat transfer performance of a heat exchanger due to forming of an oil film on an inner wall surface of a heat transfer tube, in regard to a heat exchanger applied to a refrigeration system carrying out refrigerating cycle of a vapor compression type. <P>SOLUTION: Oil grooves 25 for capturing and distributing oil are formed on an inner circumferential face of the heat transfer tube 22 of the heat exchangers 12, 13 so as to extend in an axial direction of the heat transfer tube 22. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷凍サイクルを行う冷凍装置に適用される熱交換器、及び熱交換器を有する冷凍装置に関し、特に熱交換器の伝熱促進対策に係るものである。   The present invention relates to a heat exchanger applied to a refrigeration apparatus that performs a refrigeration cycle, and a refrigeration apparatus having a heat exchanger, and particularly relates to measures for promoting heat transfer in a heat exchanger.

従来より、蒸気圧縮式の冷凍サイクルを行う冷凍装置が知られており、空気調和装置や給湯器等に広く適用されている。   Conventionally, a refrigeration apparatus that performs a vapor compression refrigeration cycle is known, and is widely applied to an air conditioner, a water heater, and the like.

例えば特許文献1に開示されている空気調和装置は、圧縮機、室外熱交換器、膨張機、及び室内熱交換器が接続された冷媒回路を有している。この冷媒回路には、冷媒として二酸化炭素が充填されている。   For example, an air conditioner disclosed in Patent Document 1 has a refrigerant circuit to which a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger are connected. This refrigerant circuit is filled with carbon dioxide as a refrigerant.

この空気調和装置の冷房運転では、圧縮機で臨界圧力以上まで圧縮された冷媒が、室外熱交換器を流れる。室外熱交換器では、冷媒と室外空気とが熱交換し、冷媒が室外空気へ放熱する。室外熱交換器で放熱した冷媒は、膨張機で減圧された後、室内熱交換器を流れる。室内熱交換器では、冷媒と室内空気とが熱交換し、冷媒が室内空気から吸熱して蒸発する。その結果、室内の冷房が行われる。室内熱交換器で蒸発した冷媒は、圧縮機に吸入されて再び圧縮される。
特開2001−116371号公報
In the cooling operation of the air conditioner, the refrigerant compressed to a critical pressure or higher by the compressor flows through the outdoor heat exchanger. In the outdoor heat exchanger, the refrigerant and the outdoor air exchange heat, and the refrigerant radiates heat to the outdoor air. The refrigerant radiated by the outdoor heat exchanger is depressurized by the expander and then flows through the indoor heat exchanger. In the indoor heat exchanger, the refrigerant and room air exchange heat, and the refrigerant absorbs heat from the room air and evaporates. As a result, the room is cooled. The refrigerant evaporated in the indoor heat exchanger is sucked into the compressor and compressed again.
JP 2001-116371 A

ところで、上述のような冷凍装置では、圧縮機の各摺動部を潤滑するために潤滑油(冷凍機油)が用いられており、この油は冷媒回路を流れる冷媒中に含まれることになる。このため、冷媒が蒸発器や放熱器等の熱交換器を流れる際には、冷媒に溶けきれなかった油が伝熱管の内壁に付着し、この伝熱管の内壁の全周に亘って油膜が形成されることがある。その結果、この油膜によって冷媒と空気との伝熱が阻害されて、熱交換器の伝熱性能が低下してしまうという問題があった。   By the way, in the refrigeration apparatus as described above, lubricating oil (refrigerating machine oil) is used to lubricate each sliding portion of the compressor, and this oil is included in the refrigerant flowing through the refrigerant circuit. For this reason, when the refrigerant flows through a heat exchanger such as an evaporator or a radiator, oil that has not been dissolved in the refrigerant adheres to the inner wall of the heat transfer tube, and an oil film forms over the entire circumference of the inner wall of the heat transfer tube. Sometimes formed. As a result, there has been a problem that the heat transfer between the refrigerant and air is hindered by the oil film and the heat transfer performance of the heat exchanger is lowered.

特に、特許文献1に開示されていような、二酸化炭素を冷媒として冷凍サイクルを行う冷凍装置では、冷凍機油として、PAG(ポリアルキレングリコール)を用いるのが一般的である。ところが、この種の油は、二酸化炭素に対する相溶性が低いため、熱交換器の伝熱管内には、上述したような油膜が形成され易い。従って、二酸化炭素を冷媒とする冷凍装置に適用される熱交換器では、油膜の形成に起因する伝熱性能の低下が顕著となっていた。   In particular, in a refrigeration apparatus that performs a refrigeration cycle using carbon dioxide as a refrigerant as disclosed in Patent Document 1, it is common to use PAG (polyalkylene glycol) as refrigeration oil. However, since this type of oil has low compatibility with carbon dioxide, an oil film as described above is easily formed in the heat transfer tube of the heat exchanger. Therefore, in a heat exchanger applied to a refrigeration apparatus using carbon dioxide as a refrigerant, the heat transfer performance is significantly reduced due to the formation of an oil film.

本発明は、かかる点に鑑みてなされたものであり、その目的は、蒸気圧縮式の冷凍サイクルを行う冷凍装置に適用される熱交換器において、その伝熱管の内壁面に油膜が形成されることに起因して、熱交換器の伝熱性能が低下しまうのを防止することである。   The present invention has been made in view of such points, and an object thereof is to form an oil film on the inner wall surface of the heat transfer tube in a heat exchanger applied to a refrigeration apparatus that performs a vapor compression refrigeration cycle. This is to prevent the heat transfer performance of the heat exchanger from deteriorating.

第1の発明は、蒸気圧縮式の冷凍サイクルを行う冷凍装置に適用され、冷媒が流れる伝熱管(22)を有する熱交換器を前提としている。そして、この熱交換器の伝熱管(22)には、その内壁面に、冷媒中の油を捕捉して流通させるための油溝(25)が形成されていることを特徴とするものである。   The first invention is applied to a refrigeration apparatus that performs a vapor compression refrigeration cycle, and presupposes a heat exchanger having a heat transfer tube (22) through which a refrigerant flows. The heat transfer tube (22) of the heat exchanger is characterized in that an oil groove (25) for capturing and circulating oil in the refrigerant is formed on the inner wall surface thereof. .

第1の発明では、冷凍装置の冷媒回路に接続される熱交換器について、この熱交換器の伝熱管(22)の内壁面に油溝(25)が形成される。このように伝熱管(22)に油溝(25)を形成することで、伝熱管(22)内を流れる冷媒中に含まれる油が油溝(25)内に捕捉され、この油溝(25)内を流通することになる。   In the first invention, an oil groove (25) is formed on the inner wall surface of the heat transfer tube (22) of the heat exchanger for the heat exchanger connected to the refrigerant circuit of the refrigeration apparatus. By forming the oil groove (25) in the heat transfer tube (22) in this way, oil contained in the refrigerant flowing in the heat transfer tube (22) is captured in the oil groove (25), and this oil groove (25 ) Will be distributed.

具体的には、冷媒が伝熱管(22)内を流れる際には、粘性や比重の違いに起因して、冷媒が伝熱管(22)内の中心寄りを流れる一方、冷媒に溶けきれなかった油は、伝熱管(22)内の外側寄りを流れる。つまり、油は、伝熱管(22)の内壁を沿うように流れるので、伝熱管(22)の内壁面には、その全域に亘って油膜が形成されていく。ここで、本発明では、伝熱管(22)の内壁面に油溝(25)を形成している。このため、伝熱管(22)の内壁を覆っていた油は、表面張力によって油溝(25)内に引き込まれていき、この油溝(25)内を流れることになる。その結果、本発明では、伝熱管(22)の内壁に油膜が形成されてしまうことが回避される。   Specifically, when the refrigerant flowed in the heat transfer tube (22), the refrigerant flowed closer to the center in the heat transfer tube (22) due to the difference in viscosity and specific gravity, but could not be dissolved in the refrigerant. The oil flows toward the outside in the heat transfer tube (22). That is, since oil flows along the inner wall of the heat transfer tube (22), an oil film is formed on the entire inner wall surface of the heat transfer tube (22). Here, in the present invention, the oil groove (25) is formed in the inner wall surface of the heat transfer tube (22). For this reason, the oil covering the inner wall of the heat transfer tube (22) is drawn into the oil groove (25) by the surface tension and flows through the oil groove (25). As a result, in the present invention, it is avoided that an oil film is formed on the inner wall of the heat transfer tube (22).

第2の発明は、第1の発明の熱交換器において、上記油溝(25)は、上記伝熱管(22)の軸方向に延びていることを特徴とするものである。   According to a second aspect, in the heat exchanger according to the first aspect, the oil groove (25) extends in an axial direction of the heat transfer tube (22).

第2の発明では、伝熱管(22)の内壁面において、伝熱管(22)の軸方向に延びるように油溝(25)が形成される。つまり、本発明では、油溝(25)が冷媒の流れと同一方向に延びて形成される。このため、上述のようにして油溝(25)内に油が捕捉されると、この油は油溝(25)の外側を流れる冷媒と同一方向に、油溝(25)内を円滑に流れる。その結果、本発明では、油溝(25)内に捕捉された油が、油溝(25)の外側へ流出してしまうことが抑制される。   In the second invention, the oil groove (25) is formed on the inner wall surface of the heat transfer tube (22) so as to extend in the axial direction of the heat transfer tube (22). That is, in the present invention, the oil groove (25) is formed to extend in the same direction as the flow of the refrigerant. For this reason, when oil is captured in the oil groove (25) as described above, the oil smoothly flows in the oil groove (25) in the same direction as the refrigerant flowing outside the oil groove (25). . As a result, in the present invention, the oil trapped in the oil groove (25) is prevented from flowing out of the oil groove (25).

第3の発明は、第2の発明の熱交換器において、上記伝熱管(22)の内壁面には、複数の上記油溝(25)が周方向に等間隔で配列されていることを特徴とするものである。   According to a third aspect of the present invention, in the heat exchanger of the second aspect, the plurality of oil grooves (25) are arranged at equal intervals in the circumferential direction on the inner wall surface of the heat transfer tube (22). It is what.

第3の発明では、伝熱管(22)の軸方向に延びる複数の油溝(25)が、伝熱管(22)の内周面の周方向に等間隔おきで配列される。このため、伝熱管(22)の内周面全域に形成されていく油膜が、各油溝(25)に捕捉され易くなる。また、各油溝(25)に捕捉される油の量が均一化され、各油溝(25)による油の捕捉効果が向上する。   In the third invention, the plurality of oil grooves (25) extending in the axial direction of the heat transfer tube (22) are arranged at equal intervals in the circumferential direction of the inner peripheral surface of the heat transfer tube (22). For this reason, the oil film formed over the entire inner peripheral surface of the heat transfer tube (22) is easily captured by each oil groove (25). Further, the amount of oil trapped in each oil groove (25) is made uniform, and the oil trapping effect by each oil groove (25) is improved.

第4の発明は、第1の発明の熱交換器において、上記伝熱管(22)の内壁面には、V字形状に延びる複数の上記油溝(25)が伝熱管(22)の軸方向に配列されていることを特徴とするものである。   According to a fourth aspect of the present invention, in the heat exchanger of the first aspect, a plurality of oil grooves (25) extending in a V shape are provided on the inner wall surface of the heat transfer tube (22) in the axial direction of the heat transfer tube (22). It is characterized by being arranged.

第4の発明では、伝熱管(22)の内壁面に、複数のV字形状の油溝(25)が形成される。各油溝(25)は、全ての油溝(25)が軸方向の片側を向くように、伝熱管(22)の軸方向に配列される。このように油溝(25)を形成した熱交換器について、油溝(25)のV字先端の指向方向と同一方向に冷媒を流通させるようにすると、油溝(25)に捕捉された冷媒は、V字先端側に集まった後、油溝(25)から流出して冷媒と同一方向に流れる。各油溝(25)について油がこのような流れとなると、最終的には、油が各油溝(25)のV字先端を結ぶようにして、伝熱管(22)の内壁面を流れる。つまり、本発明の伝熱管(22)内では、各油溝(25)のV字先端を結ぶような油の流路が形成されることにより、この油が伝熱管(22)内を円滑に流れることになる。   In the fourth invention, a plurality of V-shaped oil grooves (25) are formed on the inner wall surface of the heat transfer tube (22). Each oil groove (25) is arranged in the axial direction of the heat transfer tube (22) so that all the oil grooves (25) face one side in the axial direction. When the refrigerant flows through the heat exchanger having the oil groove (25) in the same direction as the direction of the V-shaped tip of the oil groove (25), the refrigerant trapped in the oil groove (25). After collecting at the V-shaped tip side, it flows out from the oil groove (25) and flows in the same direction as the refrigerant. When the oil flows in such a way for each oil groove (25), the oil finally flows on the inner wall surface of the heat transfer tube (22) so as to connect the V-shaped tip of each oil groove (25). That is, in the heat transfer tube (22) of the present invention, an oil flow path is formed so as to connect the V-shaped tip of each oil groove (25), so that the oil smoothly flows in the heat transfer tube (22). Will flow.

第5の発明は、第1乃至第4のいずれか1つの発明の熱交換器において、上記油溝(25)の内側の壁面には、親油性材料からなる親油層(27)が形成されていることを特徴とするものである。   According to a fifth invention, in the heat exchanger according to any one of the first to fourth inventions, a lipophilic layer (27) made of a lipophilic material is formed on the inner wall surface of the oil groove (25). It is characterized by being.

第5の発明では、油溝(25)の内壁に親油性を有する親油層(27)が形成される。このため、伝熱管(22)内の油が油溝(25)内に引き込まれやすくなるので、油は油溝(25)内に効率良く捕捉される。   In 5th invention, the lipophilic layer (27) which has lipophilicity is formed in the inner wall of an oil groove (25). For this reason, the oil in the heat transfer tube (22) is easily drawn into the oil groove (25), so that the oil is efficiently captured in the oil groove (25).

第6の発明は、第1乃至第5のいずれか1つの発明の熱交換器において、上記伝熱管(22)の内側の内壁面のうち上記油溝(25)以外の部分には、撥油性材料からなる撥油層(28)が形成されていることを特徴とするものである。   According to a sixth invention, in the heat exchanger according to any one of the first to fifth inventions, a portion other than the oil groove (25) on the inner wall surface inside the heat transfer tube (22) has oil repellency. An oil repellent layer (28) made of a material is formed.

第6の発明では、伝熱管(22)についての油溝(25)の外側の内壁面に撥油層(28)が形成される。このため、本発明では、油溝(25)の外側の油が撥油層(28)によって弾かれて、油溝(25)内に入り易くなる。その結果、油は油溝(25)内に更に効率良く捕捉される。   In the sixth invention, the oil repellent layer (28) is formed on the inner wall surface outside the oil groove (25) of the heat transfer tube (22). Therefore, in the present invention, the oil outside the oil groove (25) is repelled by the oil repellent layer (28) and easily enters the oil groove (25). As a result, the oil is trapped more efficiently in the oil groove (25).

第7の発明は、第1の発明の熱交換器において、上記伝熱管(22)の内壁面には、該伝熱管(22)の周方向に旋回する螺旋状に形成されて、伝熱を促進させるための複数の伝熱促進溝(50)が設けられていることを特徴とするものである。   According to a seventh aspect of the present invention, in the heat exchanger of the first aspect, the inner wall surface of the heat transfer tube (22) is formed in a spiral shape swirling in the circumferential direction of the heat transfer tube (22) to transfer heat. A plurality of heat transfer promotion grooves (50) for promotion are provided.

第7の発明では、伝熱管(22)の内壁面に螺旋状の伝熱促進溝(50)が形成される。このように伝熱促進溝(50)を形成すると、伝熱管(22)の内壁面の表面積が拡大されるので、熱交換器の伝熱性能が向上する。   In the seventh invention, the spiral heat transfer promoting groove (50) is formed on the inner wall surface of the heat transfer tube (22). When the heat transfer promoting groove (50) is formed in this way, the surface area of the inner wall surface of the heat transfer tube (22) is enlarged, so that the heat transfer performance of the heat exchanger is improved.

第8の発明は、第7の発明の熱交換器において、上記油溝(25)は、上記伝熱促進溝(50)と交わるようにしながら上記伝熱管(22)の軸方向に延びていることを特徴とするものである。   According to an eighth aspect of the present invention, in the heat exchanger of the seventh aspect, the oil groove (25) extends in the axial direction of the heat transfer tube (22) while intersecting with the heat transfer promotion groove (50). It is characterized by this.

第8の発明では、伝熱管(22)の内壁面において、油溝(25)が螺旋状の伝熱促進溝(50)と交わるように軸方向に延びて形成される。つまり、油溝(25)は、複数の伝熱促進溝(50)と繋がるように形成される。このため、各伝熱促進溝(50)に油が溜まっても、この油を伝熱促進溝(50)を通じて油溝(25)内に流入させることができる。従って、伝熱促進溝(50)内に油膜が形成されてしまうことが回避される。   In the eighth aspect of the invention, the oil groove (25) is formed on the inner wall surface of the heat transfer tube (22) so as to extend in the axial direction so as to intersect with the spiral heat transfer promotion groove (50). That is, the oil groove (25) is formed so as to be connected to the plurality of heat transfer promotion grooves (50). For this reason, even if oil accumulates in each heat transfer promotion groove (50), this oil can be caused to flow into the oil groove (25) through the heat transfer promotion groove (50). Therefore, it is avoided that an oil film is formed in the heat transfer promotion groove (50).

第9の発明は、第8の発明の熱交換器において、上記伝熱管(22)の内壁面には、複数の上記油溝(25)が周方向に等間隔で配列されていることを特徴とするものである。   A ninth invention is the heat exchanger according to the eighth invention, wherein the plurality of oil grooves (25) are arranged at equal intervals in the circumferential direction on the inner wall surface of the heat transfer tube (22). It is what.

第9の発明では、伝熱管(22)の軸方向に延びる複数の油溝(25)が、伝熱管(22)の内周面の周方向に等間隔おきで配列される。このため、伝熱管(22)の内周面全域に形成されていく油膜が、各油溝(25)に捕捉され易くなる。また、各油溝(25)に捕捉される油の量が均一化され、各油溝(25)による油の捕捉効果が向上する。更に、各伝熱促進溝(50)に溜まった油を速やかに油溝(25)へ流出させることができるので、各伝熱促進溝(50)内に油膜が形成されてしまうことを一層回避し易くなる。   In the ninth invention, the plurality of oil grooves (25) extending in the axial direction of the heat transfer tube (22) are arranged at equal intervals in the circumferential direction of the inner peripheral surface of the heat transfer tube (22). For this reason, the oil film formed over the entire inner peripheral surface of the heat transfer tube (22) is easily captured by each oil groove (25). Further, the amount of oil trapped in each oil groove (25) is made uniform, and the oil trapping effect by each oil groove (25) is improved. Furthermore, since the oil accumulated in each heat transfer promotion groove (50) can be quickly discharged to the oil groove (25), it is further avoided that an oil film is formed in each heat transfer promotion groove (50). It becomes easy to do.

第10の発明は、第7乃至第9のいずれか1つの発明の熱交換器において、上記油溝(25)の開口幅が、上記伝熱促進溝(50)の開口幅よりも広くなっていることを特徴とするものである。   According to a tenth aspect of the present invention, in the heat exchanger according to any one of the seventh to ninth aspects, the opening width of the oil groove (25) is wider than the opening width of the heat transfer promoting groove (50). It is characterized by being.

第10の発明では、油溝(25)の開口幅を伝熱促進溝(50)の開口幅よりも広くしている。このため、伝熱促進溝(50)内に油が入り込み難くなる一方、油溝(25)内に油が入り込みやすくなり、油溝(25)による油の捕捉効果が向上する。   In the tenth aspect of the invention, the opening width of the oil groove (25) is made wider than the opening width of the heat transfer promotion groove (50). For this reason, while it becomes difficult for oil to enter into the heat transfer promotion groove (50), oil becomes easy to enter into the oil groove (25), and the oil trapping effect by the oil groove (25) is improved.

第11の発明は、第7乃至第10のいずれか1つの発明において、上記油溝(25)の溝深さが、上記伝熱促進溝(50)の溝深さ以上となっていることを特徴とするものである。   In an eleventh aspect according to any one of the seventh to tenth aspects, the groove depth of the oil groove (25) is equal to or greater than the groove depth of the heat transfer promoting groove (50). It is a feature.

第11の発明では、油溝(25)の溝深さを伝熱促進溝(50)の溝深さ以上としているので、伝熱促進溝(50)内に溜まった油を油溝(25)内へ流下させ易くなる。   In the eleventh invention, since the groove depth of the oil groove (25) is equal to or greater than the groove depth of the heat transfer promotion groove (50), oil accumulated in the heat transfer promotion groove (50) is removed from the oil groove (25). It becomes easy to flow down.

第12の発明は、蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)を備える冷凍装置を前提としている。そして、この冷凍装置の冷媒回路(10)では、冷媒としての二酸化炭素と、冷凍機油としてのポリアルキレングリコールが循環すると共に、第1乃至第11のいずれか1つの熱交換器(12,13)が設けられていることを特徴とするものである。   12th invention presupposes the freezing apparatus provided with the refrigerant circuit (10) which performs a vapor compression type refrigerating cycle. In the refrigerant circuit (10) of the refrigeration apparatus, carbon dioxide as the refrigerant and polyalkylene glycol as the refrigerating machine oil circulate, and any one of the first to eleventh heat exchangers (12, 13). Is provided.

第12の発明の冷凍装置では、冷媒として二酸化炭素が用いられる一方、圧縮機構等の潤滑を行うための冷凍機油としてポリアルキレングリコール(PAG)が用いられる。このPAGは、二酸化炭素に対する相溶性が低い。従って、熱交換器(12,13)内では、冷媒と油とが分離し易く、伝熱管(22)の内壁に全域に亘って油膜が形成され易い。しかしながら、本発明では、伝熱管(22)の内周壁に、油を捕捉して流通させるための油溝(25)を形成している。従って、この冷凍装置では、このような油膜の発生を未然に回避でき、熱交換器(12,13)の伝熱性能の低下を防止できる。   In the refrigeration apparatus of the twelfth aspect of the invention, carbon dioxide is used as the refrigerant, while polyalkylene glycol (PAG) is used as the refrigeration oil for lubricating the compression mechanism and the like. This PAG has low compatibility with carbon dioxide. Therefore, in the heat exchanger (12, 13), the refrigerant and the oil are easily separated, and an oil film is easily formed over the entire area on the inner wall of the heat transfer tube (22). However, in the present invention, an oil groove (25) for capturing and circulating oil is formed in the inner peripheral wall of the heat transfer tube (22). Therefore, in this refrigeration apparatus, the generation of such an oil film can be avoided in advance, and the heat transfer performance of the heat exchanger (12, 13) can be prevented from being lowered.

本発明では、伝熱管(22)の内壁面に、油を捕捉するための油溝(25)を形成するようにしている。このため、従来の熱交換器であれば、伝熱管の内壁面の全域に油膜が形成されて伝熱性能が低下してしまっていたのに対し、本発明によれば、伝熱管(22)の内壁面側の油を油溝(25)内に捕捉させることで、上記油膜の形成を抑制することができる。その結果、この伝熱管(22)では、その内壁面と冷媒とが接触する面積を広くとることができるので、冷媒と熱媒体との間の伝熱を促進させることができる。また、このようにして油膜の形成を防止すると、油膜の形成に起因して伝熱管(22)の圧力損失が増大してしまうのを防止できる。   In the present invention, an oil groove (25) for capturing oil is formed on the inner wall surface of the heat transfer tube (22). For this reason, in the case of a conventional heat exchanger, an oil film has been formed on the entire inner wall surface of the heat transfer tube and the heat transfer performance has deteriorated, whereas according to the present invention, the heat transfer tube (22) By capturing the oil on the inner wall surface in the oil groove (25), the formation of the oil film can be suppressed. As a result, in this heat transfer tube (22), since the area where the inner wall surface and the refrigerant come into contact can be widened, heat transfer between the refrigerant and the heat medium can be promoted. Further, when the formation of the oil film is prevented in this way, it is possible to prevent the pressure loss of the heat transfer tube (22) from increasing due to the formation of the oil film.

更に、本発明では、油溝(25)内に捕捉した油が、油溝(25)を流通して速やかに熱交換器から流出する。このため、本発明によれば、熱交換器内に油が滞ってしまうことを防止でき、圧縮機構等への返油量を充分確保できる。   Furthermore, in the present invention, the oil trapped in the oil groove (25) flows through the oil groove (25) and quickly flows out of the heat exchanger. For this reason, according to this invention, it can prevent that oil stagnates in a heat exchanger, and can fully secure the oil return amount to a compression mechanism etc.

特に、上記第2の発明では、油溝(25)を伝熱管(22)の軸方向に形成しているので、油溝(25)内に捕捉された油が、油溝(25)内を円滑に流れることになる。従って、一旦油溝(25)内に捕捉された油が再び油溝(25)から流出して伝熱管(22)の内壁面を覆ってしまうのを回避できる。また、油溝(25)内に溜まった油を、この油溝(25)を通じて速やかに熱交換器から流出させることができる。   In particular, in the second invention, since the oil groove (25) is formed in the axial direction of the heat transfer tube (22), the oil trapped in the oil groove (25) is moved inside the oil groove (25). It will flow smoothly. Therefore, it is possible to avoid the oil once trapped in the oil groove (25) from flowing out of the oil groove (25) and covering the inner wall surface of the heat transfer tube (22). Further, the oil accumulated in the oil groove (25) can be quickly discharged from the heat exchanger through the oil groove (25).

更に、第3の発明では、複数の油溝(25)を伝熱管(22)の周方向に等間隔で形成するようにしている。このため、本発明によれば、伝熱管(22)の内壁面側の油が油溝(25)内に入り易くなると共に、各油溝(25)内に捕捉される油の量を均一化できる。従って、上述した油膜の形成を一層確実に防止することができる。   Furthermore, in the third invention, a plurality of oil grooves (25) are formed at equal intervals in the circumferential direction of the heat transfer tube (22). Therefore, according to the present invention, the oil on the inner wall surface side of the heat transfer tube (22) can easily enter the oil groove (25), and the amount of oil trapped in each oil groove (25) is made uniform. it can. Therefore, the formation of the oil film described above can be prevented more reliably.

また、第4の発明によれば、V字形状の油溝(25)を複数設けることで、伝熱管(22)内に油の流路を確実に形成することができ、この油を熱交換器から速やかに排出することができる。従って、本発明によれば、圧縮機構等への返油量を充分確保することができる。   According to the fourth invention, by providing a plurality of V-shaped oil grooves (25), an oil flow path can be reliably formed in the heat transfer tube (22), and the oil is subjected to heat exchange. Can be discharged quickly from the vessel. Therefore, according to the present invention, a sufficient oil return amount to the compression mechanism or the like can be ensured.

また、第5の発明によれば、油溝(25)の内壁に親油層(27)を形成したので、油溝(25)による油の捕捉効果を向上させることができる。従って、上記油膜の形成を一層確実に防止できる。また、捕捉した油を確実に油溝(25)内に流通させて、熱交換器から流出させることができる。   According to the fifth invention, since the lipophilic layer (27) is formed on the inner wall of the oil groove (25), the oil trapping effect by the oil groove (25) can be improved. Therefore, the formation of the oil film can be prevented more reliably. Further, the captured oil can be reliably circulated in the oil groove (25) and allowed to flow out of the heat exchanger.

また、第6の発明によれば、伝熱管(22)の内壁面に撥油層(28)を形成しているので、伝熱管(22)の内壁面を覆おうとする油を、油溝(25)内に向かって弾くことができ、油溝(25)による油の捕捉効果を更に向上できる。   According to the sixth aspect of the invention, since the oil repellent layer (28) is formed on the inner wall surface of the heat transfer tube (22), oil that covers the inner wall surface of the heat transfer tube (22) is supplied to the oil groove (25 ) Can be played inward, and the oil trapping effect by the oil groove (25) can be further improved.

第7の発明によれば、伝熱管(22)の内壁面に螺旋状の伝熱促進溝(50)を形成したので、伝熱管(22)の内壁面の表面積が拡大され、伝熱管(22)の伝熱性能を更に向上させることができる。   According to the seventh aspect, since the spiral heat transfer promotion groove (50) is formed on the inner wall surface of the heat transfer tube (22), the surface area of the inner wall surface of the heat transfer tube (22) is increased, and the heat transfer tube (22 ) Heat transfer performance can be further improved.

第8の発明によれば、油溝(25)を伝熱管(22)の軸方向に延ばして螺旋状の伝熱促進溝(50)と交わるようにしたので、伝熱促進溝(50)に溜まった油を油溝(25)へ排出することができる。従って、伝熱促進溝(50)内に油膜が形成されてしまうことを回避できるので、伝熱管(22)の伝熱性能の低下を防止できる。   According to the eighth invention, since the oil groove (25) extends in the axial direction of the heat transfer tube (22) and intersects with the spiral heat transfer promotion groove (50), the heat transfer promotion groove (50) The accumulated oil can be discharged into the oil groove (25). Therefore, since it is possible to avoid the formation of an oil film in the heat transfer promotion groove (50), it is possible to prevent the heat transfer performance of the heat transfer tube (22) from being deteriorated.

第9の発明によれば、複数の油溝(25)を伝熱管(22)の周方向に等間隔で形成するようにしている。このため、本発明によれば、伝熱管(22)の内壁面の油が油溝(25)内に入り易くなると共に、各油溝(25)内に捕捉される油の量を均一化できる。従って、伝熱管(22)の内壁面における油膜の形成を一層確実に防止することができる。また、各伝熱促進溝(50)内に溜まった油を速やかに各油溝(25)へ排出させることができるので、各伝熱促進溝(50)内に油膜が形成されてしまうことも確実に防止できる。   According to the ninth invention, the plurality of oil grooves (25) are formed at equal intervals in the circumferential direction of the heat transfer tube (22). For this reason, according to the present invention, the oil on the inner wall surface of the heat transfer tube (22) can easily enter the oil groove (25), and the amount of oil trapped in each oil groove (25) can be made uniform. . Therefore, the formation of an oil film on the inner wall surface of the heat transfer tube (22) can be more reliably prevented. In addition, since oil accumulated in each heat transfer promotion groove (50) can be quickly discharged to each oil groove (25), an oil film may be formed in each heat transfer promotion groove (50). It can be surely prevented.

第10の発明によれば、油溝(25)の開口幅を伝熱促進溝(50)の開口幅よりも広くしたので、伝熱管(22)内の油を積極的に油溝(25)へ流入させることができる。また、第11の発明によれば、油溝(25)の溝深さを伝熱促進溝(50)の溝深さ以上としたので、伝熱促進溝(50)内に溜まった油を確実に油溝(25)内へ流下させることができる。従って、これらの発明によれば、伝熱促進溝(50)による伝熱促進効果を充分発揮させることができ、伝熱管(22)の伝熱性能の更なる向上を図ることができる。   According to the tenth aspect of the invention, since the opening width of the oil groove (25) is wider than the opening width of the heat transfer promotion groove (50), the oil in the heat transfer pipe (22) is positively supplied to the oil groove (25). Can flow into. According to the eleventh aspect of the invention, since the groove depth of the oil groove (25) is equal to or greater than the groove depth of the heat transfer promotion groove (50), the oil accumulated in the heat transfer promotion groove (50) Can flow down into the oil groove (25). Therefore, according to these inventions, the heat transfer promotion effect by the heat transfer promotion groove (50) can be sufficiently exhibited, and the heat transfer performance of the heat transfer tube (22) can be further improved.

第12の発明によれば、二酸化炭素を冷媒とする冷凍装置において、二酸化炭素に対する相溶性が低いPAGを油溝(25)内に捕捉することができる。つまり、本発明によれば、従来のものであれば、伝熱管の内壁面に油膜が形成され易い冷凍装置について、このような油膜の形成を確実に防止することができ、熱交換器(12,13)の伝熱性能を充分確保することができる。   According to the twelfth invention, in the refrigerating apparatus using carbon dioxide as the refrigerant, the PAG having low compatibility with carbon dioxide can be captured in the oil groove (25). That is, according to the present invention, in the case of a conventional refrigeration apparatus in which an oil film is easily formed on the inner wall surface of the heat transfer tube, such oil film formation can be reliably prevented, and a heat exchanger (12 13), sufficient heat transfer performance can be secured.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

《発明の実施形態1》
本発明の実施形態1に係る熱交換器は、蒸気圧縮式の冷凍サイクルを行う冷凍装置(1)に適用されるものである。実施形態1の冷凍装置は、室内の冷房と暖房とを切り換えて行う空気調和装置(1)を構成している。
Embodiment 1 of the Invention
The heat exchanger according to Embodiment 1 of the present invention is applied to a refrigeration apparatus (1) that performs a vapor compression refrigeration cycle. The refrigeration apparatus of Embodiment 1 constitutes an air conditioner (1) that performs switching between indoor cooling and heating.

〈冷媒回路の概略構成〉
図1に示すように、空気調和装置(1)は、冷媒が充填される冷媒回路(10)を備えている。冷媒回路(10)には、冷媒として二酸化炭素が充填されている。また、この空気調和装置(1)では、圧縮機(11)の各摺動部を潤滑するための潤滑油(冷凍機油)として、有極性の油であるポリアルキレングリコール(PAG)が用いられている。そして、このPAGは、圧縮機(11)から吐出された冷媒と共に冷媒回路(10)へ流出することになる。従って、冷媒回路(10)では、冷媒としての二酸化炭素と、冷凍機油としてのPAGが循環する。また、冷媒回路では、二酸化炭素を臨界圧力以上まで圧縮する冷凍サイクル(いわゆる超臨界サイクル)が行われる。
<Schematic configuration of refrigerant circuit>
As shown in FIG. 1, the air conditioner (1) includes a refrigerant circuit (10) filled with a refrigerant. The refrigerant circuit (10) is filled with carbon dioxide as a refrigerant. In this air conditioner (1), polyalkylene glycol (PAG), which is a polar oil, is used as a lubricating oil (refrigerating machine oil) for lubricating each sliding portion of the compressor (11). Yes. And this PAG flows out into a refrigerant circuit (10) with the refrigerant discharged from the compressor (11). Accordingly, in the refrigerant circuit (10), carbon dioxide as the refrigerant and PAG as the refrigerating machine oil circulate. In the refrigerant circuit, a refrigeration cycle (so-called supercritical cycle) is performed in which carbon dioxide is compressed to a critical pressure or higher.

冷媒回路(10)には、圧縮機(11)と室外熱交換器(12)と室内熱交換器(13)と膨張弁(14)とが設けられている。   The refrigerant circuit (10) is provided with a compressor (11), an outdoor heat exchanger (12), an indoor heat exchanger (13), and an expansion valve (14).

上記圧縮機(11)は、例えばスクロール型の圧縮機で構成されている。圧縮機(11)には、圧縮機構の吐出冷媒が流出する吐出管(11a)と、圧縮機構の吸入冷媒が流入する吸入管(11b)とが接続されている。上記室外熱交換器(12)は、室外空間に配置されている。室外熱交換器(12)では、その内部を流れる冷媒と室外空気とが熱交換する。上記室内熱交換器(13)は、室内空間に配置されている。室内熱交換器(13)では、その内部を流れる冷媒と室内空気とが熱交換する。室外熱交換器(12)及び室内熱交換器(13)は、本発明に係る熱交換器であって、クロスフィン式の熱交換器を構成している。   The compressor (11) is constituted by, for example, a scroll type compressor. Connected to the compressor (11) are a discharge pipe (11a) through which the refrigerant discharged from the compression mechanism flows and a suction pipe (11b) through which the refrigerant drawn from the compression mechanism flows. The outdoor heat exchanger (12) is disposed in the outdoor space. In the outdoor heat exchanger (12), heat is exchanged between the refrigerant flowing inside and the outdoor air. The indoor heat exchanger (13) is disposed in the indoor space. In the indoor heat exchanger (13), heat is exchanged between the refrigerant flowing in the indoor heat exchanger and the indoor air. The outdoor heat exchanger (12) and the indoor heat exchanger (13) are heat exchangers according to the present invention and constitute a cross fin type heat exchanger.

上記膨張弁(14)は、室外熱交換器(12)と室内熱交換器(13)との間に接続されている。膨張弁(14)は、例えば電子膨張弁で構成されている。また、冷媒回路(10)には、四路切換弁(15)が設けられている。四路切換弁(15)は、第1から第4までの4つのポートを備えている。四路切換弁(15)では、第1ポートが室外熱交換器(12)と繋がり、第2ポートが圧縮機(11)の吸入側と繋がり、第3ポートが圧縮機(11)の吐出側と繋がり、第4ポートが室内熱交換器(13)と繋がっている。四路切換弁(15)は、第1ポートと第3ポートとを連通させると同時に第2ポートと第4ポートとを連通させる第1状態(図1の実線の状態)と、第1ポートと第2ポートとを連通させると同時に第3ポートと第4ポートとを連通させる第2状態(図1の破線の状態)とに切換可能となっている。   The expansion valve (14) is connected between the outdoor heat exchanger (12) and the indoor heat exchanger (13). The expansion valve (14) is composed of, for example, an electronic expansion valve. The refrigerant circuit (10) is provided with a four-way switching valve (15). The four-way selector valve (15) has four ports from first to fourth. In the four-way selector valve (15), the first port is connected to the outdoor heat exchanger (12), the second port is connected to the suction side of the compressor (11), and the third port is the discharge side of the compressor (11). And the fourth port is connected to the indoor heat exchanger (13). The four-way selector valve (15) has a first state (solid line state in FIG. 1) in which the first port and the third port are in communication with each other and a second port and a fourth port in communication with each other; The second port can be switched to a second state (a state indicated by a broken line in FIG. 1) in which the third port and the fourth port are simultaneously communicated with each other.

〈熱交換器の構成〉
図2及び図3に示すように、各熱交換器(12,13)は、複数のフィン(21)と伝熱管(22)とを備えている。複数のフィン(21)は、アルミニウム製であって、長方形板状に形成されている。各フィン(21)は、互いに所定の間隔を介して平行に配列されている。
<Configuration of heat exchanger>
As shown in FIGS. 2 and 3, each heat exchanger (12, 13) includes a plurality of fins (21) and a heat transfer tube (22). The plurality of fins (21) are made of aluminum and have a rectangular plate shape. The fins (21) are arranged in parallel with each other at a predetermined interval.

上記伝熱管(22)は、銅管によって構成されている。伝熱管(22)は、複数の直管部(22a)と、各直管部(22a)を繋ぐ湾曲部(22b)とを有している。各直管部(22a)は、各フィン(21)の配列方向に真っ直ぐ延びており、各フィン(21)を貫通している。湾曲部(22b)は、複数のフィン(21,21,…)のうち、最前列及び最後列のフィン(21)に取り付けられており、2本の直管部(22a)の端部同士を接続するように湾曲している。   The heat transfer tube (22) is constituted by a copper tube. The heat transfer tube (22) has a plurality of straight tube portions (22a) and a curved portion (22b) connecting the straight tube portions (22a). Each straight pipe portion (22a) extends straight in the arrangement direction of the fins (21) and penetrates the fins (21). The curved portion (22b) is attached to the front row and the last row fins (21) among the plurality of fins (21, 21, ...), and the ends of the two straight pipe portions (22a) are connected to each other. Curved to connect.

図4及び図5に示すように、各熱交換器(12,13)の伝熱管(22)の内周壁には、冷媒中の油を捕捉して流通させるための複数の油溝(25)が形成されている。実施形態1では、伝熱管(22)の内周壁に4つの油溝(25)が形成されている。なお、本実施形態では、各油溝(25)が、直管部(22a)と湾曲部(22b)との双方に形成されているが、直管部(22a)のみに各油溝(25)を形成しても良い。各油溝(25)は、径方向内側に向かって広がる一対の傾斜面(25a,25a)と、両傾斜面(25a,25a)の間に形成される底面(25b)とが構成されている。つまり、各油溝(25)は、伝熱管(22)の径方向内側に向かって開口面積が広がるような台形状の縦断面を有している。   As shown in FIGS. 4 and 5, a plurality of oil grooves (25) for capturing and circulating oil in the refrigerant are formed in the inner peripheral wall of the heat transfer tube (22) of each heat exchanger (12, 13). Is formed. In Embodiment 1, four oil grooves (25) are formed in the inner peripheral wall of the heat transfer tube (22). In this embodiment, each oil groove (25) is formed in both the straight pipe part (22a) and the curved part (22b), but each oil groove (25 ) May be formed. Each oil groove (25) includes a pair of inclined surfaces (25a, 25a) that expand radially inward, and a bottom surface (25b) formed between both inclined surfaces (25a, 25a). . That is, each oil groove (25) has a trapezoidal longitudinal section in which the opening area widens toward the radially inner side of the heat transfer tube (22).

また、各油溝(25)は、伝熱管(22)の軸方向に延びて形成されている。つまり、各油溝(25)は、伝熱管(22)を流れる冷媒の流れ方向に沿うように形成されている。また、各油溝(25)は、伝熱管(22)の周方向において、互いに等間隔となるように配列されている。具体的には、各油溝(25)は、伝熱管(22)の周方向に90度おきに配列されている。なお、伝熱管(22)の縦断面における断面積S1に対する油溝(25)の縦断面の総断面積S2の割合(S2/S1)は、0.01以上0.2以下であることが好ましい。   Each oil groove (25) is formed extending in the axial direction of the heat transfer tube (22). That is, each oil groove (25) is formed along the flow direction of the refrigerant flowing through the heat transfer tube (22). Further, the oil grooves (25) are arranged at equal intervals in the circumferential direction of the heat transfer tube (22). Specifically, each oil groove (25) is arranged every 90 degrees in the circumferential direction of the heat transfer tube (22). In addition, it is preferable that the ratio (S2 / S1) of the total cross-sectional area S2 of the vertical cross section of the oil groove (25) with respect to cross-sectional area S1 in the vertical cross section of a heat exchanger tube (22) is 0.01 or more and 0.2 or less. .

−運転動作−
次に、実施形態1に係る空気調和装置(1)の運転動作について説明する。空気調和装置(1)の冷媒回路(10)では、上記四路切換弁(15)の設定に応じて、冷媒の循環方向が切り換わる。具体的には、四路切換弁(15)は、冷房運転において図1の実線で示す状態となる。その結果、冷房運転では、室外熱交換器(12)が放熱器となり、室内熱交換器(13)が蒸発器となる冷凍サイクルが行われる。一方、四路切換弁(15)は、暖房運転において図1の破線で示す状態となる。その結果、暖房運転では、室外熱交換器(12)が蒸発器となり、室内熱交換器(13)が放熱器となる冷凍サイクルが行われる。以下には、このような空気調和装置(1)の冷房運転を代表に説明する。
-Driving action-
Next, the operation of the air conditioner (1) according to Embodiment 1 will be described. In the refrigerant circuit (10) of the air conditioner (1), the refrigerant circulation direction is switched according to the setting of the four-way switching valve (15). Specifically, the four-way selector valve (15) is in the state indicated by the solid line in FIG. 1 in the cooling operation. As a result, in the cooling operation, a refrigeration cycle is performed in which the outdoor heat exchanger (12) serves as a radiator and the indoor heat exchanger (13) serves as an evaporator. On the other hand, the four-way selector valve (15) is in a state indicated by a broken line in FIG. As a result, in the heating operation, a refrigeration cycle in which the outdoor heat exchanger (12) serves as an evaporator and the indoor heat exchanger (13) serves as a radiator is performed. Hereinafter, the cooling operation of such an air conditioner (1) will be described as a representative.

図1に示す冷媒回路(10)において、圧縮機(11)で臨界圧力以上まで圧縮された冷媒は、吐出管(11a)より吐出される。なお、圧縮機(11)からは、各摺動部の潤滑に利用された油が、高圧冷媒とともに吐出される。その後、冷媒は室外熱交換器(12)を流れる。室外熱交換器(12)では、高圧冷媒が室外空気へ放熱する。室外熱交換器(12)で放熱した後の高圧冷媒は、膨張弁(14)を通過する際に減圧されて、低圧冷媒となる。その後、冷媒は室内熱交換器(13)を流れる。室内熱交換器(13)では、冷媒が室内空気から吸熱して蒸発する。その結果、室内の冷房が行われる。室内熱交換器(13)で蒸発した冷媒は、吸入管(11b)を流れて圧縮機(11)に吸入され、再び圧縮される。   In the refrigerant circuit (10) shown in FIG. 1, the refrigerant compressed to the critical pressure or higher by the compressor (11) is discharged from the discharge pipe (11a). In addition, from the compressor (11), the oil utilized for lubrication of each sliding part is discharged with a high pressure refrigerant. Thereafter, the refrigerant flows through the outdoor heat exchanger (12). In the outdoor heat exchanger (12), the high-pressure refrigerant radiates heat to the outdoor air. The high-pressure refrigerant that has radiated heat in the outdoor heat exchanger (12) is decompressed when passing through the expansion valve (14), and becomes a low-pressure refrigerant. Thereafter, the refrigerant flows through the indoor heat exchanger (13). In the indoor heat exchanger (13), the refrigerant absorbs heat from the indoor air and evaporates. As a result, the room is cooled. The refrigerant evaporated in the indoor heat exchanger (13) flows through the suction pipe (11b), is sucked into the compressor (11), and is compressed again.

〈油溝の作用〉
ところで、上述した冷房運転や暖房運転において、室外熱交換器(12)や室内熱交換器(13)内を冷媒が流通する際には、冷媒に溶けきれない油が、冷媒と分離して伝熱管(22)の内周壁を覆うことがある。このため、従来の熱交換器では、伝熱管の内周壁の全域に油膜が形成され、冷媒と空気との伝熱性能が低下してしまうという問題が生じていた。特に、本実施形態のように、冷媒として二酸化炭素を用い、冷凍機油としてPAGを用いる場合、二酸化炭素に対してPAGの相溶性が低いため、冷媒と油とが分離し易く、上述のような油膜が形成され易い。その結果、各熱交換器の伝熱性能が著しく低下し、空気調和装置の冷房能力や暖房能力も低下してしまうという問題があった。そこで、本実施形態の熱交換器(12,13)では、このような油膜の形成に起因する伝熱性能の低下を防止するために、伝熱管(22)の内周壁に油溝(25)を形成し、この油溝(25)内に油を捕捉するようにしている。
<Operation of oil groove>
By the way, when the refrigerant flows through the outdoor heat exchanger (12) or the indoor heat exchanger (13) in the above-described cooling operation or heating operation, oil that cannot be dissolved in the refrigerant is separated from the refrigerant and transmitted. It may cover the inner wall of the heat pipe (22). For this reason, in the conventional heat exchanger, the oil film was formed in the whole area of the inner peripheral wall of a heat exchanger tube, and the problem that the heat transfer performance of a refrigerant | coolant and air fell occurred. In particular, as in this embodiment, when carbon dioxide is used as the refrigerant and PAG is used as the refrigerating machine oil, the compatibility of the PAG with carbon dioxide is low, so that the refrigerant and the oil are easily separated. An oil film is easily formed. As a result, there is a problem that the heat transfer performance of each heat exchanger is remarkably lowered, and the cooling capacity and heating capacity of the air conditioner are also lowered. Therefore, in the heat exchanger (12, 13) of the present embodiment, in order to prevent a decrease in heat transfer performance due to the formation of such an oil film, an oil groove (25) is formed on the inner peripheral wall of the heat transfer tube (22). The oil is trapped in the oil groove (25).

具体的には、例えば上述した冷房運転において油を含む冷媒が室内熱交換器(13)を流れると、図6に示すように、伝熱管(22)内では、蒸発したガス冷媒(40)が中心側を流れ、液冷媒(41)がガス冷媒(40)の外側を流れる。更に、比較的粘度が高く、高密度の油(42)は、伝熱管(22)の内周壁に沿うようにしながら液冷媒(41)の外側を流れる。ここで、伝熱管(22)の内周壁には、上述の油溝(25)が形成されている。このため、油(42)は、表面張力によって油溝(25)内に引き込まれ、油溝(25)内に捕捉される。その結果、伝熱管(22)の内周壁には、上述したような油膜がほとんど形成されず、液冷媒(41)と伝熱管(22)の内周壁とが直接接触することになる。従って、室内熱交換器(13)では、室内空気と液冷媒との伝熱が促進され、液冷媒が効率良く蒸発する。一方、各油溝(25)内に捕捉された油は、ガス冷媒(40)や液冷媒と同一方向に、各油溝(25)を流れる。そして、この油は、冷媒と共に室内熱交換器(13)を速やかに流出する。   Specifically, for example, when the refrigerant containing oil flows through the indoor heat exchanger (13) in the cooling operation described above, the evaporated gas refrigerant (40) is generated in the heat transfer tube (22) as shown in FIG. The refrigerant flows through the center, and the liquid refrigerant (41) flows outside the gas refrigerant (40). Furthermore, the oil (42) having a relatively high viscosity and high density flows outside the liquid refrigerant (41) while being along the inner peripheral wall of the heat transfer tube (22). Here, the above-mentioned oil groove (25) is formed in the inner peripheral wall of the heat transfer tube (22). For this reason, the oil (42) is drawn into the oil groove (25) by the surface tension and is captured in the oil groove (25). As a result, the oil film as described above is hardly formed on the inner peripheral wall of the heat transfer tube (22), and the liquid refrigerant (41) and the inner peripheral wall of the heat transfer tube (22) are in direct contact. Therefore, in the indoor heat exchanger (13), heat transfer between the room air and the liquid refrigerant is promoted, and the liquid refrigerant evaporates efficiently. On the other hand, the oil trapped in each oil groove (25) flows through each oil groove (25) in the same direction as the gas refrigerant (40) and the liquid refrigerant. And this oil flows out of an indoor heat exchanger (13) rapidly with a refrigerant.

−実施形態1の効果−
上記実施形態1では、伝熱管(22)の内壁面に、油を捕捉するための油溝(25)を形成するようにしている。このため、従来の熱交換器であれば、伝熱管の内壁面の全域に油膜が形成され、熱交換器の伝熱性能が低下してしまっていたのに対し、上記実施形態1によれば、伝熱管(22)の内壁面側の油を油溝(25)内に捕捉させることで、上記油膜の形成を抑制でき、この油膜の形成に伴う伝熱性能の低下を防止することができる。また、このようにして油膜の形成を防止すると、油膜の形成に起因して伝熱管(22)の圧力損失が増大してしまうのも防止できる。
-Effect of Embodiment 1-
In the first embodiment, the oil groove (25) for capturing oil is formed on the inner wall surface of the heat transfer tube (22). For this reason, in the case of a conventional heat exchanger, an oil film is formed over the entire inner wall surface of the heat transfer tube, and the heat transfer performance of the heat exchanger has deteriorated. By capturing the oil on the inner wall surface of the heat transfer tube (22) in the oil groove (25), the formation of the oil film can be suppressed, and the deterioration of the heat transfer performance associated with the formation of the oil film can be prevented. . Further, when the formation of the oil film is prevented in this way, it is possible to prevent the pressure loss of the heat transfer tube (22) from increasing due to the formation of the oil film.

また、上記実施形態1では、油溝(25)を伝熱管(22)の軸方向に形成しているので、油溝(25)内に捕捉された油が、油溝(25)内を円滑に流れることになる。従って、一旦油溝(25)内に捕捉された油が再び油溝(25)から流出して伝熱管(22)の内壁面を覆ってしまうのを回避できる。また、油溝(25)内に溜まった油を、この油溝(25)を通じて速やかに熱交換器から流出させることができる。このため、熱交換器(12,13)内に油が滞ってしまうのを回避でき、圧縮機(11)における返油量不足を回避できる。   Moreover, in the said Embodiment 1, since the oil groove (25) is formed in the axial direction of the heat exchanger tube (22), the oil trapped in the oil groove (25) smoothly flows in the oil groove (25). Will flow into. Therefore, it is possible to avoid the oil once trapped in the oil groove (25) from flowing out of the oil groove (25) and covering the inner wall surface of the heat transfer tube (22). Further, the oil accumulated in the oil groove (25) can be quickly discharged from the heat exchanger through the oil groove (25). For this reason, it is possible to avoid oil stagnation in the heat exchanger (12, 13), and it is possible to avoid a shortage of oil return in the compressor (11).

更に、上記実施形態1では、複数の油溝(25)を伝熱管(22)の周方向に90度おきに形成するようにしている。このため、上記実施形態1によれば、伝熱管(22)の内壁面側の油が油溝(25)内に入りやすくなると共に、各油溝(25)内に捕捉される油の量を均一化できる。従って、上述した油膜の形成を一層確実に防止することができる。   Further, in the first embodiment, the plurality of oil grooves (25) are formed every 90 degrees in the circumferential direction of the heat transfer tube (22). Therefore, according to the first embodiment, the oil on the inner wall surface side of the heat transfer tube (22) can easily enter the oil groove (25), and the amount of oil trapped in each oil groove (25) can be reduced. It can be made uniform. Therefore, the formation of the oil film described above can be prevented more reliably.

《発明の実施形態2》
本発明の実施形態2に係る熱交換器(12,13)は、上記実施形態1と伝熱管(22)の構成が異なるものである。具体的には、図7に示すように、実施形態2の伝熱管(22)には、上記実施形態1よりも多数の油溝(25)が形成されている。この油溝(25)は、上記実施形態1と同様、伝熱管(22)の軸方向に延びて形成されている。
<< Embodiment 2 of the Invention >>
The heat exchanger (12, 13) according to the second embodiment of the present invention is different from the first embodiment in the configuration of the heat transfer tube (22). Specifically, as shown in FIG. 7, the heat transfer tube (22) of the second embodiment has a larger number of oil grooves (25) than that of the first embodiment. The oil groove (25) is formed so as to extend in the axial direction of the heat transfer tube (22), as in the first embodiment.

また、実施形態2では、油溝(25)の底面(25b)に親油性材料から成る親油層(27)がコーティングされている。なお、親油層(27)を構成する親油性材料としては、水ガラス、アクリル、エポキシ樹脂、ポリビニルアルコール等が挙げられる。一方、この伝熱管(22)における油溝(25)の外側の内壁面には、撥油性材料から成る撥油層(28)が全域に亘ってコーティングされている。なお、撥油層(28)を構成する撥油性材料としては、テフロン系、フッ素系、パラフィン系、シリコン系の材料が挙げられる。   In Embodiment 2, the bottom surface (25b) of the oil groove (25) is coated with a lipophilic layer (27) made of a lipophilic material. In addition, as a lipophilic material which comprises a lipophilic layer (27), water glass, an acryl, an epoxy resin, polyvinyl alcohol, etc. are mentioned. On the other hand, an oil repellent layer (28) made of an oil repellent material is coated on the entire inner wall surface of the heat transfer tube (22) outside the oil groove (25). The oil repellent material constituting the oil repellent layer (28) includes Teflon, fluorine, paraffin, and silicon materials.

図8に示すように、実施形態2の熱交換器(12,13)において、伝熱管(22)内を冷媒が流れる際には、伝熱管(22)の内壁面付近の油(42)は、撥油層(28)によって弾かれて油溝(25)内に入り込んでいく。更に、油溝(25)の内側には、親油層(27)が形成されているため、この油が油溝(25)内に効率良く捕捉されていく。その結果、実施形態2では、伝熱管(22)の内壁面に油膜がほとんど形成されず、油溝(25)内に捕捉された油は、油溝(25)を介して速やかに熱交換器(12,13)から流出する。   As shown in FIG. 8, in the heat exchanger (12, 13) of the second embodiment, when the refrigerant flows through the heat transfer tube (22), the oil (42) near the inner wall surface of the heat transfer tube (22) It is bounced by the oil repellent layer (28) and enters the oil groove (25). Furthermore, since the lipophilic layer (27) is formed inside the oil groove (25), the oil is efficiently captured in the oil groove (25). As a result, in the second embodiment, an oil film is hardly formed on the inner wall surface of the heat transfer tube (22), and the oil trapped in the oil groove (25) is quickly exchanged through the oil groove (25). Escape from (12,13).

−実施形態2の効果−
上記実施形態2においても、伝熱管(22)内に油溝(25)を形成することで、伝熱管(22)の内壁面に油膜が形成されてしまうのを防止できる。更に、油溝(25)の内側の壁面に親油層(27)を形成する一方、伝熱管(22)の内壁面における油溝(25)以外の部分に撥油層(28)を形成するようにしている。このため、実施形態2によれば、油溝(25)による油の捕捉効果を向上させることができ、上記油膜の形成を一層確実に防止できる。また、上記実施形態2によれば、捕捉した油を確実に油溝(25)内に流通させて、熱交換器から流出させることができる。
-Effect of Embodiment 2-
Also in the said Embodiment 2, it can prevent that an oil film will be formed in the inner wall face of a heat exchanger tube (22) by forming an oil groove (25) in a heat exchanger tube (22). Furthermore, an oil repellent layer (27) is formed on the inner wall surface of the oil groove (25), while an oil repellent layer (28) is formed on the inner wall surface of the heat transfer tube (22) other than the oil groove (25). ing. For this reason, according to Embodiment 2, the oil trapping effect by the oil groove (25) can be improved, and the formation of the oil film can be more reliably prevented. Moreover, according to the said Embodiment 2, the captured oil can be reliably distribute | circulated in an oil groove | channel (25), and can be made to flow out from a heat exchanger.

−実施形態2の変形例−
上記実施形態2の親油層(27)と撥油層(28)のいずれか一方のみを伝熱管(22)に設けるようにしても良い。また、親油層(27)を油溝(25)の傾斜面(25a)に形成するようにしても良い。また、上述した実施形態1の熱交換器(12,13)について、実施形態2と同様の親油層(27)や撥油層(28)を適用するようにしても良い。
-Modification of Embodiment 2-
Only one of the lipophilic layer (27) and the oil repellent layer (28) of the second embodiment may be provided on the heat transfer tube (22). Further, the oleophilic layer (27) may be formed on the inclined surface (25a) of the oil groove (25). Moreover, you may make it apply the lipophilic layer (27) and oil-repellent layer (28) similar to Embodiment 2 about the heat exchanger (12, 13) of Embodiment 1 mentioned above.

《発明の実施形態3》
本発明の実施形態3に係る熱交換器(12,13)は、上記実施形態1や2と伝熱管(22)の構成が異なるものである。具体的には、図9に示すように、実施形態3の伝熱管(22)の内壁面には、V字形状に延びる複数の油溝(25)が形成されている。このV字形状の油溝(25)は、伝熱管(22)の軸方向から斜めに傾いた一対の溝(25c,25c)の先端部が繋がるように形成されている。また、各油溝(25)は、伝熱管(22)の軸方向に所定の間隔を介して配列されている。また、各油溝(25)において、一対の溝(25c,25c)が繋がるV字先端部(25d)は、伝熱管(22)における冷媒の流出側を向くように形成されている。つまり、各油溝(25)は、各々のV字先端部(25d)が伝熱管(22)の軸方向の片側を指向している。更に、各油溝(25)の列群は、周方向に隣り合う他の油溝(25)の列群と連続するように繋がっており、伝熱管(22)内には、いわゆる複数のW溝が形成されることになる。
<< Embodiment 3 of the Invention >>
The heat exchanger (12, 13) according to Embodiment 3 of the present invention is different from the above Embodiments 1 and 2 in the configuration of the heat transfer tube (22). Specifically, as shown in FIG. 9, a plurality of oil grooves (25) extending in a V shape are formed on the inner wall surface of the heat transfer tube (22) of the third embodiment. The V-shaped oil groove (25) is formed so that the tip ends of a pair of grooves (25c, 25c) inclined obliquely from the axial direction of the heat transfer tube (22) are connected. The oil grooves (25) are arranged at predetermined intervals in the axial direction of the heat transfer tube (22). In each oil groove (25), the V-shaped tip (25d) to which the pair of grooves (25c, 25c) is connected is formed to face the refrigerant outflow side in the heat transfer tube (22). That is, in each oil groove (25), each V-shaped tip (25d) is directed to one side in the axial direction of the heat transfer tube (22). Furthermore, the row group of each oil groove (25) is connected so as to be continuous with the row group of other oil grooves (25) adjacent in the circumferential direction. A groove is formed.

図10に示すように、実施形態3の熱交換器(12,13)において、伝熱管(22)内を冷媒が流れる際には、伝熱管(22)の内壁面付近の油(42)が、各溝(25c,25c)に入り込み、V字先端部(25d)側へ流れる。このように、各油溝(25)では、捕捉された油がV字先端部(25d)へそれぞれ流れるので、伝熱管(22)内には、各油溝(25)のV字先端部(25d)を結ぶような油の流路が形成される。以上のようにして捕捉された油は、この各油溝(25)及び、各油溝(25)を結ぶ油の流路を介して、熱交換器(12,13)から流出する。   As shown in FIG. 10, in the heat exchanger (12, 13) of the third embodiment, when the refrigerant flows through the heat transfer tube (22), the oil (42) near the inner wall surface of the heat transfer tube (22) , Enters each groove (25c, 25c) and flows to the V-shaped tip (25d) side. In this way, in each oil groove (25), the captured oil flows to the V-shaped tip (25d), so that the V-shaped tip ( 25d) is formed as an oil flow path. The oil captured as described above flows out from the heat exchanger (12, 13) through the oil grooves (25) and the oil flow paths connecting the oil grooves (25).

−実施形態3の効果−
上記実施形態3においても、伝熱管(22)内に油溝(25)を形成することで、伝熱管(22)の内壁面に油膜が形成されてしまうのを防止できる。更に、実施形態3では、V字形状の油溝(25)を複数設けることで、捕捉された油の流路を確実に形成することができ、この油を熱交換器(12,13)から速やかに排出することができる。従って、実施形態3によれば、圧縮機(11)の返油量不足を確実に回避することができる。
-Effect of Embodiment 3-
Also in the said Embodiment 3, it can prevent that an oil film will be formed in the inner wall face of a heat exchanger tube (22) by forming an oil groove (25) in a heat exchanger tube (22). Further, in the third embodiment, by providing a plurality of V-shaped oil grooves (25), it is possible to reliably form the captured oil flow path, and this oil is removed from the heat exchanger (12, 13). It can be discharged quickly. Therefore, according to the third embodiment, it is possible to reliably avoid the shortage of the oil return amount of the compressor (11).

《発明の実施形態4》
本発明の実施形態4に係る熱交換器(12,13)は、上記各実施形態と伝熱管(22)の構成が異なるものである。具体的には、図11〜図14に示すように、実施形態4の伝熱管(22)の内壁面には、伝熱を促進させるための複数の伝熱促進溝(50)が形成されている。各伝熱促進溝(50)は、伝熱管(22)の周方向に旋回する螺旋状に形成されており、互いに平行となっている。伝熱促進溝(50)の縦断面の形状は、開放部側に向かって開口面積が拡がるような略台形状ないし略三角形状をしている。
<< Embodiment 4 of the Invention >>
The heat exchanger (12, 13) according to Embodiment 4 of the present invention is different from the above embodiments in the configuration of the heat transfer tube (22). Specifically, as shown in FIGS. 11 to 14, a plurality of heat transfer promotion grooves (50) for promoting heat transfer are formed on the inner wall surface of the heat transfer tube (22) of the fourth embodiment. Yes. Each heat transfer promotion groove (50) is formed in a spiral shape that turns in the circumferential direction of the heat transfer tube (22), and is parallel to each other. The shape of the longitudinal section of the heat transfer promoting groove (50) is a substantially trapezoidal shape or a substantially triangular shape such that the opening area expands toward the open side.

実施形態4の伝熱管(22)の内壁面には、上記各実施形態と同様にして4本の油溝(25)が形成されている。各油溝(25)は、伝熱管(22)の軸方向に延びており、伝熱管(22)の周方向に90度おきに配列されている。なお、油溝(25)は、必ずしも一直線に伸びていなくても良く、その捩れ角が0度〜5度の範囲であれば良い。また、油溝(25)の縦断面の形状は、開放部側に向かって開口面積が拡がるような略台形状をしている。   On the inner wall surface of the heat transfer tube (22) of the fourth embodiment, four oil grooves (25) are formed in the same manner as in the above embodiments. Each oil groove (25) extends in the axial direction of the heat transfer tube (22), and is arranged every 90 degrees in the circumferential direction of the heat transfer tube (22). The oil groove (25) does not necessarily extend in a straight line, and the twist angle may be in the range of 0 degrees to 5 degrees. Moreover, the shape of the vertical cross section of the oil groove (25) is substantially trapezoidal so that the opening area is expanded toward the open portion side.

各油溝(25)は、複数の伝熱促進溝(50)を横断するようにしてこれらの伝熱促進溝(50)と交わっている。即ち、図13(伝熱管の内壁面を拡大した斜視図)に示すように、螺旋状の伝熱促進溝(50)は、その長手方向の両端がそれぞれ各油溝(25)と繋がっている。   Each oil groove (25) intersects these heat transfer promotion grooves (50) so as to cross the plurality of heat transfer promotion grooves (50). That is, as shown in FIG. 13 (a perspective view in which the inner wall surface of the heat transfer tube is enlarged), both ends in the longitudinal direction of the spiral heat transfer promotion groove (50) are connected to the respective oil grooves (25). .

また、図14に示すように、各油溝(25)の開口幅W1は、各伝熱促進溝(50)の開口幅W2よりも広くなっている。また、各油溝(25)の溝深さD1は、各伝熱促進溝(50)の溝深さD2と同じ深さとなっている。なお、この溝深さD1を溝深さD2より大きくしても良く、溝深さD1が溝深さD2以上であれば良い。また、油溝(25)の開口幅W1は、0.2mm〜1.0mmの範囲が好適である。   Further, as shown in FIG. 14, the opening width W1 of each oil groove (25) is wider than the opening width W2 of each heat transfer promoting groove (50). In addition, the groove depth D1 of each oil groove (25) is the same as the groove depth D2 of each heat transfer promotion groove (50). The groove depth D1 may be larger than the groove depth D2, and it is sufficient that the groove depth D1 is equal to or greater than the groove depth D2. The opening width W1 of the oil groove (25) is preferably in the range of 0.2 mm to 1.0 mm.

実施形態4の熱交換器(12,13)において、伝熱管(22)内を冷媒が流れる際には、伝熱管(22)内の油(42)が、油溝(25)に入り込む。また、実施形態4では、各伝熱促進溝(50)内にも油(42)が入り込むことがあるが、この油(42)は各伝熱促進溝(50)を通じて油溝(25)へ排出される(図13参照)。従って、各伝熱促進溝(50)内における油膜の形成が防止される。以上のようにして、油溝(25)に捕捉された油(42)は、該油溝(25)を通じて熱交換器(12,13)から流出する。   In the heat exchanger (12, 13) of the fourth embodiment, when the refrigerant flows through the heat transfer tube (22), the oil (42) in the heat transfer tube (22) enters the oil groove (25). In the fourth embodiment, the oil (42) may enter the heat transfer promotion grooves (50). The oil (42) passes through the heat transfer promotion grooves (50) to the oil groove (25). It is discharged (see FIG. 13). Therefore, formation of an oil film in each heat transfer promotion groove (50) is prevented. As described above, the oil (42) trapped in the oil groove (25) flows out from the heat exchanger (12, 13) through the oil groove (25).

−実施形態4の効果−
実施形態4によれば、伝熱管(22)の内壁面に螺旋状の伝熱促進溝(50)を形成したので、伝熱管(22)の内壁面の表面積が拡大され、伝熱管(22)の伝熱性能を更に向上させることができる。また、油溝(25)を伝熱管(22)の軸方向に延ばして螺旋状の伝熱促進溝(50)と交わるようにしたので、伝熱促進溝(50)に溜まった油を油溝(25)へ排出することができる。従って、伝熱促進溝(50)内に油膜が形成されてしまうことを回避できるので、伝熱管(22)の伝熱性能の低下を防止できる。
-Effect of Embodiment 4-
According to the fourth embodiment, since the spiral heat transfer promotion groove (50) is formed on the inner wall surface of the heat transfer tube (22), the surface area of the inner wall surface of the heat transfer tube (22) is increased, and the heat transfer tube (22) The heat transfer performance can be further improved. Also, since the oil groove (25) extends in the axial direction of the heat transfer tube (22) and intersects with the spiral heat transfer promotion groove (50), oil accumulated in the heat transfer promotion groove (50) (25) can be discharged. Therefore, since it is possible to avoid the formation of an oil film in the heat transfer promotion groove (50), it is possible to prevent the heat transfer performance of the heat transfer tube (22) from being deteriorated.

また、上記実施形態4では、4本の油溝(25)を伝熱管(22)の周方向に等間隔で形成するようにしている。これにより、伝熱管(22)の内壁面の油が油溝(25)内に入り易くなると共に、各油溝(25)内に捕捉される油の量を均一化できる。従って、伝熱管(22)の内壁面における油膜の形成を一層確実に防止することができる。また、各伝熱促進溝(50)内に溜まった油を速やかに各油溝(25)へ排出させることができるので、各伝熱促進溝(50)内に油膜が形成されてしまうことも確実に防止できる。   In the fourth embodiment, four oil grooves (25) are formed at equal intervals in the circumferential direction of the heat transfer tube (22). Thereby, the oil on the inner wall surface of the heat transfer tube (22) can easily enter the oil groove (25), and the amount of oil trapped in each oil groove (25) can be made uniform. Therefore, the formation of an oil film on the inner wall surface of the heat transfer tube (22) can be more reliably prevented. In addition, since oil accumulated in each heat transfer promotion groove (50) can be quickly discharged to each oil groove (25), an oil film may be formed in each heat transfer promotion groove (50). It can be surely prevented.

更に、上記実施形態4では、油溝(25)の開口幅W1を伝熱促進溝(50)の開口幅W2よりも広くしたので、伝熱管(22)内の油を積極的に油溝(25)へ流入させることができる。更に、油溝(25)の溝深さD1を伝熱促進溝(50)の溝深さD2以上としたので、伝熱促進溝(50)内に溜まった油を確実に油溝(25)内へ流下させることができる。従って、伝熱促進溝(50)による伝熱促進効果を充分発揮させることができ、伝熱管(22)の伝熱性能の更なる向上を図ることができる。   Furthermore, in the said Embodiment 4, since the opening width W1 of the oil groove (25) was made larger than the opening width W2 of the heat-transfer acceleration | stimulation groove | channel (50), the oil in a heat-transfer tube (22) is actively made into an oil groove ( 25). Further, since the groove depth D1 of the oil groove (25) is set to be equal to or greater than the groove depth D2 of the heat transfer promoting groove (50), the oil accumulated in the heat transfer promoting groove (50) is surely removed. It can flow down into. Therefore, the heat transfer promotion effect by the heat transfer promotion groove (50) can be sufficiently exhibited, and the heat transfer performance of the heat transfer tube (22) can be further improved.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

伝熱管(22)の内周壁に形成される油溝(25)の形状は、上記各実施形態で述べたもの以外であっても良い。つまり、油溝(25)を螺旋状としたり、蛇行させたりしても良いし、その縦断面を三角形や楕円形や半円形としても良い。   The shape of the oil groove (25) formed in the inner peripheral wall of the heat transfer tube (22) may be other than those described in the above embodiments. That is, the oil groove (25) may be spiral or meandering, and its longitudinal section may be triangular, elliptical, or semicircular.

上記油溝(25)の本数は4本に限られるものではなく、例えば1本であっても良いし、それより多い本数であっても良い。   The number of the oil grooves (25) is not limited to four. For example, the number of oil grooves (25) may be one or more.

更に、上記各実施形態では、冷媒として二酸化炭素を用い、冷凍機油としてPAGを用いる冷凍装置について、本発明に係る熱交換器(12,13)を適用しているが、これ以外の種類の冷媒や冷凍機油を用いる冷凍装置について、この熱交換器(12,13)を適用しても良い。具体的には、冷媒としては、R134a、R410a、R407c、R32等が挙げられる一方、冷凍機油としては、ポリ−α−オレフィン、P06、フッ素系の油等が挙げられる。   Further, in each of the above embodiments, the heat exchanger (12, 13) according to the present invention is applied to a refrigeration apparatus that uses carbon dioxide as the refrigerant and PAG as the refrigerating machine oil. Alternatively, the heat exchanger (12, 13) may be applied to a refrigeration apparatus that uses refrigeration oil. Specifically, examples of the refrigerant include R134a, R410a, R407c, and R32, and examples of the refrigerating machine oil include poly-α-olefin, P06, and fluorine-based oil.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、冷凍サイクルを行う冷凍装置に適用される熱交換器について有用である。   As described above, the present invention is useful for a heat exchanger applied to a refrigeration apparatus that performs a refrigeration cycle.

図1は、実施形態1に係る冷凍装置の冷媒回路の概略構成を示す配管系統図である。FIG. 1 is a piping diagram illustrating a schematic configuration of a refrigerant circuit of a refrigeration apparatus according to Embodiment 1. 図2は、実施形態1に係る熱交換器の概略構成を示す斜視図である。FIG. 2 is a perspective view illustrating a schematic configuration of the heat exchanger according to the first embodiment. 図3は、実施形態1に係る熱交換器の概略構成を示す立面図である。FIG. 3 is an elevation view illustrating a schematic configuration of the heat exchanger according to the first embodiment. 図4は、実施形態1に係る熱交換器の伝熱管の内部を示す斜視図である。FIG. 4 is a perspective view showing the inside of the heat transfer tube of the heat exchanger according to the first embodiment. 図5は、実施形態1に係る熱交換器の伝熱管の縦断面図である。FIG. 5 is a longitudinal sectional view of a heat transfer tube of the heat exchanger according to the first embodiment. 図6は、実施形態1に係る熱交換器の伝熱管における油捕捉作用の説明図である。FIG. 6 is an explanatory diagram of an oil trapping action in the heat transfer tube of the heat exchanger according to the first embodiment. 図7は、実施形態2に係る熱交換器の伝熱管の一部の縦断面図である。FIG. 7 is a longitudinal sectional view of a part of the heat transfer tube of the heat exchanger according to the second embodiment. 図8は、実施形態2に係る熱交換器の伝熱管における油捕捉作用の説明図である。FIG. 8 is an explanatory diagram of an oil trapping action in the heat transfer tube of the heat exchanger according to the second embodiment. 図9は、実施形態3に係る熱交換器の伝熱管の内部を示す斜視図である。FIG. 9 is a perspective view showing the inside of the heat transfer tube of the heat exchanger according to the third embodiment. 図10は、実施形態3に係る熱交換器の伝熱管における油捕捉作用の説明図である。FIG. 10 is an explanatory diagram of an oil trapping action in the heat transfer tube of the heat exchanger according to the third embodiment. 図11は、実施形態4に係る熱交換器の伝熱管を破断して内部を表した斜視図である。FIG. 11 is a perspective view showing the inside of a heat exchanger tube according to the fourth embodiment by breaking the heat transfer tube. 図12は、実施形態4に係る熱交換器の伝熱管の縦断面図である。FIG. 12 is a longitudinal sectional view of a heat transfer tube of the heat exchanger according to the fourth embodiment. 図13は、実施形態4に係る熱交換器の伝熱管の内壁面を拡大した斜視図である。FIG. 13 is an enlarged perspective view of the inner wall surface of the heat transfer tube of the heat exchanger according to the fourth embodiment. 図14は、実施形態4に係る熱交換器の伝熱管の内壁面を拡大して、油溝及び伝熱促進溝の寸法の関係を表した説明図である。FIG. 14 is an explanatory diagram illustrating the relationship between the dimensions of the oil groove and the heat transfer promotion groove by enlarging the inner wall surface of the heat transfer tube of the heat exchanger according to the fourth embodiment.

符号の説明Explanation of symbols

1 空気調和装置(冷凍装置)
10 冷媒回路
12 室内熱交換器(熱交換器)
13 室外熱交換器(熱交換器)
22 伝熱管
25 油溝
27 親油層(親油性材料)
28 撥油層(撥油性材料)
50 伝熱促進溝
1 Air conditioner (refrigeration equipment)
10 Refrigerant circuit
12 Indoor heat exchanger (heat exchanger)
13 Outdoor heat exchanger (heat exchanger)
22 Heat transfer tube
25 Oil groove
27 Lipophilic layer (Lipophilic material)
28 Oil repellent layer (oil repellent material)
50 Heat transfer enhancement groove

Claims (12)

蒸気圧縮式の冷凍サイクルを行う冷凍装置に適用され、冷媒が流れる伝熱管(22)を有する熱交換器であって、
上記伝熱管(22)には、その内壁面に、冷媒中の油を捕捉して流通させるための油溝(25)が形成されていることを特徴とする熱交換器。
A heat exchanger that is applied to a refrigeration apparatus that performs a vapor compression refrigeration cycle and has a heat transfer tube (22) through which a refrigerant flows,
The heat exchanger is characterized in that an oil groove (25) for capturing and circulating oil in the refrigerant is formed on the inner wall surface of the heat transfer tube (22).
請求項1において、
上記油溝(25)は、上記伝熱管(22)の軸方向に延びていることを特徴とする熱交換器。
In claim 1,
The heat exchanger, wherein the oil groove (25) extends in an axial direction of the heat transfer tube (22).
請求項2において、
上記伝熱管(22)の内壁面には、複数の上記油溝(25)が周方向に等間隔で配列されていることを特徴とする熱交換器。
In claim 2,
A heat exchanger in which a plurality of the oil grooves (25) are arranged at equal intervals in the circumferential direction on the inner wall surface of the heat transfer tube (22).
請求項1において、
上記伝熱管(22)の内壁面には、V字形状に延びる複数の上記油溝(25)が伝熱管(22)の軸方向に配列されていることを特徴とする熱交換器。
In claim 1,
A heat exchanger in which a plurality of oil grooves (25) extending in a V shape are arranged in the axial direction of the heat transfer tube (22) on the inner wall surface of the heat transfer tube (22).
請求項1乃至4のいずれか1つにおいて、
上記油溝(25)の内側の壁面には、親油性材料からなる親油層(27)が形成されていることを特徴とする熱交換器。
In any one of Claims 1 thru | or 4,
A heat exchanger characterized in that a lipophilic layer (27) made of a lipophilic material is formed on the inner wall surface of the oil groove (25).
請求項1乃至5のいずれか1つにおいて、
上記伝熱管(22)の内側の内壁面のうち上記油溝(25)以外の部分には、撥油性材料からなる撥油層(28)が形成されていることを特徴とする熱交換器。
In any one of Claims 1 thru | or 5,
An oil repellent layer (28) made of an oil repellent material is formed on a portion other than the oil groove (25) on the inner wall surface inside the heat transfer tube (22).
請求項1において、
上記伝熱管(22)の内壁面には、該伝熱管(22)の周方向に旋回する螺旋状に形成されて、伝熱を促進させるための複数の伝熱促進溝(50)が設けられていることを特徴とする熱交換器。
In claim 1,
The inner wall surface of the heat transfer tube (22) is provided with a plurality of heat transfer promotion grooves (50) that are formed in a spiral shape that rotates in the circumferential direction of the heat transfer tube (22) and promote heat transfer. A heat exchanger characterized by that.
請求項7において、
上記油溝(25)は、上記伝熱促進溝(50)と交わるようにしながら上記伝熱管(22)の軸方向に延びていることを特徴とする熱交換器。
In claim 7,
The heat exchanger, wherein the oil groove (25) extends in the axial direction of the heat transfer tube (22) while intersecting with the heat transfer promotion groove (50).
請求項8において、
上記伝熱管(22)の内壁面には、複数の上記油溝(25)が周方向に等間隔で配列されていることを特徴とする熱交換器。
In claim 8,
A heat exchanger in which a plurality of the oil grooves (25) are arranged at equal intervals in the circumferential direction on the inner wall surface of the heat transfer tube (22).
請求項7乃至9のいずれか1つにおいて、
上記油溝(25)の開口幅が、上記伝熱促進溝(50)の開口幅よりも広くなっていることを特徴とする熱交換器。
In any one of Claims 7 thru | or 9,
The heat exchanger characterized in that the opening width of the oil groove (25) is wider than the opening width of the heat transfer promotion groove (50).
請求項7乃至10のいずれか1つにおいて、
上記油溝(25)の溝深さが、上記伝熱促進溝(50)の溝深さ以上となっていることを特徴とする熱交換器。
In any one of claims 7 to 10,
The heat exchanger characterized in that the groove depth of the oil groove (25) is equal to or greater than the groove depth of the heat transfer promotion groove (50).
蒸気圧縮式の冷凍サイクルを行う冷媒回路(10)を備える冷凍装置であって、
上記冷媒回路(10)では、冷媒としての二酸化炭素と、冷凍機油としてのポリアルキレングリコールが循環すると共に、請求項1乃至11のいずれか1つの熱交換器(12,13)が設けられていることを特徴とする冷凍装置。
A refrigeration apparatus comprising a refrigerant circuit (10) for performing a vapor compression refrigeration cycle,
In the refrigerant circuit (10), carbon dioxide as a refrigerant and polyalkylene glycol as a refrigerating machine oil circulate, and a heat exchanger (12, 13) according to any one of claims 1 to 11 is provided. A refrigeration apparatus characterized by that.
JP2007133988A 2006-10-18 2007-05-21 Heat exchanger and refrigeration system Pending JP2008122059A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007133988A JP2008122059A (en) 2006-10-18 2007-05-21 Heat exchanger and refrigeration system
PCT/JP2007/069260 WO2008050587A1 (en) 2006-10-18 2007-10-02 Heat exchanger and refrigeration device
CN2007800384283A CN101523149B (en) 2006-10-18 2007-10-02 Heat exchanger
EP07829000.4A EP2077429A4 (en) 2006-10-18 2007-10-02 Heat exchanger and refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006283802 2006-10-18
JP2007133988A JP2008122059A (en) 2006-10-18 2007-05-21 Heat exchanger and refrigeration system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012006504A Division JP2012073028A (en) 2006-10-18 2012-01-16 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2008122059A true JP2008122059A (en) 2008-05-29

Family

ID=39324393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133988A Pending JP2008122059A (en) 2006-10-18 2007-05-21 Heat exchanger and refrigeration system

Country Status (4)

Country Link
EP (1) EP2077429A4 (en)
JP (1) JP2008122059A (en)
CN (1) CN101523149B (en)
WO (1) WO2008050587A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099067A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968589B (en) * 2010-02-10 2016-05-25 三菱电机株式会社 Freezing cycle device
DE112015001545T5 (en) 2014-03-31 2016-12-22 Trane International Inc. Repellent / absorbent structures in cooling systems and liquid vapor deposition in cooling systems
WO2023188387A1 (en) * 2022-03-31 2023-10-05 三菱電機株式会社 Refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300372A (en) * 1993-04-12 1994-10-28 Matsushita Refrig Co Ltd Refrigerator
JPH10206060A (en) * 1997-01-17 1998-08-07 Kobe Steel Ltd Heating tube having grooved inner surface
WO2002095302A1 (en) * 2001-05-23 2002-11-28 Matsushita Electric Industrial Co., Ltd. Refrigerating cycle device
JP2003262432A (en) * 2002-03-08 2003-09-19 Denso Corp Heat exchanger for vapor compression refrigerator
JP2004190968A (en) * 2002-12-12 2004-07-08 Sumitomo Light Metal Ind Ltd Method of manufacturing cross fin tube for heat exchanger and cross fin type heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2179448A1 (en) * 1995-07-12 1997-01-13 Atsuyumi Ishikawa Heat exchanger for refrigerating cycle
JPH1194481A (en) * 1997-09-25 1999-04-09 Gac Kk Heat exchanger and tube therefor
JP2001116371A (en) 1999-10-20 2001-04-27 Daikin Ind Ltd Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300372A (en) * 1993-04-12 1994-10-28 Matsushita Refrig Co Ltd Refrigerator
JPH10206060A (en) * 1997-01-17 1998-08-07 Kobe Steel Ltd Heating tube having grooved inner surface
WO2002095302A1 (en) * 2001-05-23 2002-11-28 Matsushita Electric Industrial Co., Ltd. Refrigerating cycle device
JP2003262432A (en) * 2002-03-08 2003-09-19 Denso Corp Heat exchanger for vapor compression refrigerator
JP2004190968A (en) * 2002-12-12 2004-07-08 Sumitomo Light Metal Ind Ltd Method of manufacturing cross fin tube for heat exchanger and cross fin type heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099067A1 (en) * 2010-02-10 2011-08-18 三菱電機株式会社 Refrigeration cycle device
JPWO2011099067A1 (en) * 2010-02-10 2013-06-13 三菱電機株式会社 Refrigeration cycle equipment
US8904812B2 (en) 2010-02-10 2014-12-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US9285142B2 (en) 2010-02-10 2016-03-15 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
EP2077429A1 (en) 2009-07-08
CN101523149A (en) 2009-09-02
CN101523149B (en) 2011-02-16
WO2008050587A1 (en) 2008-05-02
EP2077429A4 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2014103563A1 (en) Heat exchanger
JP5012070B2 (en) Shunt
JP2011144989A (en) Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle device and air conditioner
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
JP2010038502A (en) Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle device and air conditioning device
KR20040036874A (en) Refrigerating cycle device
JP2008196762A (en) Flow divider, heat exchanger unit and refrigerating device
JP2008122059A (en) Heat exchanger and refrigeration system
JP2010156468A (en) Underground heat exchanger and air conditioning system
JP2008309361A (en) Refrigerating cycle device
JP2011106770A (en) Heat exchanger and refrigerating cycle device
JP6053693B2 (en) Air conditioner
JP6415600B2 (en) Refrigeration cycle equipment
JP5646257B2 (en) Refrigeration cycle equipment
JP2008116135A (en) Heat exchanger and refrigeration device
JP2008309443A (en) Heat transfer pipe connecting structure
JP2008164254A (en) Coolant piping structure
JP2008157506A (en) Heat exchanger
JP2008309442A (en) Heat transfer pipe and heat exchanger
JP2012073028A (en) Heat exchanger
JP4813534B2 (en) Air conditioner
JP2007315639A (en) Evaporator and refrigerating cycle device using the same
JP2007263492A (en) Refrigerant cycle device
JP2007248006A (en) Refrigerant cycle device
JP2012167912A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321