JP2009174832A - Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same - Google Patents

Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same Download PDF

Info

Publication number
JP2009174832A
JP2009174832A JP2008016701A JP2008016701A JP2009174832A JP 2009174832 A JP2009174832 A JP 2009174832A JP 2008016701 A JP2008016701 A JP 2008016701A JP 2008016701 A JP2008016701 A JP 2008016701A JP 2009174832 A JP2009174832 A JP 2009174832A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
water
transfer tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008016701A
Other languages
Japanese (ja)
Inventor
Masaru Horiguchi
賢 堀口
Kenichi Inui
謙一 乾
Hironori Kitajima
寛規 北嶋
Mamoru Hofuku
守 法福
Kazuhiko Hiroshima
一彦 広島
Ryuichi Kobayashi
隆一 小林
Kei Koyama
慶 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008016701A priority Critical patent/JP2009174832A/en
Publication of JP2009174832A publication Critical patent/JP2009174832A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanging system using as a heat transfer tube in which water flows, an internally-grooved tube which can be optimally matched to use conditions. <P>SOLUTION: In this heat exchanging system where the water w flows in the heat transfer tube 20 provided with a plurality of fins 201 on an inner face, and heats the water w by indirect heating by a refrigerant r outside the heat transfer tube 20, a lower limit Reynolds number Red in the beginning of the deterioration of stirring effects is determined by a formula (1) Red=226ä(Hf/D)(b/D)}<SP>(-0.46)</SP>, when a height of the fins of the heat transfer tube 20 is Hf, a maximum inner diameter is D, and an interval between the fins on a cross section is b, and the height Hf of fins of the heat transfer tube 20, the maximum inner diameter D and the interval b are set or the flow of the water w in the heat transfer tube 20 is set so that a Reynolds number Re of the flow of water w in the heat transfer tube 20 becomes more than the lower limit Reynolds number Red. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、給湯機または電気温水器などの水を加温する熱交換システムにおいて、水を流す伝熱管に内面溝付管を用いた熱交換システム、及びこれを用いた貯湯式ヒートポンプ式給湯機、暖房機並びに給湯機に関するものである。   The present invention relates to a heat exchange system for heating water such as a water heater or an electric water heater, a heat exchange system using an internally grooved pipe as a heat transfer pipe through which water flows, and a hot water storage type heat pump water heater using the same. The present invention relates to a heater and a water heater.

近年急速に普及している自然冷媒ヒートポンプ式給湯機は、一日に必要とされる給湯エネルギーとして割安な夜間電力を利用し、高温のお湯を沸かしてタンクに貯湯している(以下、貯湯式ヒートポンプ式給湯機と呼ぶ)。夜間に時間をかけてお湯を沸かすため、水の流速が小さく、層流となるため、熱交換器としての性能を向上させるには、ボトルネックになる水管(伝熱管)の伝熱性能の向上が不可欠となる。   In recent years, natural refrigerant heat pump water heaters, which have been rapidly spreading, use cheap nighttime electricity as hot water energy required for one day, boil hot water and store it in a tank (hereinafter referred to as hot water storage type). Called heat pump water heater). Since the water is boiled over time at night, the water flow rate is low and the flow becomes laminar. Therefore, to improve the performance as a heat exchanger, improve the heat transfer performance of the water tube (heat transfer tube) that becomes the bottleneck. Is essential.

伝熱性能の向上を目的とした熱交換器としては、水管を芯管として冷媒管を外側から巻き付けた熱交換器がある(特許文献1を参照)。当該芯管としては、平滑管のほか、コルゲート管や内面溝付管とする構成、或いは芯管内部にねじり板を挿入する構成が開示されている。特許文献1記載の熱交換器によれば、製造・運搬の容易性、熱交換性の向上、コストの低減等の面で効果を有する旨が記載されている。   As a heat exchanger for improving heat transfer performance, there is a heat exchanger in which a water pipe is used as a core pipe and a refrigerant pipe is wound from the outside (see Patent Document 1). As the core tube, in addition to a smooth tube, a configuration in which a corrugated tube or an internally grooved tube is used, or a configuration in which a torsion plate is inserted into the core tube is disclosed. According to the heat exchanger described in Patent Document 1, it is described that the heat exchanger is effective in terms of ease of manufacture / transport, improvement of heat exchange, reduction of cost, and the like.

また、貯湯式ヒートポンプ式給湯機以外でも、水を加温する熱交換システムとして、ヒートポンプで得られる高温熱源あるいはヒータなどで暖房用循環水を直接加温する熱交換器や、ヒートポンプ式給湯機あるいは電気温水器など夜間電力を利用してタンクに貯湯した高温のお湯を熱源として、風呂の追焚きを行う熱交換器、暖房用循環水の加温を行う熱交換器などがある。   In addition to hot water storage type heat pump water heaters, as a heat exchange system for heating water, a heat exchanger that directly heats circulating water for heating with a high-temperature heat source or a heater obtained by a heat pump, a heat pump water heater, or There are heat exchangers such as electric water heaters that use hot water stored in tanks using nighttime electricity as a heat source to refurbish baths, and heat exchangers that heat circulating water for heating.

水が流れる単相域で使用される伝熱管としては、非特許文献1に見られるように、内面溝付管の仕様の高性能化に関する検討結果がある。   As heat transfer tubes used in a single-phase region through which water flows, as shown in Non-Patent Document 1, there is a study result on performance enhancement of the specifications of the internally grooved tube.

特開2002−228370号公報JP 2002-228370 A ジョン・アール・トーメ(John R. Thome)著、「エンジニアリングデータブック3(Engineering Data Book III)」、ウルヴァリンチューブインコーポレイテッド(Wolverine Tube, Inc.)、第5章(Chapter 5)John R. Thome, "Engineering Data Book III", Wolverine Tube, Inc., Chapter 5 (Chapter 5)

しかしながら、特許文献1記載の熱交換器では、単純に芯管をコルゲート形状にしても、所望の伝熱性能を得られずに、コストや圧力損失の増大を招く場合がある。また、芯管を内面溝付管とした場合には、伝熱面積が増大しても、流速の小さい層流域では、伝熱面積の増大による効果を十分に得ることができない。また、水を加温する熱交換システムを構成する、被加熱流体の流れる伝熱管を高性能化するために、フロン系冷媒が流通する空気調和機用熱交換器に使用されている一般的な内面溝付管を用いたり、非特許文献1で検討された結果を仕様に反映させた内面溝付管を用いても、使用条件とのマッチングが図られていないと、流速低下時の性能低下が著しくなる。   However, in the heat exchanger described in Patent Document 1, even if the core tube is simply formed into a corrugated shape, desired heat transfer performance may not be obtained, and cost and pressure loss may be increased. Further, when the core tube is an internally grooved tube, even if the heat transfer area is increased, the effect due to the increase of the heat transfer area cannot be sufficiently obtained in a laminar flow region having a low flow velocity. In addition, in order to improve the performance of the heat transfer tube through which the fluid to be heated flows, which constitutes the heat exchange system that heats water, it is commonly used in heat exchangers for air conditioners in which chlorofluorocarbon refrigerant flows. Even if an internally grooved tube is used, or an internally grooved tube that reflects the results examined in Non-Patent Document 1 is reflected in the specifications, if the matching with the operating conditions is not achieved, the performance decreases when the flow velocity decreases Becomes remarkable.

従って、本発明の目的は、給湯機または電気温水器の水を加温する熱交換システムにおいて、使用条件と最適なマッチングを図れる内面溝付管を水が流れる伝熱管として用いた熱交換システムを提供することにある。特に、貯湯式ヒートポンプ式給湯機のように、常に水の流速が小さい状態で、使用される場合においても熱交換器の伝熱性能を向上させ得る熱交換システム、及びこれを用いた貯湯式ヒートポンプ式給湯機、暖房機並びに給湯機を提供することにある。   Accordingly, an object of the present invention is to provide a heat exchange system that uses an internally grooved tube as a heat transfer tube through which water flows so as to optimally match the use conditions in a heat exchange system that heats water in a water heater or an electric water heater. It is to provide. In particular, a heat exchange system capable of improving the heat transfer performance of a heat exchanger even when used in a state where the flow rate of water is always small, such as a hot water storage heat pump water heater, and a hot water storage heat pump using the same An object is to provide a water heater, a heater and a water heater.

本発明は、上記目的を達成するため、内面に複数のフィンを設けた伝熱管内に水を流し、その伝熱管外の加熱媒体で間接加熱して上記水を加温する熱交換システムにおいて、上記伝熱管のフィン高さをHf、最大内径をD、横断面におけるフィンとフィンの間隔をbとして、攪拌効果が低下し始める下限レイノルズ数Redを、次式(1)
Red=226{(Hf/D)(b/D)}(-0.46) ・・・(1)
で定め、上記伝熱管内の水の流れのレイノルズ数Reが、上記下限レイノルズ数Red以上となるように、上記伝熱管の上記フィン高さHf、上記最大内径D、上記間隔bを設定、あるいは上記伝熱管内での水の流れを設定した熱交換システムを提供する。
In order to achieve the above object, the present invention provides a heat exchange system in which water is flowed into a heat transfer tube provided with a plurality of fins on the inner surface and heated indirectly by a heating medium outside the heat transfer tube to heat the water. The lower limit Reynolds number Red at which the stirring effect starts to decrease, where Hf is the fin height of the heat transfer tube, D is the maximum inner diameter, and b is the distance between the fins in the cross section, is expressed by the following equation (1).
Red = 226 {(Hf / D) (b / D)} (−0.46) (1)
The fin height Hf, the maximum inner diameter D, and the interval b of the heat transfer tube are set so that the Reynolds number Re of the water flow in the heat transfer tube is equal to or greater than the lower limit Reynolds number Red, or Provided is a heat exchange system in which the flow of water in the heat transfer tube is set.

上記熱交換システムを備え、その熱交換システムによりお湯を沸かすものでもよい。   The heat exchange system may be provided, and hot water may be boiled by the heat exchange system.

上記熱交換システムを備え、その熱交換システムにより暖房用循環水の加温を行うものでもよい。   The above heat exchange system may be provided, and the circulating water for heating may be heated by the heat exchange system.

上記熱交換システムを備え、その熱交換システムにより風呂のお湯を追焚きするものでもよい。   The heat exchange system may be provided, and bath water may be reclaimed by the heat exchange system.

上記伝熱管の上記フィンが、らせん状に形成されることが好ましい。   The fins of the heat transfer tube are preferably formed in a spiral shape.

本発明によれば、貯湯式ヒートポンプ式給湯機のような水の流速が小さい使用形態においても熱交換器の伝熱性能を向上させ得る熱交換システム、及びこれを用いた貯湯式ヒートポンプ式給湯機、暖房機並びに給湯機を得ることができるという優れた効果を発揮するものである。   ADVANTAGE OF THE INVENTION According to this invention, the heat exchange system which can improve the heat transfer performance of a heat exchanger even in the usage form with small flow rate of water like a hot water storage type heat pump type hot water heater, and a hot water storage type heat pump type hot water heater using the same An excellent effect is obtained in that a heater and a water heater can be obtained.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

〔本発明の第1の実施の形態〕
以下に、二酸化炭素を冷媒とした貯湯式ヒートポンプ式給湯機を例にとって説明する。
[First embodiment of the present invention]
Hereinafter, a hot water storage heat pump type hot water heater using carbon dioxide as a refrigerant will be described as an example.

図1は、本発明の第1の実施の形態における貯湯式ヒートポンプ式給湯機の概略構成を示したものである。   FIG. 1 shows a schematic configuration of a hot water storage type heat pump type hot water heater in the first embodiment of the present invention.

貯湯式ヒートポンプ式給湯機10は、本実施形態の熱交換システムを有するものであり、その熱交換システムは、ヒートポンプユニット18と貯湯ユニット19とで構成される。   The hot water storage type heat pump type hot water heater 10 has the heat exchange system of the present embodiment, and the heat exchange system includes a heat pump unit 18 and a hot water storage unit 19.

ヒートポンプユニット18は、圧縮機11、水熱交換器(ガスクーラ)12、減圧器(膨張弁など)13および吸熱器(蒸発器)14を備え、これらを配管15−17で接続することにより冷凍サイクルを構成し、内部に自然冷媒(例えば、二酸化炭素冷媒)rを封入して循環させている。   The heat pump unit 18 includes a compressor 11, a water heat exchanger (gas cooler) 12, a decompressor (expansion valve, etc.) 13, and a heat absorber (evaporator) 14, and these are connected by a pipe 15-17 to refrigerating cycle. And a natural refrigerant (for example, carbon dioxide refrigerant) r is enclosed and circulated therein.

ここで、「圧縮機11の吐出部から水熱交換器12を経て減圧器13の入口部に至る」領域は、冷媒rが超臨界状態(臨界圧力を超える状態)になっている。この高温高圧の冷媒rと、貯湯ユニット19からの水wとが水熱交換器12にて熱交換を行い、水wが加温される。   Here, in the region “from the discharge part of the compressor 11 through the water heat exchanger 12 to the inlet part of the decompressor 13”, the refrigerant r is in a supercritical state (a state exceeding the critical pressure). The high-temperature and high-pressure refrigerant r and the water w from the hot water storage unit 19 exchange heat in the water heat exchanger 12, and the water w is heated.

貯湯ユニット19は、水wまたはその水wを加熱してなる湯が貯留される貯湯タンク191と、その貯湯タンク191と水熱交換器12とを接続する冷水配管192および温水配管193と、冷水配管192に設けられ貯湯タンク191と水熱交換器12とで水wおよび湯を循環させるための循環ポンプ194とを備える。   The hot water storage unit 19 includes a hot water storage tank 191 that stores water w or hot water obtained by heating the water w, a cold water pipe 192 and a hot water pipe 193 that connect the hot water storage tank 191 and the hydrothermal exchanger 12, and cold water. A circulation pump 194 for circulating water w and hot water between the hot water storage tank 191 and the water heat exchanger 12 provided in the pipe 192 is provided.

(貯湯式ヒートポンプ式給湯機の動作)
次に、貯湯式ヒートポンプ式給湯機10の動作について説明する。
(Operation of hot water storage type heat pump type water heater)
Next, the operation of the hot water storage type heat pump hot water heater 10 will be described.

圧縮機11で圧縮された(本実施の形態では、例えば、約10MPa)二酸化炭素冷媒rは、臨界圧力(約7.4MPa)を超える状態(超臨界状態)でガスクーラ(水熱交換器)12へ導入される。   The carbon dioxide refrigerant r compressed by the compressor 11 (for example, about 10 MPa in the present embodiment) is in a state (supercritical state) exceeding the critical pressure (about 7.4 MPa), and is a gas cooler (water heat exchanger) 12. Introduced into.

超臨界状態の二酸化炭素冷媒rは、液化しない(気液二相状態にならない)高温高圧状態となり、ガスクーラ(水熱交換器)12において水wと熱交換(冷媒rから放熱)する。その後、減圧器13で減圧されて(本実施の形態では、例えば、約3.5MPa)、低圧の気液二相状態となり、吸熱器14へ導入される。   The carbon dioxide refrigerant r in the supercritical state is not liquefied (does not enter a gas-liquid two-phase state) and is in a high-temperature and high-pressure state and exchanges heat with the water w (dissipates heat from the refrigerant r) in the gas cooler (water heat exchanger) 12. Thereafter, the pressure is reduced by the pressure reducer 13 (in this embodiment, for example, about 3.5 MPa), and a low-pressure gas-liquid two-phase state is obtained and introduced into the heat absorber 14.

気液二相状態となった二酸化炭素冷媒rは、吸熱器14において、空気(大気)から吸熱してガス状態(気相の単相状態)となり、再び圧縮機11に吸入される。このようなサイクルを繰り返すことにより、ガスクーラ(水熱交換器)12における冷媒rからの放熱による加熱作用、吸熱器14における冷媒rの吸熱による冷却作用が行われる。   The carbon dioxide refrigerant r in the gas-liquid two-phase state absorbs heat from the air (atmosphere) in the heat absorber 14 to be in a gas state (gas phase single-phase state), and is sucked into the compressor 11 again. By repeating such a cycle, a heating action by heat radiation from the refrigerant r in the gas cooler (water heat exchanger) 12 and a cooling action by heat absorption of the refrigerant r in the heat absorber 14 are performed.

他方、貯湯ユニット19では、貯湯タンク191に図示しない給水源から供給された水wが予め貯留されており、ヒートポンプユニット18の作動時に、貯湯タンク191に貯留された水wが循環ポンプ194により水熱交換器12に送られる。その水熱交換器12に送られた水wは、水熱交換器12の上記加熱作用により加温された後、貯湯タンク191に戻される。これにより、貯湯タンク191に湯が貯留(貯湯)される。   On the other hand, in the hot water storage unit 19, water w supplied from a water supply source (not shown) is stored in advance in the hot water storage tank 191, and the water w stored in the hot water storage tank 191 is watered by the circulation pump 194 when the heat pump unit 18 is operated. It is sent to the heat exchanger 12. The water w sent to the water heat exchanger 12 is heated by the heating action of the water heat exchanger 12 and then returned to the hot water storage tank 191. Thereby, hot water is stored in the hot water storage tank 191 (hot water storage).

さて、貯湯式ヒートポンプ式給湯機の特徴として、一日に必要とされる給湯エネルギーに割安な夜間電力を利用し、高温のお湯を沸かして貯湯タンク191に貯湯していることが挙げられる。そのため、燃焼式給湯器のような高出力は必要とせず、例えば4.5kWの出力で夜間に約5時間運転すれば、17℃の水370Lを65℃に加温することができる。   Now, as a feature of the hot water storage type heat pump type hot water heater, it is mentioned that hot water is boiled and stored in the hot water storage tank 191 by using cheap night electricity for hot water supply energy required for one day. Therefore, high output as in the case of a combustion type water heater is not required, and for example, if it is operated for about 5 hours at night with an output of 4.5 kW, 370 L of 17 ° C. water can be heated to 65 ° C.

これより、一般的な家庭用空気調和機(ルームエアコン)と同程度の能力の圧縮機11を内蔵した図1のヒートポンプユニット18を熱源機とすることができる。   From this, the heat pump unit 18 of FIG. 1 incorporating the compressor 11 having the same capability as that of a general home air conditioner (room air conditioner) can be used as a heat source device.

貯湯式ヒートポンプ式給湯機は、このような使用方法が前提となっているため、上記水熱交換器12内を流れる水wの流量は極めて小さい。そして、流速と密度の積である慣性力と粘性力の比である無次元数レイノルズ数は、例えば外径9.52mm、肉厚0.6mmの伝熱管1本で構成される場合は2000〜7000と、チラーなど水が流れる熱交換器での使用条件(レイノルズ数10000以上)と比べて小さく、乱流による攪拌効果が小さくなる。特に、粘度の大きい低温域では、水の流れが層流となり、攪拌効果が得られにくく、性能低下が著しい。従って、水用伝熱管として内面溝付管により高性能化を図る場合は、使用レイノルズ数に合わせてマッチングした仕様の内面溝付管で伝熱管を構成する必要がある。   Since the hot water storage type heat pump type hot water heater is premised on such usage, the flow rate of the water w flowing through the water heat exchanger 12 is extremely small. The dimensionless Reynolds number, which is the ratio of the inertia force and the viscous force, which is the product of the flow velocity and the density, is, for example, 2000 to 2000 when it is composed of one heat transfer tube having an outer diameter of 9.52 mm and a wall thickness of 0.6 mm. 7000, which is smaller than the usage conditions (Reynolds number of 10,000 or more) in a heat exchanger in which water flows, such as a chiller, and the stirring effect by turbulent flow is reduced. In particular, in a low temperature range where the viscosity is large, the flow of water becomes a laminar flow, and it is difficult to obtain a stirring effect, and the performance is significantly reduced. Therefore, in order to improve the performance by using an internally grooved tube as a water heat transfer tube, it is necessary to configure the heat transfer tube with an internally grooved tube having a specification matched to the Reynolds number used.

そこで、本実施形態の熱交換システムでは、内面に複数のフィン201を設けた伝熱管20に水wを流し、伝熱管20外の加熱媒体をなす冷媒rで間接加熱して上記水wを加熱するものとし、かつ上記伝熱管20内の水wの流れのレイノルズ数Reを求め、他方、上記伝熱管20のフィン高さをHf、最大内径をD、横断面におけるフィンとフィンの間隔をbとして、攪拌効果が低下し始める下限レイノルズ数Redを、次式(1)
Red=226{(Hf/D)(b/D)}(-0.46) ・・・(1)
で定め、上記伝熱管20内の水wの流れのレイノルズ数Reが、上記下限レイノルズ数Red以上となるように、上記伝熱管20の上記フィン高さHf、上記最大内径D、上記間隔bを設定、あるいは上記伝熱管20内での水wの流れを設定した。
Therefore, in the heat exchange system of the present embodiment, water w flows through the heat transfer tube 20 provided with a plurality of fins 201 on the inner surface, and is heated indirectly by the refrigerant r that forms a heating medium outside the heat transfer tube 20 to heat the water w. And the Reynolds number Re of the flow of water w in the heat transfer tube 20 is obtained. On the other hand, the fin height of the heat transfer tube 20 is Hf, the maximum inner diameter is D, and the distance between the fins in the cross section is b. As the lower limit Reynolds number Red at which the stirring effect starts to decrease, the following formula (1)
Red = 226 {(Hf / D) (b / D)} (−0.46) (1)
The fin height Hf, the maximum inner diameter D, and the interval b of the heat transfer tube 20 are set so that the Reynolds number Re of the flow of water w in the heat transfer tube 20 is equal to or greater than the lower limit Reynolds number Red. Setting or the flow of water w in the heat transfer tube 20 was set.

以下、この点について説明する。   Hereinafter, this point will be described.

(熱交換器の構成)
図2は、本発明の第1の実施の形態に係る熱交換器の構造を示す説明図である。なお、図2では、図1とは上下が逆になっており、図2の上側にヒートポンプユニット18、下側に貯湯ユニット19が位置している。
(Configuration of heat exchanger)
FIG. 2 is an explanatory diagram showing the structure of the heat exchanger according to the first embodiment of the present invention. 2 is upside down from FIG. 1, and the heat pump unit 18 is located on the upper side and the hot water storage unit 19 is located on the lower side in FIG. 2.

本実施の形態に係る水熱交換器12には、ヒートポンプユニット18の配管15、16と貯湯ユニット19の冷水および温水配管192、193とが各々接続される。   Pipes 15 and 16 of heat pump unit 18 and cold water and hot water pipes 192 and 193 of hot water storage unit 19 are connected to water heat exchanger 12 according to the present embodiment.

具体的には、水熱交換器12は、二重管式熱交換器であり、内面溝付管から形成された伝熱管20を内管として、その伝熱管20の径方向外側に配置され伝熱管20を囲繞する外管31を備え、伝熱管20と外管31の間の環状路に冷媒rが流れるように形成されている。   Specifically, the water heat exchanger 12 is a double-pipe heat exchanger, and the heat transfer tube 20 formed from an inner surface grooved tube is used as an inner tube, and the water heat exchanger 12 is disposed outside the heat transfer tube 20 in the radial direction. An outer pipe 31 surrounding the heat pipe 20 is provided, and the refrigerant r flows in an annular path between the heat transfer pipe 20 and the outer pipe 31.

図例では、外管31の一端部(図2の右端部)に、入口ヘッド311が取り付けられ、その入口ヘッド311が、配管15を介してヒートポンプユニット18の圧縮機11の吐出部に接続される。外管31の他端部(図2の左端部)には、出口ヘッド312が設けられ、その出口ヘッド312が、配管16を介してヒートポンプユニット18の減圧器13の入口部に接続される。   In the illustrated example, an inlet head 311 is attached to one end portion (the right end portion in FIG. 2) of the outer pipe 31, and the inlet head 311 is connected to the discharge portion of the compressor 11 of the heat pump unit 18 via a pipe 15. The An outlet head 312 is provided at the other end (the left end in FIG. 2) of the outer pipe 31, and the outlet head 312 is connected to the inlet of the decompressor 13 of the heat pump unit 18 through the pipe 16.

伝熱管20は、外管31内に同心状に配置され管軸方向に延びると共に、外管31の入口ヘッド311、出口ヘッド312を貫いて管軸方向両側に各々突出する。伝熱管20の一端部(図2の左端部)は、貯湯ユニット19の冷水配管192に接続され、他端部(図2の右端部)が貯湯ユニット19の温水配管193に接続される。伝熱管20の中間部は、外管31内に収容され、その中間部の壁面を介して伝熱管20内の水wと外管31内の冷媒rとが熱交換される。   The heat transfer tube 20 is disposed concentrically in the outer tube 31 and extends in the tube axis direction, and protrudes to both sides in the tube axis direction through the inlet head 311 and the outlet head 312 of the outer tube 31. One end (the left end in FIG. 2) of the heat transfer tube 20 is connected to the cold water pipe 192 of the hot water storage unit 19, and the other end (the right end in FIG. 2) is connected to the hot water pipe 193 of the hot water storage unit 19. The intermediate portion of the heat transfer tube 20 is accommodated in the outer tube 31, and the water w in the heat transfer tube 20 and the refrigerant r in the outer tube 31 exchange heat through the wall surface of the intermediate portion.

(伝熱管の構成)
図3から図5は、第1の実施の形態に係る伝熱管の構造を示す説明図であり、図3は全体図を示し、図4は図3のIV領域における拡大断面図を示す。
(Configuration of heat transfer tube)
3 to 5 are explanatory views showing the structure of the heat transfer tube according to the first embodiment, FIG. 3 is an overall view, and FIG. 4 is an enlarged sectional view in the IV region of FIG.

伝熱管20は、転造加工により内面に複数のらせん状のフィン201が形成された内面溝付管であり、熱交換器20(例えば、ヒートポンプ給湯機用の水−冷媒熱交換器)を構成する水管として使用されるものである。すなわち、伝熱管20内を流れる水と、伝熱管20の外を流れる冷媒との間で熱交換が行われる。   The heat transfer tube 20 is an internally grooved tube in which a plurality of spiral fins 201 are formed on the inner surface by rolling, and constitutes a heat exchanger 20 (for example, a water-refrigerant heat exchanger for a heat pump water heater). It is used as a water pipe. That is, heat exchange is performed between the water flowing inside the heat transfer tube 20 and the refrigerant flowing outside the heat transfer tube 20.

フィン201は、伝熱管20の内面に周方向に間隔を隔てて複数、配置され、各フィン201は、伝熱管20の内面を周方向に旋回しつつ管軸方向に延びて、所定のねじれ角βのらせん状に形成される。   A plurality of fins 201 are arranged on the inner surface of the heat transfer tube 20 at intervals in the circumferential direction, and each fin 201 extends in the tube axis direction while turning the inner surface of the heat transfer tube 20 in the circumferential direction, and has a predetermined twist angle. It is formed in a β-helix.

上述したように、本実施の形態に係る伝熱管20は、フィン高さをHf、最大内径をD、横断面のフィンとフィンの間隔をbとし、攪拌効果が低下し始める下限レイノルズ数をRedとして、次式(1)
Red=226{(Hf/D)(b/D)}(-0.46) ・・・(1)
で定まる下限レイノルズ数Red以上のレイノルズ数の領域で動作するように、伝熱管パス数、伝熱管内径Dが選定される。
As described above, in the heat transfer tube 20 according to the present embodiment, the fin height is Hf, the maximum inner diameter is D, the distance between the fins in the cross section is b, and the lower Reynolds number at which the stirring effect starts to decrease is Red. As the following formula (1)
Red = 226 {(Hf / D) (b / D)} (−0.46) (1)
The number of heat transfer tube passes and the heat transfer tube inner diameter D are selected so as to operate in a region having a Reynolds number greater than or equal to the lower limit Reynolds number Red determined by.

具体的に、伝熱管20内の流れが下限レイノルズ数Red以上のレイノルズ数の領域となるように熱交換器20を動作させるには、伝熱管20のレイノルズ数Reを設定するためのパラメータ(代表長さ、代表速度など)を決定し、そのパラメータを適宜設定して行う。パラメータとしては、伝熱管20の長さ、管径(内径)、流量(または流速)などが考えられる。伝熱管20の長さの設定は、例えば、複数の内面溝付管を並列に配置すると共にそれら内面溝付管の端部をベンドで各々接続して伝熱管を構成しその伝熱管のパス数を調整して行われる。また、流量の設定は、例えば、貯湯ユニット19の循環ポンプ194の吐出圧(または吐出流量)の調整や、あるいは循環ポンプ194が所定の吐出流量で定格運転される場合には、伝熱管20のパス数や管径の調整により行われる。   Specifically, in order to operate the heat exchanger 20 so that the flow in the heat transfer tube 20 is in a region with a Reynolds number greater than or equal to the lower limit Reynolds number Red, a parameter (representative) for setting the Reynolds number Re of the heat transfer tube 20 is used. Length, representative speed, etc.) are determined, and the parameters are set appropriately. As parameters, the length of the heat transfer tube 20, the tube diameter (inner diameter), the flow rate (or flow velocity), and the like can be considered. The length of the heat transfer tube 20 is set, for example, by arranging a plurality of internally grooved tubes in parallel and connecting the ends of these internally grooved tubes with a bend to form a heat transfer tube, and the number of passes of the heat transfer tube It is done by adjusting. The flow rate is set, for example, by adjusting the discharge pressure (or discharge flow rate) of the circulation pump 194 of the hot water storage unit 19 or when the circulation pump 194 is rated at a predetermined discharge flow rate. This is done by adjusting the number of passes and the pipe diameter.

なお、以上のものは伝熱管20内の水wの流れのレイノルズ数Reが、上記下限レイノルズ数Red以上となるように、伝熱管20内での水wの流れを設定する一例であり、本発明はこれに限定されない。また、循環ポンプ伝熱管20内の水wの流れのレイノルズ数Reに応じて、伝熱管20の上記フィン高さHf、上記最大内径D、上記間隔bを設定するようにしてもよい。   The above is an example of setting the flow of water w in the heat transfer tube 20 so that the Reynolds number Re of the flow of water w in the heat transfer tube 20 is equal to or greater than the lower limit Reynolds number Red. The invention is not limited to this. Further, the fin height Hf, the maximum inner diameter D, and the interval b of the heat transfer tube 20 may be set according to the Reynolds number Re of the flow of water w in the circulation pump heat transfer tube 20.

以上により、給湯機または電気温水器などの水を加温する熱交換システムにおいて、使用条件と最適なマッチングを図れる内面溝付管を水が流れる伝熱管として用いた熱交換システムを提供することができる。特に、貯湯式ヒートポンプ式給湯機のように、常に水の流速が小さい状態で、使用される場合においても熱交換器の伝熱性能を向上させ得る熱交換システムを提供することができる。   As described above, in a heat exchange system for heating water such as a water heater or an electric water heater, it is possible to provide a heat exchange system that uses an internally grooved tube that can be optimally matched with a use condition as a heat transfer tube through which water flows. it can. In particular, it is possible to provide a heat exchange system that can improve the heat transfer performance of the heat exchanger even when it is used in a state where the flow rate of water is always small, as in a hot water storage heat pump type hot water heater.

次に、図6から図10に基づき式(1)の導出について説明する。   Next, the derivation of Expression (1) will be described based on FIGS.

本実施形態の式(1)は、内面に複数のフィンが設けられた複数の供試伝熱管を用意すると共に、各供試伝熱管のフィン高さHf、最大内径D、間隔bを各々異なる値に設定し、各供試伝熱管について、レイノルズ数をパラメータとして、レイノルズ数と管摩擦係数との関係を各々求め、それら求めた関係から、管摩擦係数が低下し始める下限レイノルズ数を、各供試伝熱管について各々求め、それら求められた各供試伝熱管の下限レイノルズ数と、各供試伝熱管の上記フィン高さHfおよび上記間隔bを最大内径Dで各々無次元化し積算した積(Hf/D)(b/D)との相関関係を累乗近似式で近似して求められる。   Formula (1) of this embodiment prepares a plurality of test heat transfer tubes provided with a plurality of fins on the inner surface, and each test heat transfer tube has a different fin height Hf, maximum inner diameter D, and interval b. For each test heat transfer tube, the Reynolds number was used as a parameter to determine the relationship between the Reynolds number and the tube friction coefficient, and from these relationships, the lower Reynolds number at which the tube friction coefficient began to decrease was Each of the heat transfer tubes obtained is a product obtained by making the lower limit Reynolds number of each of the obtained heat transfer tubes, the fin height Hf and the interval b of each test heat transfer tube dimensionless and integrating each with the maximum inner diameter D. It is obtained by approximating the correlation with (Hf / D) (b / D) by a power approximation expression.

より詳細には、本発明の内面溝付管のフィン高さをHf、最大内径をD、横断面におけるフィンとフィンの間隔をbとしたときの、攪拌効果が低下し始める下限レイノルズ数をRedが次式(1)
Red=226{(Hf/D)(b/D)}(-0.46) ・・・(1)
であることを、以下に説明する実験により求めた。
More specifically, when the fin height of the inner grooved tube of the present invention is Hf, the maximum inner diameter is D, and the distance between the fins in the cross section is b, the lower limit Reynolds number at which the stirring effect starts to decrease is Red. Is the following formula (1)
Red = 226 {(Hf / D) (b / D)} (−0.46) (1)
It was determined by the experiment described below.

図6に本発明に係る上記実験に用いた測定装置の概略図を示す。テストセクションは、供試管(供試伝熱管)である内管71とその内管71を囲繞する外管72とで構成された二重管になっており、供試管71内と、供試管71と外管72との間の環状路73とは、冷水cおよび温水hを対向で流している。供試管71としては、平滑管(No.1、No.15)、コルゲート管(No.3)、および内面に複数のフィンをらせん状に設けた内面溝付管(No.7−14、No.16−17)を使用した。   FIG. 6 shows a schematic diagram of a measuring apparatus used in the above experiment according to the present invention. The test section is a double pipe composed of an inner pipe 71 that is a test pipe (test heat transfer pipe) and an outer pipe 72 that surrounds the inner pipe 71. The test section 71 and the test pipe 71 Cold water c and hot water h flow oppositely between the annular path 73 between the outer pipe 72 and the outer pipe 72. As the test tube 71, a smooth tube (No. 1, No. 15), a corrugated tube (No. 3), and an inner grooved tube (No. 7-14, No. 16-17) were used.

供試管71、環状路73それぞれの熱交換量を求め、熱収支±5%の範囲で実験を行った。供試管71の外周壁に上下2点、管軸方向に3箇所の計6箇所に熱電対(銅−コンスタンタン素線径0.2mm)を埋め込んで管壁温度を測定した。管内熱伝達率Nu/Pr0.4は、管内面基準の熱流束を、管壁温度平均値と管内入口・出口温度の対数温度差で除して求めた。管内表面積は平滑管、コルゲート管は実測値を、内面溝付管は最大内径で計算される面積を用いた。管摩擦係数fは、計測値からDarcy−Weisbachの式で求めた。なお、水の熱物性値はPROPATHにより算出した。   The heat exchange amount of each of the test tube 71 and the annular path 73 was determined, and the experiment was performed in the range of heat balance ± 5%. Thermocouples (copper-constantan wire diameter 0.2 mm) were embedded in a total of six locations, two on the outer peripheral wall of the test tube 71 and two in the vertical direction and three in the tube axis direction, and the tube wall temperature was measured. The pipe heat transfer coefficient Nu / Pr0.4 was obtained by dividing the heat flux on the pipe inner surface reference by the logarithmic temperature difference between the pipe wall temperature average value and the pipe inlet / outlet temperature. For the surface area inside the tube, measured values were used for the smooth tube and the corrugated tube, and the area calculated by the maximum inner diameter was used for the internally grooved tube. The tube friction coefficient f was obtained from the measured value by the Darcy-Weisbach equation. The thermophysical value of water was calculated by PROPATH.

表1に供試管(No.1、No.7−17)の外径DO、底肉厚Tw、フィン高さHf、フィン数N及びねじれ角β(図3−5参照)を示す。   Table 1 shows the outer diameter DO, the bottom wall thickness Tw, the fin height Hf, the fin number N, and the twist angle β (see FIG. 3-5) of the test tubes (No. 1, No. 7-17).

Figure 2009174832
Figure 2009174832

No.1及びNo.15はそれぞれφ9.52、φ12.7平滑管であり、実験精度の確認のために測定を行った。乱流域(Re>3000)でPetukhov−Gnielinskiの式で計算される熱伝達率と比較して、±10%以内であった。   No. 1 and no. 15 are φ9.52 and φ12.7 smooth tubes, respectively, which were measured for confirmation of experimental accuracy. It was within ± 10% compared with the heat transfer coefficient calculated by the Petukhov-Gnielinski equation in the turbulent region (Re> 3000).

No.7〜14はφ9.52の内面溝付管、No.16,17はφ12.7の内面溝付管である。なお、表1には示していないが、No.3は、φ9.52コルゲート管である。   No. Nos. 7 to 14 are inner grooved pipes of No. Reference numerals 16 and 17 are φ12.7 inner grooved tubes. Although not shown in Table 1, no. 3 is a φ9.52 corrugated tube.

図7にNo.1,3,9,11の熱伝達率Nu/Pr0.4の測定結果を示す。No.9は高レイノルズ数領域ではNo.3のコルゲート管の性能を上回るが、レイノルズ数2000ではNo.1の平滑管同等まで性能が低下してしまう。No.11は、今回試験した内面溝付管の中で最も低レイノルズ数領域で性能の良かった仕様であるが、No.3のコルゲート管の性能はこれよりも高い。   In FIG. The measurement result of the heat transfer coefficient Nu / Pr0.4 of 1,3,9,11 is shown. No. No. 9 is No. in the high Reynolds number region. Although the performance of the corrugated tube of 3 is exceeded, the Reynolds number of 2000 is No. The performance is reduced to the same level as that of the 1 smooth tube. No. No. 11 is the specification with the best performance in the lowest Reynolds number region among the internally grooved tubes tested this time. The performance of the 3 corrugated tube is higher than this.

そこで、低レイノルズ数領域で高い性能が得られる内面溝付管仕様を検討するために、今回試験した内面溝付管について、低レイノルズ数領域で性能が低下し始めるレイノルズ数を、管摩擦係数に着目して整理する。   Therefore, in order to examine the specifications of the internally grooved tube that can achieve high performance in the low Reynolds number region, the Reynolds number of the internally grooved tube tested this time, which starts to decrease in the low Reynolds number region, is used as the tube friction coefficient. Organize with attention.

図8はNo.11,17の熱伝達率Nu/Pr0.4及び管摩擦係数fの測定結果である。レイノルズ数が小さくなると、摩擦係数が低下するポイントがあり、この点よりレイノルズ数が小さくなると層流に遷移し、熱伝達率も低下し始めることが分かる。   FIG. 11 is a measurement result of heat transfer coefficient Nu / Pr0.4 of 11 and 17 and pipe friction coefficient f. As the Reynolds number decreases, there is a point at which the friction coefficient decreases. From this point, it can be seen that when the Reynolds number decreases, the flow transitions to laminar flow and the heat transfer coefficient begins to decrease.

そこで、各内面溝付管を相対比較するために、性能が低下し始めるレイノルズ数(下限レイノルズ数)Redを、摩擦係数の最大値から、(最大値−最小値)の10%低下したレイノルズ数と定義する。   Therefore, in order to compare each inner grooved tube relatively, the Reynolds number (lower limit Reynolds number) Red whose performance starts to decrease is reduced by 10% from the maximum value of the friction coefficient (maximum value−minimum value). It is defined as

フィン形状とRedの関係を考察するため、3つの無次元数s/D(sは螺旋溝1周の管軸ピッチ、Dは最大内径ID)、b/D(bはフィンとフィンの間隔)、Hf/Dで整理した結果を図9に示す。   In order to consider the relationship between the fin shape and Red, three dimensionless numbers s / D (where s is the pipe axis pitch of one spiral groove, D is the maximum inner diameter ID), b / D (b is the distance between the fin and the fin) FIG. 9 shows the results organized by Hf / D.

図9より、b/D、Hf/Dは相関関係があると推察できる。そこで、(b/D)と(Hf/D)の積と、Redとの相関関係を図10に示す。この図10の相関関係は、累乗近似式である次式(1)で表せる。   From FIG. 9, it can be inferred that b / D and Hf / D have a correlation. Therefore, FIG. 10 shows the correlation between the product of (b / D) and (Hf / D) and Red. The correlation in FIG. 10 can be expressed by the following equation (1) which is a power approximation equation.

Red=226{(Hf/D)(b/D)}(-0.46) ・・・(1)
これより、式(1)によれば、水を加温する用途の熱交換器で伝熱管として使用される内面溝付管を、熱交換システムの使用条件に合わせて選定、あるいは、内面溝付管が性能を十分発揮し得る熱交換システム(パス、流量、管径など)を選定できることが分かる。
Red = 226 {(Hf / D) (b / D)} (−0.46) (1)
Therefore, according to the formula (1), the inner grooved tube used as the heat transfer tube in the heat exchanger for heating water is selected according to the use conditions of the heat exchange system, or the inner grooved It can be seen that a heat exchange system (path, flow rate, pipe diameter, etc.) that allows the pipe to perform sufficiently can be selected.

次に、図11から図13に基づき本発明の他の実施の形態を説明する。   Next, another embodiment of the present invention will be described with reference to FIGS.

以下に説明する第2および第3の実施の形態に係る熱交換システムは、上述の第1の実施形態とはヒートポンプユニット18の水熱交換器の構成が主に異なり、その他は同様となっている。そこで、水熱交換器の構成のみ説明し他の構成については説明を省略する。また、第1の実施形態と同一の要素については、図中同一符号を付すに止め、詳細な説明は省略する。   The heat exchange systems according to the second and third embodiments described below are mainly different from the above-described first embodiment in the configuration of the water heat exchanger of the heat pump unit 18, and the others are the same. Yes. Therefore, only the configuration of the water heat exchanger will be described, and description of other configurations will be omitted. The same elements as those in the first embodiment are designated by the same reference numerals in the drawings, and detailed description thereof is omitted.

〔本発明の第2の実施の形態〕
(熱交換器の構成)
図11および図12は、本発明の第2の実施の形態に係る熱交換器の構造を示す説明図である。
[Second Embodiment of the Present Invention]
(Configuration of heat exchanger)
11 and 12 are explanatory views showing the structure of the heat exchanger according to the second embodiment of the present invention.

本実施の形態に係る熱交換器40は、三重管式熱交換器であり、上述した本発明の第1の実施の形態に係る伝熱管(内面溝付管)20を内管として、その伝熱管20の外周に漏洩検知部が形成されるように平滑管の内周に漏洩検知溝41を設けてなる漏洩検知管42が接して配置され、更に漏洩検知管42の外側に外管31が配置され、漏洩検知管42と外管31の間の環状路に冷媒rが流れるように形成されている。   The heat exchanger 40 according to the present embodiment is a triple-pipe heat exchanger, and the heat transfer tube (inner grooved tube) 20 according to the first embodiment of the present invention described above is used as an inner tube. A leak detection tube 42 provided with a leak detection groove 41 is disposed in contact with the inner periphery of the smooth tube so that a leak detection portion is formed on the outer periphery of the heat tube 20, and the outer tube 31 is further outside the leak detection tube 42. It is arranged so that the refrigerant r flows through an annular path between the leak detection pipe 42 and the outer pipe 31.

図例では、漏洩検知管42内に伝熱管20が嵌め入れられ、伝熱管20の外周面と漏洩検知管42の内周面とが当接する。漏洩検知管42の内周面には管軸方向に延びる複数の漏洩検知溝41が周方向に間隔を隔てて形成され、それら漏洩検知溝41と伝熱管20の外周面とで漏洩検知部が区画形成される。その漏洩検知部は漏洩センサ63(例えば、水分センサや圧力センサなど)に接続され、その漏洩センサ63により伝熱管20から漏洩検知部に漏洩した水wや漏洩による圧力変化などが検知される。   In the illustrated example, the heat transfer tube 20 is fitted into the leak detection tube 42, and the outer peripheral surface of the heat transfer tube 20 and the inner peripheral surface of the leak detection tube 42 abut. A plurality of leak detection grooves 41 extending in the pipe axis direction are formed at intervals in the circumferential direction on the inner peripheral surface of the leak detection pipe 42, and the leak detection unit is formed by the leak detection grooves 41 and the outer peripheral surface of the heat transfer pipe 20. A compartment is formed. The leak detection unit is connected to a leak sensor 63 (for example, a moisture sensor or a pressure sensor), and the leak sensor 63 detects water w leaked from the heat transfer tube 20 to the leak detection unit, a pressure change due to the leak, or the like.

本実施形態でも上述の実施形態と同様の効果が得られ、さらに、水の漏洩を早期かつ容易に検知することができる。   In this embodiment, the same effect as that of the above-described embodiment can be obtained, and furthermore, leakage of water can be detected early and easily.

〔本発明の第3の実施の形態〕
(熱交換器の構成)
図13は、本発明の第3の実施の形態に係る熱交換器の構造を示す説明図である。
[Third embodiment of the present invention]
(Configuration of heat exchanger)
FIG. 13 is an explanatory view showing the structure of a heat exchanger according to the third embodiment of the present invention.

本実施の形態に係る熱交換器50は、上述した第1の実施の形態に係る伝熱管20の外面に、冷媒流通用の螺旋状伝熱管51が巻き付けられて構成される。なお、必要に応じて、伝熱管20の外面と螺旋状伝熱管51をろう付け等で固着する場合もある。   The heat exchanger 50 according to the present embodiment is configured by winding a spiral heat transfer tube 51 for circulating refrigerant around the outer surface of the heat transfer tube 20 according to the first embodiment described above. If necessary, the outer surface of the heat transfer tube 20 and the helical heat transfer tube 51 may be fixed by brazing or the like.

本実施形態の熱交換器50では、伝熱管20内を流れる水と、伝熱管20の外周で接触する螺旋状伝熱管51内を流れる冷媒との間で熱交換が行われる。   In the heat exchanger 50 of this embodiment, heat exchange is performed between the water flowing in the heat transfer tube 20 and the refrigerant flowing in the spiral heat transfer tube 51 in contact with the outer periphery of the heat transfer tube 20.

本実施形態でも上述の実施形態と同様の効果が得られる。   Also in this embodiment, the same effect as the above-described embodiment can be obtained.

なお、本発明は、上述の実施形態に限定されず、様々な変形例や応用例が考えられるものである。   In addition, this invention is not limited to the above-mentioned embodiment, Various modifications and application examples can be considered.

例えば、上述の実施の形態では、本発明の熱交換システムをその熱交換システムによりお湯を沸かす貯湯式ヒートポンプ式給湯機に適用したが、これに限定されず、熱交換システムを、熱交換システムにより暖房用循環水の加温を行う暖房機や熱交換システムにより風呂のお湯を追焚きする給湯機などに適用してもよい。   For example, in the above-described embodiment, the heat exchange system of the present invention is applied to a hot water storage type heat pump water heater that boils hot water using the heat exchange system. However, the present invention is not limited to this, and the heat exchange system is a heat exchange system. The present invention may be applied to a heater for heating circulating water for heating, a water heater for chasing hot water in a bath by a heat exchange system, or the like.

また、加熱媒体は、ヒートポンプ用の自然冷媒(二酸化炭素冷媒など)に限定されず、様々なものが考えられる。例えば、加熱媒体は、ヒートポンプ用冷媒であるフロンでもよく、ヒートポンプ用冷媒以外にも、高温の湯、蒸気、ヒータなどでもよい。   Further, the heating medium is not limited to a natural refrigerant (such as a carbon dioxide refrigerant) for a heat pump, and various heating media are conceivable. For example, the heating medium may be chlorofluorocarbon, which is a heat pump refrigerant, and may be hot water, steam, a heater, or the like in addition to the heat pump refrigerant.

図1は、貯湯式ヒートポンプ式給湯機の概略構成図を示したものである。FIG. 1 is a schematic configuration diagram of a hot water storage type heat pump type hot water heater. 図2は、本発明の第1の実施の形態に係る熱交換器の構造説明図である。FIG. 2 is an explanatory diagram of the structure of the heat exchanger according to the first embodiment of the present invention. 図3は、本発明の第1の実施の形態に係る伝熱管の構造説明図である。FIG. 3 is an explanatory diagram of the structure of the heat transfer tube according to the first embodiment of the present invention. 図4は、図3のIV領域の詳細図である。FIG. 4 is a detailed view of a region IV in FIG. 図5は、本発明の第1の実施の形態に係る伝熱管の構造説明図である。FIG. 5 is an explanatory diagram of the structure of the heat transfer tube according to the first embodiment of the present invention. 図6は、実験に用いた測定装置の概略図である。FIG. 6 is a schematic view of a measuring apparatus used in the experiment. 図7は、内面溝付管の熱伝達率測定結果である。FIG. 7 shows the heat transfer coefficient measurement results of the internally grooved tube. 図8は、内面溝付管の熱伝達率および圧力損失測定結果である。FIG. 8 shows the heat transfer coefficient and pressure loss measurement results of the internally grooved tube. 図9は、攪拌効果が低下する下限レイノルズ数Redを、3つの無次元数s/D、b/D、Hf/Dで整理した結果を示したものである。FIG. 9 shows the result of arranging the lower limit Reynolds number Red at which the stirring effect is reduced by three dimensionless numbers s / D, b / D, and Hf / D. 図10は、(b/D)と(HF/D)の積と、下限レイノルズ数Redとの相関関係を示したものである。FIG. 10 shows the correlation between the product of (b / D) and (HF / D) and the lower limit Reynolds number Red. 図11は、本発明の第2の実施の形態に係る熱交換器の構造説明図である。FIG. 11 is an explanatory diagram of the structure of the heat exchanger according to the second embodiment of the present invention. 図12は、図11のXII−XII線断面図である。12 is a cross-sectional view taken along line XII-XII in FIG. 図13は、本発明の第3の実施の形態に係る熱交換器の構造説明図である。FIG. 13 is an explanatory diagram of the structure of the heat exchanger according to the third embodiment of the present invention.

符号の説明Explanation of symbols

10 貯湯式ヒートポンプ式給湯機
11 圧縮機
12 ガスクーラ(水熱交換器)
13 減圧器
14 吸熱器(蒸発器)
20 内面溝付管
30 二重管式熱交換器
31 二重管式熱交換器の外管
40 三重管式熱交換器
41 漏洩検知溝
42 漏洩検知管
50 熱交換器
51 螺旋状伝熱管
10 Hot Water Storage Heat Pump Water Heater 11 Compressor 12 Gas Cooler (Water Heat Exchanger)
13 Pressure reducer 14 Heat absorber (evaporator)
20 Inner grooved tube 30 Double tube heat exchanger 31 Outer tube of double tube heat exchanger 40 Triple tube heat exchanger 41 Leak detection groove 42 Leak detection tube 50 Heat exchanger 51 Spiral heat transfer tube

Claims (5)

内面に複数のフィンを設けた伝熱管内に水を流し、その伝熱管外の加熱媒体で間接加熱して上記水を加温する熱交換システムにおいて、
上記伝熱管のフィン高さをHf、最大内径をD、横断面におけるフィンとフィンの間隔をbとして、攪拌効果が低下し始める下限レイノルズ数Redを、次式(1)
Red=226{(Hf/D)(b/D)}(-0.46) ・・・(1)
で定め、
上記伝熱管内の水の流れのレイノルズ数Reが、上記下限レイノルズ数Red以上となるように、上記伝熱管の上記フィン高さHf、上記最大内径D、上記間隔bを設定、あるいは上記伝熱管内での水の流れを設定したことを特徴とする熱交換システム。
In a heat exchange system in which water is flowed into a heat transfer tube provided with a plurality of fins on the inner surface and heated indirectly by a heating medium outside the heat transfer tube, the water is heated.
The lower limit Reynolds number Red at which the stirring effect starts to decrease, where Hf is the fin height of the heat transfer tube, D is the maximum inner diameter, and b is the distance between the fins in the cross section, is expressed by the following equation (1).
Red = 226 {(Hf / D) (b / D)} (−0.46) (1)
Determined by
The fin height Hf, the maximum inner diameter D, and the interval b of the heat transfer tube are set such that the Reynolds number Re of the water flow in the heat transfer tube is equal to or greater than the lower limit Reynolds number Red, or the heat transfer A heat exchange system characterized by setting the flow of water in the pipe.
請求項1記載の熱交換システムを備え、その熱交換システムによりお湯を沸かすことを特徴とする貯湯式ヒートポンプ式給湯機。   A hot water storage type heat pump type hot water heater comprising the heat exchange system according to claim 1, wherein hot water is boiled by the heat exchange system. 請求項1記載の熱交換システムを備え、その熱交換システムにより暖房用循環水の加温を行う暖房機。   A heating machine comprising the heat exchange system according to claim 1 and heating the circulating water for heating by the heat exchange system. 請求項1記載の熱交換システムを備え、その熱交換システムにより風呂のお湯を追焚きする給湯機。   A water heater comprising the heat exchanging system according to claim 1, and chasing hot water in the bath by the heat exchanging system. 上記伝熱管の上記フィンが、らせん状に形成された請求項1記載の熱交換システム。   The heat exchange system according to claim 1, wherein the fin of the heat transfer tube is formed in a spiral shape.
JP2008016701A 2008-01-28 2008-01-28 Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same Pending JP2009174832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016701A JP2009174832A (en) 2008-01-28 2008-01-28 Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016701A JP2009174832A (en) 2008-01-28 2008-01-28 Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same

Publications (1)

Publication Number Publication Date
JP2009174832A true JP2009174832A (en) 2009-08-06

Family

ID=41030105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016701A Pending JP2009174832A (en) 2008-01-28 2008-01-28 Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same

Country Status (1)

Country Link
JP (1) JP2009174832A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190271A (en) * 2010-02-22 2011-09-21 崔相弼 Hot and cold water dispenser
JP2011208824A (en) * 2010-03-29 2011-10-20 Furukawa Electric Co Ltd:The Heat exchanger and heat transfer tube
JP2013044441A (en) * 2011-08-22 2013-03-04 Panasonic Corp Double tube type heat exchanger, and heat pump hot-water generator provided therewith
JP2014040963A (en) * 2012-08-22 2014-03-06 Daikin Ind Ltd Water heat exchanger
KR101735363B1 (en) * 2016-04-15 2017-05-29 주식회사 포스코 Apparatus for preheating gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190271A (en) * 2010-02-22 2011-09-21 崔相弼 Hot and cold water dispenser
EP2362170A3 (en) * 2010-02-22 2011-10-26 Sang Pil Choi Hot and cold water dispenser
JP2011208824A (en) * 2010-03-29 2011-10-20 Furukawa Electric Co Ltd:The Heat exchanger and heat transfer tube
JP2013044441A (en) * 2011-08-22 2013-03-04 Panasonic Corp Double tube type heat exchanger, and heat pump hot-water generator provided therewith
JP2014040963A (en) * 2012-08-22 2014-03-06 Daikin Ind Ltd Water heat exchanger
KR101735363B1 (en) * 2016-04-15 2017-05-29 주식회사 포스코 Apparatus for preheating gas

Similar Documents

Publication Publication Date Title
JP2009174832A (en) Heat exchanging system, and hot water storage type heat pump water heater, heater and water heater using the same
Salem et al. Study of the performance of a vapor compression refrigeration system using conically coiled tube-in-tube evaporator and condenser
Ndiaye Transient model of a refrigerant-to-water helically coiled tube-in-tube heat exchanger with corrugated inner tube
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
CN104006533A (en) Water heater
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
JP2006170571A (en) Double multitubular heat exchanger
KR20050095771A (en) Heat exchanger
Phu et al. Modelling and experimental validation for off-design performance of the helical heat exchanger with LMTD correction taken into account
US20110209857A1 (en) Wound Layered Tube Heat Exchanger
Chang et al. Condensing heat transfer characteristics of aluminum flat tube
JP2007071426A (en) Heat pump type water heater and heat exchanger used in the same
JP5929012B2 (en) Heat exchanger and heat pump water heater
Liu et al. An inverter-driven heat pump with a multi-tubular tube-in-tube heat exchanger for domestic hot water supply
JP2009186130A (en) Heat transfer tube for radiator with inner face fin
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
JP2007271220A (en) Heat transfer tube with inner groove for gas cooler
Thors et al. In-tube evaporation of HCFC-22 with enhanced tubes
JP2005009833A (en) Double pipe type heat exchanger
JP2010096372A (en) Internal heat exchanger for carbon dioxide refrigerant
JP2011252662A (en) Heat transfer tube for refrigerant, and heat exchanger
JP2009133530A (en) Heat exchanger and heat pump hot water supply machine
JP5171280B2 (en) Heat exchanger and heat pump type water heater using the same
JP2012122692A (en) Heat transfer tube with grooved inner surface
JP2010112565A (en) Heat exchanger