JP2012122692A - Heat transfer tube with grooved inner surface - Google Patents

Heat transfer tube with grooved inner surface Download PDF

Info

Publication number
JP2012122692A
JP2012122692A JP2010274752A JP2010274752A JP2012122692A JP 2012122692 A JP2012122692 A JP 2012122692A JP 2010274752 A JP2010274752 A JP 2010274752A JP 2010274752 A JP2010274752 A JP 2010274752A JP 2012122692 A JP2012122692 A JP 2012122692A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
refrigerant
transfer tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010274752A
Other languages
Japanese (ja)
Inventor
Masaru Horiguchi
賢 堀口
Kenji Kodama
健二 児玉
Kazuhiko Honma
和彦 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010274752A priority Critical patent/JP2012122692A/en
Priority to CN2011104051901A priority patent/CN102564194A/en
Publication of JP2012122692A publication Critical patent/JP2012122692A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat transfer tube with a grooved inner surface, which has high evaporation performance even when heat pump equipment using a COrefrigerant is used under a low heat flux (q) condition, and polyalkylene glycol-based refrigerating machine oil is mixed in the refrigerant, and which reduces failure of a compressor by improving oil return.SOLUTION: The heat transfer tube 20 with a grooved inner surface is used for an evaporator provided in a heat pump water heater that uses carbon dioxide as a refrigerant containing 0.1 mol% or more of polyalkylene glycol-based refrigerating machine oil, and that is used at a heat flux (q) of 10 kW/m. The heat transfer tube 20 with the grooved inner surface includes a main tube 21 which includes a plurality of spiral grooves 22 arranged in parallel to each other on the inner peripheral surface and a plurality of fins 23 arranged between the plurality of grooves 22. The inner diameter (D) of the main tube 21 is 2.4 to 6.8 mm, the height (HF) of the fin 23 is 0.1 to 0.25 mm, and 0.04≤W/ID≤0.1 is satisfied when Wis a bottom width of the plurality of grooves 22.

Description

本発明は、内面溝付伝熱管に関する。特に、本発明は、二酸化炭素を冷媒として用いる内面溝付伝熱管に関する。   The present invention relates to an internally grooved heat transfer tube. In particular, the present invention relates to an internally grooved heat transfer tube using carbon dioxide as a refrigerant.

従来、空調機、カーエアコン、冷蔵庫、冷凍機、給湯器、及び自動販売機等が備える熱交換器にはフロン系の冷媒が使用されていた。しかし、フロン系の冷媒は地球温暖化への影響が懸念されており、毒性及び可燃性がなく安全で、安価で、更に環境への負荷が小さく、熱物性に優れた自然冷媒である二酸化炭素(CO)が注目されている。また、特許文献1では、二酸化炭素は表面張力が小さいため、フロン系冷媒よりも気泡が発生しやすく、核沸騰が促進されるため、冷媒として二酸化炭素を使用すると、フロン系冷媒を使用した場合に比べて伝熱性能が向上する、と記載されている。 Conventionally, chlorofluorocarbon refrigerants have been used in heat exchangers provided in air conditioners, car air conditioners, refrigerators, refrigerators, water heaters, vending machines, and the like. However, chlorofluorocarbon-based refrigerants are feared to have an impact on global warming, and are carbon dioxide, a natural refrigerant that is safe and inexpensive without toxicity and flammability, has low environmental impact, and has excellent thermal properties. (CO 2 ) is drawing attention. Further, in Patent Document 1, since carbon dioxide has a small surface tension, bubbles are more likely to be generated than chlorofluorocarbon refrigerants, and nucleate boiling is promoted. Therefore, when carbon dioxide is used as a refrigerant, a fluorocarbon refrigerant is used. It is described that the heat transfer performance is improved as compared with the above.

一方、CO冷媒の冷房、及び暖房の単純サイクルにおける理論性能が低いという問題に対し、伝熱管の蒸発性能を向上させる方法として内面に溝を形成して伝熱面積を拡大する方法がある。しかしながら、伝熱管内を流通するCO冷媒中には、圧縮機用の潤滑剤である冷凍機油が含まれており、単にフロン系冷媒で使用されている内面溝付管をCO冷媒用として使用しても、十分な伝熱性能は得られない。 On the other hand, as a method for improving the evaporation performance of the heat transfer tube, there is a method of expanding the heat transfer area by forming a groove on the inner surface to solve the problem that the theoretical performance in the simple cycle of cooling and heating of the CO 2 refrigerant is low. However, the CO 2 refrigerant that circulates in the heat transfer pipe contains refrigeration oil that is a lubricant for the compressor, and the inner grooved pipe used in the chlorofluorocarbon refrigerant is simply used for the CO 2 refrigerant. Even if it is used, sufficient heat transfer performance cannot be obtained.

特許文献1は、このような問題点を鑑み、冷凍機油を含む二酸化炭素冷媒を使用する場合であっても圧力損失が増加せず、蒸発伝熱性能が優れた蒸発器用内面溝付伝熱管を提供している。   In view of such problems, Patent Document 1 discloses an inner grooved heat transfer tube for an evaporator that does not increase pressure loss and has excellent evaporation heat transfer performance even when a carbon dioxide refrigerant containing refrigeration oil is used. providing.

また、非特許文献1には、内面溝付管の蒸発性能に関して記載されており、単管としての評価は25kW/m以上で実施されているものの、実際にCO冷媒を用いたヒートポンプ給湯機では、その熱流束(q)は定格仕様で5kW/m程度と非常に小さいことが記載されている。試験条件によっては核沸騰の影響を過大に評価してしまうので、CO冷媒ヒートポンプ給湯機のような低熱流束(q)条件では最適なフィン形状とならない可能性があると考えられる。 Non-Patent Document 1 describes the evaporation performance of an internally grooved tube, and although evaluation as a single tube is carried out at 25 kW / m 2 or more, a heat pump hot water supply that actually uses CO 2 refrigerant. The machine describes that the heat flux (q) is as small as about 5 kW / m 2 in the rated specification. Since the influence of nucleate boiling is overestimated depending on the test conditions, it is considered that there is a possibility that an optimum fin shape may not be obtained under the low heat flux (q) condition such as a CO 2 refrigerant heat pump water heater.

特許第4386813号公報Japanese Patent No. 4386813

李相武、佐伯主税他3名、「自然冷媒CO2の管内蒸発伝熱促進に関する実験的研究」銅及び銅合金技術研究会(平成16年11月12日、13日実施)、第44回講演大会概要集(p79、80)Li Sobu, Saeki Main Tax and three others, "Experimental Study on Evaporative Heat Transfer Enhancement of Natural Refrigerant CO2 in Pipes" Copper and Copper Alloy Technology Workshop (November 12 and 13, 2004), 44th Lecture Meeting Overview (p79, 80)

上記のとおり特許文献1は、CO冷媒の特徴として核沸騰が促進されることを示している。一般に、核沸騰は熱流束(q)が大きくなるほど効果が大きくなるものの、特許文献1には熱流束(q)の影響に関しては記載がなく、数値限定の根拠で熱流束(q)条件について考慮されていない。 As described above, Patent Document 1 shows that nucleate boiling is promoted as a characteristic of the CO 2 refrigerant. In general, although the effect of nucleate boiling increases as the heat flux (q) increases, Patent Document 1 does not describe the influence of the heat flux (q), and considers the heat flux (q) condition on the basis of numerical limitation. It has not been.

また、非特許文献1に記載のCO冷媒ヒートポンプ給湯機では、冷凍機油として、高温で安定性の高いポリアルキレングリコール(PAG)が使用されている。しかし、PAGはCOと相溶性が低く、オイル戻りが悪いので、伝熱管内に滞留する冷凍機油が多くなり、油膜の存在も核沸騰の抑制に大きく影響する。オイル戻りが悪いと、圧縮機の潤滑が悪くなり故障の原因となるので、この防止策として圧縮機の吐出側にオイルセパレータを設置することが考えられる。しかし、コストアップやスペースの問題などがあり、特に家庭用のCO冷媒ヒートポンプ給湯機では現実的ではなく、実際にはオイルが圧縮機からなくならないように多めにPAGを封入している。 In the CO 2 refrigerant heat pump water heater described in Non-Patent Document 1, polyalkylene glycol (PAG) that is highly stable at high temperature is used as the refrigeration oil. However, since PAG has low compatibility with CO 2 and oil return is poor, more refrigeration oil stays in the heat transfer tube, and the presence of the oil film greatly affects the suppression of nucleate boiling. If the oil return is poor, the lubrication of the compressor will be poor and cause failure, so it is conceivable to install an oil separator on the discharge side of the compressor as a preventive measure. However, there is a problem of cost increase and space, which is not practical in a household CO 2 refrigerant heat pump water heater, and more PAG is actually enclosed so that oil does not disappear from the compressor.

したがって、本発明の目的は、CO冷媒を用いたヒートポンプ機器が低熱流束(q)条件で使用され、ポリアルキレングリコール系冷凍機油が冷媒中に混入した場合においても優れた蒸発性能を有し、オイル戻りを改善することで圧縮機が故障するリスクを軽減することができる内面溝付伝熱管を提供することにある。 Therefore, an object of the present invention is to have an excellent evaporation performance even when a heat pump device using a CO 2 refrigerant is used under a low heat flux (q) condition and a polyalkylene glycol refrigerating machine oil is mixed in the refrigerant. An object of the present invention is to provide an internally grooved heat transfer tube that can reduce the risk of a compressor failure by improving oil return.

本発明は、上記目的を達成するため、ポリアルキレングリコール系冷凍機油の含有量が0.1質量%以上である二酸化炭素を冷媒として用い、かつ、熱流束(q)が10kW/m未満で用いられるヒートポンプ給湯機が備える蒸発器に用いられる内面溝付伝熱管であって、内周面に互いに平行に設けられる複数のらせん状の溝と、前記複数の溝の間に位置する複数のフィンとを有する主管を備え、前記主管の内径(ID)が、2.4mm以上6.8mm以下であり、前記フィンの高さ(HF)が、0.1mm以上0.25mm以下であり、前記複数の溝の底の幅をWとした場合に、0.04≦W/ID≦0.1を満たす内面溝付伝熱管が提供される。 In order to achieve the above object, the present invention uses carbon dioxide having a content of polyalkylene glycol refrigerating machine oil of 0.1% by mass or more as a refrigerant, and has a heat flux (q) of less than 10 kW / m 2 . A heat transfer tube with an inner surface groove used in an evaporator provided in the heat pump water heater used, and a plurality of spiral grooves provided in parallel to each other on an inner peripheral surface, and a plurality of fins positioned between the plurality of grooves The inner diameter (ID) of the main pipe is 2.4 mm or more and 6.8 mm or less, and the height (HF) of the fin is 0.1 mm or more and 0.25 mm or less. An inner-grooved heat transfer tube that satisfies 0.04 ≦ W 3 /ID≦0.1 is provided where the width of the bottom of the groove is W 3 .

また、上記内面溝付伝熱管は、前記溝と前記フィンとのなす角度が、15°以上25°以下であってもよい。   Further, in the inner surface grooved heat transfer tube, an angle formed between the groove and the fin may be 15 ° or more and 25 ° or less.

また、上記内面溝付伝熱管において、前記複数のフィンが、30個以上50個以下であってもよい。   Further, in the inner surface grooved heat transfer tube, the plurality of fins may be 30 or more and 50 or less.

本発明に係る内面溝付伝熱管によれば、CO冷媒を用いたヒートポンプ機器が低熱流束(q)条件で使用され、ポリアルキレングリコール系冷凍機油が冷媒中に混入した場合においても優れた蒸発性能を有し、オイル戻りを改善することで圧縮機が故障するリスクを軽減することができる内面溝付伝熱管を提供できる。 According to the internally grooved heat transfer tube according to the present invention, the heat pump device using the CO 2 refrigerant is used under a low heat flux (q) condition, and is excellent even when the polyalkylene glycol type refrigeration oil is mixed in the refrigerant. It is possible to provide an internally grooved heat transfer tube that has evaporation performance and can reduce the risk of compressor failure by improving oil return.

本発明の実施の形態に係る内面溝付伝熱管を用いて構成されるヒートポンプ給湯機の構成の概要図である。It is a schematic diagram of the structure of the heat pump water heater comprised using the inner surface grooved heat exchanger tube which concerns on embodiment of this invention. (a)及び(b)は、本実施の形態に係る内面溝付伝熱管の管軸方向に垂直な断面図である。(A) And (b) is sectional drawing perpendicular | vertical to the tube-axis direction of the heat exchanger tube with an inner surface groove | channel which concerns on this Embodiment. 内面溝付伝熱管の一部を管軸に沿って切り開いた場合の概要図である。It is a schematic diagram at the time of cutting out a part of internally grooved heat exchanger tube along a tube axis. 外径7mm、底肉厚0.45mm(内径6.1mm)の燐脱酸銅からなる内面溝付管と同等の耐圧となる内径と肉厚の関係を示す図である。It is a figure which shows the relationship between the internal diameter and wall thickness which become a pressure | voltage resistant equivalent to the inner surface grooved pipe | tube which consists of phosphorus deoxidized copper of outer diameter 7mm and bottom wall thickness 0.45mm (inner diameter 6.1mm). 内面溝付伝熱管の加工方法を説明するための内面溝付き管加工装置の概略構成の断面図である。It is sectional drawing of schematic structure of the internally grooved tube processing apparatus for demonstrating the processing method of an internally grooved heat exchanger tube. 実際に使用されているCO冷媒ヒートポンプ給湯機の蒸発器用分流器の外観図である。Is an external view of the evaporator shunts are actually used CO 2 refrigerant heat pump water heater. (a)は伝熱管の外径が7mmの分流器の分流部の断面図であり、(b)は伝熱管の外径が3mmの分流器の想定断面図である。(A) is sectional drawing of the shunt part of a shunt with the outer diameter of a heat exchanger tube being 7 mm, (b) is sectional drawing assumed of the shunt with the outer diameter of a heat exchanger tube being 3 mm. 分留器に分留前後の銅管を挿入した場合の概要図である。It is a schematic diagram at the time of inserting the copper pipe before and after fractionation into a fractionator. 2列30段2パス熱交換器の模式図である。It is a schematic diagram of a two-row 30-stage two-pass heat exchanger. 内径をパラメータにとり、パス数を10とした場合の、外径7mm(内径6.1mm)×2パスに対する圧力損失比を計算した結果を示す図である。It is a figure which shows the result of having calculated the pressure loss ratio with respect to 7 mm of outer diameters (inner diameter of 6.1 mm) x 2 path | passes when the inside diameter is made into a parameter and the number of passes is 10. 溝底幅と内径との比(W/ID)を0.04で一定にしたときの、内径6.8mmと内径2.4mmの伝熱管について、フィン高さと内表面積平滑管比の計算結果を示す図である。Calculation result of fin height and inner surface area smooth tube ratio for heat transfer tube with inner diameter of 6.8mm and inner diameter of 2.4mm when the ratio of groove bottom width to inner diameter (W 3 / ID) is constant at 0.04 FIG. 圧縮機の回転数比と冷凍機油の冷媒への混入量を測定した結果を示す図である。It is a figure which shows the result of having measured the rotation speed ratio of a compressor, and the mixing amount to the refrigerant | coolant of refrigeration oil. 内径とフィン高さが6.8mm、0.25mmの場合と2.4mm、0.1mmの場合について、同じフィン形状で、W/IDと内表面積平滑管比を計算した結果を示す図である。The inner diameter and the fin height is 6.8 mm, if the 0.25mm and 2.4 mm, for the case of 0.1 mm, with the same fin-shaped, a diagram showing the results of calculating the W 3 / ID and the inner surface smooth tube ratio is there. 測定装置の概略図である。It is the schematic of a measuring apparatus. 伝熱管測定部(テストセクション)の概要図である。It is a schematic diagram of a heat exchanger tube measurement part (test section). 試験結果をフィン数と熱伝達率平滑管比との関係として示す図である。It is a figure which shows a test result as a relationship between the number of fins and a heat transfer rate smooth tube ratio. /IDと熱伝達率平滑管比/単重平滑管比との関係を示す図である。W 3 / ID is a diagram showing the relationship between the heat transfer coefficient smooth tube ratio / single heavy smooth tube ratio.

[実施の形態]
図1は、本発明の実施の形態に係る内面溝付伝熱管を用いて構成されるヒートポンプ給湯機の構成の概要を示す。
[Embodiment]
FIG. 1: shows the outline | summary of a structure of the heat pump water heater comprised using the heat transfer tube with an inner surface groove | channel which concerns on embodiment of this invention.

ヒートポンプ給湯機は、圧縮機11と、圧縮機11に配管を介して接続されるガスクーラ12と、ガスクーラ12に配管を介して接続される膨張弁13と、膨張弁13に配管を介して接続される蒸発器14とを備える。蒸発器14と圧縮機11とについても、配管を介して互いに接続される。圧縮機11、ガスクーラ12、膨張弁13、蒸発器14、及び配管により冷凍サイクルが構成される。また、冷媒である二酸化炭素冷媒が冷凍サイクル内に封入される。そして、二酸化炭素冷媒は、放熱側(すなわち、圧縮機11の吐出部からガスクーラ12を介し、膨張弁13の入口部まで)において超臨界状態になる。なお、図1では図示しない内面溝付伝熱管20は、ガスクーラ12及び/又は蒸発器14に用いられる。   The heat pump water heater is connected to the compressor 11, the gas cooler 12 connected to the compressor 11 via piping, the expansion valve 13 connected to the gas cooler 12 via piping, and the expansion valve 13 via piping. The evaporator 14 is provided. The evaporator 14 and the compressor 11 are also connected to each other through piping. A compressor 11, a gas cooler 12, an expansion valve 13, an evaporator 14, and piping constitute a refrigeration cycle. In addition, carbon dioxide refrigerant, which is a refrigerant, is enclosed in the refrigeration cycle. The carbon dioxide refrigerant is in a supercritical state on the heat radiation side (that is, from the discharge part of the compressor 11 to the inlet part of the expansion valve 13 through the gas cooler 12). 1 is used for the gas cooler 12 and / or the evaporator 14.

ヒートポンプ給湯機の動作の概略は以下のとおりである。   The outline of the operation of the heat pump water heater is as follows.

まず、圧縮機11で圧縮された二酸化炭素冷媒(CO冷媒)は高温高圧状態となり、ガスクーラ12へ導入される。このとき、圧縮機11の潤滑油である冷凍機油もCO冷媒と同時にガスクーラ12へ導入される。ガスクーラ12では、超臨界状態であるCO冷媒は気液二相状態とはならず、CO冷媒の熱が水等に放熱される。次に、CO冷媒は膨張弁13で減圧され、低圧の気液二相状態になり、この状態で蒸発器14へ導入される。蒸発器14でCO冷媒は、空気から吸熱してガス状態になり、再び圧縮機11に吸入される。 First, the carbon dioxide refrigerant (CO 2 refrigerant) compressed by the compressor 11 enters a high-temperature and high-pressure state and is introduced into the gas cooler 12. At this time, the refrigerating machine oil which is the lubricating oil of the compressor 11 is also introduced into the gas cooler 12 simultaneously with the CO 2 refrigerant. In the gas cooler 12, the CO 2 refrigerant in the supercritical state does not enter a gas-liquid two-phase state, and the heat of the CO 2 refrigerant is radiated to water or the like. Next, the CO 2 refrigerant is decompressed by the expansion valve 13 to be in a low-pressure gas-liquid two-phase state, and is introduced into the evaporator 14 in this state. In the evaporator 14, the CO 2 refrigerant absorbs heat from the air to become a gas state and is sucked into the compressor 11 again.

このようなサイクルを繰り返すことにより、ガスクーラ12において放熱による加熱作用が起こり、蒸発器14において吸熱による冷却作用が起こる。なお、CO冷媒で用いられるポリアルキレングリコール系冷凍機油は、高温になりやすいCO冷媒と併用しても熱安定性に優れる等の特長があるものの、CO冷媒との相溶性が悪いことからCO冷媒が蒸発する際に冷媒気相、冷媒液相、冷凍機油のように三相分離しやすい。三相分離しやすいことからポリアルキレングリコール系冷凍機油の油膜が形成され、この油膜が熱抵抗になるので、冷凍機油が少しでも混入すると蒸発性能は低下する。また、蒸発器14は、例えば、内径が6.1mm、長さ800mmの内面溝付伝熱管が2列30段で配置されて構成される。この場合、定格能力が6kWのCO冷媒ヒートポンプ給湯機の蒸発器での能力は4.6kW程度であるので、熱流束(q)は5kW/m程度になる。定格能力が4.5kWの機種の場合は、蒸発器の能力は更に小さいので、熱流束(q)もより小さくなる。 By repeating such a cycle, the gas cooler 12 is heated by heat dissipation and the evaporator 14 is cooled by heat absorption. Incidentally, polyalkylene glycol refrigerating machine oil used in the CO 2 refrigerant, but also in combination with prone CO 2 refrigerant to a high temperature has a feature such as excellent thermal stability, compatibility with the CO 2 refrigerant is poor When the CO 2 refrigerant evaporates from the refrigerant, it is easy to separate into three phases like a refrigerant gas phase, a refrigerant liquid phase, and refrigeration oil. Since it is easy to separate three phases, an oil film of polyalkylene glycol refrigerating machine oil is formed, and this oil film becomes a heat resistance. Therefore, if the refrigerating machine oil is mixed even a little, the evaporation performance is lowered. Further, the evaporator 14 is configured, for example, by arranging two rows and 30 stages of internally grooved heat transfer tubes having an inner diameter of 6.1 mm and a length of 800 mm. In this case, since the capacity of the evaporator of the CO 2 refrigerant heat pump water heater having a rated capacity of 6 kW is about 4.6 kW, the heat flux (q) is about 5 kW / m 2 . In the case of a model with a rated capacity of 4.5 kW, the capacity of the evaporator is smaller, so that the heat flux (q) is also smaller.

図2Aの(a)及び(b)は、本実施の形態に係る内面溝付伝熱管の管軸方向に垂直な断面の概要を示す。具体的に、図2Aの(a)は、内面溝付伝熱管の断面の概要を示し、図2Aの(b)は、図2Aの(a)の一点鎖線で囲んだ領域を拡大した部分断面を示す。また、図2Bは、内面溝付伝熱管の一部を管軸に沿って切り開いた場合の概要を示す。   FIGS. 2A and 2B show an outline of a cross section perpendicular to the tube axis direction of the internally grooved heat transfer tube according to the present embodiment. Specifically, (a) in FIG. 2A shows an outline of the cross section of the internally grooved heat transfer tube, and (b) in FIG. 2A is a partial cross section in which the region surrounded by the one-dot chain line in (a) in FIG. 2A is enlarged. Indicates. FIG. 2B shows an outline when a part of the internally grooved heat transfer tube is cut along the tube axis.

図2Aの(a)及び図2Bに示すように、本実施の形態に係る内面溝付伝熱管20は、内周面に互いに平行に一定の間隔で設けられる複数のらせん状の溝22と、複数の溝22の間に位置する断面が山形状の複数のフィン23とを有する主管21を備える。一のフィン23と一のフィン23に隣接する他のフィン23との間に溝22が形成される。本実施の形態においては、主管21の内径(ID)が、2.4mm以上6.8mm以下であり、フィンの高さ(HF)、すなわち、溝22の深さが0.1mm以上0.25mm以下であり、複数の溝の底の幅をWとした場合に、0.04≦W/ID≦0.1を満たす。なお、主管21は、例えば、銅又は銅合金等の金属材料を用いて形成される。 As shown in FIG. 2A (a) and FIG. 2B, the inner surface grooved heat transfer tube 20 according to the present embodiment includes a plurality of spiral grooves 22 provided on the inner peripheral surface in parallel at regular intervals, A main pipe 21 having a plurality of fins 23 having a mountain-like cross section located between the plurality of grooves 22 is provided. A groove 22 is formed between one fin 23 and another fin 23 adjacent to the one fin 23. In the present embodiment, the inner diameter (ID) of the main pipe 21 is 2.4 mm or more and 6.8 mm or less, and the fin height (HF), that is, the depth of the groove 22 is 0.1 mm or more and 0.25 mm. The following is satisfied, and 0.04 ≦ W 3 /ID≦0.1 is satisfied when the width of the bottom of the plurality of grooves is W 3 . The main pipe 21 is formed using a metal material such as copper or a copper alloy, for example.

また、内面溝付管20の外径を「OD」、主管21の肉厚を「TW」とした場合に、内径「ID」は、「ID=OD−2×TW」で表すことができる。なお、フィン23の根元、すなわち、フィン23と主管21の内周面との接点部分におけるフィン23の根元幅を「W」とする。更に、図2Bを参照する。直状の内面溝付伝熱管20の長手方向に対する溝22及びフィン23のなす角度(以下、「ねじれ角」という)を本実施の形態においては「β」とする。 Further, when the outer diameter of the inner grooved tube 20 is “OD” and the thickness of the main tube 21 is “TW”, the inner diameter “ID” can be expressed by “ID = OD−2 × TW”. The root width of the fin 23, that is, the root width of the fin 23 at the contact portion between the fin 23 and the inner peripheral surface of the main pipe 21 is defined as “W 1 ”. Still referring to FIG. In this embodiment, an angle formed by the groove 22 and the fin 23 with respect to the longitudinal direction of the straight inner-surface grooved heat transfer tube 20 (hereinafter referred to as “twist angle”) is “β”.

本実施の形態に係る内面溝付伝熱管20は、例えば、ヒートポンプ給湯機が備える蒸発器に用いることができる。また、このヒートポンプ給湯機は、ポリアルキレングリコール系冷凍機油の含有量が0.1質量%以上である二酸化炭素を冷媒として用い、かつ、熱流束(q)が10kW/m未満で用いることもできる。 The internally grooved heat transfer tube 20 according to the present embodiment can be used, for example, in an evaporator provided in a heat pump water heater. In addition, this heat pump water heater uses carbon dioxide having a polyalkylene glycol refrigerating machine oil content of 0.1% by mass or more as a refrigerant and a heat flux (q) of less than 10 kW / m 2. it can.

(内面溝付伝熱管20のIDの上限について)
本実施の形態において主管21の内径(ID)は2.4mm以上6.8mm以下に制御される。この理由は以下のとおりである。
(Regarding the upper limit of the ID of the heat transfer tube 20 with inner groove)
In the present embodiment, the inner diameter (ID) of the main pipe 21 is controlled to be not less than 2.4 mm and not more than 6.8 mm. The reason for this is as follows.

図3は、外径7mm、底肉厚0.45mm(内径6.1mm)の燐脱酸銅からなる内面溝付管と同等の耐圧となる内径と肉厚の関係を示す。   FIG. 3 shows the relationship between the inner diameter and the wall thickness that provides a pressure resistance equivalent to that of an internally grooved tube made of phosphorous-deoxidized copper having an outer diameter of 7 mm and a bottom wall thickness of 0.45 mm (inner diameter 6.1 mm).

図3を参照する。内径が大きくなれば耐圧上、肉厚を大きくしなければならず、重量が増加する要因になる。また、内径が6.8mmを超えると底肉厚は0.5mmを超える。底肉厚が大きくなると、内面溝の加工性が悪くなり、フィン形状の自由度がなくなり、コストアップにつながるだけでなく、伝熱管の外表面品質も低下する。したがって、内径(ID)の上限は6.8mmが好ましい。   Please refer to FIG. If the inner diameter is increased, the wall thickness must be increased in terms of pressure resistance, which increases the weight. If the inner diameter exceeds 6.8 mm, the bottom wall thickness exceeds 0.5 mm. When the bottom wall thickness is increased, the workability of the inner surface groove is deteriorated, the degree of freedom of the fin shape is lost and not only the cost is increased, but also the outer surface quality of the heat transfer tube is deteriorated. Therefore, the upper limit of the inner diameter (ID) is preferably 6.8 mm.

図4は、内面溝付伝熱管の加工方法を説明するための内面溝付き管加工装置の概略構成の断面を示す。   FIG. 4 shows a cross section of a schematic configuration of an internally grooved tube processing apparatus for explaining a method of processing an internally grooved heat transfer tube.

内面溝付き管加工装置においては、溝付きプラグ4とフローティングプラグ2とが回転自由な状態で連結棒3を介して接続され、銅管1の管内に挿入されている。銅管1を引き抜くことでフローティングプラグ2が引き抜きダイス10の位置で引き留められ、それにより、溝付きプラグ4の引き抜き方向の位置が固定される。この固定部分の銅管1の外周面を押圧手段としてのボール6若しくはロールが公転することで、管内に溝付きプラグ4の溝5の形状に応じたフィン(溝8)を形成し、この溝8を有する内面溝付管9を更に引き抜きダイス7により、内面溝付き管9を縮径し、内面溝付伝熱管20を作製する。   In the internally grooved tube processing apparatus, the grooved plug 4 and the floating plug 2 are connected via a connecting rod 3 in a freely rotating state and inserted into the tube of the copper tube 1. By pulling out the copper tube 1, the floating plug 2 is held at the position of the drawing die 10, thereby fixing the position of the grooved plug 4 in the drawing direction. A ball 6 or a roll as a pressing means revolves around the outer peripheral surface of the copper tube 1 of the fixed portion, thereby forming a fin (groove 8) corresponding to the shape of the groove 5 of the grooved plug 4 in the pipe. The inner surface grooved tube 9 having 8 is further drawn out, and the inner surface grooved tube 9 is reduced in diameter by the die 7 to produce the inner surface grooved heat transfer tube 20.

図4で、ボール6で銅管1をプラグ4の溝に押しつけても底肉厚が厚いため半径方向に力が伝わりにくく、軸方向に伸びてしまう。そのため、内面溝付管9の底肉厚は所望の値より小さくなってしまうため、銅管1の肉厚を余計に大きくしなければならない。このとき、ボール6による縮径量は増加するため、伝熱管の外表面品質が低下する。   In FIG. 4, even if the copper tube 1 is pressed against the groove of the plug 4 with the ball 6, the bottom wall thickness is large, so that the force is not easily transmitted in the radial direction and the axial direction extends. For this reason, the bottom wall thickness of the inner grooved tube 9 becomes smaller than a desired value, and therefore the thickness of the copper tube 1 must be increased excessively. At this time, since the amount of diameter reduction by the ball 6 increases, the outer surface quality of the heat transfer tube deteriorates.

(内面溝付伝熱管20のIDの下限について)
内径が小さくなると、そのままのパス数では圧力損失が大きくなり、COPが低下してしまうため、熱交換器のパスを増加させることを要する。しかしながら、パス数が多すぎると分流器コストがアップする。なお、パス数とは冷媒が流れる経路数のことで、複数本の伝熱管が全て連続して接続されている場合は1パス、連続して接続されている経路が2つある場合は2パスという。例えば、一般的なCO冷媒ヒートポンプ給湯機用伝熱管の外径7mmと比較し、細径化しても伝熱面積が同等で圧力損失が同等となる場合を考える。
(Regarding the lower limit of the ID of the heat transfer tube 20 with the inner groove)
If the inner diameter is reduced, the pressure loss increases with the number of passes as it is, and the COP is lowered. Therefore, it is necessary to increase the number of passes of the heat exchanger. However, if the number of passes is too large, the shunt cost increases. Note that the number of paths is the number of paths through which the refrigerant flows. If all of the heat transfer tubes are connected continuously, one path is used. If there are two paths connected continuously, two paths are used. That's it. Consider, for example, a case where the heat transfer area is the same and the pressure loss is the same even if the diameter is reduced, compared to a 7 mm outer diameter of a general heat transfer tube for a CO 2 refrigerant heat pump water heater.

図5Aは、実際に使用されているCO冷媒ヒートポンプ給湯機の蒸発器用分流器の外観図であり、図5Bの(a)は、伝熱管の外径が7mmの分流器の分流部の断面を示し、図5Bの(b)は、伝熱管の外径が3mmの分流器の想定断面を示す。また、図5Cは、分留器に分留前後の銅管を挿入した場合の概要を示す。 FIG. 5A is an external view of an evaporator flow divider of a CO 2 refrigerant heat pump water heater that is actually used, and FIG. 5B is a cross-sectional view of a flow dividing portion of a flow divider having an outer diameter of a heat transfer tube of 7 mm. (B) of FIG. 5B shows the assumption cross section of the flow shunt whose outer diameter of a heat exchanger tube is 3 mm. Moreover, FIG. 5C shows the outline at the time of inserting the copper pipe before and after fractionation into the fractionator.

図5Aでは、内側の円内が伝熱管が挿入され、分流前の冷媒は下から分流器に流入し、分流部で複数のパスに分かれて上から出て行く。図5Bの(b)に示す外径3mmの分流部断面図は、ロウ付け信頼性を考慮して分流部の寸法間隔等を略同程度に保って描かれており、実装密度を考えると外径3mm付近では、現行の分流器と同じサイズでは10パス程度が限界である。これ以上のパスになると分流器を大きくするか、分流器を増やすことになり、いずれもコストとスペースの増大とにつながる。そこで、現実的なパス数(10パス以下)で細径管熱交換器を構成したときの圧力損失を、以下、平滑管について計算して評価する。   In FIG. 5A, a heat transfer tube is inserted in the inner circle, and the refrigerant before diversion flows into the flow divider from below, and is divided into a plurality of paths at the diversion portion and goes out from above. The cross-sectional view of the flow dividing portion having an outer diameter of 3 mm shown in FIG. 5B (b) is drawn with the dimensional spacing of the flow dividing portions kept substantially the same in consideration of brazing reliability. In the vicinity of the diameter of 3 mm, about 10 passes is the limit for the same size as the current shunt. If the path is longer than this, the size of the shunt is increased or the number of shunts is increased, both of which lead to an increase in cost and space. Therefore, the pressure loss when the small-diameter tube heat exchanger is configured with a realistic number of passes (10 passes or less) will be calculated and evaluated for smooth tubes hereinafter.

水平に設置された伝熱管内の圧力損失ΔPは加速損失ΔPaと摩擦損失ΔPFの和として表される。   The pressure loss ΔP in the heat transfer tube installed horizontally is expressed as the sum of the acceleration loss ΔPa and the friction loss ΔPF.

Figure 2012122692
Figure 2012122692

加速損失ΔPaは、次の式(2)で表される。   The acceleration loss ΔPa is expressed by the following equation (2).

Figure 2012122692
Figure 2012122692

ここで、Gは1パスあたりの冷媒流束(kg/(ms))、ρLは冷媒の液密度(kg/m)、ρvは冷媒の蒸気密度(kg/m)、xeは出口乾き度である。 Here, G is the refrigerant flux per pass (kg / (m 2 s)), ρL is the refrigerant liquid density (kg / m 3 ), ρv is the refrigerant vapor density (kg / m 3 ), and xe is The degree of dryness at the exit.

摩擦損失ΔPFを求めるために、まず二相流摩擦損失勾配(ΔP/Δz)Fを求める。(ΔP/Δz)Fは、液相成分あるいは気相成分だけが単相流として流れたときの摩擦損失勾配(ΔP/Δz)L、(ΔP/Δz)Vに対する比として求められる(式(3))。なお、単相流の摩擦損失勾配は式(4)より求められる。   In order to obtain the friction loss ΔPF, first, a two-phase flow friction loss gradient (ΔP / Δz) F is obtained. (ΔP / Δz) F is obtained as a ratio to the friction loss gradient (ΔP / Δz) L, (ΔP / Δz) V when only the liquid phase component or the gas phase component flows as a single-phase flow (formula (3 )). In addition, the friction loss gradient of the single-phase flow can be obtained from Equation (4).

Figure 2012122692
Figure 2012122692

Figure 2012122692
Figure 2012122692

ここで、式(4)のIDは管内径(mm)、vは単相(液or蒸気)の流速、fは管摩擦係数で、例えばBlasiusの式(5)を用いる。   Here, ID in the equation (4) is the inner diameter (mm) of the tube, v is the flow velocity of the single phase (liquid or steam), f is the coefficient of tube friction, and for example, the equation (5) of Blasius is used.

Figure 2012122692
Figure 2012122692

式(3)のΦ 、Φは二相流倍増係数であり、次のChisholm−Lairdの式(6)及び式(7)で表される。 Φ L 2 and Φ V in Equation (3) are two-phase flow doubling coefficients, and are expressed by the following Chisholm-Laird Equations (6) and (7).

Figure 2012122692
Figure 2012122692

Figure 2012122692
Figure 2012122692

ここで、XはLockhart−Martinelliのパラメータで、次のColburnの式(8)で表される。   Here, X is a Lockhart-Martinelli parameter and is expressed by the following Colburn equation (8).

Figure 2012122692
Figure 2012122692

ここで、xは二相冷媒の乾き度で入口/出口の平均乾き度を用いた。また、μLは液冷媒の粘度(Pas)であり、μVは蒸気冷媒の粘度(Pas)である。   Here, x is the dryness of the two-phase refrigerant, and the average dryness of the inlet / outlet is used. Further, μL is the viscosity (Pas) of the liquid refrigerant, and μV is the viscosity (Pas) of the vapor refrigerant.

総伝熱面積が等しく、かつ、パス数を2パスから10パスに変えた場合、1パスあたりの伝熱管長さは、次の式(9)で求まる。   When the total heat transfer area is the same and the number of passes is changed from 2 passes to 10 passes, the heat transfer tube length per pass is obtained by the following equation (9).

Figure 2012122692
Figure 2012122692

ここで、IDは内径(mm)であり、Lは1パスあたりの伝熱管長さ(mm)であり、Nはパス数である。   Here, ID is the inner diameter (mm), L is the heat transfer tube length (mm) per pass, and N is the number of passes.

比較対象とした内径6.1mmの伝熱管で構成される熱交換器は、1本の伝熱管長さが800mm、2列30段2パスとし、外径3mm付近の伝熱管の1パスあたりの長さを式(9)より算出する。   The heat exchanger composed of a heat transfer tube with an inner diameter of 6.1 mm used as a comparison object has a length of one heat transfer tube of 800 mm, two rows and 30 stages, and a heat transfer tube with an outer diameter of about 3 mm per pass. The length is calculated from equation (9).

図6は、2列30段2パス熱交換器の模式的な図を示す。   FIG. 6 shows a schematic diagram of a two-row 30-stage two-pass heat exchanger.

フィン材が垂直に多数設けられており、伝熱管はこれらを貫く形となっている。更に、伝熱管は、U字型に繰り返し変形され、同一平面上にフィン材に納められており、この平面の数を列と呼ぶ。図6では、手前と奥の2列の構成となっている。段数は、伝熱管の縦方向に並んだ数を示すものであり、上記U字部分の個数+1個等となる。図6においては、30段となっている。2パスは図6の模式図では、表側の列と裏側の列とに分流され、冷媒の流れる経路が2つになっている。なお、この例は、伝熱管の長さを計算する一例として挙げたものであり、パスの構成や、列数、段数を適宜、変更することができる。また、式(3)のzに代入して摩擦損失ΔPFを算出できる。   A large number of fin members are provided vertically, and the heat transfer tube has a shape penetrating them. Further, the heat transfer tube is repeatedly deformed into a U-shape and is stored in the fin material on the same plane, and the number of the planes is called a row. In FIG. 6, it has a two-row configuration in front and back. The number of stages indicates the number of heat transfer tubes arranged in the vertical direction, and is the number of the U-shaped portions + 1. In FIG. 6, there are 30 stages. In the schematic diagram of FIG. 6, the two paths are divided into a front row and a back row, and there are two paths through which the refrigerant flows. This example is given as an example for calculating the length of the heat transfer tube, and the configuration of the path, the number of columns, and the number of stages can be changed as appropriate. Further, the friction loss ΔPF can be calculated by substituting for z in the equation (3).

図7は、内径をパラメータにとり、パス数を10とした場合の、外径7mm(内径6.1mm)×2パスに対する圧力損失比を計算した結果を示す。   FIG. 7 shows the result of calculating the pressure loss ratio for an outer diameter of 7 mm (inner diameter of 6.1 mm) × 2 passes when the inner diameter is used as a parameter and the number of passes is 10.

内径2.4mmより小さくなると内径6.1mmにおける圧力損失より大きくなるので、内径は2.4mm以上にすることが好ましい。   If the inner diameter is smaller than 2.4 mm, the pressure loss is larger than the inner diameter of 6.1 mm. Therefore, the inner diameter is preferably 2.4 mm or more.

(フィン高さ[HF]の上限について)
溝深さ、すなわち、フィン高さHFが0.25mmを超えるようなフィンを形成すると、フィンの根元幅Wが広くなり、結果として溝底幅Wが狭くなるので、冷凍機油の滞留が生じ、熱伝達率が低下する。したがって、HFは0.25mm以下が好ましい。
(About the upper limit of fin height [HF])
Groove depth, i.e., when the fin height HF to form a fin exceeding 0.25 mm, it wider base width W 1 of the fins, so the result becomes narrower groove bottom width W 3 as, the residence of the refrigerating machine oil And heat transfer rate is reduced. Therefore, HF is preferably 0.25 mm or less.

(フィン高さ[HF]の下限について)
図8は、溝底幅と内径との比(W/ID)を0.04で一定にしたときの、内径6.8mmと内径2.4mmの伝熱管について、フィン高さと内表面積平滑管比の計算結果を示す。
(About the lower limit of fin height [HF])
FIG. 8 shows a fin height and a smooth inner surface area tube for a heat transfer tube having an inner diameter of 6.8 mm and an inner diameter of 2.4 mm when the ratio (W 3 / ID) of the groove bottom width to the inner diameter is constant at 0.04. The calculation result of ratio is shown.

フィン高さが0.25mm以下では、フィン高さが小さくなるに従い、重量が軽くなるというコストメリットはあるが、表面積も減少するため、熱伝達率は徐々に低下する。図8を参照すると、横断面積で平滑管比1.5倍以上の内表面積を確保する場合、HFは0.1mm以上であることを要する。   When the fin height is 0.25 mm or less, there is a cost merit that the weight is reduced as the fin height is reduced, but the surface area is also reduced, so that the heat transfer coefficient is gradually lowered. Referring to FIG. 8, HF needs to be 0.1 mm or more in order to secure an internal surface area of 1.5 times or more of the smooth tube ratio in the cross-sectional area.

一般に、冷凍機油の影響を受けない冷媒を使用した熱交換器では、内表面積の増加と伝熱性能は比例する。ここで、冷凍機油の影響を受けない冷媒とは、冷媒と冷凍機油との相溶性が高いということであり、エアコン等で使用されている代替フロンR410Aとエーテル系などの合成油の組合せで使用されている。   In general, in a heat exchanger using a refrigerant that is not affected by refrigerating machine oil, an increase in internal surface area is proportional to heat transfer performance. Here, the refrigerant that is not affected by the refrigeration oil means that the compatibility between the refrigerant and the refrigeration oil is high, and is used in a combination of an alternative chlorofluorocarbon R410A used in an air conditioner or the like and a synthetic oil such as an ether type. Has been.

また、伝熱管とフィン材による熱交換器では一般に、熱抵抗の割合は伝熱管内側:伝熱管外側=3:7と言われている。伝熱管の性能が平滑管に対して1.5倍、向上すれば、伝熱管内の熱抵抗は3から2に小さくなり、熱交換器全体の熱抵抗は10%低減できる。平滑管に対する内面溝付管の重量増加は、フィン形状にもよるがおよそ10%であり、平滑管から内面溝付管に変更して重量増加しても、熱抵抗が10%以上低減できれば、熱交換長さを10%短くして重量を同等に抑え、大きさとしては短くなった分、コンパクトにできる。   Moreover, in the heat exchanger by a heat exchanger tube and a fin material, the ratio of heat resistance is generally said to be the heat exchanger tube inner side: heat exchanger outer side = 3: 7. If the performance of the heat transfer tube is improved by 1.5 times that of the smooth tube, the heat resistance in the heat transfer tube is reduced from 3 to 2, and the heat resistance of the entire heat exchanger can be reduced by 10%. The increase in the weight of the inner grooved tube relative to the smooth tube is approximately 10%, although it depends on the fin shape. Even if the weight is increased by changing from the smooth tube to the inner grooved tube, the thermal resistance can be reduced by 10% or more. The heat exchange length can be shortened by 10% to keep the weight equal, and the size can be reduced as the size is shortened.

(W/IDの下限について)
通常、冷凍機油のCO冷媒への混入は、オイルセパレータを設けない限り完全に防ぐことはできず、その量は、少なくともルームエアコンで一般に言われている0.1質量%以上になる。また、タンク内の残湯量が少ないときなどは、圧縮機回転数を増大させて冷媒循環量を大きくするため、冷媒と一緒に流れ出る油の量は増加する。
(About the lower limit of W 3 / ID)
Normally, mixing of refrigeration oil into the CO 2 refrigerant cannot be completely prevented unless an oil separator is provided, and the amount thereof is at least 0.1% by mass or more generally referred to in room air conditioners. Further, when the amount of remaining hot water in the tank is small, the amount of oil flowing out together with the refrigerant increases because the refrigerant circulation amount is increased by increasing the compressor rotation speed.

図9は、圧縮機の回転数比と冷凍機油の冷媒への混入量を測定した結果の一例を示す。   FIG. 9 shows an example of the result of measuring the rotation speed ratio of the compressor and the amount of refrigeration oil mixed in the refrigerant.

図9の横軸の圧縮機回転数比とは、定常運転時を1とした割合で、実際の運転では、夜間電力の時間帯にお湯を沸かしきることを要するので、残湯量が少なくなれば定常時より回転数を上げて運転する。変動幅として+30%と考えると、0.5%質量%以上となる。   The compressor rotation speed ratio on the horizontal axis in FIG. 9 is a ratio in which steady operation is set to 1, and in actual operation, it is necessary to boil hot water during the nighttime power hours. Drive at a higher speed than normal. Considering + 30% as the fluctuation range, it becomes 0.5% by mass or more.

冷凍機油のCO冷媒への混入量が0.1質量%以上のとき、溝底幅と内径の比W/IDが0.04未満では冷凍機油が滞留し、フィンによる表面積拡大効果が活かせず熱伝達率が低下する。また、W/IDが小さい内面溝付管は、フィン数が多いか、フィン高さが高くなるため、伝熱管重量も大きくなる。 When the amount of refrigerating machine oil mixed into the CO 2 refrigerant is 0.1% by mass or more, if the ratio W 3 / ID of the groove bottom width to the inner diameter is less than 0.04, the refrigerating machine oil stays, and the surface area expansion effect by the fins is utilized. The heat transfer rate decreases. In addition, an internally grooved tube having a small W 3 / ID has a large number of fins or a high fin height, so that the heat transfer tube weight also increases.

(W/IDの上限について)
一方、W/IDが大きくなれば伝熱管重量は軽くなり、熱伝達率に影響の大きい油膜に対する有効伝熱面積は増大するが、内表面積は減少してしまう。
(About the upper limit of W 3 / ID)
On the other hand, as W 3 / ID increases, the heat transfer tube weight decreases, and the effective heat transfer area for the oil film that greatly affects the heat transfer coefficient increases, but the inner surface area decreases.

図10は、内径とフィン高さが6.8mm、0.25mmの場合と2.4mm、0.1mmの場合について、同じフィン形状で、W/IDと内表面積平滑管比を計算した結果を示す。 FIG. 10 shows the calculation result of W 3 / ID and the inner surface area smooth tube ratio with the same fin shape for the case where the inner diameter and the fin height are 6.8 mm, 0.25 mm, 2.4 mm, and 0.1 mm. Indicates.

図10を参照すると、横断面積で平滑管比1.5倍以上の内表面積を確保するためには、0.1mm以下とすることが好ましい。   Referring to FIG. 10, in order to secure an inner surface area of 1.5 times or more of the smooth tube ratio in the cross-sectional area, it is preferable to set it to 0.1 mm or less.

(実施の形態の効果)
本実施の形態に係る内面溝付伝熱20は、CO冷媒ヒートポンプ給湯機のように低熱流束(q)のポリアルキレングリコール系冷凍機油の含有量が0.1質量%以上である二酸化炭素を冷媒とした場合に、溝深さを十分に確保し、冷凍機油の滞留を抑止できるように溝底幅を最適化している。したがって、高性能な内面溝付伝熱管20を提供できる。
(Effect of embodiment)
The inner grooved heat transfer 20 according to the present embodiment is carbon dioxide having a low heat flux (q) polyalkylene glycol-based refrigeration oil content of 0.1% by mass or more like a CO 2 refrigerant heat pump water heater. When a refrigerant is used, the groove bottom width is optimized so that the groove depth is sufficiently secured and the stagnation of the refrigerating machine oil can be suppressed. Therefore, a high-performance internally grooved heat transfer tube 20 can be provided.

また、フィン高さが同じ内面溝付伝熱管における溝底幅の最適化はフィン数とフィンの太さとにより決まるので、伝熱管の重量が大きくなってしまうことを防止できる。   Further, since the optimization of the groove bottom width in the internally grooved heat transfer tube having the same fin height is determined by the number of fins and the thickness of the fin, it is possible to prevent the heat transfer tube from becoming heavy.

また、内径を2.4mm以上にすることで圧力損失の増加を抑制し、6.8mm以下にすることで、高圧なCO冷媒に対応した厚肉で、重量が増えることを防止できる。 Further, by increasing the inner diameter to 2.4 mm or more, an increase in pressure loss is suppressed, and by setting the inner diameter to 6.8 mm or less, it is possible to prevent an increase in weight with a thick wall corresponding to a high-pressure CO 2 refrigerant.

以下、実施例について説明する。まず、伝熱管の熱伝達率について説明する。   Examples will be described below. First, the heat transfer coefficient of the heat transfer tube will be described.

図11は、測定装置の概略を示す。   FIG. 11 shows an outline of the measuring apparatus.

Gas Cooler1及びGas Cooler2で膨張弁前の圧力及び温度を調節し、テストセクションとバイパス回路に冷媒を分配させて、冷媒流量を制御した。冷媒流量は、膨張弁と乾き度調整熱交換器Heat Ex.の間に設置した、精度が±0.1%のコリオリ式質量流量計で測定した。また、膨張弁前に、サンプリングシリンダを通る回路とバイパス回路を並列に設置し、定常状態で流れている冷媒をサンプリングして冷凍機油含有量(オイル濃度)を測定した。テストセクション部出口の飽和温度はEvapolator1で調整し、テストセクション出口で、冷媒が気液二相流の場合はEvapolator2で過熱度をとるように調整した。   The pressure and temperature before the expansion valve were adjusted with Gas Cooler 1 and Gas Cooler 2, and the refrigerant was distributed to the test section and bypass circuit to control the refrigerant flow rate. The refrigerant flow rate is determined by the expansion valve and the dryness adjusting heat exchanger Heat Ex. , Measured with a Coriolis mass flow meter with an accuracy of ± 0.1%. Further, before the expansion valve, a circuit passing through the sampling cylinder and a bypass circuit were installed in parallel, and the refrigerant flowing in a steady state was sampled to measure the refrigerator oil content (oil concentration). The saturation temperature at the exit of the test section was adjusted by Evapolator 1 and at the exit of the test section, when the refrigerant was a gas-liquid two-phase flow, it was adjusted to take superheat by Evaporator 2.

図12は、伝熱管測定部(テストセクション)の概要を示す。   FIG. 12 shows an outline of the heat transfer tube measuring section (test section).

テストセクションは、水平設置した二重管となっており、熱交換長さ1mの供試管を用いている。二重管外管の内径は13mmであり、環状部に一定流速の冷温水を対向に流して熱交換する。熱交換量は、二重管環状部を流れる水の入口温度Twi、出口温度及びTwo、体積流量Vから求めた。体積流量は、非円形歯車1対で構成され、精度が±0.2%の容積流量計で計測した。また、流量計入口の水の温度を測定することで、流量計を通過する水の密度ρwを求め、質量流量を算出した。また、水の温度はΦ6.4の測温抵抗体を用いて計測した。なお、熱交換量を求める式は式(10)のようになる。   The test section is a double pipe installed horizontally, and a test tube having a heat exchange length of 1 m is used. The inner diameter of the double pipe outer tube is 13 mm, and heat is exchanged by flowing cold / hot water at a constant flow rate in an opposite direction to the annular part. The amount of heat exchange was determined from the inlet temperature Twi, the outlet temperature and Two, and the volumetric flow rate V of the water flowing through the double-tube annular portion. The volumetric flow rate was measured with a volumetric flowmeter composed of a pair of non-circular gears with an accuracy of ± 0.2%. Further, by measuring the temperature of water at the inlet of the flow meter, the density ρw of the water passing through the flow meter was obtained, and the mass flow rate was calculated. Moreover, the temperature of water was measured using the resistance temperature sensor of (PHI) 6.4. The formula for obtaining the heat exchange amount is as shown in formula (10).

Figure 2012122692
Figure 2012122692

ここで、hは水の温度、圧力から求まるエンタルピー(kJ/kg)である。   Here, h is the enthalpy (kJ / kg) determined from the temperature and pressure of water.

一方、冷媒の温度は、φ2の測温抵抗体を用いて計測し、圧力は精度がフルスケールの±0.08%(BSL表記)の圧力トランスデューサーを用いて計測した。伝熱管の管内熱伝達率は、熱通過率と管外水側熱伝達率により計算した。以下に計算式を示す。熱通過率は式(11)を用いて算出し、管外熱伝達率は式(12)を用いて算出し、管内熱伝達率は式(13)を用いて算出する。   On the other hand, the temperature of the refrigerant was measured using a resistance thermometer of φ2, and the pressure was measured using a pressure transducer with a precision of ± 0.08% (BSL notation) of full scale. The heat transfer coefficient in the tube of the heat transfer tube was calculated from the heat transfer rate and the heat transfer coefficient outside the tube. The calculation formula is shown below. The heat transfer rate is calculated using equation (11), the external heat transfer coefficient is calculated using equation (12), and the in-tube heat transfer coefficient is calculated using equation (13).

Figure 2012122692
Figure 2012122692

ここで、ΔTLは測定区間の対数平均温度差(K)であり、Lは測定長(m)である。   Here, ΔTL is the logarithm average temperature difference (K) in the measurement section, and L is the measurement length (m).

Figure 2012122692
Figure 2012122692

ここで、λwは測定区間の水の熱伝導率(W/(mK))であり、Deは水流路の相当直径であり、Diは二重管外管(水管)の内径(m)であり、Reは測定区間の水のレイノルズ数であり、Prはプラントル数である。   Here, λw is the thermal conductivity (W / (mK)) of the water in the measurement section, De is the equivalent diameter of the water flow path, and Di is the inner diameter (m) of the double outer pipe (water pipe). , Re is the Reynolds number of water in the measurement section, and Pr is the Prandtl number.

Figure 2012122692
Figure 2012122692

なお、CO及び水の熱物性値はPROPATHにより算出した。 The thermophysical values of CO 2 and water were calculated by PROPATH.

まず、熱流束(q)の影響を検討した結果を示す。表1は実施例A、比較例A〜Eの測定結果である。   First, the result of examining the influence of heat flux (q) is shown. Table 1 shows the measurement results of Example A and Comparative Examples A to E.

Figure 2012122692
Figure 2012122692

実施例Aと比較例A、比較例Bとは同じ伝熱管であるが、測定条件として比較例Aは熱流束(q)が20kW/mで、比較例Bは10kW/mで、実施例Aは5kW/mで熱伝達率を測定した結果である(表1中でWは溝底幅である)。同様に比較例C〜Eも同一の伝熱管を、熱流束(q)を変えて測定した結果である。その他の試験条件は、冷媒飽和温度8℃、冷媒質量流束400kg/(ms)、乾き度0.35、オイル濃度0.1%である。 Example A, Comparative Example A, and Comparative Example B are the same heat transfer tubes. However, as a measurement condition, Comparative Example A has a heat flux (q) of 20 kW / m 2 and Comparative Example B has 10 kW / m 2 . Example A is the result of measuring the heat transfer coefficient at 5 kW / m 2 (in Table 1, W 3 is the groove bottom width). Similarly, Comparative Examples C to E are the results of measuring the same heat transfer tube while changing the heat flux (q). Other test conditions are a refrigerant saturation temperature of 8 ° C., a refrigerant mass flux of 400 kg / (m 2 s), a dryness of 0.35, and an oil concentration of 0.1%.

なお、乾き度とは、液と蒸気とが混合した二相流で流れる冷媒の、蒸気成分の質量比である。蒸発器においては、蒸気の少ない乾き度0.2程度の冷媒が流入し、外部の空気から熱を吸収して徐々に蒸発し、完全に蒸気だけの乾き度1以上の冷媒となって蒸発器から出て、圧縮機に吸入される。   The dryness is the mass ratio of the vapor component of the refrigerant that flows in a two-phase flow in which liquid and vapor are mixed. In the evaporator, a refrigerant with a low dryness of about 0.2 flows into the evaporator, absorbs heat from the outside air and gradually evaporates, and becomes a refrigerant with a dryness of 1 or more, which is only vapor, and the evaporator. And is sucked into the compressor.

熱流束(q)が10kW/m以上では、フィン数が多く、溝底幅が狭い比較例D、比較例Eの方が比較例A、比較例Bより熱伝達率が高いが、熱流束(q)が5kW/mでは、表面積は小さいが溝底幅が広い実施例Aの方が比較例Cより熱伝達率が高くなっている。熱流束(q)が20kW/mのとき、比較例Bより内表面積増が23%大きい比較例Eの内面溝付管の熱伝達率が31%大きくなっているのは、フィンが気泡発生の起点になり核沸騰が促進された結果と考えることができる。一方、熱流束(q)が5kW/mのとき、比較例Cより実施例Aの熱伝達率が大きくなったのは、熱流束(q)が小さくなったことで、核沸騰による熱伝達率向上効果が少なくなった上に、比較例Cでは形成された油膜の影響が大きく、有効表面積が却って小さくなったためと考えることができる。これにより、CO冷媒における熱伝達率は、オイル濃度が0.1質量%でもオイルの影響があり、また熱流束(q)の影響も大きく、熱流束(q)条件が変われば熱伝達率の高い内面溝付管の溝形状は全く異なることが分かる。 When the heat flux (q) is 10 kW / m 2 or more, Comparative Example D and Comparative Example E with a larger number of fins and a narrow groove bottom width have higher heat transfer rates than Comparative Example A and Comparative Example B. When (q) is 5 kW / m 2 , the heat transfer coefficient of Example A having a smaller surface area but wider groove bottom width is higher than that of Comparative Example C. When the heat flux (q) is 20 kW / m 2 , the heat transfer coefficient of the inner surface grooved tube of Comparative Example E, which is 23% larger than that of Comparative Example B, is 23% larger. This can be considered as a result of the promotion of nucleate boiling. On the other hand, when the heat flux (q) is 5 kW / m 2 , the heat transfer coefficient of Example A is larger than that of Comparative Example C because the heat flux (q) is smaller and the heat transfer due to nucleate boiling. It can be considered that the effect of the oil film formed in Comparative Example C was large and the effective surface area was decreased on the contrary. As a result, the heat transfer coefficient in the CO 2 refrigerant is affected by oil even when the oil concentration is 0.1% by mass, and the heat flux (q) is also greatly affected. If the heat flux (q) condition is changed, the heat transfer coefficient is changed. It can be seen that the groove shape of the inner grooved tube having a high height is completely different.

次に、熱流束(q)が5kW/mで表2に示す内面溝付管の性能を測定した(表2中でWは溝底幅である)。 Next, the performance of the internally grooved tube shown in Table 2 was measured at a heat flux (q) of 5 kW / m 2 (in Table 2, W 3 is the groove bottom width).

Figure 2012122692
Figure 2012122692

ここで、比較例1は平滑管である。また、比較例2、実施例1〜3の内面溝付管はフィンの太さなどフィン形状は同じにしてある。試験条件は、冷媒飽和温度8℃、冷媒質量流束360kg/(ms)、乾き度0.35、0.75、オイル濃度3%である。 Here, Comparative Example 1 is a smooth tube. The inner grooved pipes of Comparative Example 2 and Examples 1 to 3 have the same fin shape such as the thickness of the fin. The test conditions are a refrigerant saturation temperature of 8 ° C., a refrigerant mass flux of 360 kg / (m 2 s), a dryness of 0.35 and 0.75, and an oil concentration of 3%.

図13は、試験結果をフィン数と熱伝達率平滑管比との関係として示す。   FIG. 13 shows the test results as the relationship between the number of fins and the heat transfer coefficient smooth tube ratio.

熱伝達率は、乾き度0.35と0.75の結果を平均している。表1のオイル濃度0.1%の結果と同様、フィン数が少なくなるにつれて表面積が減少しているにも関わらず、熱伝達率は増加した。   The heat transfer coefficient averages the results of dryness of 0.35 and 0.75. Similar to the results for the oil concentration of 0.1% in Table 1, the heat transfer coefficient increased despite the surface area decreasing as the number of fins decreased.

図14は、W/IDと熱伝達率平滑管比/単重平滑管比との関係を示しており、熱伝達率平滑管比を単位長さ当たりの重量(単重)の平滑管比で除した値を縦軸にしている。 FIG. 14 shows the relationship between W 3 / ID and the heat transfer coefficient smooth tube ratio / single-height smooth tube ratio, where the heat transfer coefficient smooth tube ratio is the smooth tube ratio of weight (unit weight) per unit length. The value divided by is on the vertical axis.

これは、内面溝付管による熱伝達率向上効果が、コストと直結する重量比と比較して検討された指標であり、W/IDの増加に伴い「熱伝達率平滑管比/単重平滑管比」が大きくなっているが、特に、W/IDが0.035以上の場合に、効果が大きいことが分かる。 This is an index in which the effect of improving the heat transfer coefficient by the internally grooved tube is compared with the weight ratio directly linked to the cost. As the W 3 / ID increases, the “heat transfer coefficient smooth tube ratio / single weight” Although the “smooth tube ratio” is large, it can be seen that the effect is particularly great when W 3 / ID is 0.035 or more.

次に、フィン高さの影響について表3に示す内面溝付管を製作し、検討した結果を示す(表3中でWは溝底幅である)。試験条件は、熱流束(q)が5kW/m、冷媒飽和温度が8℃、冷媒質量流束が200kg/(ms)、乾き度が0.35、0.75、オイル濃度が2%である。熱伝達率は、乾き度0.35と0.75との結果を平均している。 Then, to manufacture a inner grooved tube shown in Table 3 Effect of fin height, it shows the results of investigation (Table W 3 3 Among is groove bottom width). The test conditions are: heat flux (q) 5 kW / m 2 , refrigerant saturation temperature 8 ° C., refrigerant mass flux 200 kg / (m 2 s), dryness 0.35, 0.75, oil concentration 2 %. The heat transfer coefficient averages the results of dryness of 0.35 and 0.75.

Figure 2012122692
Figure 2012122692

/IDは、いずれも0.04以上であり、実施例4、実施例5を比較するとフィン高さが高い方が熱伝達率、熱伝達率と単重の比、いずれも高くなっている。しかし、比較例3は、実施例5と比較すると、フィン高さが高くなっているにもかかわらず熱伝達率は低下し、熱伝達率と単重の比は、実施例4と比較しても小さくなっている。したがって、フィン高さは0.25以下が望ましい。 W 3 / ID is 0.04 or more for all, and comparing Example 4 and Example 5, the higher the fin height, the higher the heat transfer coefficient and the ratio of heat transfer coefficient and single weight. Yes. However, in Comparative Example 3, compared with Example 5, the heat transfer rate decreases despite the fin height being higher, and the ratio of heat transfer rate and single weight is compared with Example 4. Is also getting smaller. Therefore, the fin height is desirably 0.25 or less.

以上、実施例に示すように、二酸化炭素冷媒ヒートポンプ給湯機の蒸発器において、高性能かつ重量増加の少ない内面溝付伝熱管を提供し、この内面溝付伝熱管を用いて構成される熱交換器の熱交換効率を向上させることができる。   As described above, as shown in the embodiments, in the evaporator of the carbon dioxide refrigerant heat pump water heater, the heat exchange tube configured to use the inner surface grooved heat transfer tube is provided, which provides a high performance inner surface grooved heat transfer tube with little weight increase. The heat exchange efficiency of the vessel can be improved.

以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments and examples of the present invention have been described above, the embodiments and examples described above do not limit the invention according to the claims. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

1 銅管
2 フローティングプラグ
3 連結棒
4 溝付プラグ
5 溝
6 ボール
7 引抜ダイス
8 フィン
9 内面溝付管
10 引抜ダイス
11 圧縮機
12 ガスクーラ
13 膨張弁
14 蒸発器
20 内面溝付伝熱管
21 主管
22 溝
23 フィン
DESCRIPTION OF SYMBOLS 1 Copper pipe 2 Floating plug 3 Connecting rod 4 Grooved plug 5 Groove 6 Ball 7 Drawing die 8 Fin 9 Inside grooved tube 10 Drawing die 11 Compressor 12 Gas cooler 13 Expansion valve 14 Evaporator 20 Inside grooved heat transfer tube 21 Main tube 22 Groove 23 Fin

Claims (3)

ポリアルキレングリコール系冷凍機油の含有量が0.1質量%以上である二酸化炭素を冷媒として用い、かつ、熱流束(q)が10kW/m未満で用いられるヒートポンプ給湯機が備える蒸発器に用いられる内面溝付伝熱管であって、
内周面に互いに平行に設けられる複数のらせん状の溝と、前記複数の溝の間に位置する複数のフィンとを有する主管を備え、
前記主管の内径(ID)が、2.4mm以上6.8mm以下であり、
前記フィンの高さ(HF)が、0.1mm以上0.25mm以下であり、
前記複数の溝の底の幅をWとした場合に、0.04≦W/ID≦0.1を満たす内面溝付伝熱管。
Carbon dioxide with a content of polyalkylene glycol refrigerating machine oil of 0.1% by mass or more is used as a refrigerant and used in an evaporator provided in a heat pump water heater used with a heat flux (q) of less than 10 kW / m 2 An internally grooved heat transfer tube,
A main pipe having a plurality of spiral grooves provided in parallel to each other on the inner peripheral surface, and a plurality of fins located between the plurality of grooves;
The inner diameter (ID) of the main pipe is 2.4 mm or more and 6.8 mm or less,
The height (HF) of the fin is 0.1 mm or more and 0.25 mm or less,
An internally grooved heat transfer tube that satisfies 0.04 ≦ W 3 /ID≦0.1, where W 3 is the bottom width of the plurality of grooves.
前記溝と前記フィンとのなす角度が、15°以上25°以下である請求項1に記載の内面溝付伝熱管。   The internally grooved heat transfer tube according to claim 1, wherein an angle formed by the groove and the fin is 15 ° or more and 25 ° or less. 前記複数のフィンが、30個以上50個以下である請求項2に記載の内面溝付伝熱管。   The internally grooved heat transfer tube according to claim 2, wherein the plurality of fins is 30 or more and 50 or less.
JP2010274752A 2010-12-09 2010-12-09 Heat transfer tube with grooved inner surface Pending JP2012122692A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010274752A JP2012122692A (en) 2010-12-09 2010-12-09 Heat transfer tube with grooved inner surface
CN2011104051901A CN102564194A (en) 2010-12-09 2011-12-08 Heat Pump Water Heater, Evaporator And Heat Conduction Pipe With Grooves On Inner Surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274752A JP2012122692A (en) 2010-12-09 2010-12-09 Heat transfer tube with grooved inner surface

Publications (1)

Publication Number Publication Date
JP2012122692A true JP2012122692A (en) 2012-06-28

Family

ID=46410287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274752A Pending JP2012122692A (en) 2010-12-09 2010-12-09 Heat transfer tube with grooved inner surface

Country Status (2)

Country Link
JP (1) JP2012122692A (en)
CN (1) CN102564194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087584A1 (en) * 2012-12-05 2014-06-12 パナソニック株式会社 Refrigerator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236185B (en) * 2013-06-19 2017-04-12 珠海格力电器股份有限公司 Air-conditioning system
CN103453696A (en) * 2013-09-18 2013-12-18 上海交通大学 Heat exchanger for carbon dioxide air-conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087584A1 (en) * 2012-12-05 2014-06-12 パナソニック株式会社 Refrigerator
JP2014112008A (en) * 2012-12-05 2014-06-19 Panasonic Corp Refrigerator

Also Published As

Publication number Publication date
CN102564194A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
Sapali et al. Heat transfer during condensation of HFC-134a and R-404A inside of a horizontal smooth and micro-fin tube
Han et al. Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations
Kücük et al. Experimental investigation of shell side heat transfer and pressure drop in a mini-channel shell and tube heat exchanger
Raj et al. Single phase flow heat transfer and pressure drop measurements in doubly enhanced tubes
JP2008020166A (en) Inner surface grooved heat-transfer tube for evaporator
Boeng et al. Air-side heat transfer and pressure drop characteristics of microchannel evaporators for household refrigerators
Lee et al. Evaporation heat transfer and pressure drop in flattened microfin tubes having different aspect ratios
JP2012122692A (en) Heat transfer tube with grooved inner surface
JP6738593B2 (en) Boiling heat transfer tube
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP5435460B2 (en) Heat transfer tube
JP4386813B2 (en) Heat transfer tube with inner groove for evaporator
JP2007271220A (en) Heat transfer tube with inner groove for gas cooler
Salimpour et al. Heat transfer enhancement during R-404A vapor condensation in swirling flow
JP2009174832A (en) Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same
JP2006194476A (en) Outdoor heat exchanger
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
Kaji et al. The Effect of Inner Grooved Tubes on the Heat Transfer Performace of Air-Cooled Heat Exchangers of Co2 Heat Pump System
JP2009243722A (en) Internally grooved pipe
Robinson et al. Local bundle boiling heat transfer coefficients on a turbo-BII HP tube bundle (RP-1089)
JP2010096372A (en) Internal heat exchanger for carbon dioxide refrigerant
JP2006098033A (en) Return bent tube, and fin and tube type heat exchanger
JP2011252662A (en) Heat transfer tube for refrigerant, and heat exchanger
Habeeb et al. Heat transfer analysis of integral-fin tubes
JP2013087995A (en) Heat transfer tube with grooved inner surface