JP2007333319A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2007333319A
JP2007333319A JP2006166398A JP2006166398A JP2007333319A JP 2007333319 A JP2007333319 A JP 2007333319A JP 2006166398 A JP2006166398 A JP 2006166398A JP 2006166398 A JP2006166398 A JP 2006166398A JP 2007333319 A JP2007333319 A JP 2007333319A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
heat exchanger
refrigerant
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006166398A
Other languages
Japanese (ja)
Inventor
Takahiro Ozaki
隆浩 尾崎
Kazunari Kasai
一成 笠井
Masakazu Okamoto
昌和 岡本
Yasuhiro Iwata
育弘 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006166398A priority Critical patent/JP2007333319A/en
Publication of JP2007333319A publication Critical patent/JP2007333319A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/122Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat exchange efficiency of a gas cooler by preventing a refrigerant on the inlet side of the gas cooler and a refrigerant on the outlet side of the gas cooler from exchanging heat with each other. <P>SOLUTION: Heat exchangers 1, 1a functioning in a refrigerating cycle using a supercritical refrigerant comprise heat transfer tubes 2, 2a and a plurality of heat transfer fins 3, 3a. The heat transfer tubes allow the supercritical refrigerant to flow through. The plurality of heat transfer fins are connected to the heat transfer tubes to assist the heat exchange between a first fluid and the supercritical refrigerant in the heat transfer tubes. The plurality of heat transfer fins are arranged separated with respect to the flow direction R1 of the supercritical refrigerant. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

超臨界冷媒を利用した冷凍サイクルにおいて機能する熱交換器に関する。   The present invention relates to a heat exchanger that functions in a refrigeration cycle using a supercritical refrigerant.

従来、CO2冷媒などのような超臨界冷媒を用いた冷凍サイクルにおいて機能する熱交換器には、例えば、クロスフィン式の熱交換器がある。このような、クロスフィン式の熱交換器では、冷媒の流通する1本の伝熱管をターンさせて複数のフィンと接触する部分を増やすことで、熱交換可能な面積を増加させ、熱交換の高効率化を図っている(特許文献1参照)。
特開2004−77021号公報
Conventionally, a heat exchanger that functions in a refrigeration cycle using a supercritical refrigerant such as a CO 2 refrigerant is, for example, a cross-fin type heat exchanger. In such a cross fin type heat exchanger, the heat exchange area is increased by turning one heat transfer tube through which the refrigerant flows and increasing the number of portions that come into contact with the fins. High efficiency is achieved (see Patent Document 1).
Japanese Patent Laid-Open No. 2004-77021

しかし、CO2冷媒などの超臨界冷媒を利用する熱交換器(ガスクーラ)では、超臨界冷媒は、熱交換器全体において、超臨界領域において作動するために凝縮せずに顕熱変化を伴って作動する。したがって、熱交換器がガスクーラとして機能する場合は、冷媒温度が大きく変化し、熱交換器における冷媒の入口側と出口側とでは大きな温度差が生じる。すなわち、冷媒の流れ方向における伝熱管の上流側と下流側とでは大きな温度差が生じる。特許文献1の技術では、冷媒の流れ方向における伝熱管の上流側と下流側とを伝熱フィンにより接続しているために、伝熱フィンにおいて伝熱管の上流側と下流側とで熱交換を行うこととなり、熱損失の量が大きくなる。   However, in a heat exchanger (gas cooler) that uses a supercritical refrigerant such as a CO2 refrigerant, the supercritical refrigerant operates in the supercritical region in the entire heat exchanger and does not condense and operates with a sensible heat change. To do. Therefore, when the heat exchanger functions as a gas cooler, the refrigerant temperature changes greatly, and a large temperature difference occurs between the inlet side and the outlet side of the refrigerant in the heat exchanger. That is, a large temperature difference occurs between the upstream side and the downstream side of the heat transfer tube in the refrigerant flow direction. In the technique of Patent Document 1, since the upstream side and the downstream side of the heat transfer tube in the refrigerant flow direction are connected by the heat transfer fin, heat exchange is performed between the upstream side and the downstream side of the heat transfer tube in the heat transfer fin. Doing so increases the amount of heat loss.

本発明の課題は、ガスクーラの入口側の冷媒とガスクーラの出口側の冷媒とが互いに熱交換を行うことを防ぎ、ガスクーラの熱交換効率の向上を図ることにある。   An object of the present invention is to prevent heat exchange between the refrigerant on the inlet side of the gas cooler and the refrigerant on the outlet side of the gas cooler, thereby improving the heat exchange efficiency of the gas cooler.

第1発明に係る熱交換器は、超臨界冷媒を用いた冷凍サイクルにおいて機能する熱交換器であって、伝熱管と複数の伝熱フィンとを備える。伝熱管は、超臨界冷媒を流通可能である。複数の伝熱フィンは、伝熱管に接続され、第1流体と伝熱管内の超臨界冷媒とが熱交換を行うことを助長する。複数の伝熱フィンは、超臨界冷媒流れ方向に対して分離して配置される。   A heat exchanger according to a first invention is a heat exchanger that functions in a refrigeration cycle using a supercritical refrigerant, and includes a heat transfer tube and a plurality of heat transfer fins. The heat transfer tube can circulate a supercritical refrigerant. The plurality of heat transfer fins are connected to the heat transfer tube and facilitate heat exchange between the first fluid and the supercritical refrigerant in the heat transfer tube. The plurality of heat transfer fins are arranged separately from each other in the supercritical refrigerant flow direction.

この熱交換器は、超臨界条件下のガスクーラであり、超臨界領域において作動する。このような熱交換器では、熱交換器全体において、冷媒は凝縮せずに顕熱変化を伴って作動する。したがって、熱交換器がガスクーラとして機能する場合に、冷媒温度は大きく変化し、冷媒流れ方向における伝熱管の上流側と下流側とでは大きな温度差が生じる。   This heat exchanger is a gas cooler under supercritical conditions and operates in the supercritical region. In such a heat exchanger, the refrigerant does not condense in the entire heat exchanger and operates with a sensible heat change. Therefore, when the heat exchanger functions as a gas cooler, the refrigerant temperature changes greatly, and a large temperature difference occurs between the upstream side and the downstream side of the heat transfer tube in the refrigerant flow direction.

本発明では、熱交換器の冷媒流れ方向における伝熱管の上流側と下流側とを伝熱フィンにより接続しないように、冷媒流れ方向に対して伝熱フィンを分離している。これにより、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   In the present invention, the heat transfer fins are separated from the refrigerant flow direction so that the upstream side and the downstream side of the heat transfer tube in the refrigerant flow direction of the heat exchanger are not connected by the heat transfer fins. Thereby, it can prevent that the upstream and downstream of a heat exchanger tube perform heat exchange, and can reduce a big heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第2発明に係る熱交換器は、第1発明に係る熱交換器であって、伝熱管は、略円柱形状の第1空間に対して複数回巻かれらせん状となる。   A heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect of the present invention, wherein the heat transfer tube is spirally wound a plurality of times with respect to the substantially cylindrical first space.

この熱交換器では、伝熱管がらせん状に複数回巻かれている。そして、一巻きの伝熱管の伝熱フィンが、隣り合う別の一巻きの伝熱管の伝熱フィンに接触しないように形成される。   In this heat exchanger, the heat transfer tube is spirally wound a plurality of times. And it forms so that the heat-transfer fin of one heat-transfer tube may not contact the heat-transfer fin of another one-roll heat-transfer tube adjacent.

これにより、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   Thereby, it can prevent that the upstream and downstream of a heat exchanger tube perform heat exchange, and can reduce a big heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第3発明に係る熱交換器は、第2発明に係る熱交換器であって、超臨界冷媒は、らせん軌道を描きながら、第1空間の第1平面から第2平面の方向へ流れる。第1流体は、伝熱管の外部の第1流体流路を第2平面から第1平面の方向へ流れる。   A heat exchanger according to a third aspect is the heat exchanger according to the second aspect, wherein the supercritical refrigerant flows in a direction from the first plane of the first space to the second plane while drawing a spiral trajectory. The first fluid flows in the direction of the first plane from the second plane through the first fluid channel outside the heat transfer tube.

この熱交換器は、冷媒の流れ方向が第1流体の流れ方向と対向している。したがって、熱交換器全体において、冷媒と第1流体との温度差を大きく維持することができ、熱交換器の高効率化を図ることができる。   In this heat exchanger, the flow direction of the refrigerant faces the flow direction of the first fluid. Therefore, a large temperature difference between the refrigerant and the first fluid can be maintained in the entire heat exchanger, and the efficiency of the heat exchanger can be increased.

第4発明に係る熱交換器は、第1発明に係る熱交換器であって、伝熱管は、複数の直管部と少なくとも1つ以上の曲管部とを有する。複数の直管部は、互いに略平行に隣り合い、かつ、互いに間隔をあける形状である。   A heat exchanger according to a fourth aspect is the heat exchanger according to the first aspect, wherein the heat transfer tube has a plurality of straight tube portions and at least one or more bent tube portions. The plurality of straight pipe portions are adjacent to each other substantially parallel to each other and are spaced apart from each other.

この熱交換器は、伝熱管がターンしており、伝熱管の直管部同士が略平行に隣り合い、かつ、互いに間隔を開けて形成されている。そして、1本の直管部に接続される伝熱フィンは、隣り合う別の1本の直管部に接続される伝熱フィンに接触しないように配置される。   In this heat exchanger, the heat transfer tubes are turned, and the straight tube portions of the heat transfer tubes are adjacent to each other in parallel and are spaced apart from each other. And the heat-transfer fin connected to one straight pipe part is arrange | positioned so that it may not contact the heat-transfer fin connected to another adjacent straight pipe part.

これにより、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   Thereby, it can prevent that the upstream and downstream of a heat exchanger tube perform heat exchange, and can reduce a big heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第5発明に係る熱交換器は、第1発明から第4発明のいずれかに係る熱交換器であって、伝熱フィンは、板状のフィンであり、伝熱管の外周面から放射状に外側に延びている。   A heat exchanger according to a fifth aspect of the present invention is the heat exchanger according to any one of the first to fourth aspects of the present invention, wherein the heat transfer fins are plate-shaped fins and are radially outward from the outer peripheral surface of the heat transfer tube. It extends to.

この伝熱フィンは、板状の一端で伝熱管と接続されており、1箇所で接続されている。すなわち、伝熱フィンは、伝熱管において、伝熱フィンが接続されている接続箇所よりも上流側または下流側とは接触しないように形成される。   The heat transfer fin is connected to the heat transfer tube at one end in the form of a plate, and is connected at one place. That is, the heat transfer fin is formed in the heat transfer tube so as not to contact the upstream side or the downstream side of the connection location to which the heat transfer fin is connected.

したがって、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   Therefore, it is possible to prevent heat exchange between the upstream side and the downstream side of the heat transfer tube, and it is possible to reduce a large heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第6発明に係る熱交換器は、第1発明から第4発明のいずれかに係る熱交換器であって、伝熱フィンは、針状のフィンであり、伝熱管の外周面から放射状に外側に延びている。   A heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the first to fourth aspects of the present invention, wherein the heat transfer fins are needle-like fins and are radially outward from the outer peripheral surface of the heat transfer tube. It extends to.

この伝熱フィンは、針状の一端で伝熱管と接続されており、1箇所で接続されている。すなわち、伝熱フィンは、伝熱管において、伝熱フィンが接続されている接続箇所よりも上流側または下流側とは接触しないように形成される。   This heat transfer fin is connected to the heat transfer tube at one end in a needle shape, and is connected at one place. That is, the heat transfer fin is formed in the heat transfer tube so as not to contact the upstream side or the downstream side of the connection location to which the heat transfer fin is connected.

したがって、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   Therefore, it is possible to prevent heat exchange between the upstream side and the downstream side of the heat transfer tube, and it is possible to reduce a large heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第7発明に係る熱交換器は、第1発明から第4発明のいずれかに係る熱交換器であって、伝熱フィンは、略U字状のフィンであり、その両端が伝熱管の外周面に接続されている。   A heat exchanger according to a seventh aspect of the present invention is the heat exchanger according to any one of the first to fourth aspects of the present invention, wherein the heat transfer fins are substantially U-shaped fins, and both ends thereof are the outer periphery of the heat transfer tube. Connected to the surface.

この熱交換器は、伝熱フィンが略U字状のフィンであり、伝熱管の外周面にその両端が接続されている。すなわち、伝熱フィンは、伝熱管において、伝熱フィンが接続されている接続箇所よりも上流側または下流側とは接触していない。   In this heat exchanger, the heat transfer fins are substantially U-shaped fins, and both ends thereof are connected to the outer peripheral surface of the heat transfer tube. That is, the heat transfer fin is not in contact with the upstream side or the downstream side of the connection portion to which the heat transfer fin is connected in the heat transfer tube.

したがって、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   Therefore, it is possible to prevent heat exchange between the upstream side and the downstream side of the heat transfer tube, and it is possible to reduce a large heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第1発明に係る熱交換器では、熱交換器の冷媒流れ方向における伝熱管の上流側と下流側とを伝熱フィンにより接続しないように、冷媒流れ方向に対して伝熱フィンを分離している。これにより、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   In the heat exchanger according to the first aspect of the invention, the heat transfer fins are separated in the refrigerant flow direction so that the upstream side and the downstream side of the heat transfer tube in the refrigerant flow direction of the heat exchanger are not connected by the heat transfer fins. Yes. Thereby, it can prevent that the upstream and downstream of a heat exchanger tube perform heat exchange, and can reduce a big heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第2発明に係る熱交換器では、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   In the heat exchanger which concerns on 2nd invention, it can prevent that the upstream and downstream of a heat exchanger tube perform heat exchange, and can reduce a big heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第3発明に係る熱交換器では、冷媒の流れ方向が第1流体の流れ方向と対向している。したがって、熱交換器全体において、冷媒と第1流体との温度差を大きく維持することができ、熱交換器の高効率化を図ることができる。   In the heat exchanger according to the third aspect of the invention, the flow direction of the refrigerant faces the flow direction of the first fluid. Therefore, a large temperature difference between the refrigerant and the first fluid can be maintained in the entire heat exchanger, and the efficiency of the heat exchanger can be increased.

第4発明に係る熱交換器では、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   In the heat exchanger according to the fourth aspect of the invention, it is possible to prevent heat exchange between the upstream side and the downstream side of the heat transfer tube, and to reduce a large heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第5発明に係る熱交換器では、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   In the heat exchanger which concerns on 5th invention, it can prevent that the upstream and downstream of a heat exchanger tube perform heat exchange, and can reduce a big heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第6発明に係る熱交換器では、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   In the heat exchanger according to the sixth aspect of the present invention, it is possible to prevent heat exchange between the upstream side and the downstream side of the heat transfer tube and to reduce a large heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

第7発明に係る熱交換器では、伝熱管の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、熱交換器の熱交換効率の向上を図ることができる。   In the heat exchanger which concerns on 7th invention, it can prevent that the upstream and downstream of a heat exchanger tube perform heat exchange, and can reduce a big heat loss. For this reason, the heat exchange efficiency of the heat exchanger can be improved.

以下、図面に基づいて、本発明に係るガスクーラ12の実施形態について説明する。   Hereinafter, an embodiment of a gas cooler 12 according to the present invention will be described based on the drawings.

<超臨界冷凍サイクル>
図1に、冷媒に超臨界冷媒であるCO2を利用した冷凍回路1を示す。また、図2は、冷凍回路1を用いた超臨界条件下における冷凍サイクルをp−h線図(モリエル線図)により示している。冷凍回路1は、圧縮機11、ガスクーラ12、膨張弁13、および蒸発器14から構成されている。図2のA、B、C、およびDは、図1におけるそれぞれの点に対応した冷媒の状態を表している。
<Supercritical refrigeration cycle>
FIG. 1 shows a refrigeration circuit 1 that uses CO2, which is a supercritical refrigerant, as a refrigerant. FIG. 2 shows a refrigeration cycle using a refrigeration circuit 1 under supercritical conditions by a ph diagram (Mollier diagram). The refrigeration circuit 1 includes a compressor 11, a gas cooler 12, an expansion valve 13, and an evaporator 14. A, B, C, and D in FIG. 2 represent refrigerant states corresponding to the respective points in FIG.

この冷凍回路1では、冷媒は、圧縮機11により圧縮されて高温高圧になる(A→B)。このとき、冷媒であるCO2は気体から超臨界状態となる。ここにいう「超臨界状態」とは、臨界点K以上の温度および圧力下における物質の状態であり、気体の拡散性と液体の溶解性とを併せ持っている状態のことである。超臨界状態とは、図2において、臨界温度等温線Tkの右側で、かつ、臨界圧力Pk以上の領域における冷媒の状態である。なお、冷媒(物質)が超臨界状態になると、気相と液相との区別が無くなる。なお、ここにいう「気相」とは、飽和蒸気線Svより右側で、かつ、臨界圧力Pk以下の領域における冷媒の状態である。また、「液相」とは、飽和液線Slより左側で、かつ、臨界温度等温線Tkよりも左側の領域における冷媒の状態である。そして、圧縮機11により圧縮されて高温高圧の超臨界状態となった冷媒は、ガスクーラ12により放熱されて高圧の冷媒となる(B→C)。このとき、冷媒は、超臨界状態にあるため、ガスクーラ12内部において顕熱変化(温度変化)を伴って作動している。そして、ガスクーラ12において放熱した冷媒は、膨張弁13が開放されることにより膨張して、圧力がP1からP2へと減圧される(C→D)。そして、膨張弁13により減圧された冷媒は、蒸発器14において熱を吸収し、蒸発して圧縮機11へ戻る(D→A)。   In the refrigeration circuit 1, the refrigerant is compressed by the compressor 11 and becomes high temperature and pressure (A → B). At this time, CO2 which is a refrigerant changes from gas to a supercritical state. The “supercritical state” referred to here is a state of a substance at a temperature and pressure above the critical point K and is a state having both gas diffusibility and liquid solubility. The supercritical state is the state of the refrigerant in the region on the right side of the critical temperature isotherm Tk in FIG. 2 and above the critical pressure Pk. Note that when the refrigerant (substance) is in a supercritical state, there is no distinction between the gas phase and the liquid phase. The “gas phase” referred to here is the state of the refrigerant on the right side of the saturated vapor line Sv and in the region below the critical pressure Pk. Further, the “liquid phase” is a state of the refrigerant in a region on the left side of the saturated liquid line S1 and on the left side of the critical temperature isotherm Tk. And the refrigerant | coolant which was compressed by the compressor 11 and became the supercritical state of the high temperature / high pressure is radiated by the gas cooler 12, and becomes a high pressure refrigerant (B → C). At this time, since the refrigerant is in a supercritical state, it operates with a sensible heat change (temperature change) inside the gas cooler 12. The refrigerant that has dissipated heat in the gas cooler 12 expands when the expansion valve 13 is opened, and the pressure is reduced from P1 to P2 (C → D). The refrigerant decompressed by the expansion valve 13 absorbs heat in the evaporator 14, evaporates, and returns to the compressor 11 (D → A).

本発明に係る熱交換器は、図1におけるガスクーラ12であり、冷媒の状態を図2におけるB→Cのように変化させる。このガスクーラ12は、冷媒に例えばHFC系のフロン冷媒を用いた冷凍サイクルにおける凝縮器の役割を担っている。このガスクーラ12は、冷媒に超臨界条件下で作動するCO2を用いているため、凝縮器とは異なり、冷媒が顕熱変化を伴って作動し、冷媒が流入してくる冷媒入口部21と冷媒が流出する冷媒出口部22とでは大きな温度差が生じる。   The heat exchanger according to the present invention is the gas cooler 12 in FIG. 1, and changes the state of the refrigerant as B → C in FIG. The gas cooler 12 plays a role of a condenser in a refrigeration cycle using, for example, an HFC-based chlorofluorocarbon refrigerant. Since the gas cooler 12 uses CO2 that operates under supercritical conditions as a refrigerant, unlike the condenser, the refrigerant operates with a sensible heat change, and the refrigerant inlet 21 and the refrigerant into which the refrigerant flows. A large temperature difference occurs between the refrigerant outlet portion 22 from which the refrigerant flows out.

<ガスクーラの構成>
図3は、本発明の一実施形態に係るガスクーラ12の概略図である。ガスクーラ12は、空気調和装置、ヒートポンプ給湯機などの冷媒回路に組み込まれる装置の一つで、CO2冷媒などの超臨界冷媒を冷却するガスクーラである。ガスクーラ12は、主として、伝熱管2と伝熱フィン3とから構成されている。
<Configuration of gas cooler>
FIG. 3 is a schematic view of the gas cooler 12 according to an embodiment of the present invention. The gas cooler 12 is one of devices incorporated in a refrigerant circuit such as an air conditioner or a heat pump water heater, and is a gas cooler that cools a supercritical refrigerant such as a CO 2 refrigerant. The gas cooler 12 is mainly composed of the heat transfer tubes 2 and the heat transfer fins 3.

伝熱管2は、略円柱形状の第1空間S1を中心にして巻くようならせん状の形状となっている。そして、伝熱管2内部を、圧縮機11により圧縮されて高温高圧になった超臨界冷媒が流通している。この高温高圧の超臨界冷媒は、冷媒入口部21より流入し、冷媒出口部22より流出しており、図3および図4に示す白抜き矢印R1の方向へ流れている。   The heat transfer tube 2 has a spiral shape that is wound around the substantially cylindrical first space S1. And the supercritical refrigerant | coolant which was compressed by the compressor 11 and became high temperature / high pressure distribute | circulates the inside of the heat exchanger tube 2. FIG. This high-temperature and high-pressure supercritical refrigerant flows in from the refrigerant inlet 21 and flows out of the refrigerant outlet 22 and flows in the direction of the white arrow R1 shown in FIGS.

伝熱フィン3は、図4のように板状の形状となっており、複数枚が伝熱管2の外周面から外側へ延びるように放射状に接続されている。この伝熱フィン3は、伝熱管2内部へ流入してくる高温高圧の超臨界冷媒の熱を伝熱管2外部の外部空気に放出させている。   The heat transfer fins 3 have a plate shape as shown in FIG. 4, and a plurality of the heat transfer fins 3 are radially connected so as to extend outward from the outer peripheral surface of the heat transfer tube 2. The heat transfer fins 3 release the heat of the high-temperature and high-pressure supercritical refrigerant flowing into the heat transfer tube 2 to the outside air outside the heat transfer tube 2.

ガスクーラ12は、第1円筒パイプ4と第2円筒パイプ5とをさらに有している。伝熱管2は、第1円筒パイプ4を複数回巻いておりらせん状となっている。第2円筒パイプ5は、第1円筒パイプ4よりも管径が大きく伝熱管2の外側を覆うように形成されている。このようにして、第1円筒パイプ4と第2円筒パイプ5との間には、外部空気が流通する第2空間S2が形成されている。ここで、第1円筒パイプ4と第2円筒パイプ5とは、ともに金属製である。この第2空間S2に流入した外部空気が、伝熱管2内を流れる超臨界冷媒と熱交換を行い、伝熱管2内の超臨界冷媒の冷却を行っている。   The gas cooler 12 further includes a first cylindrical pipe 4 and a second cylindrical pipe 5. The heat transfer tube 2 is spirally wound around the first cylindrical pipe 4 a plurality of times. The second cylindrical pipe 5 has a larger diameter than the first cylindrical pipe 4 and is formed so as to cover the outside of the heat transfer tube 2. In this way, a second space S2 through which external air flows is formed between the first cylindrical pipe 4 and the second cylindrical pipe 5. Here, both the first cylindrical pipe 4 and the second cylindrical pipe 5 are made of metal. The external air that has flowed into the second space S2 exchanges heat with the supercritical refrigerant flowing in the heat transfer tube 2, and cools the supercritical refrigerant in the heat transfer tube 2.

また、ガスクーラ12では、超臨界冷媒が伝熱管2内部を第1空間S1の第1平面As1から第2平面As2の方向(図3の矢印R1a参照)に流れており、外部空気がその逆方向(図3および図4の白抜き矢印A1参照)に流れている。このように、ガスクーラ12では、超臨界冷媒の流れ方向R1aと外部空気の流れ方向A1とが対向している。このため、ガスクーラ12全体において、超臨界冷媒と外部空気との温度差を大きく維持することができ、ガスクーラ12の高効率化を図ることができる。   In the gas cooler 12, the supercritical refrigerant flows in the heat transfer tube 2 from the first plane As1 to the second plane As2 in the first space S1 (see the arrow R1a in FIG. 3), and the external air is in the opposite direction. (See the white arrow A1 in FIGS. 3 and 4). Thus, in the gas cooler 12, the flow direction R1a of the supercritical refrigerant and the flow direction A1 of the external air face each other. For this reason, in the whole gas cooler 12, the temperature difference of a supercritical refrigerant | coolant and external air can be maintained large, and the high efficiency of the gas cooler 12 can be achieved.

<特徴>
(1)
このガスクーラ12では、冷媒流れ方向における伝熱管2の上流側と下流側とを伝熱フィン3により接続しないように、冷媒流れ方向に対して伝熱フィン3を分離している。これにより、伝熱管2の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、ガスクーラ12における熱交換効率の向上を図ることができる。
<Features>
(1)
In the gas cooler 12, the heat transfer fins 3 are separated in the refrigerant flow direction so that the upstream side and the downstream side of the heat transfer tube 2 in the refrigerant flow direction are not connected by the heat transfer fins 3. Thereby, it can prevent that the upstream and downstream of the heat exchanger tube 2 perform heat exchange, and can reduce a big heat loss. For this reason, the heat exchange efficiency in the gas cooler 12 can be improved.

(2)
このガスクーラ12では、伝熱管2が複数回巻かれてらせん状になっている。さらに、このガスクーラ12は、伝熱フィン3が板状のフィンであり、伝熱管2の外周面から放射状に外側に延びている。この伝熱フィン3は、板状の一端で伝熱管2と接続されており、接続箇所がその1箇所である。すなわち、伝熱フィン3は、伝熱管2において、伝熱フィン3が接続されている接続箇所よりも上流側または下流側とは接触していない。
(2)
In this gas cooler 12, the heat transfer tube 2 is wound a plurality of times into a spiral shape. Further, in the gas cooler 12, the heat transfer fins 3 are plate-like fins, and extend radially outward from the outer peripheral surface of the heat transfer tube 2. The heat transfer fin 3 is connected to the heat transfer tube 2 at one end in the form of a plate, and the connection location is one location. That is, the heat transfer fin 3 is not in contact with the upstream side or the downstream side of the heat transfer tube 2 with respect to the connection portion to which the heat transfer fin 3 is connected.

これにより、伝熱管2の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、ガスクーラ12の熱交換効率の向上を図ることができる。さらに、ガスクーラ12全体において、冷媒と第1流体との温度差を大きく維持することができ、ガスクーラ12の高効率化を図ることができる。   Thereby, it can prevent that the upstream and downstream of the heat exchanger tube 2 perform heat exchange, and can reduce a big heat loss. For this reason, the heat exchange efficiency of the gas cooler 12 can be improved. Furthermore, in the whole gas cooler 12, the temperature difference between the refrigerant and the first fluid can be maintained large, and the efficiency of the gas cooler 12 can be increased.

<変形例>
以上にこの発明の具体的な実施の形態について説明したが、この発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
<Modification>
Although specific embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention.

(1)
上記実施例において、伝熱管2を複数回巻いてらせん状にしているが、これに限らず、1本の伝熱管2aを複数回ターンさせた形状であっても良い。図5は、伝熱管2aを複数回ターンさせた場合のガスクーラ12aの概略図である。このガスクーラ12では、伝熱管2aは、略平行に配置された複数の直管部23aと、複数の直管部23aの端部を交互に連結している曲管部24aとを有しており、1本の冷媒経路を形成している。そして、1本の直管部23aに接続される伝熱フィン3は、隣り合う別の1本の直管部23aに接続される伝熱フィン3に接触しないように配置されている。
(1)
In the said Example, although the heat exchanger tube 2 was wound in multiple turns and made into the spiral shape, the shape which turned not only this but the heat exchanger tube 2a in multiple times may be sufficient. FIG. 5 is a schematic view of the gas cooler 12a when the heat transfer tube 2a is turned a plurality of times. In this gas cooler 12, the heat transfer tube 2a has a plurality of straight tube portions 23a arranged substantially in parallel, and a curved tube portion 24a that alternately connects ends of the plurality of straight tube portions 23a. One refrigerant path is formed. And the heat transfer fin 3 connected to one straight pipe part 23a is arrange | positioned so that it may not contact the heat transfer fin 3 connected to another one straight pipe part 23a adjacent.

ここで、高温高圧の超臨界冷媒は、上部の冷媒入口部21aより流入し、下部の冷媒出口部22aより流出しており、図5に示す白抜き矢印R2,R3の方向へ流れている。また、外部空気は、伝熱管2aの直管部23aと垂直の方向(図5に示す白抜き矢印A2の方向)に流れている。   Here, the high-temperature and high-pressure supercritical refrigerant flows in from the upper refrigerant inlet portion 21a, flows out from the lower refrigerant outlet portion 22a, and flows in the directions of white arrows R2 and R3 shown in FIG. Further, the external air flows in a direction perpendicular to the straight pipe portion 23a of the heat transfer tube 2a (the direction of the white arrow A2 shown in FIG. 5).

これにより、伝熱管2aの上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、ガスクーラ12の熱交換効率の向上を図ることができる。   Thereby, it can prevent that the upstream and downstream of the heat exchanger tube 2a perform heat exchange, and can reduce a big heat loss. For this reason, the heat exchange efficiency of the gas cooler 12 can be improved.

(2)
上記実施例において、伝熱フィン3は板状のフィンであったが、これに限らず、針状、棒状などのフィンであっても良い。この伝熱フィンは、針状または棒状の一端で伝熱管2と接続されており、1箇所で接続される。
(2)
In the above embodiment, the heat transfer fins 3 are plate-like fins, but are not limited to this, and may be fins such as needles and rods. The heat transfer fin is connected to the heat transfer tube 2 at one end of a needle shape or a rod shape, and is connected at one place.

また、両端が接続されるような略U字状の伝熱フィン3aであっても良い(図6参照)。伝熱フィン3aは、その両端の2箇所で接続されるが、形状が略U字であるために2つの接続箇所は比較的近い位置となる。すなわち、伝熱フィン3aは、接続箇所の上流側または下流側とは接触しないため、接続箇所の上流側または下流側との熱交換をほとんど行わない。なお、この変形例では、上記実施例とは伝熱フィンの形状が違うのみであり、伝熱管2、冷媒流れ方向R1、および外部空気の流れ方向A1は全て同じである。   Further, it may be a substantially U-shaped heat transfer fin 3a in which both ends are connected (see FIG. 6). The heat transfer fins 3a are connected at two locations on both ends thereof, but the two connection locations are relatively close because the shape is substantially U-shaped. That is, since the heat transfer fins 3a do not contact the upstream side or the downstream side of the connection location, the heat transfer fins 3a hardly exchange heat with the upstream side or the downstream side of the connection location. In this modification, only the shape of the heat transfer fin is different from that in the above embodiment, and the heat transfer tube 2, the refrigerant flow direction R1, and the external air flow direction A1 are all the same.

したがって、伝熱管2の上流側と下流側とが熱交換を行うことを防ぐことができ、大きな熱損失を低減することができる。このため、ガスクーラ12の熱交換効率の向上を図ることができる。   Therefore, heat exchange between the upstream side and the downstream side of the heat transfer tube 2 can be prevented, and a large heat loss can be reduced. For this reason, the heat exchange efficiency of the gas cooler 12 can be improved.

(3)
上記実施例において、第1円筒パイプおよび第2円筒パイプは金属製であったが、これに限らず、樹脂製などであっても構わない。
(3)
In the said Example, although the 1st cylindrical pipe and the 2nd cylindrical pipe were metal, it may not be restricted to this but may be resin.

本発明に係る熱交換器は、熱交換器の熱交換効率の向上を図ることができ、超臨界条件の冷凍サイクルにおいて機能する熱交換器等として有用である。   The heat exchanger according to the present invention can improve the heat exchange efficiency of the heat exchanger, and is useful as a heat exchanger that functions in a refrigeration cycle under supercritical conditions.

本発明の一実施形態に係る超臨界冷媒を用いた冷凍回路図。The refrigeration circuit diagram using the supercritical refrigerant | coolant which concerns on one Embodiment of this invention. 超臨界冷媒を利用した冷凍サイクルのp−h線図(モリエル線図)。The ph diagram (Mollier diagram) of the refrigerating cycle using a supercritical refrigerant. ガスクーラの斜視図。The perspective view of a gas cooler. 伝熱管に接続される伝熱フィン(板状)の拡大図。The enlarged view of the heat-transfer fin (plate shape) connected to a heat-transfer tube. 変形例(1)に係るガスクーラの斜視図。The perspective view of the gas cooler which concerns on a modification (1). 変形例(2)に係る伝熱フィン(略U字状)の拡大図。The enlarged view of the heat-transfer fin (substantially U shape) concerning a modification (2).

符号の説明Explanation of symbols

2,2a 伝熱管
3,3a 伝熱フィン
12,12a ガスクーラ(熱交換器)
23a 直管部(直線部)
24a 曲管部(曲げ部)
S1 第1空間
S2 第2空間(第1流体流路)
As1 第1平面
As2 第2平面
2, 2a Heat transfer tubes 3, 3a Heat transfer fins 12, 12a Gas cooler (heat exchanger)
23a Straight pipe part (straight line part)
24a Curved pipe part (bending part)
S1 first space S2 second space (first fluid flow path)
As1 first plane As2 second plane

Claims (7)

超臨界冷媒を用いた冷凍サイクルにおいて機能する熱交換器(1,1a)であって、
前記超臨界冷媒を流通可能な伝熱管(2,2a)と、
前記伝熱管に接続され、前記伝熱管内の前記超臨界冷媒と第1流体とが熱交換することを助長する複数の伝熱フィン(3,3a)と、
を備え、
複数の前記伝熱フィンは、前記超臨界冷媒流れ方向(R1)に対して互いに分離して配置される、
熱交換器(1,1a)。
A heat exchanger (1, 1a) that functions in a refrigeration cycle using a supercritical refrigerant,
A heat transfer tube (2, 2a) capable of circulating the supercritical refrigerant;
A plurality of heat transfer fins (3, 3a) that are connected to the heat transfer tubes and facilitate heat exchange between the supercritical refrigerant and the first fluid in the heat transfer tubes;
With
The plurality of heat transfer fins are arranged separately from each other with respect to the supercritical refrigerant flow direction (R1).
Heat exchanger (1, 1a).
前記伝熱管(2)は、略円柱形状の第1空間(S1)に対して複数回巻かれらせん状となる、
請求項1に記載の熱交換器。
The heat transfer tube (2) is spirally wound a plurality of times with respect to the substantially cylindrical first space (S1).
The heat exchanger according to claim 1.
前記超臨界冷媒は、らせん軌道を描きながら、前記第1空間の第1平面(As1)から第2平面(As2)の方向へ流れ、
前記第1流体は、前記伝熱管の外部の第1流体流路(S2)を前記第2平面から前記第1平面の方向へ流れる、
請求項2に記載の熱交換器(1a)。
The supercritical refrigerant flows in a direction from the first plane (As1) to the second plane (As2) of the first space while drawing a spiral orbit,
The first fluid flows through the first fluid flow path (S2) outside the heat transfer tube from the second plane toward the first plane.
The heat exchanger (1a) according to claim 2.
前記伝熱管は、複数の直管部(23a)と少なくとも1以上の曲管部(24a)とを有し、
複数の前記直管部は、互いに略平行に隣り合い、かつ、互いに間隔をあける形状である、
請求項1に記載の熱交換器(1a)。
The heat transfer tube has a plurality of straight tube portions (23a) and at least one bent tube portion (24a),
The plurality of straight pipe portions are adjacent to each other substantially in parallel, and are spaced apart from each other.
The heat exchanger (1a) according to claim 1.
前記伝熱フィン(3)は、板状のフィンであり、前記伝熱管の外周面から放射状に外側に延びている、
請求項1から4のいずれかに記載の熱交換器(1,1a)。
The heat transfer fin (3) is a plate-like fin, and extends radially outward from the outer peripheral surface of the heat transfer tube.
The heat exchanger (1, 1a) according to any one of claims 1 to 4.
前記伝熱フィン(3a)は、針状のフィンであり、前記伝熱管の外周面から放射状に外側に延びている、
請求項1から4のいずれかに記載の熱交換器(1,1a)。
The heat transfer fin (3a) is a needle-like fin, and extends radially outward from the outer peripheral surface of the heat transfer tube.
The heat exchanger (1, 1a) according to any one of claims 1 to 4.
前記伝熱フィン(3a)は、略U字状のフィンであり、その両端が前記伝熱管の外周面に接続されている、
請求項1から4のいずれかに記載の熱交換器(1,1a)。
The heat transfer fin (3a) is a substantially U-shaped fin, and both ends thereof are connected to the outer peripheral surface of the heat transfer tube.
The heat exchanger (1, 1a) according to any one of claims 1 to 4.
JP2006166398A 2006-06-15 2006-06-15 Heat exchanger Pending JP2007333319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166398A JP2007333319A (en) 2006-06-15 2006-06-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166398A JP2007333319A (en) 2006-06-15 2006-06-15 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2007333319A true JP2007333319A (en) 2007-12-27

Family

ID=38932951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166398A Pending JP2007333319A (en) 2006-06-15 2006-06-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2007333319A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762821A1 (en) * 2013-02-01 2014-08-06 LG Electronics, Inc. Air conditioner and heat exchanger therefor
US9212852B2 (en) 2012-07-11 2015-12-15 Lg Electronics Inc. Support mechanism for a heat exchanger in an air-conditioning system
US9389026B2 (en) 2012-07-11 2016-07-12 Lg Electronics Inc. Heat exchanger
KR20200029107A (en) * 2018-09-08 2020-03-18 김청균 Lpg supply system with hot-water vaporizer and pre-mix

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212852B2 (en) 2012-07-11 2015-12-15 Lg Electronics Inc. Support mechanism for a heat exchanger in an air-conditioning system
US9389026B2 (en) 2012-07-11 2016-07-12 Lg Electronics Inc. Heat exchanger
EP2762821A1 (en) * 2013-02-01 2014-08-06 LG Electronics, Inc. Air conditioner and heat exchanger therefor
EP2762820A1 (en) * 2013-02-01 2014-08-06 LG Electronics, Inc. Air conditioner and heat exchanger therefor
US9677819B2 (en) 2013-02-01 2017-06-13 Lg Electronics Inc. Air conditioner and heat exchanger therefor
KR20200029107A (en) * 2018-09-08 2020-03-18 김청균 Lpg supply system with hot-water vaporizer and pre-mix
KR102138431B1 (en) * 2018-09-08 2020-08-13 김청균 Lpg supply system with hot-water vaporizer and pre-mix

Similar Documents

Publication Publication Date Title
KR100905995B1 (en) Air conditioner
JP6045695B2 (en) Air conditioner
JP2010164293A (en) In-ground heat exchanger and air conditioning system equipped with same
JP4428341B2 (en) Refrigeration cycle equipment
JP2007085591A (en) Air conditioner
WO2015111220A1 (en) Heat exchanger and air conditioning device
JP2005133999A (en) Heat pump type hot-water supplier
KR20140106552A (en) Fin tube-type heat exchanger
JP2014163567A (en) Water heater
JP2014163566A (en) Water heater
JP2007333319A (en) Heat exchanger
CN103930744A (en) Double-pipe heat exchanger and air conditioner using same
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP2007147221A (en) Heat exchanger with fin
JP2005127529A (en) Heat exchanger
JP5713312B2 (en) Refrigeration cycle equipment
JP4899655B2 (en) Heat exchanger
JP2007278541A (en) Cooling system
JP2012057849A (en) Heat transfer tube, heat exchanger, and refrigerating cycle device
JP2009133530A (en) Heat exchanger and heat pump hot water supply machine
JP2010230256A (en) Refrigerant-to-refrigerant heat exchanger
JP2006207896A (en) Absorption refrigerator
JP2012073008A (en) Refrigeration cycle device
JP2005226866A (en) Refrigerating cycle device
JP2005345074A (en) Multi-wound type double pipe heat exchanger and air conditioner