JP2009133530A - Heat exchanger and heat pump hot water supply machine - Google Patents

Heat exchanger and heat pump hot water supply machine Download PDF

Info

Publication number
JP2009133530A
JP2009133530A JP2007309196A JP2007309196A JP2009133530A JP 2009133530 A JP2009133530 A JP 2009133530A JP 2007309196 A JP2007309196 A JP 2007309196A JP 2007309196 A JP2007309196 A JP 2007309196A JP 2009133530 A JP2009133530 A JP 2009133530A
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
water
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007309196A
Other languages
Japanese (ja)
Inventor
Daisuke Waki
大輔 脇
Hiroshi Kusumoto
寛 楠本
Tetsuya Kitamura
哲也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007309196A priority Critical patent/JP2009133530A/en
Publication of JP2009133530A publication Critical patent/JP2009133530A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enlarge the degree of freedom in adjusting a pitch of refrigerant side heat transfer pipes in a water refrigerant heat exchanger. <P>SOLUTION: The water refrigerant heat exchanger 3 includes: a passage member 13 formed cylindrical by spirally winding a member having a U-shaped section; and an inner cylinder 15 and an outer cylinder 17, which are provided in close contact with the outer surface and the inner surface of the cylindrical passage member 13, wherein a water passage 3b having a substantially rectangular section is formed in a space partitioned by the passage member 13, the inner cylinder 15 and the outer cylinder 17, and the heat transfer pipes 19 having a refrigerant passage 3a circular in section are provided at spaces spirally in contact with the outer surface of the outer cylinder 17. A soldered part 21 soldered extending over the full length of the heat transfer pipe 19 is provided in the periphery of a contact part between the outer surface of the outer cylinder 17 and the heat transfer pipe 19. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱交換器に関し、特に熱交換器の熱交換性能を向上する技術に関するものである。   The present invention relates to a heat exchanger, and more particularly to a technique for improving the heat exchange performance of a heat exchanger.

従来、ヒートポンプ式給湯機において、冷媒により水を加熱する熱交換器(以下、水冷媒熱交換器と呼ぶ)は、水が流通する水伝熱管と冷媒が流通する冷側伝熱管とを接触させて螺旋状に形成し、水伝熱管と冷媒伝熱管との接触部をろう接したものが知られている。特に、相変化する冷媒の熱伝達率の変化を考慮して、水伝熱管の入側と出側との間の管路に対する冷媒伝熱管の巻き着けピッチを変化させることで熱交換性能を向上することが提案されている(例えば、特許文献1)。   2. Description of the Related Art Conventionally, in a heat pump type hot water heater, a heat exchanger that heats water with a refrigerant (hereinafter referred to as a water-refrigerant heat exchanger) contacts a water heat transfer tube through which water flows and a cold-side heat transfer tube through which refrigerant flows. It is known that the contact portion between the water heat transfer tube and the refrigerant heat transfer tube is brazed. In particular, taking into account changes in the heat transfer coefficient of the phase-changing refrigerant, heat exchange performance is improved by changing the winding pitch of the refrigerant heat transfer tube with respect to the pipe line between the inlet and outlet sides of the water heat transfer tube It has been proposed (for example, Patent Document 1).

一方、板材を適宜間隔をあけて90度に折り曲げジグザグ状に形成した2枚の板を重ねて箱型容器の中に収納し、箱型容器の中を上下方向に水が蛇行して流れる蛇行路を形成して、冷媒が流通する3本の伝熱管を束ねて一本として箱型容器の外面に螺旋状に巻きつけてろう接した熱交換器が知られている(例えば、特許文献2)。   On the other hand, the plate material is folded at 90 degrees at an appropriate interval, and two plates formed in a zigzag shape are stacked and stored in a box-type container, and the meandering water flows in a vertical direction in the box-type container. There is known a heat exchanger in which a path is formed and three heat transfer tubes through which a refrigerant flows are bundled and wound into a spiral shape around the outer surface of a box-type container (for example, Patent Document 2). ).

特開2004−278807号JP 2004-278807 A 特開2005−133999号JP 2005-133999 A

しかしながら、特許文献1の技術は、円管の水伝熱管を螺旋状に巻回して円筒状に形成していることから、その外面の軸方向に水伝熱管の凹凸部が形成されるため、冷媒伝熱管の螺旋のピッチを調整する際に、ピッチ調整の自由度が小さい。   However, since the technology of Patent Document 1 is formed in a cylindrical shape by spirally winding a circular water heat transfer tube, the uneven portion of the water heat transfer tube is formed in the axial direction of the outer surface thereof. When adjusting the helical pitch of the refrigerant heat transfer tube, the degree of freedom of pitch adjustment is small.

また、特許文献2は伝熱管の螺旋のピッチを調整することについては考慮されておらず、水が流通する流路は蛇行路なので、圧力損失が大きくなる。   Further, Patent Document 2 does not consider the adjustment of the helical pitch of the heat transfer tube, and the flow path through which water flows is a meandering path, so that the pressure loss increases.

本発明は、水冷媒熱交換器における冷媒側伝熱管の冷媒の相変化に合わせてピッチ調整の自由度を大きくすることを課題とする。   This invention makes it a subject to enlarge the freedom degree of pitch adjustment according to the phase change of the refrigerant | coolant of the refrigerant | coolant side heat exchanger tube in a water refrigerant | coolant heat exchanger.

上記の課題を解決するため、本発明の熱交換器は、気液相変化する第1の冷媒が流通される第1の伝熱部材と、液体の第2の冷媒が流通される第2の伝熱部材とを備え、第1と第2の伝熱部材間で熱交換する熱交換器において、第2の伝熱部材は、矩形断面の流路を互いに接するように螺旋状に巻回して円筒状に形成されてなり、第1の伝熱部材は、円形断面の管路を互いに適宜間隔を空けて、第2の伝熱部材の円筒の外面と内面の少なくとも一方に螺旋状に巻回して形成されてなることを特徴とする。   In order to solve the above-described problems, the heat exchanger according to the present invention includes a first heat transfer member through which a first refrigerant that undergoes a gas-liquid phase change is circulated, and a second heat through which a liquid second refrigerant is circulated. In a heat exchanger that includes a heat transfer member and exchanges heat between the first and second heat transfer members, the second heat transfer member is spirally wound so that the rectangular cross-section flow paths are in contact with each other. The first heat transfer member is formed in a cylindrical shape, and the pipes having a circular cross section are spirally wound around at least one of the outer surface and the inner surface of the second heat transfer member with an appropriate space between each other. It is characterized by being formed.

すなわち、液体が流通する第2の伝熱部材を矩形断面の流路を螺旋状に巻回して形成したことから、第2の伝熱部材の円筒の外面と内面を軸方向に平らに形成することができ、第1の伝熱部材の円管を第2の流路部材の外面又は内面の軸方向の任意の位置に接合できるから、螺旋のピッチを自由に調整できる。その結果、相変化する冷媒の熱抵抗値に合わせて第1の伝熱部材の円管の螺旋のピッチを調整することができる。   That is, since the second heat transfer member through which the liquid flows is formed by spirally winding a flow passage having a rectangular cross section, the outer surface and the inner surface of the cylinder of the second heat transfer member are formed flat in the axial direction. In addition, since the circular pipe of the first heat transfer member can be joined to any position in the axial direction of the outer surface or the inner surface of the second flow path member, the helical pitch can be freely adjusted. As a result, the helical pitch of the circular tube of the first heat transfer member can be adjusted in accordance with the thermal resistance value of the phase-changing refrigerant.

例えば、第1の伝熱部材の管路においては、第1の冷媒が気相状態から液相状態に変化する境界部付近で熱抵抗値が最も低くなり、その位置から第1の冷媒の入側と出側に向って熱抵抗値が大きくなるから、境界部付近の螺旋のピッチを粗にし、境界部付近から水入口側又は出口側に向うにしたがって段段に螺旋のピッチを密にすることで、熱交換性能を向上することができる。すなわち、第1の伝熱部材の管路の相互の間隔を管路内に流通される第1の冷媒の気液相変化の態様に応じて設定することが望ましい。   For example, in the pipe line of the first heat transfer member, the thermal resistance value is the lowest near the boundary where the first refrigerant changes from the gas phase state to the liquid phase state, and the first refrigerant enters from the position. Since the thermal resistance value increases toward the outlet side and the outlet side, the pitch of the spiral near the boundary is roughened, and the spiral pitch is increased in stages toward the water inlet side or outlet side from the vicinity of the boundary. Thus, the heat exchange performance can be improved. That is, it is desirable to set the interval between the pipes of the first heat transfer member according to the gas-liquid phase change mode of the first refrigerant flowing in the pipe.

本発明によれば、水冷媒熱交換器における冷媒側伝熱管の冷媒の相変化に合わせてピッチ調整の自由度を大きくすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the freedom degree of pitch adjustment can be enlarged according to the phase change of the refrigerant | coolant of the refrigerant | coolant side heat exchanger tube in a water refrigerant | coolant heat exchanger.

以下、本発明を実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

(実施形態1)
図1は本発明の一実施形態のヒートポンプ給湯機の模式図、図2は本実施形態の熱交換器の概略構成図であり、(a)は縦断面図、(b)はA部の拡大図である。
(Embodiment 1)
FIG. 1 is a schematic diagram of a heat pump water heater according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a heat exchanger of the present embodiment, (a) is a longitudinal sectional view, and (b) is an enlarged view of part A. FIG.

図1に示すように、本実施形態のヒートポンプ給湯機は、圧縮機1と、水冷媒熱交換器3の冷媒流路3aと、膨張弁5と、蒸発器7とを、それぞれ冷媒配管を介して順次接続して構成されており、冷媒として例えば二酸化炭素が封入されている。また、水冷媒熱交換器3の水流路3bの流入側には、図示していない水道などの給水原又は貯湯タンクから給水される給水管9が接続され、水流路3bの流出側には、貯湯タンクなどの給湯先に湯を供給するための給湯管11がそれぞれ接続されている。   As shown in FIG. 1, the heat pump water heater of this embodiment includes a compressor 1, a refrigerant flow path 3 a of a water refrigerant heat exchanger 3, an expansion valve 5, and an evaporator 7 via refrigerant pipes. Are sequentially connected, and carbon dioxide, for example, is sealed as a refrigerant. In addition, a water supply pipe 9 supplied from a water supply source such as a water supply (not shown) or a hot water storage tank is connected to the inflow side of the water flow path 3b of the water refrigerant heat exchanger 3, and the outflow side of the water flow path 3b is connected to the outflow side of the water flow path 3b. A hot water supply pipe 11 for supplying hot water to a hot water supply destination such as a hot water storage tank is connected to each other.

図2(a)、(b)に示すように、水冷媒熱交換器3は、断面U字状の部材を螺旋状に巻回して円筒状に形成された流路部材13と、円筒状に形成された流路部材13の外面と内面に密接して設けられた内筒15及び外筒17を有している。流路部材13、内筒15及び外筒17により構成された伝熱部材は、矩形断面の水流路3bを互いに接するように螺旋状に巻回して円筒状に形成されている。外筒17の外面には円形断面の冷媒流路3aを有する伝熱管19が互いに適宜間隔をあけて螺旋状に接して設けられている。外筒17の外面と伝熱管19との接触部の周囲には、伝熱管19の全長にわたってろう接されたろう接部21が設けられている。また、水流路3bを流れる水は図2(a)の上部から下部へ螺旋状に流れ、冷媒流路3aを流れる冷媒は下部から上部へ流れることで、冷媒と水の流れを対向流としている。   As shown in FIGS. 2A and 2B, the water-refrigerant heat exchanger 3 includes a flow path member 13 formed in a cylindrical shape by spirally winding a member having a U-shaped cross section, and a cylindrical shape. It has the inner cylinder 15 and the outer cylinder 17 which were provided in close contact with the outer surface and inner surface of the formed flow path member 13. The heat transfer member constituted by the flow path member 13, the inner cylinder 15 and the outer cylinder 17 is formed in a cylindrical shape by spirally winding the water flow paths 3b having a rectangular cross section so as to contact each other. On the outer surface of the outer cylinder 17, a heat transfer tube 19 having a refrigerant passage 3 a having a circular cross section is provided in spiral contact with each other at an appropriate interval. Around the contact portion between the outer surface of the outer cylinder 17 and the heat transfer tube 19, a brazing portion 21 that is brazed over the entire length of the heat transfer tube 19 is provided. Further, the water flowing through the water flow path 3b flows spirally from the upper part to the lower part of FIG. 2A, and the refrigerant flowing through the refrigerant flow path 3a flows from the lower part to the upper part, thereby making the refrigerant and water flow counterflow. .

次に、図2(a)、図3を用いて伝熱管19の螺旋のピッチ調整について説明する。図3は水冷媒熱交換器の伝熱管19の螺旋を等ピッチで形成した場合の水入口からの距離に対する冷媒側熱抵抗値及び水側熱抵抗値を示すグラフである。図3に示すように、伝熱管19を等ピッチで螺旋巻きした場合、一般的に伝熱管19を流通する冷媒の相変化の態様に応じて、水入口からの距離によって冷媒側熱抵抗値(実線)と水側熱抵抗値(破線)が変化する。すなわち、冷媒が気相状態から液相状態に変化する境界部付近で冷媒側熱抵抗値が最も低くなり、その位置から冷媒の入側と出側に向って熱抵抗値が大きくなる。また、水側熱抵抗値は水入口からの距離から遠ざかるにつれて緩やかに下降する。   Next, the helical pitch adjustment of the heat transfer tube 19 will be described with reference to FIGS. FIG. 3 is a graph showing the refrigerant-side heat resistance value and the water-side heat resistance value with respect to the distance from the water inlet when the spirals of the heat transfer tubes 19 of the water-refrigerant heat exchanger are formed at an equal pitch. As shown in FIG. 3, when the heat transfer tubes 19 are spirally wound at an equal pitch, generally, the refrigerant side thermal resistance value (depending on the distance from the water inlet (depending on the phase change mode of the refrigerant flowing through the heat transfer tubes 19) The solid line) and the water-side thermal resistance value (broken line) change. That is, the refrigerant-side thermal resistance value is the lowest in the vicinity of the boundary where the refrigerant changes from the gas phase state to the liquid phase state, and the thermal resistance value increases from the position toward the inlet side and the outlet side of the refrigerant. Further, the water-side thermal resistance value gradually decreases as the distance from the water inlet increases.

そこで、本実施形態においては、図2(a)における水入口からの距離約10%〜50%では冷媒側熱抵抗値より水側熱抵抗値が大きいので伝熱管19の螺旋のピッチを粗にし、水入口からの距離約60%〜100%では水側熱抵抗値より冷媒側熱抵抗値が大きいので伝熱管19の螺旋のピッチを密にする。このように、冷媒側と水側の熱抵抗値の全体のバランスをとるように冷媒伝熱管5の螺旋のピッチを調整する。   Therefore, in this embodiment, the water-side thermal resistance value is larger than the refrigerant-side thermal resistance value at a distance of about 10% to 50% from the water inlet in FIG. When the distance from the water inlet is about 60% to 100%, the refrigerant-side thermal resistance value is larger than the water-side thermal resistance value, so that the helical pitch of the heat transfer tube 19 is made dense. In this way, the helical pitch of the refrigerant heat transfer tube 5 is adjusted so as to balance the overall thermal resistance values of the refrigerant side and the water side.

次に、図1を用いて本実施形態のヒートポンプ給湯機の動作を説明する。圧縮機1より圧縮された高圧高温の気相冷媒は水冷媒熱交換器3の冷媒流路3aに送られる。温度が上昇した過熱状態の気相冷媒は、水冷媒熱交換器3において冷媒流路3aと水流路3bとの間で熱交換が行われる際に、放熱し冷却されて液相冷媒になる。この水冷媒熱交換器3において、冷媒から放出される熱により給水管9から導入される水を加熱し、加熱された湯を給湯管11を介して貯湯タンク等に給湯する。   Next, operation | movement of the heat pump water heater of this embodiment is demonstrated using FIG. The high-pressure and high-temperature gas-phase refrigerant compressed by the compressor 1 is sent to the refrigerant flow path 3 a of the water-refrigerant heat exchanger 3. The superheated gas phase refrigerant whose temperature has risen is dissipated and cooled to become a liquid phase refrigerant when heat exchange is performed between the refrigerant flow path 3a and the water flow path 3b in the water refrigerant heat exchanger 3. In this water-refrigerant heat exchanger 3, the water introduced from the water supply pipe 9 is heated by the heat released from the refrigerant, and the heated hot water is supplied to a hot water storage tank or the like via the hot water supply pipe 11.

高圧で温度が低下した液相冷媒は、水冷媒熱交換器3から膨張弁5へ送られる。膨張弁5では、液相冷媒は、圧力が急激に低下しかつ温度が急激に低下して、低圧低温の気相及び液相冷媒になる。低圧低温の気相及び液相冷媒は、蒸発器7で外部から熱を奪い蒸発して低圧低温の気相冷媒になり、圧縮機1へ送られる。このように冷媒は一連のサイクルを繰り返し、水冷媒熱交換器3において伝熱管19と流路部材13、内筒15及び外筒17から構成される伝熱管との間で熱交換行い水を加熱するようにしている。   The liquid refrigerant whose temperature has been lowered at high pressure is sent from the water refrigerant heat exchanger 3 to the expansion valve 5. In the expansion valve 5, the liquid-phase refrigerant rapidly decreases in pressure and temperature, and becomes a low-pressure and low-temperature gas-phase and liquid-phase refrigerant. The low-pressure and low-temperature gas-phase and liquid-phase refrigerants take heat from the outside in the evaporator 7 and evaporate to become low-pressure and low-temperature gas-phase refrigerants, which are sent to the compressor 1. In this way, the refrigerant repeats a series of cycles, and heats the water by exchanging heat between the heat transfer tube 19 and the heat transfer tube composed of the flow path member 13, the inner cylinder 15 and the outer cylinder 17 in the water refrigerant heat exchanger 3. Like to do.

従来の水冷媒熱交換器(特許文献1)においては、円管の水伝熱管を螺旋状に巻回して円筒状に形成すると、その外面の軸方向に水伝熱管の凹凸部が形成されるため、円筒状に形成された水伝熱管の外面に冷媒管を接合しようとすると、外面の凹凸部によって冷媒管の螺旋のピッチの調整の自由度が小さい。しかし、本実施形態によれば、流路部材13、内筒15及び外筒17により構成された伝熱部材によって矩形断面の水流路3bが互いに接するように螺旋状に巻回して円筒状に形成されることから、外筒17の外面と内筒15の内面を軸方向に平らに形成することができ、伝熱部材19を外筒17の外面又は内筒15の内面の軸方向の任意の位置に接合できるから、螺旋のピッチを自由に調整できる。   In a conventional water-refrigerant heat exchanger (Patent Document 1), when a circular water heat transfer tube is spirally wound and formed into a cylindrical shape, an uneven portion of the water heat transfer tube is formed in the axial direction of the outer surface thereof. Therefore, when trying to join the refrigerant pipe to the outer surface of the water heat transfer pipe formed in a cylindrical shape, the degree of freedom of adjustment of the helical pitch of the refrigerant pipe is small due to the uneven portion on the outer surface. However, according to the present embodiment, the heat transfer member formed by the flow path member 13, the inner cylinder 15 and the outer cylinder 17 is spirally wound so that the water flow paths 3b having a rectangular cross section are in contact with each other, and formed into a cylindrical shape. Therefore, the outer surface of the outer cylinder 17 and the inner surface of the inner cylinder 15 can be formed flat in the axial direction, and the heat transfer member 19 can be arbitrarily connected to the outer surface of the outer cylinder 17 or the inner surface of the inner cylinder 15 in the axial direction. Since it can be joined to the position, the pitch of the spiral can be freely adjusted.

また、螺旋のピッチを自由に調整できるから、相変化する冷媒の熱抵抗値に合わせて第1の伝熱部材の円管の螺旋のピッチを調整することができる。すなわち、冷媒流路3a流通する冷媒が気相状態から液相状態に変化する境界部付近で熱抵抗値が最も低くなるから、境界部付近の伝熱管19の螺旋のピッチを粗にし、境界部付近から水入口側又は出口側に向うにしたがって段段にピッチを密にすることで、熱交換性能を向上することができる。すなわち、伝熱管19の相互の間隔を管路内に流通される冷媒の気液相変化の態様に応じて設定することができる。   Further, since the spiral pitch can be freely adjusted, the spiral pitch of the circular tube of the first heat transfer member can be adjusted in accordance with the thermal resistance value of the phase-changing refrigerant. That is, since the thermal resistance value is lowest in the vicinity of the boundary where the refrigerant flowing through the refrigerant flow path 3a changes from the gas phase state to the liquid phase state, the pitch of the spiral of the heat transfer tube 19 near the boundary portion is roughened. The heat exchange performance can be improved by increasing the pitch in steps as it goes from the vicinity toward the water inlet side or the outlet side. That is, the mutual space | interval of the heat exchanger tube 19 can be set according to the aspect of the gas-liquid phase change of the refrigerant | coolant distribute | circulated in a pipe line.

一方、水流路3bは螺旋状に形成されているので緩やかなカーブを描くから、水側圧力損失を低減することができる。また、冷媒流路3aを流れる冷媒と水流路3bとを流れる水の流れを熱交換に有利な対向流としているので、水冷媒熱交換器3の熱交換性能を高めることができる。   On the other hand, since the water flow path 3b is formed in a spiral shape, a gentle curve is drawn, so that the water-side pressure loss can be reduced. Moreover, since the flow of water flowing through the refrigerant flow path 3a and the flow of water flowing through the water flow path 3b is an opposite flow advantageous for heat exchange, the heat exchange performance of the water refrigerant heat exchanger 3 can be enhanced.

また、伝熱管19の螺旋ピッチを自由に調整することができるので、外筒17の外面又は内筒15内面の軸方向の任意の位置における水伝熱管と冷媒伝熱管との間の熱交換量を自由に変更することができる。さらに、外筒17の外面又は内筒の内面は軸方向に平らであるから、伝熱管19と外筒17の外面又は内筒の内面との接触面積は軸方向の任意の位置において均一にすることができ、接触面積の違いによる伝熱量のばらつきを低減できる。   Further, since the helical pitch of the heat transfer tube 19 can be freely adjusted, the heat exchange amount between the water heat transfer tube and the refrigerant heat transfer tube at an arbitrary position in the axial direction of the outer surface of the outer tube 17 or the inner surface of the inner tube 15. Can be changed freely. Furthermore, since the outer surface of the outer cylinder 17 or the inner surface of the inner cylinder is flat in the axial direction, the contact area between the heat transfer tube 19 and the outer surface of the outer cylinder 17 or the inner surface of the inner cylinder is made uniform at any position in the axial direction. It is possible to reduce variations in the amount of heat transfer due to the difference in contact area.

なお、上記実施形態においては、気液相変化する第1の冷媒が流通される第1の伝熱部材が伝熱管19に対応し、液体の第2の冷媒が流通される第2の伝熱部材が流路部材13、内筒15、外筒17に対応する。このように、本実施形態においては断面U字形の管路を螺旋状に形成した流路部材13を用いたものについて説明したが、第2の伝熱部材はこれらの形態に限られるものではない。すなわち、矩形断面の流路を互いに接するように螺旋状に巻回して円筒状に形成されているものであればよく、例えば、内筒15、外筒17を用いずに角型のパイプを互いに接するように螺旋状に巻回して円筒状に形成して第2の伝熱部材を構成するようにしてもよい。   In the above embodiment, the first heat transfer member through which the first refrigerant changing in the gas-liquid phase flows corresponds to the heat transfer tube 19, and the second heat transfer through which the liquid second refrigerant flows. The members correspond to the flow path member 13, the inner cylinder 15, and the outer cylinder 17. Thus, in this embodiment, although what used the flow-path member 13 which formed the U-shaped pipe line in the spiral shape was demonstrated, the 2nd heat-transfer member is not restricted to these forms. . That is, it is only necessary that the rectangular cross-section flow paths are spirally wound so as to be in contact with each other and formed into a cylindrical shape. For example, square pipes can be connected to each other without using the inner cylinder 15 and the outer cylinder 17. The second heat transfer member may be configured by spirally winding so as to be in contact with each other and forming a cylindrical shape.

本実施形態の伝熱管19は、外筒17の外面に設けられているが、必要に応じて内筒15の内面又は外筒17の外面と内筒15の内面の双方に設けてもよい。また、円筒状の流路部材13の外面と内面に内筒15及び外筒17を密接して設けているが、接触部から水が漏れるおそれがある場合などは、必要に応じてそれぞれの接触部をろう接してもよい。また、伝熱管19の螺旋のピッチは、本実施形態に限らず、例えば、等ピッチで形成してもよい。   Although the heat transfer tube 19 of the present embodiment is provided on the outer surface of the outer cylinder 17, it may be provided on the inner surface of the inner cylinder 15 or both the outer surface of the outer cylinder 17 and the inner surface of the inner cylinder 15 as necessary. In addition, the inner cylinder 15 and the outer cylinder 17 are provided in close contact with the outer surface and the inner surface of the cylindrical flow path member 13, but when there is a possibility that water leaks from the contact portion, the respective contacts are made as necessary. The part may be brazed. In addition, the helical pitch of the heat transfer tubes 19 is not limited to this embodiment, and may be formed at an equal pitch, for example.

本実施形態の水冷媒熱交換器3は、ヒートポンプ給湯機に適用しているが、水冷媒熱交換器3が適用される範囲はヒートポンプ給湯機に限らず、第1の伝熱部材を流れる冷媒と第2の伝熱部材を流れる冷媒との間で熱交換を行うものであればよく、例えば、空調機などに用いることができる。   Although the water refrigerant heat exchanger 3 of this embodiment is applied to the heat pump water heater, the range to which the water refrigerant heat exchanger 3 is applied is not limited to the heat pump water heater, and the refrigerant flows through the first heat transfer member. As long as heat exchange is performed between the refrigerant and the refrigerant flowing through the second heat transfer member, it can be used, for example, in an air conditioner.

本発明の一実施形態のヒートポンプ給湯機の模式図である。It is a schematic diagram of the heat pump water heater of one Embodiment of this invention. 本実施形態の熱交換器の縦断面図である。It is a longitudinal cross-sectional view of the heat exchanger of this embodiment. 図2(a)のA部の拡大面図である。It is an enlarged surface view of the A section of Fig.2 (a). 水冷媒熱交換器の伝熱管19の螺旋を等ピッチで形成した場合の水入口からの距離に対する冷媒側熱抵抗値及び水側熱抵抗値を示すグラフである。It is a graph which shows the refrigerant | coolant side thermal resistance value with respect to the distance from a water inlet at the time of forming the spiral of the heat exchanger tube 19 of a water refrigerant | coolant heat exchanger at equal pitch, and a water side thermal resistance value.

符号の説明Explanation of symbols

1 圧縮機
3 水冷媒熱交換器
3a 冷媒流路
3b 水流路
5 膨張弁
7 蒸発器
9 給水管
11 給湯管
13 流路部材
15 内筒
17 外筒
19 伝熱管
21 ろう接部
DESCRIPTION OF SYMBOLS 1 Compressor 3 Water refrigerant | coolant heat exchanger 3a Refrigerant flow path 3b Water flow path 5 Expansion valve 7 Evaporator 9 Water supply pipe 11 Hot water supply pipe 13 Flow path member 15 Inner cylinder 17 Outer cylinder 19 Heat transfer pipe 21 Brazing connection part

Claims (5)

気液相変化する第1の冷媒が流通される第1の伝熱部材と、液体の第2の冷媒が流通される第2の伝熱部材とを備え、第1と第2の伝熱部材間で熱交換する熱交換器において、
前記第2の伝熱部材は、矩形断面の流路を互いに接するように螺旋状に巻回して円筒状に形成されてなり、
前記第1の伝熱部材は、円形断面の管路を互いに適宜間隔を空けて、前記第2の伝熱部材の円筒の外面と内面の少なくとも一方に螺旋状に巻回して形成されてなる熱交換器。
A first heat transfer member including a first heat transfer member through which a first refrigerant changing a gas-liquid phase flows, and a second heat transfer member through which a liquid second refrigerant flows. In heat exchangers that exchange heat between
The second heat transfer member is formed in a cylindrical shape by spirally winding the rectangular cross-section flow paths so as to contact each other,
The first heat transfer member is formed by spirally winding pipes having a circular cross section around at least one of an outer surface and an inner surface of a cylinder of the second heat transfer member. Exchanger.
請求項1に記載の熱交換器において、
前記第1の伝熱部材の前記管路の相互の間隔は、前記管路内に流通される前記第1の冷媒の気液相変化の態様に応じて設定されることを特徴とする熱交換器。
The heat exchanger according to claim 1,
The space between the pipes of the first heat transfer member is set according to the gas-liquid phase change mode of the first refrigerant flowing in the pipe. vessel.
請求項1又は2に記載の熱交換器において、
前記第2の伝熱部材は、断面U字状の部材を螺旋状に巻回して円筒状に形成された流路部材と、円筒状の流路部材の外面と内面に密接して設けられた円筒部材とを有してなることを特徴とする熱交換器。
The heat exchanger according to claim 1 or 2,
The second heat transfer member is provided in close contact with a channel member formed in a cylindrical shape by spirally winding a member having a U-shaped cross section, and an outer surface and an inner surface of the cylindrical channel member. A heat exchanger comprising a cylindrical member.
請求項3に記載の熱交換器において、
前記第2の伝熱部材は、前記流路部材と前記円筒部材との接触部がろう接されていることを特徴とする熱交換器。
The heat exchanger according to claim 3,
The second heat transfer member is a heat exchanger in which a contact portion between the flow path member and the cylindrical member is brazed.
請求項1乃至4いずれか1項に記載の熱交換器を用いてなるヒートポンプ給湯機。   A heat pump water heater using the heat exchanger according to any one of claims 1 to 4.
JP2007309196A 2007-11-29 2007-11-29 Heat exchanger and heat pump hot water supply machine Pending JP2009133530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309196A JP2009133530A (en) 2007-11-29 2007-11-29 Heat exchanger and heat pump hot water supply machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309196A JP2009133530A (en) 2007-11-29 2007-11-29 Heat exchanger and heat pump hot water supply machine

Publications (1)

Publication Number Publication Date
JP2009133530A true JP2009133530A (en) 2009-06-18

Family

ID=40865579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309196A Pending JP2009133530A (en) 2007-11-29 2007-11-29 Heat exchanger and heat pump hot water supply machine

Country Status (1)

Country Link
JP (1) JP2009133530A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068358A (en) * 2011-09-22 2013-04-18 Mitsubishi Electric Corp Twisted tube type heat exchanger with different diameter
JP2013096609A (en) * 2011-10-29 2013-05-20 Noritz Corp Heat exchanger and water heating device including the same
JP2013160479A (en) * 2012-02-08 2013-08-19 Hitachi Appliances Inc Heat exchanger and heat pump type water heater using the same
JP2015092126A (en) * 2013-09-30 2015-05-14 株式会社Uacj Heat exchanger for hot-water supply
CN111076271A (en) * 2019-12-11 2020-04-28 珠海格力电器股份有限公司 Integrated heat exchanger and hot water heating integrated heat exchange equipment of water tank inner unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182084A (en) * 1982-04-16 1983-10-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005133999A (en) * 2003-10-29 2005-05-26 Hitachi Home & Life Solutions Inc Heat pump type hot-water supplier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182084A (en) * 1982-04-16 1983-10-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005133999A (en) * 2003-10-29 2005-05-26 Hitachi Home & Life Solutions Inc Heat pump type hot-water supplier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068358A (en) * 2011-09-22 2013-04-18 Mitsubishi Electric Corp Twisted tube type heat exchanger with different diameter
JP2013096609A (en) * 2011-10-29 2013-05-20 Noritz Corp Heat exchanger and water heating device including the same
JP2013160479A (en) * 2012-02-08 2013-08-19 Hitachi Appliances Inc Heat exchanger and heat pump type water heater using the same
JP2015092126A (en) * 2013-09-30 2015-05-14 株式会社Uacj Heat exchanger for hot-water supply
CN111076271A (en) * 2019-12-11 2020-04-28 珠海格力电器股份有限公司 Integrated heat exchanger and hot water heating integrated heat exchange equipment of water tank inner unit

Similar Documents

Publication Publication Date Title
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
JP5180716B2 (en) Heat exchanger and hot water supply apparatus using the same
JP2011106738A (en) Heat exchanger and heat pump system
JP2006317096A (en) Heat exchanger for electric water heater
JP2016217669A (en) Double-pipe heat exchanger and heat-pump type water heater
EP2770278B1 (en) Water heater
JP2002267289A (en) Plate heat exchanger
JP2005133999A (en) Heat pump type hot-water supplier
JP2009133530A (en) Heat exchanger and heat pump hot water supply machine
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
EP2770277A1 (en) Water heater
JP2003028582A (en) Heat exchanger
JP4334965B2 (en) Plate heat exchanger
JP5744316B2 (en) Heat exchanger and heat pump system equipped with the heat exchanger
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP3906797B2 (en) Heat exchanger
JP2007333319A (en) Heat exchanger
JP2007271194A (en) Heat exchanger
JP2005061667A (en) Heat exchanger
JP2004340455A (en) Heat exchanger
JP2005024109A (en) Heat exchanger
JP2010112650A (en) Heat exchanger and hot water supply device using the same
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP2010078171A (en) Internal heat exchanger
JP7115069B2 (en) refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515