JP2005133999A - Heat pump type hot-water supplier - Google Patents

Heat pump type hot-water supplier Download PDF

Info

Publication number
JP2005133999A
JP2005133999A JP2003368255A JP2003368255A JP2005133999A JP 2005133999 A JP2005133999 A JP 2005133999A JP 2003368255 A JP2003368255 A JP 2003368255A JP 2003368255 A JP2003368255 A JP 2003368255A JP 2005133999 A JP2005133999 A JP 2005133999A
Authority
JP
Japan
Prior art keywords
water
heat transfer
refrigerant
transfer tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368255A
Other languages
Japanese (ja)
Inventor
Mitsutaka Shizutani
光隆 静谷
Taichi Tanaami
太一 店網
Kenichi Saito
健一 齊藤
Koichi Fukushima
功一 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2003368255A priority Critical patent/JP2005133999A/en
Publication of JP2005133999A publication Critical patent/JP2005133999A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type hot-water supplier having smaller size, lower cost and higher efficiency as a whole at the same time by improving space saving property, cost and heat exchanging performance of a water-refrigerant heat exchanger at the same time. <P>SOLUTION: The heat pump water heater 7 with the heat exchanger 1 comprises a water heat transfer pipe 3 in which water is distributed and one or more refrigerant heat transfer pipes 5 for each water heat transfer pipe, in which refrigerant 4 is distributed, both of which are spirally wound into almost cylindrical whole shapes and integrally put in contact with each other. The water heat transfer pipe is spirally wound into a almost cylindrical shape in close contact or with almost no gap in the axial direction. The refrigerant heat transfer pipe is spirally wound and arranged on the outer or inner periphery or on both of them of the cylindrical shape of the water heat transfer pipe. It is brazed or soldered on at least one cross section to the water heat transfer pipe all over the length of the heat transfer pipe so that the water and the refrigerant can flow inside the water heat transfer pipe and the refrigerant heat transfer pipe in the opposite directions to each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、給湯用熱交換器等の水対冷媒用の熱交換器を備えたヒートポンプ式給湯機に関する。   The present invention relates to a heat pump type water heater provided with a water-to-refrigerant heat exchanger such as a hot water supply heat exchanger.

従来一般に、ヒートポンプ式給湯機内での省スペース性を考慮して、全体形状をほぼ円筒や四角柱等に螺旋巻きして、貯湯タンクの外周や給湯機ケースの内周に配置したり複数に分けて格子状や入れ子状等に並べたりできるようにした水対冷媒用の熱交換器(以下、水冷媒熱交換器と呼ぶ)がある。このような水冷媒熱交換器を備えたヒートポンプ式給湯機として、共に扁平な水伝熱管と冷媒伝熱管を上下方向に交互に接触するように並べて螺旋巻きしたものがある(例えば、特許文献1参照)。このような水冷媒熱交換器では、水伝熱管と冷媒伝熱管は元々低コストな円形断面の配管をやや扁平加工するだけなので加工を含めても元々低コストな円形断面の配管で済むが、水伝熱管と冷媒伝熱管が扁平面で接触するものの機械的な接触に留まるためにろう付け等の接合に比べてこの部分の接触熱抵抗が大きくなるので、熱交換に有利なように水と冷媒を反対方向に流して(対向流)も、熱交換器の性能が低下するという問題がある。また、水伝熱管と冷媒伝熱管を上下方向に交互に並べて螺旋巻きするので、円筒形状等の全体の高さが増加して省スペース化の効果があまり得られなくなる。また、冷媒が二酸化炭素の場合には、フロン系冷媒より使用圧力が大きく管内の圧力損失は小さいことで水冷媒熱交換器に適した冷媒伝熱管は水伝熱管よりかなり細径なものになるので、この従来例のように水伝熱管と冷媒伝熱管を上下方向に交互に並べて螺旋巻きする構造では成形や接触熱抵抗等の問題が大きくなると考えられる。これらによりヒートポンプ式給湯機としては、機器全体の大形化と効率低下という問題につながることになる。   Conventionally, in consideration of space saving in a heat pump type hot water heater, the entire shape is spirally wound around a cylinder or a square pole, and is arranged on the outer periphery of the hot water storage tank or the inner periphery of the water heater case. There are water-to-refrigerant heat exchangers (hereinafter referred to as water-refrigerant heat exchangers) that can be arranged in a grid or nested manner. As a heat pump type water heater provided with such a water refrigerant heat exchanger, there is one in which flat water heat transfer tubes and refrigerant heat transfer tubes are arranged side by side so as to be alternately contacted in the vertical direction and spirally wound (for example, Patent Document 1). reference). In such a water-refrigerant heat exchanger, the water heat transfer tube and the refrigerant heat transfer tube are originally low-cost circular cross-section piping, so even if processing is included, originally low-cost circular cross-section piping is sufficient, Although the water heat transfer tube and the refrigerant heat transfer tube are in contact with each other in a flat plane, the contact heat resistance of this part is larger than that of joining such as brazing because it remains in mechanical contact. Even if the refrigerant is flowed in the opposite direction (opposite flow), there is a problem that the performance of the heat exchanger deteriorates. Further, since the water heat transfer tubes and the refrigerant heat transfer tubes are alternately arranged in the vertical direction and spirally wound, the overall height of the cylindrical shape or the like increases, so that the space saving effect is hardly obtained. Also, when the refrigerant is carbon dioxide, the working pressure is larger than the chlorofluorocarbon refrigerant and the pressure loss in the pipe is small, so the refrigerant heat transfer tube suitable for the water refrigerant heat exchanger is considerably smaller in diameter than the water heat transfer tube. Therefore, it is considered that problems such as molding and contact thermal resistance increase in the structure in which the water heat transfer tubes and the refrigerant heat transfer tubes are alternately arranged in the vertical direction and spirally wound as in this conventional example. As a result, the heat pump type hot water heater leads to the problem that the entire device is enlarged and the efficiency is lowered.

また、他の全体形状を円筒等に螺旋巻きできる水冷媒熱交換器を備えたヒートポンプ式給湯機として、特に冷媒に高圧となる二酸化炭素を使用するために、共に扁平な水伝熱管と冷媒伝熱管を上下方向に交互に接触するように並べて螺旋巻きし、冷媒伝熱管では耐圧性の点から断面内に複数の小流路を形成した水冷媒熱交換器を備えたものがある(例えば、特許文献2参照)。このような水冷媒熱交換器では、水伝熱管と冷媒伝熱管を上下方向に交互に並べて螺旋巻きした配置であるが、両方の伝熱管を扁平化しているので、前述の例のように全体の高さが高くなって省スペース性が損なわれることはない。しかしながら、冷媒伝熱管が複雑な断面形状の特注品となるのでコストがかかるだけでなく、水伝熱管と冷媒伝熱管が扁平面で接触するものの機械的な接触に留まるために、ろう付け等の接合に比べてこの部分の接触熱抵抗が大きくなって、水と冷媒を対向流で流しても、熱交換器の性能が低下するという問題がある。これらによりヒートポンプ式給湯機としても、機器全体のコスト上昇と効率低下という問題につながることになる。   In addition, as a heat pump water heater equipped with a water-refrigerant heat exchanger capable of spirally winding other overall shapes into a cylinder or the like, both flat water heat transfer tubes and refrigerant transfer pipes are used, particularly in order to use high-pressure carbon dioxide as the refrigerant. Some heat pipes are provided with a water refrigerant heat exchanger in which a plurality of small channels are formed in the cross section from the point of pressure resistance (for example, for example, a refrigerant heat transfer pipe is spirally wound so that the heat pipes are alternately contacted in the vertical direction (for example, Patent Document 2). In such a water-refrigerant heat exchanger, the water heat transfer tubes and the refrigerant heat transfer tubes are arranged alternately in the vertical direction and spirally wound. However, since both heat transfer tubes are flattened, As a result, the space-saving performance is not impaired. However, since the refrigerant heat transfer tube is a custom-made product with a complicated cross-sectional shape, not only is it costly, but the water heat transfer tube and the refrigerant heat transfer tube are in flat contact but remain in mechanical contact, so brazing, etc. There is a problem that the contact heat resistance of this portion becomes larger than that of bonding, and the performance of the heat exchanger is lowered even if water and refrigerant are flowed in opposite directions. As a result, even for a heat pump type hot water heater, it leads to problems of cost increase and efficiency reduction of the entire device.

また、他の全体形状を円筒等に螺旋巻きできる水冷媒熱交換器を備えたヒートポンプ式給湯機として、水伝熱管が楕円形断面内に管の長さ方向につながった複数条の窪み部をもち、その窪み部内にほぼ円形断面の冷媒伝熱管が圧着固定された構造として、それらをあまり隙間をあけずに螺旋巻きした水冷媒熱交換器を備えたものがある(例えば、特許文献3参照)。このような水冷媒熱交換器では、水伝熱管と冷媒伝熱管は上下方向に並べて螺旋巻きした配置であるが、冷媒伝熱管が扁平な水伝熱管の断面内に配置されるので、全体の高さが高くなって省スペース性が損なわれることはない。しかしながら、水伝熱管と冷媒伝熱管は元々は低コストな円形断面の配管であるものの、水伝熱管を窪み部をもつように成形した上でそこに冷媒伝熱管を圧着固定するという複雑な加工が必要なためにコストがかかる。また、冷媒伝熱管は水伝熱管の窪み部に圧着固定されるものの機械的な接触に留まっており、また全体の螺旋巻き加工に伴う変形で接触状態に悪影響が現れるため、ろう付け等の接合に比べてこの部分の接触熱抵抗が大きくなって、水と冷媒を対向流で流しても、熱交換器の性能が低下するという問題がある。これらによりヒートポンプ式給湯機としても、機器全体のコスト上昇と効率低下という問題につながることになる。   In addition, as a heat pump type water heater equipped with a water refrigerant heat exchanger that can be spirally wound around a cylinder or the like in other overall shapes, a plurality of hollow portions in which water heat transfer tubes are connected in the length direction of the tube in an elliptical cross section. In addition, as a structure in which a refrigerant heat transfer tube having a substantially circular cross section is fixed by crimping in the hollow portion, there is one provided with a water refrigerant heat exchanger in which they are spirally wound without leaving a gap (see, for example, Patent Document 3). ). In such a water-refrigerant heat exchanger, the water heat transfer tube and the refrigerant heat transfer tube are arranged so as to be spirally wound side by side in the vertical direction, but since the refrigerant heat transfer tube is arranged in the cross section of the flat water heat transfer tube, The height is not increased and the space saving performance is not impaired. However, although the water heat transfer tube and the refrigerant heat transfer tube are originally low-cost pipes with a circular cross section, the water heat transfer tube is molded to have a hollow portion, and then the refrigerant heat transfer tube is pressure-bonded and fixed there. Cost because it is necessary. In addition, although the refrigerant heat transfer tube is crimped and fixed in the recess of the water heat transfer tube, it remains in mechanical contact, and deformation due to the entire spiral winding process has an adverse effect on the contact state, so joining such as brazing Compared with the above, the contact thermal resistance of this portion becomes large, and there is a problem that the performance of the heat exchanger is deteriorated even if water and the refrigerant are caused to flow in opposite directions. As a result, even for a heat pump type hot water heater, it leads to problems of cost increase and efficiency reduction of the entire device.

また、水伝熱管と冷媒伝熱管を低コストな円形断面の配管とすると共にそれらをろう付け等の接合で一体化した構造の水冷媒熱交換器として、冷媒に二酸化炭素の使用を想定して、水伝熱管の上下に複数本のほぼ円形断面の冷媒伝熱管が接合一体化された構造としたものがある(例えば、特許文献4参照)。このような水冷媒熱交換器では、水伝熱管と冷媒伝熱管は元々低コストな円形断面の配管であり、それらの曲げや接合は容易な加工であるためコスト増加も少なく抑えられる。しかも、水伝熱管と冷媒伝熱管は接合で一体化されているため、前述の2つの従来例のような機械的接触に比べて両者の間の接触熱抵抗は小さく保つことができる。しかしながら、このような水冷媒熱交換器の構造では、水伝熱管は冷媒伝熱管のない横方向にしか巻けないので、水冷媒熱交換器全体の形状としては水平方向に巻き径を拡大してゆく平面的な螺旋形状は可能だが、省スペース性を考慮した円筒等の全体形状には対応できない。また、複数の冷媒伝熱管を水伝熱管の上下に接合した後に全体を平面的な螺旋形状にする加工手順を想定しているが、両者の接合後に巻き付け加工を行うと接合部に割れ・はがれ等が発生する可能性がある。そのため、実際には水伝熱管と冷媒伝熱管を平面的な螺旋形状に加工してから接合することになり、接合に伴う加工が複雑化して加工のためのコストがかかるようになる。これらによりヒートポンプ式給湯機としては、機器全体のコスト上昇と大形化という問題につながることになる。   In addition, as a water-refrigerant heat exchanger with a structure in which the water heat transfer tube and the refrigerant heat transfer tube are made into a low-cost pipe with a circular cross section and integrated by joining such as brazing, the use of carbon dioxide as a refrigerant is assumed. There is a structure in which a plurality of refrigerant heat transfer tubes having a substantially circular cross section are joined and integrated above and below the water heat transfer tube (see, for example, Patent Document 4). In such a water-refrigerant heat exchanger, the water heat transfer tube and the refrigerant heat transfer tube are originally low-cost pipes having a circular cross section, and their bending and joining are easy processing, so that an increase in cost can be suppressed. In addition, since the water heat transfer tube and the refrigerant heat transfer tube are integrated by bonding, the contact heat resistance between them can be kept small as compared with the mechanical contact as in the two conventional examples described above. However, in such a structure of the water refrigerant heat exchanger, the water heat transfer tube can be wound only in the lateral direction without the refrigerant heat transfer tube, so the overall diameter of the water refrigerant heat exchanger is increased in the horizontal direction. Although a flat spiral shape is possible, it cannot be applied to the overall shape of a cylinder or the like in consideration of space saving. In addition, a processing procedure is assumed in which a plurality of refrigerant heat transfer tubes are joined to the top and bottom of the water heat transfer tube and then the whole is made into a flat spiral shape. However, if the winding process is performed after joining the two, the joint will be cracked and peeled off. Etc. may occur. For this reason, the water heat transfer tube and the refrigerant heat transfer tube are actually processed into a flat spiral shape and then joined, which complicates the processing involved in joining and increases the cost for processing. As a result, the heat pump type hot water heater leads to the problem of cost increase and size increase of the entire device.

特開2003−14383号公報(第7頁、図6)Japanese Patent Laying-Open No. 2003-14383 (page 7, FIG. 6) 特開2002−107069号公報(第4頁、図1、図2)Japanese Patent Laid-Open No. 2002-107069 (Page 4, FIGS. 1 and 2) 特開2003−14383号公報(第6頁、図2、図3)Japanese Patent Laying-Open No. 2003-14383 (page 6, FIG. 2, FIG. 3) 特開2003−156291号公報(第8頁、図1、図4)Japanese Patent Laying-Open No. 2003-156291 (page 8, FIGS. 1 and 4)

以上のように、従来のヒートポンプ式給湯機では、水冷媒熱交換器を省スペース性に優れた円筒等の全体形状で、かつ素材や加工等の点からも低コストで、かつ水伝熱管と冷媒伝熱管の接触熱抵抗が小さくて熱交換性能にも優れるという特徴を同時に達成できるものがなく、そのためヒートポンプ式給湯機としても機器全体のコスト上昇と大形化と効率低下という問題全てを解決することができなかった。   As described above, in the conventional heat pump type water heater, the water-refrigerant heat exchanger has an overall shape such as a cylinder excellent in space saving, is low in cost in terms of materials and processing, and has a water heat transfer tube. There is nothing that can simultaneously achieve the characteristics that the contact heat resistance of the refrigerant heat transfer tube is small and the heat exchange performance is excellent, so even for a heat pump type hot water heater, it solves all the problems of increase in cost, size, and efficiency of the entire device I couldn't.

本発明の目的は、水冷媒熱交換器を省スペース性に優れた円筒等の全体形状としながら、素材や加工等の点から低コストで、水伝熱管と冷媒伝熱管の接触熱抵抗も小さくて対向流で流すこともあって熱交換性能にも優れるという特徴を同時にもつものとし、ヒートポンプ式給湯機として機器全体の小形化と低コスト化と高効率化を同時に達成できる改良型のヒートポンプ式給湯機を提供することにある。   The object of the present invention is to reduce the contact heat resistance between the water heat transfer tube and the refrigerant heat transfer tube at a low cost from the viewpoint of materials and processing, etc., while making the water refrigerant heat exchanger into an overall shape such as a cylinder excellent in space saving. Improved heat pump type that can simultaneously achieve downsizing, cost reduction, and high efficiency of the entire equipment as a heat pump type hot water heater. The purpose is to provide a water heater.

上記目的を達成するために、本発明の第1の請求項のヒートポンプ式給湯機は、水が流通する水伝熱管と、前記水伝熱管1本に対し1本又は複数本の冷媒が流通する冷媒伝熱管とが、共に螺旋巻きされたほぼ円筒等の全体形状で互いに接触し一体化された構造を有し、かつ前記水伝熱管は円筒等の軸方向に密着又はほとんど隙間なしで螺旋巻きされたほぼ円筒等の形状であり、かつ前記冷媒伝熱管は前記水伝熱管の円筒等の形状の外周又は内周又はその両方に螺旋巻きされて配置され、前記水伝熱管と少なくとも断面の1個所以上が伝熱管のほぼ全長にわたりろう付け又は半田付け等で接合されており、かつ前記水伝熱管と前記冷媒伝熱管の内部に水と冷媒を反対方向に流すようにした熱交換器を備えたことを特徴としている。   In order to achieve the above object, the heat pump type hot water heater according to the first aspect of the present invention has a water heat transfer pipe through which water flows and one or a plurality of refrigerants flow through one water heat transfer pipe. The refrigerant heat transfer tube has a structure in which the refrigerant heat transfer tubes are in contact with each other in an overall shape such as a substantially cylindrical shape that is spirally wound together, and the water heat transfer tubes are closely wound in the axial direction of the cylinder or the like and spirally wound with almost no gap. The refrigerant heat transfer tube is spirally wound around the outer periphery or the inner periphery of the water heat transfer tube or the like, or both, and is at least one in cross section with the water heat transfer tube. A heat exchanger is provided in which at least a portion is joined by brazing or soldering over almost the entire length of the heat transfer tube, and water and refrigerant are allowed to flow in opposite directions inside the water heat transfer tube and the refrigerant heat transfer tube. It is characterized by that.

また、本発明の第2の請求項のヒートポンプ式給湯機は、請求項1に記載のヒートポンプ式給湯機において、前記熱交換器の前記冷媒伝熱管の一部が、前記水伝熱管の隣り合う中間位置の外周又は内周又はその両方に前記水伝熱管と同じピッチで螺旋巻きされ、かつ前記冷媒伝熱管の一部は相対する2本の前記水伝熱管の両方に伝熱管のほぼ全長にわたりろう付け又は半田付け等で接合されたことを特徴としている。   Moreover, the heat pump type water heater according to the second aspect of the present invention is the heat pump type water heater according to claim 1, wherein a part of the refrigerant heat transfer tube of the heat exchanger is adjacent to the water heat transfer tube. The outer periphery and / or the inner periphery of the intermediate position is spirally wound at the same pitch as the water heat transfer tube, and a part of the refrigerant heat transfer tube extends over almost the entire length of the two heat transfer tubes facing each other. It is characterized by being joined by brazing or soldering.

また、本発明の第3の請求項のヒートポンプ式給湯機は、請求項1ないし2に記載のヒートポンプ式給湯機において、前記熱交換器の前記冷媒伝熱管の一部が、前記水伝熱管の外周又は内周又はその両方に伝熱管の長さ方向に変化させたピッチで螺旋巻きされ、かつ前記冷媒伝熱管の螺旋巻きのピッチは前記ヒートポンプ式給湯機の代表的な運転状態での冷媒伝熱管の内部の熱交換性能又は水と冷媒の温度差等に基づいて決めるようにしたことを特徴としている。   Moreover, the heat pump type hot water heater according to the third aspect of the present invention is the heat pump type hot water heater according to claim 1 or 2, wherein a part of the refrigerant heat transfer tube of the heat exchanger is the water heat transfer tube. The outer periphery or the inner periphery or both are spirally wound at a pitch changed in the length direction of the heat transfer tube, and the helical winding pitch of the refrigerant heat transfer tube is the refrigerant transfer in the typical operation state of the heat pump water heater. It is characterized in that it is determined based on the heat exchange performance inside the heat pipe or the temperature difference between water and the refrigerant.

また、本発明の第4の請求項のヒートポンプ式給湯機は、請求項1ないし3に記載のヒートポンプ式給湯機において、冷媒が二酸化炭素であることを特徴としている。   According to a fourth aspect of the present invention, there is provided a heat pump type water heater according to any one of the first to third aspects, wherein the refrigerant is carbon dioxide.

また、本発明の第5の請求項のヒートポンプ式給湯機は、冷媒を圧縮する圧縮機と、該圧縮機からの冷媒と水を熱交換させて水を加熱する請求項1ないし4に記載の熱交換器と、該熱交換器からの冷媒を膨張させる膨張弁と、該膨張弁からの冷媒と外気を熱交換させて冷媒を蒸発させる蒸発器と、前記熱交換器で冷媒により加熱された水を貯湯する貯湯タンクと、水及び冷媒を必要な経路に流通させる配管及び制御機器とを備えたことを特徴としている。   Moreover, the heat pump type water heater according to the fifth aspect of the present invention is the compressor according to any one of claims 1 to 4, wherein the compressor compresses the refrigerant and heats the water by exchanging heat between the refrigerant and the water from the compressor. A heat exchanger, an expansion valve for expanding the refrigerant from the heat exchanger, an evaporator for exchanging heat between the refrigerant from the expansion valve and the outside air to evaporate the refrigerant, and heated by the refrigerant in the heat exchanger It is characterized by comprising a hot water storage tank for storing water, piping and control equipment for circulating water and refrigerant in necessary paths.

上記の本発明の第1の請求項のヒートポンプ式給湯機では、(1)水冷媒熱交換器は全体が円筒等の形状であるため、貯湯タンクの外周や給湯機ケースの内周に配置したり複数に分けて格子状や入れ子状等に並べる等に対応できて省スペース性に優れる、(2)水冷媒熱交換器は水伝熱管と冷媒伝熱管に元々低コストな円形断面の配管を用いると共に、水伝熱管を予め螺旋巻きした上で冷媒伝熱管をその外周や内周に螺旋巻きして配置しそれらを接合するというように加工も容易であるため、全体としてコストを抑えられる、(3)水冷媒熱交換器は水伝熱管と冷媒伝熱管を接合で一体化しているため従来の水冷媒熱交換器のような機械的接触に比べ接触熱抵抗が小さくなり、また水と冷媒の熱交換効率のよい対向流として流すことも加わって、全体の熱交換性能を高くできる効果がある。そしてこのような水冷媒熱交換器を備えたヒートポンプ式給湯機では、前述の(1)により機器全体の小形化が、前述の(2)により機器全体の低コスト化が、前述の(3)により機器全体の高効率化が、同時に達成できるようになる。   In the heat pump type hot water heater according to the first aspect of the present invention described above, (1) the water-refrigerant heat exchanger has an overall shape of a cylinder or the like, and therefore is disposed on the outer periphery of the hot water storage tank or the inner periphery of the water heater case. It can be divided into a plurality of grids, nested, etc., and is excellent in space saving. (2) The water / refrigerant heat exchanger has originally a low-cost circular cross-section pipe for the water heat transfer pipe and the refrigerant heat transfer pipe. While using the water heat transfer tube spirally in advance, the refrigerant heat transfer tube is spirally wound around the outer periphery and the inner periphery, and processing is easy, such as joining them, thereby reducing the cost as a whole. (3) Since the water refrigerant heat exchanger integrates the water heat transfer pipe and the refrigerant heat transfer pipe by joining, the contact heat resistance is smaller than that of the mechanical contact like the conventional water refrigerant heat exchanger. In addition to flowing as a counter flow with good heat exchange efficiency , There is an effect that can increase the overall heat exchange performance. In the heat pump type water heater provided with such a water-refrigerant heat exchanger, the size of the entire device can be reduced by the aforementioned (1), and the cost of the entire device can be reduced by the aforementioned (2). As a result, high efficiency of the entire device can be achieved at the same time.

上記の本発明の第2の請求項のヒートポンプ式給湯機では、水冷媒熱交換器で冷媒伝熱管の一部が相対する2本の水伝熱管の中間位置にあってその両方に伝熱管のほぼ全長にわたりろう付け又は半田付け等で接合されているので、冷媒伝熱管の熱が2本の水伝熱管に伝わることで接触熱抵抗が1本の水伝熱管だけに伝わる場合より小さくでき、水と冷媒を対向流で流すこともあって、水冷媒熱交換器の熱交換性能をより高くできる効果がある。この場合も水冷媒熱交換器での効果は前述の第1の請求項と同様に(1)〜(3)が同時に得られ、従ってヒートポンプ式給湯機への効果も前述の第1の請求項と同様に機器全体の小形化・低コスト化・高効率化が同時に得られる。   In the heat pump type water heater according to the second aspect of the present invention, a part of the refrigerant heat transfer tube is located in the middle of the two water heat transfer tubes facing each other in the water / refrigerant heat exchanger, Since it is joined by brazing or soldering over almost the entire length, the heat of the refrigerant heat transfer tube is transmitted to the two water heat transfer tubes, so that the contact thermal resistance can be made smaller than when only one water heat transfer tube is transferred, Water and refrigerant are allowed to flow in opposite directions, which has the effect of improving the heat exchange performance of the water refrigerant heat exchanger. Also in this case, the effects of the water-refrigerant heat exchanger can be obtained at the same time as (1) to (3) as in the first claim. Therefore, the effect on the heat pump type hot water heater is also the first claim. In the same way, downsizing, cost reduction and high efficiency of the entire device can be obtained at the same time.

上記の本発明の第3の請求項のヒートポンプ式給湯機では、水冷媒熱交換器で冷媒伝熱管の一部が水伝熱管の外周又は内周又はその両方に、ヒートポンプ式給湯機の代表的な運転状態での冷媒伝熱管の内部の熱交換性能(冷媒の臨界温度近傍では冷媒側熱伝達率が向上する傾向がある)又は水と冷媒の温度差(代表的な運転状態で水冷媒熱交換器の入出口で温度差が大きい傾向がある)に基づいて決めるようにしたので、水冷媒熱交換器の全長にわたり水と冷媒の熱交換が適正になり、全体の熱交換性能を高くできる効果がある。この場合も水冷媒熱交換器での効果は前述の第1ないし2の請求項と同様に(1)〜(3)が同時に得られ、従ってヒートポンプ式給湯機への効果も前述の第1ないし2の請求項と同様に機器全体の小形化・低コスト化・高効率化が同時に得られる。   In the heat pump type water heater according to the third aspect of the present invention, a part of the refrigerant heat transfer tube in the water / refrigerant heat exchanger is arranged on the outer periphery or the inner periphery or both of the water heat transfer tube. Heat exchange performance inside the refrigerant heat transfer tube in various operating conditions (the refrigerant side heat transfer rate tends to improve near the critical temperature of the refrigerant) or the temperature difference between water and refrigerant (water refrigerant heat in typical operating conditions) The temperature difference tends to be large at the inlet / outlet of the exchanger), so that the heat exchange between water and refrigerant is appropriate over the entire length of the water / refrigerant heat exchanger, and the overall heat exchange performance can be improved. effective. Also in this case, the effects of the water-refrigerant heat exchanger can be obtained at the same time as (1) to (3) as in the first and second claims. Therefore, the effects on the heat pump hot water heater are also the first to second. As with the second claim, the entire device can be reduced in size, cost and efficiency.

上記の本発明の第4の請求項のヒートポンプ式給湯機では、水冷媒熱交換器で冷媒が二酸化炭素であるため、従来より高圧条件で運転すればより高温での出湯が可能となる特徴があるので効果的な給湯を行うことができる。この場合も水冷媒熱交換器への効果は前述の第1ないし3の請求項と同様に(1)〜(3)が同時に得られ、従ってヒートポンプ式給湯機での効果も前述の第1ないし3の請求項と同様に機器全体の小形化・低コスト化・高効率化が同時に得られる。   In the heat pump type hot water heater according to the fourth aspect of the present invention, since the refrigerant is carbon dioxide in the water-refrigerant heat exchanger, the hot water can be discharged at a higher temperature if operated under a higher pressure condition than before. Because there is an effective hot water supply. In this case as well, the effects on the water-refrigerant heat exchanger can be obtained at the same time as (1) to (3) as in the first to third claims. Therefore, the effect in the heat pump hot water heater is also the first to third. As in the third aspect, the entire device can be reduced in size, cost and efficiency.

上記の本発明の第5の請求項のヒートポンプ式給湯機では、効果的な給湯を行うのに必要なヒートポンプ式給湯機の構成要素を備えると共に水冷媒熱交換器が請求項1ないし4に記載のものになっているため、この場合も水冷媒熱交換器への効果は前述の第1ないし4の請求項と同様に(1)〜(3)が同時に得られ、従ってヒートポンプ式給湯機での効果も前述の第1ないし4の請求項と同様に機器全体の小形化・低コスト化・高効率化が同時に得られる。   In the heat pump type water heater according to the fifth aspect of the present invention, the water-refrigerant heat exchanger is provided with the components of the heat pump type water heater necessary for effective hot water supply, and the water refrigerant heat exchanger is described in claims 1 to 4. Therefore, in this case as well, the effects on the water-refrigerant heat exchanger can be obtained at the same time as (1) to (3) as in the first to fourth claims. As in the first to fourth claims, the effect of the present invention can be obtained simultaneously with downsizing, cost reduction and high efficiency of the entire device.

本発明によれば、ヒートポンプ式給湯機において、水冷媒熱交換器が円筒等の全体形状で省スペース性に優れると共に素材や加工等の点から低コスト化が可能で、また対向流的で接触熱抵抗の小さい伝熱管の構成のために熱交換性能が優れるという効果を同時にもち、これによりヒートポンプ式給湯機としては機器全体の小形化と低コスト化、及び高効率化を同時に達成できるようになる。   According to the present invention, in the heat pump type hot water heater, the water-refrigerant heat exchanger has an overall shape such as a cylinder and is excellent in space saving, and can be reduced in cost in terms of materials and processing, and is opposed to and in contact with the flow. Because of the heat transfer tube configuration with low heat resistance, it also has the effect of excellent heat exchange performance. As a result, the heat pump water heater can simultaneously achieve downsizing, cost reduction, and high efficiency of the entire equipment. Become.

以下に本発明の具体的な実施形態を図面を用いて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1及び図2は、本発明の一実施形態(第1の実施形態)のヒートポンプ式給湯機における水冷媒熱交換器の縦断面図と細部断面図、及び給湯システムの概略系統図である。   1 and 2 are a longitudinal sectional view and a detailed sectional view of a water-refrigerant heat exchanger in a heat pump type hot water heater of one embodiment (first embodiment) of the present invention, and a schematic system diagram of a hot water supply system.

水冷媒熱交換器1は、内部を水2が流れる水伝熱管3が全体がほぼ円筒形状となるように密着又はほとんど隙間がないように螺旋巻きされており、その外周に内部を冷媒4が流れる冷媒伝熱管5が、相対する2本の水伝熱管3の中間位置となる谷の部分に配置されるように同様に螺旋巻きされ、2本の水伝熱管3との接触部が伝熱管のほぼ全長にわたりろう又は半田等の接合材6により接合されている。   The water-refrigerant heat exchanger 1 is spirally wound so that the water heat transfer tube 3 through which the water 2 flows has a substantially cylindrical shape so that there is almost no gap between the water heat-transfer tubes 3. Similarly, the flowing refrigerant heat transfer tube 5 is spirally wound so as to be disposed in a valley portion that is an intermediate position between the two water heat transfer tubes 3 facing each other, and a contact portion between the two water heat transfer tubes 3 is a heat transfer tube. Are joined by a joining material 6 such as solder or solder.

このような水冷媒熱交換器1であれば、全体が円筒形状であるために貯湯タンクの外周等への設置に対応できると共に、水伝熱管3の周囲に冷媒伝熱管5が配置されるので円筒形状全体の高さが上下に交互配置するよりも抑えられ、また螺旋巻き部分の厚さ(最内周と最外周の差)も水伝熱管3の中間の谷の部分に冷媒伝熱管5が配置されるのであまり大きくならない(冷媒伝熱管がより細径になる二酸化炭素冷媒ほど厚さの増加が少ない)ので、省スペース性に優れる。また、水伝熱管3と冷媒伝熱管5に低コストな円形断面の配管を用いることができ、熱交換器全体の加工も水伝熱管3を予め螺旋巻きした上で冷媒伝熱管5を外周に螺旋巻きして配置し(両端に引張力をかけて固定すれば冷媒伝熱管5は水伝熱管3の中間の谷の部分に密着される)、それらを接合するというような容易な方法が可能であるため、熱交換器のコストも抑えられる。また、水伝熱管6と冷媒伝熱管5を接合材6による接合で一体化しているため従来の水冷媒熱交換器の例のような機械的接触に比べ接触熱抵抗が小さく、しかも冷媒伝熱管5が相対する2本の水伝熱管3と接合され管断面の2個所から熱を伝えられることでより接触熱抵抗を小さくできる。これに加えて、水伝熱管3内の水2と冷媒伝熱管5内の冷媒4を熱交換に有利な対向流としているので、水冷媒熱交換器1の熱交換性能も高められる。   Since such a water refrigerant heat exchanger 1 has a cylindrical shape as a whole, it can be installed on the outer periphery of the hot water storage tank and the like, and the refrigerant heat transfer tube 5 is disposed around the water heat transfer tube 3. The height of the entire cylindrical shape is suppressed rather than being alternately arranged one above the other, and the thickness of the spirally wound portion (difference between the innermost circumference and the outermost circumference) is also reduced to the refrigerant heat transfer tube 5 in the middle valley portion of the water heat transfer tube 3. Is not so large (as the carbon dioxide refrigerant having a thinner refrigerant heat transfer tube has a smaller thickness increase), it is excellent in space saving. In addition, a low-cost pipe with a circular cross section can be used for the water heat transfer tube 3 and the refrigerant heat transfer tube 5, and the heat exchanger tube 5 is wound around the water heat transfer tube 3 in advance and the refrigerant heat transfer tube 5 is arranged on the outer periphery. It can be arranged in a spiral manner (if the both ends are fixed by applying a tensile force, the refrigerant heat transfer tube 5 is brought into close contact with the intermediate valley portion of the water heat transfer tube 3), and an easy method such as joining them is possible. Therefore, the cost of the heat exchanger can be suppressed. Further, since the water heat transfer tube 6 and the refrigerant heat transfer tube 5 are integrated by joining with the joining material 6, the contact heat resistance is smaller than that of the mechanical contact as in the example of the conventional water refrigerant heat exchanger, and the refrigerant heat transfer tube. The contact heat resistance can be further reduced by joining the two water heat transfer tubes 3 opposed to each other and transferring heat from two locations on the tube cross section. In addition, since the water 2 in the water heat transfer tube 3 and the refrigerant 4 in the refrigerant heat transfer tube 5 are counterflows advantageous for heat exchange, the heat exchange performance of the water refrigerant heat exchanger 1 is also improved.

上記の水冷媒熱交換器1を備えたヒートポンプ式給湯機7の典型的なシステムでは、左側の冷媒回路においては冷媒4が、膨張弁8で低圧・低温となり、蒸発器9で外気と熱交換して蒸発・吸熱し、圧縮機10で高圧・高温となり、2つの経路から水冷媒熱交換器1に入って水2に放熱し、1つの経路に合流して膨張弁8に戻る。また、右側の水回路では、括弧を付けない矢印で示した給湯運転時には、水2は右下から供給されて逆止弁11、減圧弁12を経て分岐し、一方は逆止弁13を経て2つの経路から水冷媒熱交換器1に入って冷媒からの熱をもらって加熱され、混合弁14に達する。他方、減圧弁12で上方に分岐した水2は貯湯タンク15の下方に入り、同量の高温の水2(湯)が貯湯タンク15の上方から混合弁14に流される。混合弁14は、要求された出湯量と出湯温度に対応して2つの経路からの水2(湯)の流量を制御して混合し、弁16を経て出湯する。水冷媒熱交換器1からと貯湯タンク15からの水2(湯)の温度と要求された出湯温度によっては、一方だけから出湯されることもある。また、給水からの配管と出湯からの配管の間に弁17が設けられている。また、括弧を付けた矢印で示した貯湯運転時には、水2は水冷媒熱交換器1と貯湯タンク15の間を循環して、貯湯タンク15内の水2(湯)が高温にされる。以上のシステムは典型例であり、同じ機能であっても効果的な給湯を行うために他の構成も考えられるし、風呂への給湯・追い炊きや床暖房や浴室乾燥等の種々の機能に対応するためにはさらに他の構成要素・経路の追加が考えられるというように、実際のシステム構成はこれに限定されるものではない。以上のような構成をもつヒートポンプ式給湯機7のシステムにより効果的な給湯が行え、水冷媒熱交換器1は前述のような効果を備えていることで、ヒートポンプ式給湯機7としては、水冷媒熱交換器1が省スペース性のある構造であるため機器全体の小形化が、水冷媒熱交換器1が素材・加工等の点で低コストなことから機器全体の低コスト化が、そして水冷媒熱交換器1が高熱交換性能であることからシステム、言い換えれば機器全体としての高効率化が、同時に達成できるようになる。   In a typical system of the heat pump type hot water heater 7 provided with the water refrigerant heat exchanger 1 described above, the refrigerant 4 in the refrigerant circuit on the left side becomes low pressure / low temperature in the expansion valve 8, and heat exchange with the outside air is performed in the evaporator 9. Then, it evaporates and absorbs heat, becomes high pressure and high temperature in the compressor 10, enters the water / refrigerant heat exchanger 1 from two paths, dissipates heat to the water 2, merges in one path, and returns to the expansion valve 8. In the water circuit on the right side, during the hot water supply operation indicated by the arrow without parentheses, the water 2 is supplied from the lower right and branches through the check valve 11 and the pressure reducing valve 12, and one of them passes through the check valve 13. The refrigerant enters the water refrigerant heat exchanger 1 through two paths, receives heat from the refrigerant, is heated, and reaches the mixing valve 14. On the other hand, the water 2 branched upward by the pressure reducing valve 12 enters below the hot water storage tank 15, and the same amount of hot water 2 (hot water) flows from above the hot water storage tank 15 to the mixing valve 14. The mixing valve 14 controls and mixes the flow rate of the water 2 (hot water) from the two paths in accordance with the requested amount of hot water and the temperature of the hot water, and discharges the hot water through the valve 16. Depending on the temperature of the water 2 (hot water) from the water-refrigerant heat exchanger 1 and the hot water storage tank 15 and the required hot water temperature, hot water may be discharged from only one side. Further, a valve 17 is provided between the pipe from the water supply and the pipe from the tapping water. Further, during the hot water storage operation indicated by the arrows with parentheses, the water 2 circulates between the water refrigerant heat exchanger 1 and the hot water storage tank 15, and the water 2 (hot water) in the hot water storage tank 15 is heated to a high temperature. The above system is a typical example, and even with the same function, other configurations are possible for effective hot water supply, and it can be used for various functions such as hot water supply to the bath, additional cooking, floor heating, and bathroom drying. The actual system configuration is not limited to this, as other additional components / routes can be added to cope with it. The system of the heat pump type hot water heater 7 having the above-described configuration enables effective hot water supply, and the water refrigerant heat exchanger 1 has the above-described effects. Since the refrigerant heat exchanger 1 has a space-saving structure, the overall size of the equipment is reduced, and the water refrigerant heat exchanger 1 is low in terms of materials, processing, etc., so that the overall cost of the equipment is reduced. Since the water-refrigerant heat exchanger 1 has high heat exchange performance, high efficiency of the system, in other words, the entire device can be achieved at the same time.

図3は、本発明の他の実施形態(第2の実施形態)のヒートポンプ式給湯機における水冷媒熱交換器の縦断面図である。   FIG. 3 is a longitudinal sectional view of a water-refrigerant heat exchanger in a heat pump type water heater according to another embodiment (second embodiment) of the present invention.

この実施形態の水冷媒熱交換器1では、全体がほぼ円筒形状となるように螺旋巻きされた水伝熱管3の外周に、水伝熱管3の1本に対し2本の冷媒伝熱管5が配置され、両者の接触部が伝熱管のほぼ全長にわたり接合されている。水伝熱管3の1本に対する2本の冷媒伝熱管5のうちの一方は、前述の第1の実施形態の水冷媒熱交換器1の冷媒伝熱管5と同様に、相対する2本の水伝熱管3の中間位置となる谷の部分に配置されているので、管断面の2個所から熱を伝えられることでより接触熱抵抗を小さくできると共に、螺旋巻き付けが容易になって加工の低コスト化につながる。また、2本の冷媒伝熱管5のうちの他方は、水伝熱管3への接合は1個所のため2個所の場合よりやや接触熱抵抗が大きくなるが、螺旋巻き付けの容易さはそれ程変わらないので同様に加工の低コスト化につながる。その他の水冷媒熱交換器1の効果も第1の実施形態とほぼ同じであるため、水冷媒熱交換器1として円筒等の全体形状であることで省スペース性に優れ、素材や加工等の点から低コスト化が可能で、また対向流的で接触熱抵抗の小さい伝熱管の構成であることで熱交換性能が優れるという効果を同時にもつことがわかる。これにより第1の実施形態と同様に、ヒートポンプ式給湯機としても機器全体として小形化と低コスト化と高効率化を同時に達成できることがわかる。   In the water-refrigerant heat exchanger 1 of this embodiment, two refrigerant heat transfer tubes 5 are provided for one of the water heat transfer tubes 3 on the outer periphery of the water heat transfer tube 3 spirally wound so as to have a substantially cylindrical shape as a whole. It arrange | positions and both contact parts are joined over the substantially full length of the heat exchanger tube. One of the two refrigerant heat transfer tubes 5 with respect to one of the water heat transfer tubes 3 has two opposite water like the refrigerant heat transfer tubes 5 of the water refrigerant heat exchanger 1 of the first embodiment described above. Since the heat transfer tube 3 is arranged in the valley portion which is an intermediate position, it is possible to reduce the contact thermal resistance by transferring heat from two places on the cross section of the tube, and the spiral winding becomes easy and the processing cost is low. Leading to In addition, the other of the two refrigerant heat transfer tubes 5 has a single contact with the water heat transfer tube 3 and thus has a slightly higher contact thermal resistance than the case of two locations, but the ease of spiral winding does not change that much. Therefore, it leads to the cost reduction of processing similarly. Since the effects of the other water refrigerant heat exchanger 1 are almost the same as those of the first embodiment, the water refrigerant heat exchanger 1 has an overall shape such as a cylinder and is excellent in space saving, and can be made of materials and processing. From this point, it can be seen that the cost can be reduced, and that the structure of the heat transfer tube that is counterflowing and has low contact heat resistance has the effect of excellent heat exchange performance. Thus, as in the first embodiment, it can be seen that the heat pump type hot water heater can simultaneously achieve downsizing, cost reduction, and high efficiency as the entire device.

図4は、本発明のさらに他の実施形態(第3の実施形態)のヒートポンプ式給湯機における水冷媒熱交換器の縦断面図である。   FIG. 4 is a longitudinal sectional view of a water-refrigerant heat exchanger in a heat pump type water heater of still another embodiment (third embodiment) of the present invention.

この実施形態の水冷媒熱交換器1では、全体がほぼ円筒形状となるように螺旋巻きされた水伝熱管3の外周と内周に、それぞれ水伝熱管3の1本に対し2本の冷媒伝熱管5が配置され、両者の接触部が伝熱管のほぼ全長にわたり接合されている。水伝熱管3の外周と内周に配置された冷媒伝熱管5は、共に相対する2本の水伝熱管3の中間位置となる谷の部分に配置されるように螺旋巻きされ接合されているので、前述の第1の実施形態と同様に、管断面の2個所から熱を伝えられることでより接触熱抵抗を小さくできると共に、螺旋巻き付けが容易になって加工の低コスト化につながる(内周側の冷媒伝熱管5では両端に圧縮力をかけて固定することで谷の部分に密着される)。その他の水冷媒熱交換器1の効果も第1の実施形態とほぼ同じであるため、水冷媒熱交換器1として円筒等の全体形状であることで省スペース性に優れ、素材や加工等の点から低コスト化が可能で、また対向流的で接触熱抵抗の小さい伝熱管の構成であることで熱交換性能が優れるという効果を同時にもつことがわかる。これにより第1の実施形態と同様に、ヒートポンプ式給湯機としても機器全体として小形化と低コスト化と高効率化を同時に達成できることがわかる。   In the water-refrigerant heat exchanger 1 according to this embodiment, two refrigerants are provided for each one of the water heat transfer tubes 3 on the outer periphery and the inner periphery of the water heat transfer tube 3 spirally wound so as to have a substantially cylindrical shape as a whole. The heat transfer tube 5 is disposed, and the contact portion between the two is joined over substantially the entire length of the heat transfer tube. The refrigerant heat transfer tubes 5 disposed on the outer periphery and the inner periphery of the water heat transfer tube 3 are spirally wound and joined so as to be disposed in a valley portion that is an intermediate position between the two water heat transfer tubes 3 facing each other. Therefore, as in the first embodiment described above, heat can be transmitted from two locations on the cross section of the tube, so that the contact thermal resistance can be further reduced, and spiral winding is facilitated, leading to lower processing costs (internal). The circumferential refrigerant heat transfer tube 5 is in close contact with the valley portion by applying a compressive force to both ends and fixing the both ends). Since the effects of the other water refrigerant heat exchanger 1 are almost the same as those of the first embodiment, the water refrigerant heat exchanger 1 has an overall shape such as a cylinder and is excellent in space saving, and can be made of materials and processing. From this point, it can be seen that the cost can be reduced, and that the structure of the heat transfer tube that is counterflowing and has low contact heat resistance has the effect of excellent heat exchange performance. Thus, as in the first embodiment, it can be seen that the heat pump type hot water heater can simultaneously achieve downsizing, cost reduction, and high efficiency as the entire device.

図5は、本発明のさらに他の実施形態(第4の実施形態)のヒートポンプ式給湯機における水冷媒熱交換器の縦断面図であり、図6は一般的なヒートポンプ式給湯機における水冷媒熱交換器内部の冷媒側熱伝達率及び水・冷媒温度の分布を示すグラフである。   FIG. 5 is a longitudinal sectional view of a water-refrigerant heat exchanger in a heat pump type hot water heater of still another embodiment (fourth embodiment) of the present invention, and FIG. 6 is a water refrigerant in a general heat pump type hot water heater. It is a graph which shows distribution of the refrigerant | coolant side heat transfer coefficient inside a heat exchanger, and water and refrigerant | coolant temperature.

この実施形態の水冷媒熱交換器1では、全体がほぼ円筒形状となるように螺旋巻きされた水伝熱管3の外周に、冷媒伝熱管5が螺旋巻きのピッチを冷媒伝熱管5の入口から中央部過ぎまでと出口付近は密に、中央部過ぎから出口付近まで粗になるように、伝熱管の長さ方向に螺旋巻きのピッチを変えて配置され、両者の接触部が伝熱管のほぼ全長にわたり接合されている。このように冷媒伝熱管5の螺旋巻きのピッチを変えたのは、冷媒が二酸化炭素の場合に給湯機として使われる温度条件(例えば冷媒:60〜100℃→20℃、水:17℃→40〜90℃)では冷媒が水冷媒熱交換器1の内部で臨界点付近の温度を通り、図6に示すように冷媒側熱伝達率にピークが現れるという現象に対応するためである(例えば、党、王、飛原:第37回空気調和・冷凍連合講演会講演論文集、2003年4月、p.55−58に記載)。水冷媒熱交換器1内部で30℃前後の臨界点付近の温度となって冷媒側熱伝達率がピークに達すると、それにより水2と冷媒4の温度差が熱交換器の中央よりやや冷媒出口寄りの部分(図中にAで示す)で縮小する傾向が現れる。対向流の熱交換器では2つの流体の温度差に変動があるより一定に保つ方が全体として有効な熱交換につながるので、この場合は冷媒伝熱管5のピッチを冷媒側熱伝達率の高いAの部分は粗にし、冷媒側熱伝達率の低いA以外の部分は密にすることで全体の熱交換性能を向上させることができる。この実施形態の水冷媒熱交換器1では、冷媒伝熱管5の螺旋巻きのピッチを適正に決めることで全体の熱交換性能を向上させているが、その他の熱交換器の構成は前述の第1や第2の実施形態とほぼ同様であるため、水冷媒熱交換器1として円筒等の全体形状であることで省スペース性に優れ、素材や加工等の点から低コスト化が可能で、また対向流的で接触熱抵抗の小さい伝熱管の構成であることで熱交換性能が優れるという効果を同時にもつことがわかる。これにより第1や第2の実施形態と同様に、ヒートポンプ式給湯機としても機器全体として小形化と低コスト化と高効率化を同時に達成できることがわかる。   In the water-refrigerant heat exchanger 1 of this embodiment, the refrigerant heat transfer tube 5 has a spiral winding pitch from the inlet of the refrigerant heat transfer tube 5 around the outer periphery of the water heat transfer tube 3 spirally wound so as to be substantially cylindrical. It is arranged by changing the spiral winding pitch in the length direction of the heat transfer tube so that it is close to the center and the vicinity of the outlet, and rough from the center to the vicinity of the outlet. It is joined over the entire length. The spiral pitch of the refrigerant heat transfer tube 5 was changed in this way because the temperature conditions used as a water heater when the refrigerant is carbon dioxide (for example, refrigerant: 60 to 100 ° C. → 20 ° C., water: 17 ° C. → 40 This is to cope with the phenomenon that the refrigerant passes through the temperature near the critical point inside the water-refrigerant heat exchanger 1 and peaks in the refrigerant-side heat transfer coefficient as shown in FIG. Party, Wang, Tobihara: Proceedings of the 37th Air Conditioning and Refrigeration Union Lecture Meeting, April 2003, p.55-58). When the refrigerant-side heat transfer coefficient reaches a peak in the water-refrigerant heat exchanger 1 at a temperature near the critical point of about 30 ° C., the temperature difference between the water 2 and the refrigerant 4 is slightly lower than that at the center of the heat exchanger. There is a tendency to shrink at a portion near the exit (indicated by A in the figure). In the counterflow heat exchanger, keeping the temperature constant between the two fluids constant rather than fluctuating leads to effective heat exchange as a whole. In this case, the pitch of the refrigerant heat transfer tube 5 is set to have a high refrigerant side heat transfer coefficient. It is possible to improve the overall heat exchange performance by roughening the portion A and making the portions other than A having a low refrigerant side heat transfer coefficient dense. In the water-refrigerant heat exchanger 1 of this embodiment, the overall heat exchange performance is improved by appropriately determining the helical winding pitch of the refrigerant heat transfer tube 5, but the configuration of the other heat exchangers is the same as that described above. Since it is almost the same as the first and second embodiments, the water refrigerant heat exchanger 1 has an overall shape such as a cylinder and is excellent in space saving, and can be reduced in cost from the viewpoint of materials and processing, Moreover, it turns out that it has the effect that it is excellent in heat exchange performance by having the structure of a heat exchanger tube with a counter flow and small contact heat resistance. As a result, as in the first and second embodiments, it can be seen that the heat pump water heater can simultaneously achieve downsizing, cost reduction, and high efficiency as the entire device.

本発明の一実施形態(第1の実施形態)のヒートポンプ式給湯機における水冷媒熱交換器の縦断面図と細部断面図である。It is the longitudinal cross-sectional view and detailed cross-sectional view of the water-refrigerant heat exchanger in the heat pump type water heater of one Embodiment (1st Embodiment) of this invention. 第1の実施形態のヒートポンプ式給湯機における給湯システムの概略系統図である。It is a schematic system diagram of the hot water supply system in the heat pump type hot water heater of the first embodiment. 本発明の他の実施形態(第2の実施形態)のヒートポンプ式給湯機における水冷媒熱交換器の縦断面図である。It is a longitudinal cross-sectional view of the water refrigerant | coolant heat exchanger in the heat pump type water heater of other embodiment (2nd Embodiment) of this invention. 本発明のさらに他の実施形態(第3の実施形態)のヒートポンプ式給湯機における水冷媒熱交換器の縦断面図である。It is a longitudinal cross-sectional view of the water refrigerant | coolant heat exchanger in the heat pump type water heater of other embodiment (3rd Embodiment) of this invention. 本発明のさらに他の実施形態(第4の実施形態)のヒートポンプ式給湯機における水冷媒熱交換器の縦断面図である。It is a longitudinal cross-sectional view of the water refrigerant | coolant heat exchanger in the heat pump type water heater of further another embodiment (4th Embodiment) of this invention. 一般的なヒートポンプ式給湯機における水冷媒熱交換器内部の冷媒側熱伝達率及び水・冷媒温度の分布を示すグラフである。It is a graph which shows the refrigerant | coolant side heat transfer rate inside a water refrigerant | coolant heat exchanger in a general heat pump type water heater, and water / refrigerant temperature distribution.

符号の説明Explanation of symbols

1…水冷媒熱交換器、2…水、3…水伝熱管、4…冷媒、5…冷媒伝熱管、6…接合材、7…ヒートポンプ式給湯機。
DESCRIPTION OF SYMBOLS 1 ... Water refrigerant | coolant heat exchanger, 2 ... Water, 3 ... Water heat exchanger tube, 4 ... Refrigerant, 5 ... Refrigerant heat exchanger tube, 6 ... Joining material, 7 ... Heat pump type hot water heater.

Claims (5)

水が流通する水伝熱管と、前記水伝熱管1本に対し1本又は複数本の冷媒が流通する冷媒伝熱管とが、共に螺旋巻きされたほぼ円筒等の全体形状で互いに接触し一体化された構造を有し、かつ前記水伝熱管は円筒等の軸方向に密着又はほとんど隙間なしで螺旋巻きされたほぼ円筒等の形状であり、かつ前記冷媒伝熱管は前記水伝熱管の円筒等の形状の外周又は内周又はその両方に螺旋巻きされて配置され、前記水伝熱管と少なくとも断面の1個所以上が伝熱管のほぼ全長にわたりろう付け又は半田付け等で接合されており、かつ前記水伝熱管と前記冷媒伝熱管の内部に水と冷媒を反対方向に流すようにした熱交換器を備えたことを特徴とするヒートポンプ式給湯機。   A water heat transfer tube through which water circulates and a refrigerant heat transfer tube through which one or a plurality of refrigerants circulate with respect to one of the water heat transfer tubes are in contact with each other in an overall shape such as a substantially cylindrical shape spirally wound together. The water heat transfer tube has a substantially cylindrical shape that is closely wound in the axial direction of a cylinder or the like and spirally wound with almost no gap, and the refrigerant heat transfer tube is a cylinder of the water heat transfer tube or the like. The outer circumference or the inner circumference of the shape or both of them are spirally arranged, and at least one or more of the cross sections of the water heat transfer pipe are joined by brazing or soldering over the entire length of the heat transfer pipe, and A heat pump type hot water heater comprising a water heat exchanger tube and a heat exchanger configured to flow water and refrigerant in opposite directions inside the refrigerant heat exchanger tube. 請求項1に記載のヒートポンプ式給湯機において、前記熱交換器の前記冷媒伝熱管の一部が、前記水伝熱管の隣り合う中間位置の外周又は内周又はその両方に前記水伝熱管と同じピッチで螺旋巻きされ、かつ前記冷媒伝熱管の一部は相対する2本の前記水伝熱管の両方に伝熱管のほぼ全長にわたりろう付け又は半田付け等で接合されたことを特徴とするヒートポンプ式給湯機。   2. The heat pump type hot water heater according to claim 1, wherein a part of the refrigerant heat transfer tube of the heat exchanger is the same as the water heat transfer tube on an outer periphery and / or an inner periphery of an adjacent intermediate position of the water heat transfer tube. A heat pump type, characterized in that it is spirally wound at a pitch, and a part of the refrigerant heat transfer tube is joined to both of the two water heat transfer tubes facing each other by brazing or soldering over almost the entire length of the heat transfer tube Water heater. 請求項1ないし2に記載のヒートポンプ式給湯機において、前記熱交換器の前記冷媒伝熱管の一部が、前記水伝熱管の外周又は内周又はその両方に伝熱管の長さ方向に変化させたピッチで螺旋巻きされ、かつ前記冷媒伝熱管の螺旋巻きのピッチは前記ヒートポンプ式給湯機の代表的な運転状態での冷媒伝熱管の内部の熱交換性能又は水と冷媒の温度差等に基づいて決められたことを特徴とするヒートポンプ式給湯機。   The heat pump type water heater according to claim 1 or 2, wherein a part of the refrigerant heat transfer tube of the heat exchanger is changed in a length direction of the heat transfer tube on an outer periphery or an inner periphery or both of the water heat transfer tube. The pitch of the spiral of the refrigerant heat transfer tube is based on the heat exchange performance inside the refrigerant heat transfer tube in the typical operating state of the heat pump water heater or the temperature difference between water and refrigerant, etc. A heat pump type water heater characterized by 請求項1ないし3に記載のヒートポンプ式給湯機において、冷媒が二酸化炭素であることを特徴とするヒートポンプ式給湯機。   4. The heat pump type hot water heater according to claim 1, wherein the refrigerant is carbon dioxide. 冷媒を圧縮する圧縮機と、該圧縮機からの冷媒と水を熱交換させて水を加熱する請求項1ないし4に記載の熱交換器と、該熱交換器からの冷媒を膨張させる膨張弁と、該膨張弁からの冷媒と外気を熱交換させて冷媒を蒸発させる蒸発器と、前記熱交換器で冷媒により加熱された水を貯湯する貯湯タンクと、水及び冷媒を必要な経路に流通させる配管及び制御機器とを備えたことを特徴とするヒートポンプ式給湯機。
The compressor which compresses a refrigerant | coolant, The heat exchanger of Claims 1 thru | or 4 which heat-exchanges the refrigerant | coolant and water from this compressor, and an expansion valve which expands the refrigerant | coolant from this heat exchanger An evaporator that exchanges heat between the refrigerant from the expansion valve and the outside air to evaporate the refrigerant, a hot water storage tank that stores water heated by the refrigerant in the heat exchanger, and distributes water and the refrigerant to a necessary path A heat pump type hot water heater comprising a piping and a control device.
JP2003368255A 2003-10-29 2003-10-29 Heat pump type hot-water supplier Pending JP2005133999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368255A JP2005133999A (en) 2003-10-29 2003-10-29 Heat pump type hot-water supplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368255A JP2005133999A (en) 2003-10-29 2003-10-29 Heat pump type hot-water supplier

Publications (1)

Publication Number Publication Date
JP2005133999A true JP2005133999A (en) 2005-05-26

Family

ID=34645976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368255A Pending JP2005133999A (en) 2003-10-29 2003-10-29 Heat pump type hot-water supplier

Country Status (1)

Country Link
JP (1) JP2005133999A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263395A (en) * 2006-03-27 2007-10-11 Corona Corp Water-refrigerant heat exchanger
JP2008075898A (en) * 2006-09-19 2008-04-03 Sanyo Electric Co Ltd Heat exchanger for heat pump type water heater
JP2008190776A (en) * 2007-02-05 2008-08-21 Corona Corp Water-refrigerant heat exchanger
JP2008215766A (en) * 2007-03-07 2008-09-18 Daikin Ind Ltd Heat exchanger for hot water supply
JP2009133530A (en) * 2007-11-29 2009-06-18 Hitachi Appliances Inc Heat exchanger and heat pump hot water supply machine
JP2009243747A (en) * 2008-03-31 2009-10-22 Sharp Corp Heat pump type hot water supply heater
JP2009264686A (en) * 2008-04-28 2009-11-12 Sharp Corp Heat exchanger and heat pump type heating device
JP2010014352A (en) * 2008-07-04 2010-01-21 Sharp Corp Heat exchanger, heat pump heating apparatus, and method of manufacturing heat exchanger
JP2010127512A (en) * 2008-11-26 2010-06-10 Noritz Corp Heat exchanger and water heating apparatus
CN101806551A (en) * 2009-02-12 2010-08-18 日立电线株式会社 Heat exchanger and heat transfer tube
JP2011145066A (en) * 2011-03-24 2011-07-28 Mitsubishi Electric Corp Heat exchanger and heat pump type water heater using the same
WO2013111180A1 (en) * 2012-01-24 2013-08-01 三菱電機株式会社 Coolant replenishment method for air-conditioning unit, and air-conditioning unit
JP2013160479A (en) * 2012-02-08 2013-08-19 Hitachi Appliances Inc Heat exchanger and heat pump type water heater using the same
JP2014040955A (en) * 2012-08-22 2014-03-06 Corona Corp Hot water storage type water heater
JP2015092126A (en) * 2013-09-30 2015-05-14 株式会社Uacj Heat exchanger for hot-water supply
KR102145066B1 (en) * 2019-05-07 2020-08-14 (주)신우엠테크 Heat exchange module for water purifier
KR20220022130A (en) * 2020-08-13 2022-02-25 씨제이케이얼라이언스 주식회사 Apparatus for dissolving carbon dioxide gas

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263395A (en) * 2006-03-27 2007-10-11 Corona Corp Water-refrigerant heat exchanger
JP2008075898A (en) * 2006-09-19 2008-04-03 Sanyo Electric Co Ltd Heat exchanger for heat pump type water heater
JP2008190776A (en) * 2007-02-05 2008-08-21 Corona Corp Water-refrigerant heat exchanger
JP2008215766A (en) * 2007-03-07 2008-09-18 Daikin Ind Ltd Heat exchanger for hot water supply
JP2009133530A (en) * 2007-11-29 2009-06-18 Hitachi Appliances Inc Heat exchanger and heat pump hot water supply machine
JP2009243747A (en) * 2008-03-31 2009-10-22 Sharp Corp Heat pump type hot water supply heater
JP2009264686A (en) * 2008-04-28 2009-11-12 Sharp Corp Heat exchanger and heat pump type heating device
JP2010014352A (en) * 2008-07-04 2010-01-21 Sharp Corp Heat exchanger, heat pump heating apparatus, and method of manufacturing heat exchanger
JP2010127512A (en) * 2008-11-26 2010-06-10 Noritz Corp Heat exchanger and water heating apparatus
JP2010185610A (en) * 2009-02-12 2010-08-26 Hitachi Cable Ltd Heat exchanger and heat transfer tube
CN101806551A (en) * 2009-02-12 2010-08-18 日立电线株式会社 Heat exchanger and heat transfer tube
CN101806551B (en) * 2009-02-12 2012-12-26 日立空调·家用电器株式会社 Heat exchanger and heat transfer tube
JP2011145066A (en) * 2011-03-24 2011-07-28 Mitsubishi Electric Corp Heat exchanger and heat pump type water heater using the same
WO2013111180A1 (en) * 2012-01-24 2013-08-01 三菱電機株式会社 Coolant replenishment method for air-conditioning unit, and air-conditioning unit
US9599380B2 (en) 2012-01-24 2017-03-21 Mitsubishi Electric Corporation Refrigerant charging method for air-conditioning apparatus and air-conditioning apparatus
JP2013160479A (en) * 2012-02-08 2013-08-19 Hitachi Appliances Inc Heat exchanger and heat pump type water heater using the same
JP2014040955A (en) * 2012-08-22 2014-03-06 Corona Corp Hot water storage type water heater
JP2015092126A (en) * 2013-09-30 2015-05-14 株式会社Uacj Heat exchanger for hot-water supply
KR102145066B1 (en) * 2019-05-07 2020-08-14 (주)신우엠테크 Heat exchange module for water purifier
KR20220022130A (en) * 2020-08-13 2022-02-25 씨제이케이얼라이언스 주식회사 Apparatus for dissolving carbon dioxide gas
KR102472811B1 (en) 2020-08-13 2022-12-01 씨제이케이얼라이언스 주식회사 Apparatus for dissolving carbon dioxide gas

Similar Documents

Publication Publication Date Title
JP2005133999A (en) Heat pump type hot-water supplier
AU2006249166B2 (en) Heat exchanger
JP4211041B2 (en) Heat pump water heater
CN209910459U (en) Heat exchange double-layer sleeve
JP2009079781A (en) Heat exchanger, heat pump water heater using the same, and heat pump air conditioner
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
US20160109156A1 (en) Internal condenser for heat pump water heater
JP2010060267A (en) Heat exchanger and heat pump apparatus using the same
JP2006317096A (en) Heat exchanger for electric water heater
JP2009121758A (en) Heat exchanger and cryogenic system
WO2009125700A1 (en) Heat exchanger and hot-water supply device using same
JP2003028582A (en) Heat exchanger
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP2006189249A (en) Double pipe heat exchanger
JP2009264686A (en) Heat exchanger and heat pump type heating device
JP3477531B1 (en) Heat exchanger and method for producing the same, and bath water heating system and floor heating system using such heat exchanger
JP2005201625A (en) Heat exchanger and its manufacturing method
JP2009133530A (en) Heat exchanger and heat pump hot water supply machine
JP2007271194A (en) Heat exchanger
JP2005061667A (en) Heat exchanger
JP2004340455A (en) Heat exchanger
JP2007333319A (en) Heat exchanger
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP2005024109A (en) Heat exchanger
JP2010078171A (en) Internal heat exchanger