JP2013068358A - Twisted tube type heat exchanger with different diameter - Google Patents

Twisted tube type heat exchanger with different diameter Download PDF

Info

Publication number
JP2013068358A
JP2013068358A JP2011207102A JP2011207102A JP2013068358A JP 2013068358 A JP2013068358 A JP 2013068358A JP 2011207102 A JP2011207102 A JP 2011207102A JP 2011207102 A JP2011207102 A JP 2011207102A JP 2013068358 A JP2013068358 A JP 2013068358A
Authority
JP
Japan
Prior art keywords
pipe
water pipe
heat exchanger
diameter
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011207102A
Other languages
Japanese (ja)
Other versions
JP5656786B2 (en
Inventor
Mitsusada Hayakawa
満貞 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011207102A priority Critical patent/JP5656786B2/en
Publication of JP2013068358A publication Critical patent/JP2013068358A/en
Application granted granted Critical
Publication of JP5656786B2 publication Critical patent/JP5656786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive twisted tube type heat exchanger with a different diameter capable of suppressing flow interruption of high temperature water even when a scale adheres thereto due to the high temperature water, and effectively exchanging heat.SOLUTION: The twisted tube type heat exchanger with a different diameter includes a water pipe 3 provided with a plurality of lines of spiral grooves 2 in the outer periphery and a plurality of refrigerant pipes 4 wound along the spiral grooves 2 in the outer periphery of the water pipe 3. The outlet of the water pipe 3 continuously includes the spiral grooves 2 and the plurality of refrigerant pipes 4 in the outer periphery, and wherein an inner diameter of the outlet is larger than an inner diameter of an inlet.

Description

本発明は、水と冷媒との間の熱交換を促すための異径捩り管形熱交換器、例えばヒートポンプ式給湯機用の異径捩り管形熱交換器に関するものである。   The present invention relates to a different diameter twisted tube heat exchanger for promoting heat exchange between water and a refrigerant, for example, a different diameter twisted tube heat exchanger for a heat pump water heater.

水と冷媒との間の熱交換を行う水冷媒熱交換器は、外周に螺旋状溝を有した捩り管を水配管に用い、この水配管の螺旋状溝に沿って冷媒配管を外周側から巻き付け、水配管と冷媒配管とを半田やロウ材等により伝熱接合したものであり、水配管内を流れる水と冷媒配管内を流れる冷媒との間で熱交換を行う熱交換器である。
また、水配管外周の螺旋状溝は水側の乱流を発生させ、その効果により熱交換性能が向上する働きがある。
A water-refrigerant heat exchanger that performs heat exchange between water and a refrigerant uses a torsion pipe having a spiral groove on the outer periphery for the water pipe, and the refrigerant pipe from the outer peripheral side along the spiral groove of the water pipe. It is a heat exchanger in which a water pipe and a refrigerant pipe are wound and heat-transfer joined to each other by solder, brazing material, etc., and performs heat exchange between water flowing in the water pipe and refrigerant flowing in the refrigerant pipe.
Moreover, the spiral groove on the outer periphery of the water pipe generates a turbulent flow on the water side, and the effect thereof improves the heat exchange performance.

ところで、従来の、水配管内を流れる水と冷媒配管内を流れる冷媒との間で熱交換を行う水冷媒熱交換器においては、使用する水によっては高温部(水配管出口部)においてスケール(例えば、炭酸カルシウム)が付着し堆積し、温水の流通を阻害するといった問題がある。   By the way, in the conventional water-refrigerant heat exchanger that performs heat exchange between the water flowing in the water pipe and the refrigerant flowing in the refrigerant pipe, depending on the water to be used, the scale ( For example, there is a problem that calcium carbonate) adheres and accumulates, and the flow of hot water is obstructed.

そこで、従来では冷媒配管と水配管の流通断面積を十分に確保し、スケールが堆積しても温水の流通を阻害しないようにしている(例えば、特許文献1参照)。
また、水配管を合成樹脂で構成することでスケールが付着しても剥離しやすくし、スケールの堆積を効果的に防止する提案もなされている(例えば、特許文献2参照)。
また、Zrが0.005〜0.02質量%含有された銅合金管を用いることでスケールの堆積を抑制する提案もなされている(例えば、特許文献3参照)。
Therefore, conventionally, a sufficient flow cross-sectional area between the refrigerant pipe and the water pipe is ensured so as not to hinder the flow of hot water even if the scale accumulates (for example, see Patent Document 1).
In addition, a proposal has been made that the water pipe is made of a synthetic resin so that it can be easily peeled off even if the scale adheres, and scale accumulation is effectively prevented (see, for example, Patent Document 2).
Moreover, the proposal which suppresses deposition of a scale by using the copper alloy pipe | tube containing 0.005-0.02 mass% Zr is also made | formed (for example, refer patent document 3).

特開2006−046877号公報JP 2006-046877 A 特開2009−144932号公報JP 2009-144932 A 特開2010−139101号公報JP 2010-139101 A

しかしながら、特許文献1のように、水配管の外径をガスクーラ全長にわたって、または出口側を径の大きい管で形成すると、材料費の高騰や部品点数増加による生産性の低下、及び接合部増加による信頼性低下が懸念される。   However, as in Patent Document 1, when the outer diameter of the water pipe is formed over the entire length of the gas cooler or the outlet side is formed with a pipe having a large diameter, the material cost increases, the productivity decreases due to an increase in the number of parts, and the joints increase. There is a concern about reliability degradation.

また、特許文献2や特許文献3のように、合成樹脂製や特殊元素が添加された銅管を水配管に使用する場合には、材料選定や加工方法の選択範囲が非常に狭まるといった問題が生じる。   In addition, as in Patent Document 2 and Patent Document 3, when a copper pipe made of synthetic resin or added with special elements is used for water piping, there is a problem that the selection range of material selection and processing method becomes very narrow. Arise.

本発明は、上記のような課題を解決するためになされたもので、高温水によるスケールが付着しても高温水の流通阻害を抑制でき、効率のよい熱交換ができる安価な異径捩り管形熱交換器を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is an inexpensive different-diameter torsion pipe that can suppress the flow inhibition of high-temperature water even when scales due to high-temperature water adhere and can efficiently exchange heat. An object is to provide a shape heat exchanger.

本発明に係る異径捩り管形熱交換器は、外周に複数条の螺旋状溝を設けた異径の水配管と、前記水配管外周の前記螺旋状溝に沿って巻きつけた複数の冷媒配管と、を備え、前記水配管の出口部は、外周に前記螺旋状溝及び前記複数の冷媒配管を連続して備えるとともに、該出口部の内径を入口部の内径より大きくしたものである。   The different diameter torsion tube heat exchanger according to the present invention includes a water pipe having a different diameter provided with a plurality of spiral grooves on the outer periphery, and a plurality of refrigerants wound along the spiral grooves on the outer periphery of the water pipe. And an outlet part of the water pipe is provided with the spiral groove and the plurality of refrigerant pipes continuously on the outer periphery, and the inner diameter of the outlet part is larger than the inner diameter of the inlet part.

本発明に係る異径捩り管形熱交換器は、水配管の出口部が、外周に螺旋状溝及び複数の冷媒配管を備えるとともに、該出口部の内径を入口部の内径より大きくしたので、高温水によるスケールが付着しても高温水の流通阻害を抑制でき、効率のよい熱交換ができ、かつ部品点数が少なく安価にできるといった効果がある。   In the different diameter torsion tube heat exchanger according to the present invention, the outlet portion of the water pipe has a spiral groove and a plurality of refrigerant pipes on the outer periphery, and the inner diameter of the outlet portion is larger than the inner diameter of the inlet portion. Even if scale due to high-temperature water adheres, there is an effect that it is possible to suppress the flow inhibition of high-temperature water, perform efficient heat exchange, reduce the number of parts, and reduce the cost.

本発明の実施の形態に係る異径捩り管形熱交換器の部分断面図である。It is a fragmentary sectional view of the different diameter twist tube type heat exchanger concerning an embodiment of the invention. 本発明の実施の形態に係る異径捩り管形熱交換器の全体斜視図である。1 is an overall perspective view of a different diameter twisted tube heat exchanger according to an embodiment of the present invention. 本発明の実施の形態に係る異径捩り管形熱交換器の水配管の製造途中状態を示す図である。It is a figure which shows the manufacture middle state of the water piping of the different diameter torsion pipe | tube heat exchanger which concerns on embodiment of this invention. 本発明の実施の形態に係る異径捩り管形熱交換器の水配管の製造に使用するマンドレルを示す図である。It is a figure which shows the mandrel used for manufacture of the water piping of the different diameter torsion pipe | tube type heat exchanger which concerns on embodiment of this invention. 本発明の実施の形態に係る異径捩り管形熱交換器の入口部の断面図である。It is sectional drawing of the inlet_port | entrance part of the different diameter torsion pipe | tube heat exchanger which concerns on embodiment of this invention. 本発明の実施の形態に係る異径捩り管形熱交換器の出口部の断面図である。It is sectional drawing of the exit part of the different diameter torsion pipe | tube heat exchanger which concerns on embodiment of this invention.

以下、本発明に係る異径捩り管形熱交換器の一実施の形態を図面に基づいて説明する。   Hereinafter, an embodiment of a different diameter twisted tube heat exchanger according to the present invention will be described with reference to the drawings.

図1は本発明の実施の形態に係る異径捩り管形熱交換器の部分断面図である。
この実施の形態に係る異径捩り管形熱交換器1は、外周に複数条(例えば、3条)の螺旋状溝2を設けた水配管3と、水配管3外周の螺旋状溝2に沿って巻きつけた複数の冷媒配管4とを備えている。
さらに、この水配管3は、テーパー部3cを介して接続された径小部3aと径大部3bとを有し、継ぎ目の無い一体管(異径管)で形成されている。複数条の螺旋状溝2は、水配管3のほぼ全長にわたって形成されている。但し、図1ではテーパー部3cにおける螺旋状溝2は省略されている。
FIG. 1 is a partial cross-sectional view of a different diameter twisted tube heat exchanger according to an embodiment of the present invention.
The different diameter torsion tube heat exchanger 1 according to this embodiment includes a water pipe 3 provided with a plurality of (for example, three) spiral grooves 2 on the outer periphery, and a spiral groove 2 on the outer periphery of the water pipe 3. And a plurality of refrigerant pipes 4 wound around.
Further, the water pipe 3 has a small diameter part 3a and a large diameter part 3b connected via a tapered part 3c, and is formed as a seamless integral pipe (different diameter pipe). The multiple spiral grooves 2 are formed over substantially the entire length of the water pipe 3. However, in FIG. 1, the spiral groove 2 in the tapered portion 3c is omitted.

各冷媒配管4は、水配管3外周のそれぞれの螺旋状溝2の中に嵌め込まれて巻き付けられており、さらに好ましくは伝熱性向上のために半田又はロウ材(図示せず)により水配管3と接合されている。   Each refrigerant pipe 4 is fitted into and wound around a spiral groove 2 on the outer periphery of the water pipe 3, and more preferably, the water pipe 3 is made of solder or brazing material (not shown) to improve heat transfer. It is joined with.

そして、本発明の特徴とする点は、図1に示すように、水配管3の出口部は、外周に螺旋状溝2及び複数の冷媒配管4を連続して備えるとともに、その出口部の内径を入口部の内径より大きくした点である。このように構成することで、熱交換性能を向上させることができるとともに、水配管3の出口部にスケールが付着しても温水の流通を阻害されることはない。また、継ぎ目のない一体管で水配管3が構成されているので、部品点数が少なく安価な熱交換器とすることができる。   As shown in FIG. 1, the feature of the present invention is that the outlet part of the water pipe 3 is continuously provided with a spiral groove 2 and a plurality of refrigerant pipes 4 on the outer periphery, and the inner diameter of the outlet part. Is larger than the inner diameter of the inlet. By comprising in this way, while being able to improve heat exchange performance, even if a scale adheres to the exit part of the water piping 3, the distribution | circulation of warm water is not inhibited. In addition, since the water pipe 3 is composed of a seamless integral pipe, the heat exchanger can be an inexpensive heat exchanger with a small number of parts.

図2に、本発明の実施の形態に係る異径捩り形熱交換器1の全体斜視図を示す。図2に示すように、この異径捩り形熱交換器1は、長円コイル状に巻回して使用されている。
水配管3の入口側(径小側)には、出口冷媒配管7とこれに接続された冷媒合流部8とが設けられ、冷媒合流部8には複数条(本例では3本)の冷媒配管4がそれぞれ接続されている。
また、水配管3の出口側(径大側)には、入口冷媒配管5とこれに接続された冷媒分流部6とが設けられ、冷媒分流部6には複数条(本例では3本)の冷媒配管4がそれぞれ接続されている。
FIG. 2 is an overall perspective view of the different diameter torsional heat exchanger 1 according to the embodiment of the present invention. As shown in FIG. 2, this different diameter torsional heat exchanger 1 is used by being wound in an elliptical coil shape.
On the inlet side (smaller diameter side) of the water pipe 3, an outlet refrigerant pipe 7 and a refrigerant merging portion 8 connected thereto are provided. The refrigerant merging portion 8 has a plurality of (three in this example) refrigerants. Pipes 4 are connected to each other.
In addition, an inlet refrigerant pipe 5 and a refrigerant distribution section 6 connected to the inlet refrigerant pipe 5 are provided on the outlet side (large diameter side) of the water pipe 3, and the refrigerant distribution section 6 includes a plurality of strips (three in this example). The refrigerant pipes 4 are connected to each other.

水は、図2に矢印で示すように、水配管3の径小側より流入し、径大側より高温の温水となって流出する。
一方、冷媒は、熱交換効率向上のため、水の流れに対して対向流となるように送入される。したがって、冷媒は、水配管3の径大側に設けられた入口冷媒配管5より流入し、冷媒分流部6にて各々の冷媒配管4内を分流して流れる。そして、図示しない冷媒回路の圧縮機により圧縮されて高温となった冷媒ガスが水回路(給湯回路)の水配管3の外周の螺旋状溝2(図2では省略)に巻きつけられた冷媒配管4内を水配管3の径小側に向かって流れることによって、水と冷媒との間で効率よく熱交換が行われる。すなわち、各冷媒配管4は、水配管3の径小部のみならず径大部にも、ほぼ全長にわたって螺旋状溝2に巻きつけられているので、伝熱面積が増大するため、効率のよい熱交換が行われる。また、水配管3内を流れる水は螺旋状溝2のために乱流が発生するため、熱交換が促進される。
各冷媒配管4内を流れた冷媒は水との熱交換によって冷却され、水配管3の径小側の冷媒合流部8にて合流したのち、出口冷媒配管7より流出し、冷媒回路を循環するようになっている。
As shown by arrows in FIG. 2, water flows in from the small diameter side of the water pipe 3, and flows out as hot water having a higher temperature than the large diameter side.
On the other hand, the refrigerant is sent in such a way as to be opposed to the water flow in order to improve heat exchange efficiency. Therefore, the refrigerant flows in from the inlet refrigerant pipe 5 provided on the large diameter side of the water pipe 3, and flows in a divided manner in each refrigerant pipe 4 in the refrigerant distribution section 6. And the refrigerant | coolant piping which the refrigerant | coolant gas which became high temperature by being compressed with the compressor of the refrigerant circuit which is not shown in figure was wound by the helical groove | channel 2 (it abbreviate | omitted in FIG. 2) of the outer periphery of the water piping 3 of a water circuit (hot-water supply circuit). By flowing through 4 toward the small diameter side of the water pipe 3, heat exchange is efficiently performed between water and the refrigerant. That is, each refrigerant pipe 4 is wound not only on the small diameter part but also on the large diameter part of the water pipe 3 over the entire length of the spiral groove 2, so that the heat transfer area is increased and the efficiency is high. Heat exchange takes place. Further, since the water flowing in the water pipe 3 generates a turbulent flow due to the spiral groove 2, heat exchange is promoted.
The refrigerant that has flowed through each refrigerant pipe 4 is cooled by heat exchange with water, merges at the refrigerant junction 8 on the small diameter side of the water pipe 3, and then flows out from the outlet refrigerant pipe 7 to circulate in the refrigerant circuit. It is like that.

図3は水配管3の製造途中状態を示す図であり、図4は水配管3の製造に使用するマンドレル10を示す図である。
マンドレル10は、図3及び図4に示すように、テーパー部10cを介して径小部10aと径大部10bとを有する異径に形成されている。
水配管3は、芯金としてマンドレル10を用いた捩り加工によって製造される。すなわち、ロウ付けや曲げ加工が容易にできる長さが例えば5m位のリン脱酸銅管(素管)を使用し、この平滑面を有する素管12の一方の端部の外周に複数個(ここでは3個)の打痕(凹み)を所定の円周角度で設けておく。ついで、上記の異径マンドレル10を素管12の内径側に挿入することによって、素管12の一端部を所定の長さにわたって拡径し、径小部3a、テーパー部3c、径大部3bを有する素管12を形成する。その後、異径マンドレル10を挿入したまま、この拡径された素管12の上記3個の打痕をチャックして固定し、素管12の他端を回転することにより、打痕を起点として3条の螺旋状溝2を当該素管12の外周に形成することができる。このように素管12を異径マンドレル10を用いて捩り加工することで、外周に複数条の螺旋状溝2を有し、かつ、一端部を所定の長さで拡径した水配管3を容易に製造することができる。また、冷媒配管4を螺旋状溝2に巻きつけた状態で容易に水配管3をコイル状に曲げることができる。
このような捩り加工による水配管3の製造方法は、素管の外周にツールを押しつけて螺旋状溝を形成する方法に比べて、より簡単に水配管3を製造することができる。
FIG. 3 is a diagram showing a state in the middle of manufacturing the water pipe 3, and FIG. 4 is a diagram showing a mandrel 10 used for manufacturing the water pipe 3.
As shown in FIGS. 3 and 4, the mandrel 10 is formed in different diameters having a small diameter portion 10a and a large diameter portion 10b via a tapered portion 10c.
The water pipe 3 is manufactured by twisting using a mandrel 10 as a core metal. That is, a phosphorous deoxidized copper pipe (element tube) having a length that can be easily brazed or bent is used, for example, about 5 m, and a plurality of ( Here, three dents (dents) are provided at a predetermined circumferential angle. Next, by inserting the above-mentioned different-diameter mandrel 10 into the inner diameter side of the element tube 12, one end of the element tube 12 is expanded over a predetermined length, and a small diameter portion 3a, a tapered portion 3c, and a large diameter portion 3b. A base tube 12 having the following is formed. Then, with the different diameter mandrels 10 inserted, the above three dents of the expanded pipe 12 are chucked and fixed, and the other end of the pipe 12 is rotated to start the dent. Three spiral grooves 2 can be formed on the outer periphery of the blank 12. Thus, by twisting the raw tube 12 using the different diameter mandrel 10, the water pipe 3 having a plurality of spiral grooves 2 on the outer periphery and having one end portion expanded in diameter by a predetermined length is provided. It can be manufactured easily. Further, the water pipe 3 can be easily bent into a coil shape with the refrigerant pipe 4 wound around the spiral groove 2.
The manufacturing method of the water pipe 3 by such a twisting process can manufacture the water pipe 3 more easily than the method of forming a spiral groove by pressing a tool on the outer periphery of the raw pipe.

図5は上記の捩り加工により製造された水配管3の径小側(入口部)の内径Diを示し、図6はその水配管3の径大側(出口部)の内径Doを示す。
水配管3の出口部の内径Doは、入口部の内径Diに対し、1.1倍以上1.25倍以下となるように加工することで、マンドレル10による捩り加工を安定的に実施することができ、かつ、螺旋状溝2の山谷の比率を大幅に変化させることがないので、高温部(水配管3出口部)においても乱流による熱交換効果を期待できる。
FIG. 5 shows the inner diameter Di of the small diameter side (inlet part) of the water pipe 3 manufactured by the above twisting process, and FIG. 6 shows the inner diameter Do of the large diameter side (outlet part) of the water pipe 3.
By performing processing so that the inner diameter Do of the outlet portion of the water pipe 3 is 1.1 times or more and 1.25 times or less than the inner diameter Di of the inlet portion, torsion processing by the mandrel 10 can be stably performed. In addition, since the ratio of the peaks and valleys of the spiral groove 2 is not significantly changed, a heat exchange effect due to turbulent flow can be expected even in a high temperature part (water pipe 3 outlet part).

以上のように、異径マンドレル10を用いた捩り加工により、外周に複数条の螺旋状溝2を設けた異径の水配管3を形成することができる。さらに、この水配管3の出口部は、外周に螺旋状溝2及び複数の冷媒配管4を連続して備えるとともに、その出口部の内径を入口部の内径より大きくしたので、水配管3を流れる水と冷媒配管4を流れる冷媒との間で効率よく熱交換を行うことができるとともに、水配管3の出口部にスケールが付着しても温水の流通を阻害されることがない。また、継ぎ目のない一体管で水配管3が構成されているので、部品点数が少なく安価な熱交換器とすることができる。すなわち、新規に内径の大きい管を接続する必要がないので、工程を増やすことなく安価に製造でき、かつ接続箇所が増えることがないので、漏れ不良の心配がなく信頼性の高い給湯用熱交換器を製造できる。   As described above, the water pipe 3 having a different diameter in which a plurality of spiral grooves 2 are provided on the outer periphery can be formed by twisting using the different diameter mandrel 10. Further, the outlet portion of the water pipe 3 continuously includes the spiral groove 2 and the plurality of refrigerant pipes 4 on the outer periphery, and the inner diameter of the outlet portion is larger than the inner diameter of the inlet portion. Heat can be efficiently exchanged between the water and the refrigerant flowing through the refrigerant pipe 4, and even if a scale adheres to the outlet of the water pipe 3, the flow of hot water is not hindered. In addition, since the water pipe 3 is composed of a seamless integral pipe, the heat exchanger can be an inexpensive heat exchanger with a small number of parts. In other words, since there is no need to newly connect a pipe with a large inner diameter, it can be manufactured inexpensively without increasing the number of processes, and the number of connection points does not increase, so there is no risk of leakage failure and highly reliable heat exchange for hot water supply. Can be manufactured.

さらに、最も熱交換性能が必要とされる高温部(水配管3出口部)において、螺旋状溝2を連続して製造可能なので、従来の高温部側の径を大きくしない給湯用熱交換器の仕様と比較しても、伝熱接触面積が低下することがないので同等以上の熱交換性能を保持することができる。   Furthermore, since the spiral groove 2 can be continuously manufactured in the high temperature portion (water pipe 3 outlet portion) where the heat exchange performance is most required, the conventional hot water supply heat exchanger that does not increase the diameter on the high temperature portion side. Compared with the specification, the heat transfer contact area does not decrease, so that the heat exchange performance equal to or higher can be maintained.

1 異径捩り管形熱交換器、2 螺旋状溝、3 水配管、3a 径小部、3b 径大部、3c テーパー部、4 冷媒配管、5 入口冷媒配管、6 冷媒分流部、7 出口冷媒配管、8 冷媒合流部、10 マンドレル、10a 径小部、10b 径大部、10c テーパー部、12 素管。   1 heat pipe with different diameters, 2 spiral groove, 3 water pipe, 3a small diameter part, 3b large diameter part, 3c taper part, 4 refrigerant pipe, 5 inlet refrigerant pipe, 6 refrigerant distribution part, 7 outlet refrigerant Piping, 8 Refrigerant merge part, 10 mandrel, 10a small diameter part, 10b large diameter part, 10c taper part, 12 elementary pipe.

Claims (4)

外周に複数条の螺旋状溝を設けた異径の水配管と、
前記水配管外周の前記螺旋状溝に沿って巻きつけた複数の冷媒配管と、を備え、
前記水配管の出口部は、外周に前記螺旋状溝及び前記複数の冷媒配管を連続して備えるとともに、該出口部の内径を入口部の内径より大きくしたことを特徴とする異径捩り管形熱交換器。
Water pipes with different diameters provided with a plurality of spiral grooves on the outer periphery;
A plurality of refrigerant pipes wound along the spiral groove on the outer circumference of the water pipe,
The outlet portion of the water pipe is continuously provided with the spiral groove and the plurality of refrigerant pipes on the outer periphery, and the inner diameter of the outlet portion is larger than the inner diameter of the inlet portion. Heat exchanger.
前記水配管は、テーパー部を介して接続された径小部と径大部とを有し、継ぎ目が無い一体管で構成されていることを特徴とする請求項1記載の異径捩り管形熱交換器。   2. The different diameter torsion pipe shape according to claim 1, wherein the water pipe has a small diameter portion and a large diameter portion connected via a tapered portion, and is constituted by an integrated pipe having no joint. Heat exchanger. 前記水配管の出口部の内径(Do)は、入口部の内径(Di)に対し、1.1倍以上1.25倍以下であることを特徴とする請求項1又は2記載の異径捩り管形熱交換器。   The inner diameter (Do) of the outlet part of the water pipe is 1.1 times or more and 1.25 times or less of the inner diameter (Di) of the inlet part, The different diameter torsion according to claim 1 or 2 Tube heat exchanger. 平滑面を有する素管の内径側に、径小部、テーパー部、径大部を有する異径のマンドレルを挿入して一端部を拡径し、この拡径された素管を捩り加工することにより外周に複数条の螺旋状溝を形成した水配管を用いることを特徴とする請求項1〜3のいずれか一項に記載の異径捩り管形熱交換器。   Inserting a mandrel with a different diameter having a small diameter part, a taper part, and a large diameter part into the inner diameter side of the raw pipe having a smooth surface to expand one end, and twisting the expanded raw pipe The water pipe having a plurality of spiral grooves formed on the outer periphery thereof is used for the different diameter torsion tube heat exchanger according to any one of claims 1 to 3.
JP2011207102A 2011-09-22 2011-09-22 Manufacturing method of different diameter twisted tube heat exchanger Expired - Fee Related JP5656786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011207102A JP5656786B2 (en) 2011-09-22 2011-09-22 Manufacturing method of different diameter twisted tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011207102A JP5656786B2 (en) 2011-09-22 2011-09-22 Manufacturing method of different diameter twisted tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2013068358A true JP2013068358A (en) 2013-04-18
JP5656786B2 JP5656786B2 (en) 2015-01-21

Family

ID=48474250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011207102A Expired - Fee Related JP5656786B2 (en) 2011-09-22 2011-09-22 Manufacturing method of different diameter twisted tube heat exchanger

Country Status (1)

Country Link
JP (1) JP5656786B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075451B2 (en) * 2013-06-13 2017-02-08 三菱電機株式会社 Heat pump equipment
KR101765434B1 (en) * 2017-02-23 2017-08-10 국방과학연구소 Reactor having increased heat exchanger tube

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632524U (en) * 1986-06-23 1988-01-09
JP2003097898A (en) * 2001-07-16 2003-04-03 Daikin Ind Ltd Heat exchanger
JP2006090697A (en) * 2004-08-26 2006-04-06 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2007218523A (en) * 2006-02-17 2007-08-30 Mitsubishi Electric Corp Heat exchanger
JP2008096043A (en) * 2006-10-13 2008-04-24 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2009133530A (en) * 2007-11-29 2009-06-18 Hitachi Appliances Inc Heat exchanger and heat pump hot water supply machine
JP2011017475A (en) * 2009-07-08 2011-01-27 Sumitomo Light Metal Ind Ltd Heat exchanger for hot water supply
JP2011122797A (en) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp Twisted tube-shaped heat exchanger and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632524U (en) * 1986-06-23 1988-01-09
JP2003097898A (en) * 2001-07-16 2003-04-03 Daikin Ind Ltd Heat exchanger
JP2006090697A (en) * 2004-08-26 2006-04-06 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2007218523A (en) * 2006-02-17 2007-08-30 Mitsubishi Electric Corp Heat exchanger
JP2008096043A (en) * 2006-10-13 2008-04-24 Mitsubishi Electric Corp Twisted tube type heat exchanger
JP2009133530A (en) * 2007-11-29 2009-06-18 Hitachi Appliances Inc Heat exchanger and heat pump hot water supply machine
JP2011017475A (en) * 2009-07-08 2011-01-27 Sumitomo Light Metal Ind Ltd Heat exchanger for hot water supply
JP2011122797A (en) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp Twisted tube-shaped heat exchanger and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6075451B2 (en) * 2013-06-13 2017-02-08 三菱電機株式会社 Heat pump equipment
KR101765434B1 (en) * 2017-02-23 2017-08-10 국방과학연구소 Reactor having increased heat exchanger tube

Also Published As

Publication number Publication date
JP5656786B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP3953074B2 (en) Heat exchanger
JP6029686B2 (en) Double tube heat exchanger and refrigeration cycle equipment
CN209910459U (en) Heat exchange double-layer sleeve
EP1895257A1 (en) Heat exchanger
JP2006336894A (en) Heat pump water heater
JP2005133999A (en) Heat pump type hot-water supplier
JP5293584B2 (en) Twisted tube heat exchanger and method of manufacturing twisted tube heat exchanger
JP5656786B2 (en) Manufacturing method of different diameter twisted tube heat exchanger
KR20040050875A (en) Heat exchanger
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP2005083667A (en) Heat exchanger
JP2009216309A (en) Heat exchanger
JP2008045868A (en) Heat exchanger for water heater, and its manufacturing method
JP5404589B2 (en) Twisted tube heat exchanger
JP2009264644A (en) Heat exchanger
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP2008190787A (en) Spiral tube and heat exchanger using the same
JP2008249163A (en) Heat exchanger for supplying hot water
JP5289088B2 (en) Heat exchanger and heat transfer tube
JP2010091266A (en) Twisted tube type heat exchanger
JP2007232338A (en) Double tube type heat exchanger
JP6016350B2 (en) Manufacturing method of heat exchanger for hot water supply
KR101016696B1 (en) turn fin type heat exchanger and manufacturing method for turn fin type heat exchanger
JP2020531790A (en) Double tube for heat exchange
JP6056620B2 (en) Heat exchanger and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5656786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees