JP2011017475A - Heat exchanger for hot water supply - Google Patents

Heat exchanger for hot water supply Download PDF

Info

Publication number
JP2011017475A
JP2011017475A JP2009161639A JP2009161639A JP2011017475A JP 2011017475 A JP2011017475 A JP 2011017475A JP 2009161639 A JP2009161639 A JP 2009161639A JP 2009161639 A JP2009161639 A JP 2009161639A JP 2011017475 A JP2011017475 A JP 2011017475A
Authority
JP
Japan
Prior art keywords
water
arc portion
refrigerant
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009161639A
Other languages
Japanese (ja)
Inventor
Naoe Sasaki
直栄 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2009161639A priority Critical patent/JP2011017475A/en
Publication of JP2011017475A publication Critical patent/JP2011017475A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance heat exchanging performance of a heat exchanger for hot water supply without making a design change of cross-sectional shape of the heat exchanger for hot water supply.SOLUTION: The heat exchanger for hot water supply includes a refrigerant passage through which a refrigerant for heating water by heat exchange between the refrigerant and water flows, and a water passage through which water heated by the refrigerant flows. Both of the refrigerant passage and water passage are formed of tubes. The water passage tube forming the water passage includes first circular arc parts 31a, 31b, 31c repeated by turns, and second circular arc parts 32a, 32b, 32c having reverse curvature to the first circular arc parts. When an end-to-end length between the end of the first circular arc part and the end of the second circular arc part is set to L (mm) and a radius of curvature of the first circular arc part and second circular arc part is set to R (mm), an expression (1): 0≤L/R≤1 is to be satisfied.

Description

本発明は、冷媒と水との間で熱交換を行う給湯用熱交換器に関する。   The present invention relates to a hot water supply heat exchanger that performs heat exchange between a refrigerant and water.

従来から、熱交換媒体(冷媒)と水等の流体との間で熱交換する熱交換器として、冷媒を流通させる流路と水等の熱交換により加熱される流体の流路とを、2つの伝熱管を組み合わせて構成し、水等と冷媒との間で熱交換が行われるようにした熱交換器が、各種用いられていた。   2. Description of the Related Art Conventionally, as a heat exchanger for exchanging heat between a heat exchange medium (refrigerant) and a fluid such as water, a flow path for circulating a refrigerant and a flow path for a fluid heated by heat exchange such as water are provided. Various heat exchangers configured by combining two heat transfer tubes so as to exchange heat between water or the like and a refrigerant have been used.

冷媒と水との間で熱交換を行う方式の熱交換器としては、従来より、特許文献1〜5に開示されているように、内部に冷媒を流通させる伝熱管と、内部に水を流通させる伝熱管とを組み合わせて、一つの熱交換器を構成したものが各種提案されている。   Conventionally, as a heat exchanger of a system for exchanging heat between refrigerant and water, as disclosed in Patent Documents 1 to 5, heat transfer tubes for circulating the refrigerant inside, and water for circulating inside Various proposals have been made in which a single heat exchanger is configured by combining the heat transfer tubes.

例えば、特許文献1及び2には、水流路管内に冷媒流路管を配置した二重管タイプの給湯用熱交換器が開示されており、また、特許文献3及び4には、水流路管の外側に冷媒流路管を巻きつけるようにして配置した冷媒流路管巻き付けタイプの給湯用熱交換器が開示されており、また、特許文献5には、水流路管に冷媒流路管がめり込むようにして配置した給湯用熱交換器が開示されている。   For example, Patent Documents 1 and 2 disclose a double-pipe type hot water supply heat exchanger in which a refrigerant channel pipe is disposed in a water channel pipe, and Patent Documents 3 and 4 disclose a water channel pipe. There is disclosed a heat exchanger for hot water supply of a hot water supply type in which a refrigerant channel tube is wound around a refrigerant channel tube, and Patent Document 5 discloses a refrigerant channel tube as a water channel tube. A heat exchanger for hot water supply arranged so as to be embedded is disclosed.

そして、このような給湯用熱交換器では、長尺の水流路管を渦巻き状に巻く等により、熱交換器全体が一定のスペース内に収納されている。   In such a heat exchanger for hot water supply, the entire heat exchanger is accommodated in a certain space, for example, by winding a long water channel tube in a spiral shape.

例えば、従来の給湯用熱交換器は、特許文献1では、矩形の渦巻き状に巻かれており、特許文献2では、渦巻き状に巻かれており、特許文献3では芯管(ストレート部とヘアピン部)とU型連結管によって交互に接続されており、特許文献4では、平面上において渦巻き状に巻かれており、特許文献5では、螺旋状に巻かれている。これらは、熱交換器の巻き方をこのような形状にすることにより、熱交換器のコンパクト化を狙ったものである   For example, a conventional heat exchanger for hot water supply is wound in a rectangular spiral shape in Patent Document 1, wound in a spiral shape in Patent Document 2, and a core tube (straight portion and hairpin in Patent Document 3). Part) and U-shaped connecting pipes are alternately connected, and in Patent Document 4, it is spirally wound on a plane, and in Patent Document 5, it is spirally wound. These are intended to make the heat exchanger compact by making the winding method of the heat exchanger into such a shape.

特開2006−170571号公報(特許請求の範囲、図1)JP 2006-170571 A (Claims, FIG. 1) 特開2005−147566号公報(特許請求の範囲、図3)Japanese Patent Laying-Open No. 2005-147466 (Claims, FIG. 3) 特開2003−28583号公報(特許請求の範囲、図9)JP 2003-28583 A (Claims, FIG. 9) 特開2007−218523号公報(特許請求の範囲、図1)JP 2007-218523 A (Claims, FIG. 1) 特開2003−14382号公報(特許請求の範囲、図3)Japanese Patent Laying-Open No. 2003-14382 (Claims, FIG. 3)

上記特許文献1〜5では、いずれも、給湯用熱交換器の熱交換性能を向上させるために、その断面形状を改良する検討が行われている。   In the above Patent Documents 1 to 5, in order to improve the heat exchange performance of the heat exchanger for hot water supply, studies are being made to improve the cross-sectional shape.

しかし、断面形状の改良には限界があるため、また、製造上、断面形状の変更は大きな設計変更であるため、熱交換性能を向上させるための新たな改良手段が望まれている。   However, since there is a limit to the improvement of the cross-sectional shape, and the change of the cross-sectional shape is a great design change in manufacturing, a new improvement means for improving the heat exchange performance is desired.

従って、本発明の目的は、給湯用熱交換器の断面形状を設計変更することなく、給湯用熱交換器の熱交換性能を高くすること及び単位長さ当たりの熱交換性能を高くすることにある。   Accordingly, an object of the present invention is to increase the heat exchange performance of the hot water supply heat exchanger and to increase the heat exchange performance per unit length without changing the cross-sectional shape of the hot water supply heat exchanger. is there.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、水流路を形成する水流路管を、交互に繰り返される第一円弧部と、該第一円弧部とは逆の曲率を有する第二円弧部とにより構成し、且つ、第一円弧部の端部と第二円弧部の端部との端部間長さを短くすれば、水流路管を流通する水が、該第一円弧部から該第二円弧部へと移動するとき及び該第二円弧部から該第一円弧部へと移動するときに、水流路管内の断面において、水にかかる遠心力の向きが、急激に左右逆転するので、水流路管内の水の乱流促進効果を高くすることができ、このことにより、熱伝達特性を高くすることができることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the problems in the prior art, the present inventors, as a result of alternately repeating the first circular arc portion and the first circular arc portion of the water flow channel tube forming the water flow channel, Water that circulates in the water flow channel pipe is configured by a second arc portion having an opposite curvature and the length between the end portions of the first arc portion and the second arc portion is shortened. When moving from the first arc portion to the second arc portion and when moving from the second arc portion to the first arc portion, the centrifugal force acting on the water in the cross section in the water channel pipe Since the direction is suddenly reversed from side to side, the effect of promoting turbulence of water in the water channel pipe can be enhanced, and this has found that heat transfer characteristics can be enhanced, leading to the completion of the present invention. It was.

すなわち、本発明は、冷媒と水との熱交換により水を加熱するための冷媒が流通する冷媒流路と、該冷媒により加熱される水が流通する水流路とを有し、
該冷媒流路及び該水流路のいずれもが、管体によって形成されており、
該水流路を形成する水流路管は、交互に繰り返される第一円弧部と、該第一円弧部とは逆の曲率を有する第二円弧部と、からなり、
該第一円弧部の端部と該第二円弧部の端部との端部間長さをL(mm)、該第一円弧部及び該第二円弧部の曲率半径をR(mm)としたとき、下記式(1):
0≦L/R≦1 (1)
を満たすこと、
を特徴とする給湯用熱交換器を提供するものである。
That is, the present invention has a refrigerant channel through which a refrigerant for heating water by heat exchange between the refrigerant and water flows, and a water channel through which water heated by the refrigerant flows,
Both of the refrigerant channel and the water channel are formed by a tube,
The water flow path tube forming the water flow path includes a first arc portion that is alternately repeated, and a second arc portion having a curvature opposite to that of the first arc portion,
The length between the end portions of the first arc portion and the end portion of the second arc portion is L (mm), and the curvature radii of the first arc portion and the second arc portion are R (mm). When the following formula (1):
0 ≦ L / R ≦ 1 (1)
Meeting,
The heat exchanger for hot water supply characterized by these is provided.

本発明によれば、給湯用熱交換器の断面形状を設計変更することなく、給湯用熱交換器の熱交換性能を高くすること及び単位長さ当たりの熱交換性能を高くすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat exchange performance of the heat exchanger for hot water supply can be made high, and the heat exchange performance per unit length can be made high, without changing the cross-sectional shape of the heat exchanger for hot water supply.

本発明の給湯用熱交換器に係る冷媒流路及び水流路の形態例である。It is a form example of the refrigerant | coolant flow path and water flow path which concern on the heat exchanger for hot water supply of this invention. 本発明の給湯用熱交換器に係る冷媒流路及び水流路の形態例である。It is a form example of the refrigerant | coolant flow path and water flow path which concern on the heat exchanger for hot water supply of this invention. 本発明の給湯用熱交換器に係る冷媒流路及び水流路の形態例である。It is a form example of the refrigerant | coolant flow path and water flow path which concern on the heat exchanger for hot water supply of this invention. 本発明の給湯用熱交換器に係る冷媒流路及び水流路の形態例である。It is a form example of the refrigerant | coolant flow path and water flow path which concern on the heat exchanger for hot water supply of this invention. 本発明の給湯用熱交換器に係る冷媒流路及び水流路の形態例である。It is a form example of the refrigerant | coolant flow path and water flow path which concern on the heat exchanger for hot water supply of this invention. 本発明の給湯用熱交換器に係る水流路管の形態例の平面方向の伸長形状を示す模式図である。It is a schematic diagram which shows the expansion | extension shape of the planar direction of the form example of the water flow-path pipe | tube which concerns on the heat exchanger for hot water supply of this invention. 図6中の第一円弧部及び第二円弧部の1つ分を抜き出した図である。It is the figure which extracted one part of the 1st circular arc part and the 2nd circular arc part in FIG. 本発明の給湯用熱交換器に係る水流路管の他の形態例の平面方向の伸長形状を示す模式図である。It is a schematic diagram which shows the expansion | extension shape of the planar direction of the other form example of the water flow-path pipe | tube which concerns on the heat exchanger for hot water supply of this invention. 端部間長さLを説明するための図である。It is a figure for demonstrating the length L between edge parts. 2段式の熱交換器を示す模式図である。It is a schematic diagram which shows a two-stage heat exchanger. 従来の給湯用熱交換器を示す図である。It is a figure which shows the conventional heat exchanger for hot water supply. 比較例1の熱交換部の形状を示す図である。It is a figure which shows the shape of the heat exchange part of the comparative example 1.

本発明の給湯用熱交換器は、冷媒と水との熱交換により水を加熱するための冷媒が流通する冷媒流路と、該冷媒により加熱される水が流通する水流路とを有し、
該冷媒流路及び該水流路のいずれもが、管体によって形成されており、
該水流路を形成する水流路管は、交互に繰り返される第一円弧部と、該第一円弧部とは逆の曲率を有する第二円弧部と、からなり、
該第一円弧部の端部と該第二円弧部の端部との端部間長さをL(mm)、該第一円弧部及び該第二円弧部の曲率半径をR(mm)としたとき、下記式(1):
0≦L/R≦1 (1)
を満たす給湯用熱交換器である。
The heat exchanger for hot water supply of the present invention has a refrigerant flow path through which a refrigerant for heating water by heat exchange between the refrigerant and water, and a water flow path through which water heated by the refrigerant flows,
Both of the refrigerant channel and the water channel are formed by a tube,
The water flow path tube forming the water flow path includes a first arc portion that is alternately repeated, and a second arc portion having a curvature opposite to that of the first arc portion,
The length between the end portions of the first arc portion and the end portion of the second arc portion is L (mm), and the curvature radii of the first arc portion and the second arc portion are R (mm). When the following formula (1):
0 ≦ L / R ≦ 1 (1)
It is a heat exchanger for hot water supply that satisfies

本発明の給湯用熱交換器は、該冷媒流路と該水流路とを有している。そして、本発明の給湯用熱交換器では、該冷媒流路を流れる冷媒と、該水流路を流れる水との間で、熱交換が行われて、該水流路を流れる水が加熱される。   The heat exchanger for hot water supply of the present invention has the refrigerant channel and the water channel. And in the hot water supply heat exchanger of this invention, heat exchange is performed between the refrigerant | coolant which flows through this refrigerant flow path, and the water which flows through this water flow path, and the water which flows through this water flow path is heated.

本発明の給湯用熱交換器では、該冷媒流路及び該水流路は、管体によって形成されているが、その形態は、特に制限されない。該冷媒流路形成する管体(以下、冷媒流路管とも記載する。)及び該水流路を形成する管体(以下、水流路管とも記載する。)の形態例を、以下に説明する。   In the heat exchanger for hot water supply of the present invention, the refrigerant channel and the water channel are formed by pipes, but the form is not particularly limited. Examples of the tubular body forming the refrigerant flow path (hereinafter also referred to as the refrigerant flow path pipe) and the tubular body forming the water flow path (hereinafter also referred to as the water flow path pipe) will be described below.

該冷媒流路及び該水流路を形成する管体の形態例としては、例えば、図1に示すように、水流路管2と、該水流路管2内に挿通されている冷媒流路管1と、からなる二重管が挙げられる。図1に示す形態例では、該冷媒流路管1の内側3が該冷媒流路となり、該冷媒流路管1と該水流路管2との間の隙間4が該水流路となる。なお、図1は、該冷媒流路及び該水流路を形成する管体を、該水流路が形成される方向に対して垂直な面で切ったときの模式的な断面図である。   For example, as shown in FIG. 1, the refrigerant channel and the pipe forming the water channel include a water channel tube 2 and a refrigerant channel tube 1 inserted into the water channel tube 2. And a double tube consisting of In the embodiment shown in FIG. 1, the inner side 3 of the refrigerant channel tube 1 serves as the refrigerant channel, and the gap 4 between the refrigerant channel tube 1 and the water channel tube 2 serves as the water channel. FIG. 1 is a schematic cross-sectional view of the pipe forming the refrigerant flow path and the water flow path taken along a plane perpendicular to the direction in which the water flow path is formed.

また、該冷媒流路及び該水流路を形成する管体の形態例としては、図2に示すように、水流路管6と、該水流路管6の内部に挿通されている2本の冷媒流路管7と、からなる二重管が挙げられる。図2に示す形態例では、該水流路管6と該冷媒流路管7との間の隙間8が該水流路となり、該冷媒流路管7の内側9が該冷媒流路となる。なお、図2は、該冷媒流路及び該水流路を形成する管体を、該水流路が形成される方向に対して垂直な面で切ったときの模式的な断面図である。また、2本以上の該冷媒流路管は、スパイラル状に捩じられた形状であってもよい。   In addition, as an example of the pipe forming the refrigerant flow path and the water flow path, as shown in FIG. 2, a water flow path pipe 6 and two refrigerants inserted into the water flow path pipe 6 are used. A double pipe comprising the flow path pipe 7 is mentioned. In the embodiment shown in FIG. 2, a gap 8 between the water flow channel pipe 6 and the refrigerant flow channel pipe 7 becomes the water flow channel, and an inner side 9 of the refrigerant flow channel tube 7 becomes the refrigerant flow channel. FIG. 2 is a schematic cross-sectional view of the pipe forming the refrigerant flow path and the water flow path taken along a plane perpendicular to the direction in which the water flow path is formed. Further, the two or more refrigerant flow pipes may be spirally twisted.

また、該冷媒流路及び該水流路を形成する管体の形態例としては、図3に示すように、水流路管11と、該水流路管11の周囲に螺旋状に巻き回されている冷媒流路管12と、からなる形状が挙げられる。図3に示す形態例では、該水流路管11の内側13が該水流路となり、該冷媒流路管12の内側14が該冷媒流路となる。なお、図3は、該冷媒流路及び該水流路を形成する管体を、該水流路が形成される方向に平行な面で切ったときの模式的な断面図であり、図3中、該冷媒流路12は、12a、12b、12c、12d、12e、12fの順に、該水流路管11の周囲に螺旋状に巻き回され、該水流路管11に接して設置されている。   In addition, as an example of the tubular body forming the refrigerant flow path and the water flow path, as shown in FIG. 3, the water flow path pipe 11 is wound around the water flow path pipe 11 in a spiral shape. The shape which consists of the refrigerant | coolant flow-path pipe | tube 12 is mentioned. In the embodiment shown in FIG. 3, the inner side 13 of the water flow channel tube 11 is the water flow channel, and the inner side 14 of the refrigerant flow channel tube 12 is the refrigerant flow channel. FIG. 3 is a schematic cross-sectional view of the pipe forming the refrigerant flow path and the water flow path taken along a plane parallel to the direction in which the water flow path is formed. The refrigerant flow path 12 is spirally wound around the water flow path pipe 11 in the order of 12 a, 12 b, 12 c, 12 d, 12 e, and 12 f, and is installed in contact with the water flow path pipe 11.

また、該冷媒流路及び該水流路を形成する管体の形態例としては、図4に示すように、水流路管16と、該水流路管16の周囲に螺旋状に巻き回されている冷媒流路管17と、からなる形状が挙げられる。図4に示す形態例では、該水流路管16の内側が該水流路となり、該冷媒流路管17の内側が該冷媒流路となる。なお、図4は、該冷媒流路及び該水流路を形成する管体の一部を切り出した模式的な斜視図であり、図4中、該冷媒流路管17a、17b及び17cの3つの冷媒流路管が、該水流路管16の外壁に設けられている螺旋状凸部18bにより形成される外壁側溝18aに埋め込まれるようにして、螺旋状に巻き回されて配置されている。   Further, as an example of the tubular body forming the refrigerant flow path and the water flow path, as shown in FIG. 4, the water flow path pipe 16 and the water flow path pipe 16 are spirally wound around the water flow path pipe 16. The shape which consists of the refrigerant | coolant flow path pipe | tube 17 is mentioned. In the embodiment shown in FIG. 4, the inner side of the water flow channel pipe 16 is the water flow channel, and the inner side of the refrigerant flow channel tube 17 is the refrigerant flow channel. FIG. 4 is a schematic perspective view in which a part of a pipe forming the refrigerant flow path and the water flow path is cut out. In FIG. 4, three refrigerant flow path pipes 17a, 17b and 17c are shown. The refrigerant channel pipe is spirally wound and arranged so as to be embedded in the outer wall side groove 18 a formed by the spiral convex portion 18 b provided on the outer wall of the water channel pipe 16.

また、該冷媒流路及び該水流路を形成する管体の形態例としては、図5に示すように、水流路管21と、該水流路管21に外側からめり込むようにして設置されている冷媒流路管22と、からなる形状が挙げられる。図5に示す形態例では、該水流路管21の内側23が該水流路となり、該冷媒流路管22の内側24が該冷媒流路となる。なお、図5は、該冷媒流路及び該水流路を形成する管体を、該水流路が形成される方向に対して垂直な面で切ったときの模式的な断面図である。   In addition, as an example of the tubular body forming the refrigerant flow path and the water flow path, as shown in FIG. 5, the water flow path pipe 21 and the water flow path pipe 21 are installed so as to be recessed from the outside. The shape which consists of the refrigerant | coolant flow-path pipe | tube 22 is mentioned. In the embodiment shown in FIG. 5, the inner side 23 of the water flow channel tube 21 is the water flow channel, and the inner side 24 of the refrigerant flow channel tube 22 is the refrigerant flow channel. FIG. 5 is a schematic cross-sectional view of the pipe forming the refrigerant flow path and the water flow path taken along a plane perpendicular to the direction in which the water flow path is formed.

本発明の給湯用熱交換器では、該水流路管の平面方向の伸長形状が、特定の形状である。以下に、該水流路管の平面方向の伸長形状を示す。以下に示す該水流路管の平面方向の伸長形状は、図1に示す形態例では、該水流路管2の伸長形状を示すものであり、熱交換器では、以下に示す平面方向の伸長形状の該水流路管2の内に、該冷媒流路管1が配置されている。また、以下に示す該水流路管の平面方向の伸長形状は、図2に示す形態例では、該水流路管6の平面方向の伸長形状を示すものであり、熱交換器では、以下に示す平面方向の伸長形状の該水流路管6の内に、該冷媒流路管7が配置されている。また、以下に示す該水流路管の平面方向の伸長形状は、図3に示す形態例では、該水流路管11の平面方向の伸長形状を示すものであり、熱交換器では、以下に示す平面方向の伸長形状の該水流路管11の周りに、該冷媒流路管12が配置されている。また、以下に示す該水流路管の平面方向の伸長形状は、図4に示す形態例では、該水流路管16の平面方向の伸長形状を示すものであり、熱交換器では、以下に示す平面方向の伸長形状の該水流路管16の周りに、該冷媒流路管17が配置されている。また、以下に示す該水流路管の平面方向の伸長形状は、図5に示す形態例では、該水流路管21の平面方向の伸長形状を示すものであり、熱交換器では、以下に示す平面方向の伸長形状の該水流路管21にめり込むようにして、該冷媒流路管22が配置されている。   In the heat exchanger for hot water supply of the present invention, the elongated shape in the plane direction of the water channel tube is a specific shape. Below, the expansion | extension shape of the planar direction of this water flow path pipe is shown. The extension shape in the planar direction of the water flow channel tube shown below indicates the extension shape of the water flow channel tube 2 in the embodiment shown in FIG. 1, and in the heat exchanger, the extension shape in the planar direction shown below. The coolant channel tube 1 is disposed in the water channel tube 2. Further, the extension shape in the planar direction of the water channel pipe shown below shows the extension shape in the plane direction of the water channel pipe 6 in the embodiment shown in FIG. The coolant channel tube 7 is disposed in the water channel tube 6 that is elongated in the plane direction. Further, the extension shape in the planar direction of the water channel pipe shown below indicates the extension shape in the plane direction of the water channel pipe 11 in the embodiment shown in FIG. 3. The refrigerant channel tube 12 is disposed around the water channel tube 11 having an elongated shape in the planar direction. Further, the extension shape in the planar direction of the water channel pipe shown below shows the extension shape in the plane direction of the water channel pipe 16 in the embodiment shown in FIG. The refrigerant flow channel pipe 17 is disposed around the water flow path pipe 16 that is elongated in the planar direction. Further, the extension shape in the planar direction of the water channel pipe shown below shows the extension shape in the planar direction of the water channel pipe 21 in the embodiment shown in FIG. The refrigerant channel tube 22 is arranged so as to be embedded in the water channel tube 21 having an elongated shape in the planar direction.

本発明の給湯用熱交換器に係る該水流路管の平面方向の伸長形状について、図6〜図9を参照して説明する。図6は、本発明の給湯用熱交換器に係る水流路管の形態例の平面方向の伸長形状を示す模式図であり、図7は、図6中の第一円弧部及び第二円弧部の1つ分を抜き出した図であり、図8は、本発明の給湯用熱交換器に係る水流路管の他の形態例の平面方向の伸長形状を示す模式図であり、図9は、端部間長さを説明するための図である。なお、図6〜図9では、本発明の給湯器用熱交換器に係る該水流路管のみを示しており、本発明の給湯器用熱交換器に係る該冷媒流路管の記載は省略した。   With reference to FIGS. 6 to 9, the planar shape of the water channel pipe according to the heat exchanger for hot water supply of the present invention will be described. FIG. 6 is a schematic diagram showing an elongated shape in a planar direction of a configuration example of a water channel pipe according to the heat exchanger for hot water supply of the present invention, and FIG. 7 is a first arc portion and a second arc portion in FIG. FIG. 8 is a schematic view showing an elongated shape in the plane direction of another embodiment of the water channel pipe according to the heat exchanger for hot water supply of the present invention, and FIG. It is a figure for demonstrating the length between edge parts. In addition, in FIGS. 6-9, only this water flow path pipe | tube which concerns on the heat exchanger for hot water heaters of this invention is shown, and description of this refrigerant flow path pipe | tube which concerns on the heat exchanger for hot water heaters of this invention was abbreviate | omitted.

図6中、水流路管30は、第一円弧部31と、第二円弧部32と、からなる。そして、図6に示すように、順に、第一円弧部31a、第二円弧部32a、第一円弧部31b、第二円弧部32b、第一円弧部31c、第二円弧部32cとのように、該第一円弧部31と該第二円弧部32とが、交互に繰り返されている。なお、変曲点33aから変曲点33bまでが、該第一円弧部31aであり、変曲点33bから変曲点33cまでが、該第二円弧部32aであり、変曲点33cから変曲点33dまでが、該第一円弧部31bであり、変曲点33dから変曲点33eまでが、該第二円弧部32bであり、変曲点33eから変曲点33fまでが、該第一円弧部31cであり、変曲点33fから変曲点33gまでが、該第二円弧部32cである。なお、図6に示す該水流路管30では、該第一円弧部31と該第二円弧部32とが、該変曲点33で、直接繋がっている。   In FIG. 6, the water channel tube 30 includes a first arc portion 31 and a second arc portion 32. Then, as shown in FIG. 6, the first arc portion 31a, the second arc portion 32a, the first arc portion 31b, the second arc portion 32b, the first arc portion 31c, and the second arc portion 32c in this order. The first arc portion 31 and the second arc portion 32 are alternately repeated. The inflection point 33a to the inflection point 33b is the first arc portion 31a, and the inflection point 33b to the inflection point 33c is the second arc portion 32a. The first arc part 31b is the point up to the inflection point 33d, the second arc part 32b is from the inflection point 33d to the inflection point 33e, and the inflection point 33f to the inflection point 33f is the first arc part 31b. One arc portion 31c is the second arc portion 32c from the inflection point 33f to the inflection point 33g. In the water channel pipe 30 shown in FIG. 6, the first arc portion 31 and the second arc portion 32 are directly connected at the inflection point 33.

そして、該水流路管30では、水35が、該水流路管30の一端34aから、該水流路管30の他端34bに向けて流通する。   In the water channel tube 30, the water 35 flows from one end 34 a of the water channel tube 30 toward the other end 34 b of the water channel tube 30.

図7には、図6中の該第一円弧部31a及び該第二円弧部32aを、つまり、該変曲点33aから該変曲点33cまでの部分を抜き出した図を示す。該第一円弧部31aと該第二円弧部32aとは、逆の曲率を有する。なお、本発明において、円弧の曲率が逆であるということについて、図6及び図7を用いて説明すると、円弧の曲率が逆であるとは、円弧の曲率中心の位置が、該水流路管30の水流路の進行方向の左右反対にある関係を言う。つまり、該水流路管30を水が流れるときに、水の流れる方向が右にカーブする円弧と左にカーブする円弧の関係を、円弧の曲率が逆であると言う。例えば、図7では、該第一円弧部31aの曲率中心は、符号36aで示す位置であり、水の流通方向37の右側にある。一方、該第二円弧部32aの曲率中心は、符号36bで示す位置であり、水の流通方向37の左側にある。   FIG. 7 shows a diagram in which the first arc portion 31a and the second arc portion 32a in FIG. 6, that is, a portion from the inflection point 33a to the inflection point 33c are extracted. The first arc portion 31a and the second arc portion 32a have opposite curvatures. In the present invention, the fact that the curvature of the arc is reversed will be described with reference to FIGS. 6 and 7. When the curvature of the arc is reversed, the position of the center of curvature of the arc is the water channel pipe. The relationship which is right and left opposite to the advancing direction of 30 water flow paths is said. That is, when water flows through the water flow path pipe 30, the relationship between the arc in which the direction of water flow curves to the right and the arc that curves to the left is said to be that the curvature of the arc is reversed. For example, in FIG. 7, the center of curvature of the first arc portion 31 a is the position indicated by reference numeral 36 a and is on the right side of the water flow direction 37. On the other hand, the center of curvature of the second arc portion 32a is the position indicated by reference numeral 36b and is on the left side of the water flow direction 37.

図7中、該第一円弧部31aの中心角(°)及び該第二円弧部32aの中心角(°)を、θで示す。該第一円弧部31aの中心角θは、該第一円弧部31aの一端(該第一円弧部31の始点)、つまり、該変曲点33aと、該第一円弧部31aの曲率中心36aと、該第一円弧部31aの他端(該第一円弧部31の終点)、つまり、該変曲点33bとがなす角である。同様に、該第二円弧部32aの中心角θは、該第二円弧部32aの一端(該第二円弧部32の始点)、つまり、該変曲点33bと、該第二円弧部32aの曲率中心36bと、該第二円弧部32aの他端(該第二円弧部32の終点)、つまり、該変曲点33cとがなす角である。   In FIG. 7, the central angle (°) of the first arc portion 31a and the central angle (°) of the second arc portion 32a are indicated by θ. The central angle θ of the first arc portion 31a is equal to one end of the first arc portion 31a (the starting point of the first arc portion 31), that is, the inflection point 33a and the center of curvature 36a of the first arc portion 31a. And the other end of the first arc portion 31a (the end point of the first arc portion 31), that is, the angle formed by the inflection point 33b. Similarly, the central angle θ of the second arc portion 32a is equal to one end of the second arc portion 32a (the start point of the second arc portion 32), that is, the inflection point 33b and the second arc portion 32a. This is the angle formed by the center of curvature 36b and the other end of the second arc portion 32a (the end point of the second arc portion 32), that is, the inflection point 33c.

また、図7中、該第一円弧部31aの曲率半径(mm)及び該第二円弧部32aの曲率半径(mm)を、Rで示す。なお、該第一円弧部31aの曲率半径Rとは、該第一円弧部31aの該水流路管の中心線と、該第一円弧部31aの曲率中心36aとの距離である。該水流路管の中心線とは、図1〜図5に示す形態例の該水流路管では、水の流通方向に対して垂直な断面における該水流路管の中心が、水の流通方向に繋がった線である。また、該第二円弧部32aの曲率半径についても同様である。   In FIG. 7, the radius of curvature (mm) of the first arc portion 31a and the radius of curvature (mm) of the second arc portion 32a are denoted by R. The radius of curvature R of the first arc portion 31a is the distance between the center line of the water channel pipe of the first arc portion 31a and the center of curvature 36a of the first arc portion 31a. The center line of the water flow channel pipe is the water flow channel tube of the embodiment shown in FIGS. 1 to 5, and the center of the water flow channel tube in the cross section perpendicular to the water flow direction is the water flow direction. It is a connected line. The same applies to the radius of curvature of the second arc portion 32a.

図8には、該水流路管における第一円弧部及び第二円弧部のθが180°の場合の形態例を示す。   In FIG. 8, the example in case (theta) of the 1st circular arc part and the 2nd circular arc part in this water channel pipe is 180 degrees is shown.

図6及び図7に示す形態例では、該第一円弧部31と該第二円弧部32とが、該変曲点33で、直接繋がっているので、該第一円弧部31の端部と該第二円弧部32の端部との距離(該第一円弧部31の始点と該第二円弧部32の終点との距離及び該第一円弧部31の終点と該第二円弧部32の始点との距離)は、0(mm)である。   In the embodiment shown in FIGS. 6 and 7, the first arc portion 31 and the second arc portion 32 are directly connected at the inflection point 33. The distance from the end of the second arc part 32 (the distance between the start point of the first arc part 31 and the end point of the second arc part 32 and the end point of the first arc part 31 and the second arc part 32 The distance from the start point) is 0 (mm).

また、本発明の給湯用熱交換器に係る該水流路管では、該第一円弧部31と該第二円弧部32は、直接繋がっていなくてもよく、図9に示す形態例のように、直線部(連結部)を介して繋がっていてもよい。   Further, in the water flow channel pipe according to the heat exchanger for hot water supply of the present invention, the first arc portion 31 and the second arc portion 32 may not be directly connected, as in the embodiment shown in FIG. And may be connected via a straight line portion (connecting portion).

端部間長さLについて、図9を用いて説明する。該第一円弧部の端部と該第二円弧部の端部との距離(該第一円弧部の始点と該第二円弧部の終点との距離及び該第一円弧部の終点と該第二円弧部の始点との距離)を、第一円弧部の端部と第二円弧部の端部との端部間長さL(mm)とする。図9は、端部間長さを説明するための図である。図9中、第一円弧部41と第二円弧部42とは、直線部(連結部)45の両端に繋がっている。つまり、該第一円弧部41の一端(第一円弧部の終点)と該直線部(連結部)45の一端が接続点44で繋がっており、且つ、該直線部(連結部)45の他端と該第二円弧部42の一端(第二円弧部の始点)が接続点46で繋がっている。なお、該第一円弧部41の他端は、別の直線部(連結部)に繋がっており、また、該第二円弧部42の他端は、別の直線部(連結部)に繋がっている。そして、第一円弧部の端部と第二円弧部の端部との端部間長さLは、該直線部(連結部)45の長さである。   The length L between ends will be described with reference to FIG. The distance between the end of the first arc portion and the end of the second arc portion (the distance between the start point of the first arc portion and the end point of the second arc portion, and the end point of the first arc portion and the end of the first arc portion The distance from the starting point of the two arc portions) is the length L (mm) between the end portions of the first arc portion and the second arc portion. FIG. 9 is a diagram for explaining the length between the end portions. In FIG. 9, the first arc portion 41 and the second arc portion 42 are connected to both ends of a straight portion (connecting portion) 45. That is, one end of the first arc portion 41 (the end point of the first arc portion) and one end of the straight portion (connecting portion) 45 are connected by the connection point 44, and The end and one end of the second arc portion 42 (start point of the second arc portion) are connected by a connection point 46. The other end of the first arc portion 41 is connected to another straight portion (connecting portion), and the other end of the second arc portion 42 is connected to another straight portion (connecting portion). Yes. An end-to-end length L between the end of the first arc portion and the end of the second arc portion is the length of the straight portion (connecting portion) 45.

該第一円弧部と該第二円弧部とでは、曲率が逆であるので、該水流路管内を水が流通したときに、該水流路管内の断面において、該水流路管内を流れる水にかかる遠心力の向きが、該第一円弧部と該第二円弧部とでは、左右が逆になる。そして、本発明の給湯用熱交換器では、該第一円弧部の端部と第二円弧部の端部との端部間長さを短くすることにより、該水流路管を流通する水が、該第一円弧部から該第二円弧部へと移動するとき及び該第二円弧部から該第一円弧部へと移動するときに、該水流路管内を流れる水にかかる遠心力の向きが、急激に左右反転する。このことにより、流路断面の速度境界層や温度境界層の薄い領域が存在する部位が、左右に急激に反転することになるので、高い乱流促進効果が得られるため、熱伝達特性が高くなる。   Since the curvatures of the first arc portion and the second arc portion are opposite, when water flows through the water channel tube, the water flows in the water channel tube in the cross section of the water channel tube. The direction of the centrifugal force is reversed between the first arc portion and the second arc portion. And in the heat exchanger for hot water supply of this invention, the water which distribute | circulates this water flow pipe is shortened by shortening the length between the edge part of the edge part of this 1st circular arc part and the edge part of the 2nd circular arc part. When moving from the first arc portion to the second arc portion and when moving from the second arc portion to the first arc portion, the direction of the centrifugal force applied to the water flowing in the water channel pipe is determined. , Suddenly flip left and right. As a result, the region where the velocity boundary layer and the thin region of the temperature boundary layer in the cross section of the flow path are abruptly reversed left and right, so that a high turbulence promoting effect can be obtained, so that the heat transfer characteristics are high. Become.

そして、本発明の給湯用熱交換器では、該第一円弧部の端部と該第二円弧部の端部との端部間長さをLと、該第一円弧部及び該第二円弧部の曲率半径とが、下記式(1):
0≦L/R≦1 (1)
を満たす。そして、0≦L/R≦0.5であることが好ましい。
And in the heat exchanger for hot water supply of this invention, the length between the edge part of the edge part of this 1st circular arc part and the edge part of this 2nd circular arc part is set to L, this 1st circular arc part and this 2nd circular arc The radius of curvature of the part is the following formula (1):
0 ≦ L / R ≦ 1 (1)
Meet. And it is preferable that it is 0 <= L / R <= 0.5.

該第一円弧部と該第二円弧部とは、直接繋がっていることがより好ましい。該第一円弧部と該第二円弧部とが直接繋がっている場合は、該端部間長さLは0mmである。つまり、L/Rの値は0であることがより好ましい。   More preferably, the first arc portion and the second arc portion are directly connected. When the first arc portion and the second arc portion are directly connected, the length L between the end portions is 0 mm. That is, the value of L / R is more preferably 0.

本発明の給湯用熱交換器では、該水流路管の外径をD(mm)とするとき、下記式(2):
1≦R/D≦10 (2)
を満たすことが好ましく、2≦R/D≦7であることが特に好ましい。R/Dの値が上記範囲内にあることにより、乱流促進効果が高くなる。一方、R/Dの値が、上記範囲を超えると、乱流促進効果が低くなり易く、また、上記範囲未満だと、伝熱管の座屈などの障害が発生し易くなり、信頼性の低下を招きやすくなる。なお、該水流路管の外径Dとは、該水流路管を水の流通方向に対して垂直な面で切ったときの断面の外径である。
In the heat exchanger for hot water supply of the present invention, when the outer diameter of the water channel pipe is D (mm), the following formula (2):
1 ≦ R / D ≦ 10 (2)
Is preferably satisfied, and 2 ≦ R / D ≦ 7 is particularly preferable. When the value of R / D is within the above range, the effect of promoting turbulence is enhanced. On the other hand, if the R / D value exceeds the above range, the effect of promoting turbulence tends to be low, and if it is less than the above range, failures such as buckling of the heat transfer tube are likely to occur, resulting in a decrease in reliability. It becomes easy to invite. The outer diameter D of the water channel pipe is an outer diameter of a cross section when the water channel pipe is cut along a plane perpendicular to the water flow direction.

θは、60〜290°が好ましく、180〜290°が特に好ましい。θが上記範囲内にあることにより、乱流促進効果が高くなる。   θ is preferably 60 to 290 °, particularly preferably 180 to 290 °. When θ is in the above range, the effect of promoting turbulence is enhanced.

該第一円弧部及び該第二円弧部の総延長(該第一円弧部と該第二円弧部との間に該連結部があるときは、該第一円弧部、該第二円弧部及び該連結部の総延長)は、熱交換部の水流路管の長さの70%以上を占めることが好ましく、90%以上を占めることが特に好ましい。該熱交換部の水流路管の長さに占める該第一円弧部及び該第二円弧部の総延長が、上記範囲であることにより、熱交換性能が高くなる。なお、該熱交換部とは、該冷媒流路を流通する冷媒と該水流路を流通する水との間で、熱交換が行われる部分を指す。そして、該熱交換部の水流路管の長さとは、例えば、図1に示す形態例では、該冷媒路管1と該水流路管2の二重管になっている部分の水流路管の長さを指す。また、図2に示す形態例では、該水流路管6と該冷媒流路管7の二重管になっている部分の水流路管の長さを指す。また、図3に示す形態例では、該冷媒流路管12が該水流路管11に巻き回されている部分の水流路管の長さを指す。また、図4に示す形態例では、該冷媒流路管17が該水流路管16に巻き回されている部分の水流路管の長さを指す。また、図5に示す形態例では、該冷媒流路管22が該水流路管23にめり込んでいる部分の水流路管の長さを指す。   A total extension of the first arc portion and the second arc portion (when the connecting portion is between the first arc portion and the second arc portion, the first arc portion, the second arc portion, and The total extension of the connecting part) preferably occupies 70% or more of the length of the water flow path pipe of the heat exchange part, and particularly preferably 90% or more. When the total extension of the first arc portion and the second arc portion occupying the length of the water flow path pipe of the heat exchange portion is within the above range, the heat exchange performance is improved. In addition, this heat exchange part refers to the part in which heat exchange is performed between the refrigerant | coolant which distribute | circulates this refrigerant flow path, and the water which distribute | circulates this water flow path. The length of the water flow path pipe of the heat exchange section is, for example, the portion of the water flow path pipe in the double pipe of the refrigerant path pipe 1 and the water flow path pipe 2 in the embodiment shown in FIG. Refers to the length. Further, in the embodiment shown in FIG. 2, the length of the water flow path pipe in a portion that is a double pipe of the water flow path pipe 6 and the refrigerant flow path pipe 7 is indicated. Further, in the embodiment shown in FIG. 3, the length of the water flow path pipe of the portion where the refrigerant flow path pipe 12 is wound around the water flow path pipe 11 is indicated. Further, in the embodiment shown in FIG. 4, it indicates the length of the water flow path pipe where the refrigerant flow path pipe 17 is wound around the water flow path pipe 16. Further, in the embodiment shown in FIG. 5, the length of the water flow path pipe in the portion where the refrigerant flow path pipe 22 is recessed into the water flow path pipe 23 is indicated.

図6では、該第一円弧部及び該第二円弧部が、1つの平面で繰り返される形態例を示したが、本発明の給湯器用熱交換器は、これに限定されるものではなく、該第一円弧部及び該第二円弧部が2つ以上の平面で繰り返されていてもよい。図10は、2段式の熱交換器に係る水流路管の形状を示す模式図である。図10中、該第一円弧部及び該第二円弧部が繰り返されている1段目51の上に、該第一円弧部及び該第二円弧部が繰り返されている2段目52が配置されており、該1段目51の水流路管の一端と該2段目52の水流路管の一端とは、継手53により繋がっている。なお、図10では、該1段目51を黒で示し、該2段目52を濃い灰色で示し、該継手53を薄い灰色で示した。また、図10では、本発明の給湯器用熱交換器に係る該水流路管のみを示しており、本発明の給湯器用熱交換器に係る該冷媒流路管の記載は省略した。   In FIG. 6, although the 1st circular arc part and this 2nd circular arc part showed the example repeated in one plane, the heat exchanger for water heaters of this invention is not limited to this, The first arc portion and the second arc portion may be repeated on two or more planes. FIG. 10 is a schematic diagram showing the shape of a water flow path pipe according to a two-stage heat exchanger. In FIG. 10, the second stage 52 in which the first arc part and the second arc part are repeated is arranged on the first stage 51 in which the first arc part and the second arc part are repeated. Thus, one end of the first-stage 51 water channel pipe and one end of the second-stage water channel pipe are connected by a joint 53. In FIG. 10, the first stage 51 is shown in black, the second stage 52 is shown in dark gray, and the joint 53 is shown in light gray. Further, FIG. 10 shows only the water channel pipe related to the heat exchanger for hot water heater of the present invention, and the description of the refrigerant channel pipe related to the heat exchanger for hot water heater of the present invention is omitted.

本発明の給湯用熱交換器に係る該水流路管は、通常、継目無管を加工して得られるので、該第一円弧部及び該第二円弧部(該連結部がある場合は、該第一円弧部、該第二円弧部及び該連結部)は、連続した1つの管体である。よって、該第一円弧部及び該第二円弧部が1つの平面で繰り返されている場合、通常、その1つの平面に繰り返されている該第一円弧部及び該第二円弧部は、連続した1つの継目無管で形成されている。また、該第一円弧部及び該第二円弧部が2つ以上の平面で繰り返されている多段の場合、通常、各段に繰り返されている該第一円弧部及び該第二円弧部は、連続した1つの継目無管で形成されているか、あるいは、2以上の段に亘って、該第一円弧部及び該第二円弧部が、連続した1つの継目無管で形成されている。   Since the water channel pipe according to the heat exchanger for hot water supply of the present invention is usually obtained by processing a seamless pipe, the first arc part and the second arc part (if the connecting part is present, The first arc portion, the second arc portion and the connecting portion) are one continuous tube. Therefore, when the first arc portion and the second arc portion are repeated on one plane, the first arc portion and the second arc portion that are normally repeated on the one plane are continuous. It is formed of one seamless tube. In addition, when the first arc portion and the second arc portion are repeated in two or more planes, usually the first arc portion and the second arc portion that are repeated in each step, The first arc portion and the second arc portion are formed by one continuous seamless pipe over two or more stages.

該冷媒流路に流通される冷媒としては、特に制限されない。該冷媒流路に流通される冷媒を二酸化炭素を主成分とする冷媒とすることも可能である。該二酸化炭素を主成分とする冷媒は、二酸化炭素単独か、あるいは、冷凍機油を0〜15質量%含有する二酸化炭素冷媒である。   The refrigerant flowing through the refrigerant flow path is not particularly limited. It is also possible to use a refrigerant mainly composed of carbon dioxide as the refrigerant flowing through the refrigerant flow path. The refrigerant mainly composed of carbon dioxide is carbon dioxide alone or a carbon dioxide refrigerant containing 0 to 15% by mass of refrigerating machine oil.

図11に、従来の給湯用熱交換器を示す。図11中、熱交換器61は、溶媒流路管内に水流路管を挿入した二重管62を、矩形渦巻き状に巻いたものである。該熱交換器61では、直線部分64と直線部分64との間にある曲線部分63は、全て曲率が同じ側にあるため、流路断面の一方向にのみ、速度境界層や温度境界層の薄い領域が存在することになるので、十分な乱流促進効果は得られない。   FIG. 11 shows a conventional heat exchanger for hot water supply. In FIG. 11, a heat exchanger 61 is a double tube 62 in which a water channel tube is inserted into a solvent channel tube and is wound in a rectangular spiral shape. In the heat exchanger 61, since the curved portion 63 between the straight portion 64 and the straight portion 64 is all on the same curvature side, the velocity boundary layer and the temperature boundary layer are only in one direction of the flow path cross section. Since there is a thin region, a sufficient turbulence promoting effect cannot be obtained.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(実施例1及び比較例1)
<実施例1の熱交換器の作製>
水流路管の形状を図6に示す水流路管の形状とし、図3の熱交換器を、下記寸法諸元にて作製した。
・水流路管:外径(D)=9.5mm、肉厚=0.7mm、材質はりん脱酸銅
・冷媒流路管:外径=4mm、肉厚=0.5mm、材質はりん脱酸銅
・水流路管の第一円弧部及び第二円弧部の曲率半径R=64mm
・水流路管の第一円弧部及び第二円弧部の中心角θ=290°
・水流路管の第一円弧部の数=3個、水流路管の第二円弧部の数=3個
・水流路管の端部間長さL=0mm
・R/D=6.7、L/R=0
・熱交換部全長=2300mm
・熱交換部の平面占有面積S=130000mm(熱交換部の平面占有幅W1=520mm、熱交換部の平面占有奥行T1=250mm)
なお、W1及びT1は、水流路管と水流路管の周囲に螺旋状に巻き回されている冷媒流路管も含めた熱交換部の幅及び奥行である。
(Example 1 and Comparative Example 1)
<Production of Heat Exchanger of Example 1>
The shape of the water channel tube was changed to the shape of the water channel tube shown in FIG. 6, and the heat exchanger of FIG. 3 was produced with the following dimensions.
・ Water channel tube: Outer diameter (D) = 9.5 mm, Wall thickness = 0.7 mm, Material is phosphorous deoxidized copper ・ Refrigerant channel tube: Outer diameter = 4 mm, Wall thickness = 0.5 mm, Material is phosphorus-removed Curvature radius R of the first arc part and second arc part of acid copper / water flow pipe R = 64mm
・ Center angle θ = 290 ° of the first arc portion and the second arc portion of the water channel pipe
・ The number of first arc portions of the water channel pipe = 3, the number of second arc portions of the water channel tube = 3, and the length L between the ends of the water channel tube = 0 mm.
・ R / D = 6.7, L / R = 0
・ Total length of heat exchange part = 2300mm
-Plane occupancy area S = 130,000 mm 2 of the heat exchange part (plane occupancy width W1 = 520 mm of the heat exchange part, plane occupancy depth T1 = 250 mm of the heat exchange part)
In addition, W1 and T1 are the width | variety and depth of a heat exchange part also including the refrigerant | coolant flow path pipe wound helically around the water flow path pipe and the water flow path pipe.

<比較例1の熱交換器の作製>
水流路管の形状を図12に示す形状とし、図3に示す熱交換器を下記寸法諸元にて作製した。
・水流路管:外径(D)=16mm、肉厚=0.7mm、材質はりん脱酸銅
・冷媒流路管:外径=4mm、肉厚=0.5mm、材質はりん脱酸銅
・矩形の渦巻き状、四重巻き
・熱交換部全長=4500mm
・熱交換部の平面占有面積S=130000mm(熱交換部の平面占有幅W2=520mm、熱交換部の平面占有奥行T2=250mm)
なお、図12は、水流路管と周囲に螺旋状に巻き回されている冷媒流路管とが一体となった熱交換部の形状を指し、図12中では、個々の水流路管及び冷媒流路管の記載を省略した。また、W2及びT2は、水流路管と水流路管の周囲に螺旋状に巻き回されている冷媒流路管も含めた熱交換部の幅及び奥行である。
<Production of Heat Exchanger of Comparative Example 1>
The shape of the water channel tube was as shown in FIG. 12, and the heat exchanger shown in FIG. 3 was produced with the following dimensions.
・ Water channel tube: outer diameter (D) = 16 mm, wall thickness = 0.7 mm, material is phosphorous deoxidized copper ・ Refrigerant channel tube: outer diameter = 4 mm, wall thickness = 0.5 mm, material is phosphorous deoxidized copper -Rectangular spiral, quadruple winding-Heat exchange part total length = 4500mm
-Plane occupancy area S of heat exchange part = 130,000 mm 2 (Plane occupancy width W2 of heat exchange part = 520 mm, plane occupancy depth T2 = 250 mm of heat exchange part)
FIG. 12 shows the shape of the heat exchange part in which the water channel pipe and the refrigerant channel pipe spirally wound around the water channel pipe are integrated. In FIG. The description of the channel tube was omitted. W2 and T2 are the width and depth of the heat exchange section including the water flow path pipe and the refrigerant flow path pipe spirally wound around the water flow path pipe.

<性能評価>
・評価方法
冷媒流路管内に二酸化炭素冷媒ガスを、水流路管内に水を、表1に示す条件で流通させて、熱交換性能を測定した。
<Performance evaluation>
Evaluation Method Heat exchange performance was measured by circulating carbon dioxide refrigerant gas in the refrigerant channel tube and water in the water channel tube under the conditions shown in Table 1.

<評価結果>
実施例1と比較例1の水流量1L/分における熱交換量を比較したところ、実施例1の熱交換量は、比較例の熱交換量と同じであった。これを、熱交換器の単位質量当たり(単位長さ当たり)の熱交換量で比較すると、実施例1の熱交換器の単位質量当たりの熱交換量は、比較例1の1.95倍であった。
<Evaluation results>
When the heat exchange amount of Example 1 and Comparative Example 1 at a water flow rate of 1 L / min was compared, the heat exchange amount of Example 1 was the same as the heat exchange amount of the Comparative Example. When this is compared with the heat exchange amount per unit mass (per unit length) of the heat exchanger, the heat exchange amount per unit mass of the heat exchanger of Example 1 is 1.95 times that of Comparative Example 1. there were.

本発明によれば、熱交換性能に優れる給湯用熱交換器を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat exchanger for hot water supply which is excellent in heat exchange performance can be manufactured.

1、7、12、17、22 冷媒流路管
2、6、11、16、21、30 水流路管
31、41 第一円弧部
32、42 第二円弧部
33 変曲点
35 水
36 曲率中心
37 水の流通方向
45 直線部(連結部)
51 1段目
52 2段目
61 熱交換器
62 二重管
63 曲線部分
64 直線部分
θ 円弧部の中心角
R 円弧部の曲率半径
D 水流路管の外径
1, 7, 12, 17, 22 Refrigerant flow pipe 2, 6, 11, 16, 21, 30 Water flow pipe 31, 41 First arc portion 32, 42 Second arc portion 33 Inflection point 35 Water 36 Center of curvature 37 Water flow direction 45 Straight section (connecting section)
51 First stage 52 Second stage 61 Heat exchanger 62 Double pipe 63 Curved part 64 Straight line part θ Center angle R of arc part Curvature radius D of arc part Outer diameter of water channel pipe

Claims (4)

冷媒と水との熱交換により水を加熱するための冷媒が流通する冷媒流路と、該冷媒により加熱される水が流通する水流路とを有し、
該冷媒流路及び該水流路のいずれもが、管体によって形成されており、
該水流路を形成する水流路管は、交互に繰り返される第一円弧部と、該第一円弧部とは逆の曲率を有する第二円弧部と、からなり、
該第一円弧部の端部と該第二円弧部の端部との端部間長さをL(mm)、該第一円弧部及び該第二円弧部の曲率半径をR(mm)としたとき、下記式(1):
0≦L/R≦1 (1)
を満たすこと、
を特徴とする給湯用熱交換器。
A coolant channel through which a coolant for heating water by heat exchange between the coolant and water flows, and a water channel through which water heated by the coolant flows,
Both of the refrigerant channel and the water channel are formed by a tube,
The water flow path tube forming the water flow path includes a first arc portion that is alternately repeated, and a second arc portion having a curvature opposite to that of the first arc portion,
The length between the end portions of the first arc portion and the end portion of the second arc portion is L (mm), and the curvature radii of the first arc portion and the second arc portion are R (mm). When the following formula (1):
0 ≦ L / R ≦ 1 (1)
Meeting,
A heat exchanger for hot water supply.
前記水流路管の外径をD(mm)とするとき、下記式(2):
1≦R/D≦10 (2)
を満たすことを特徴とする請求項1記載の給湯用熱交換器。
When the outer diameter of the water channel pipe is D (mm), the following formula (2):
1 ≦ R / D ≦ 10 (2)
The hot water supply heat exchanger according to claim 1, wherein:
前記第一円弧部、前記第二円弧部及び連結部の総延長が、熱交換部の水流路管の長さの70%以上を占めることを特徴とする請求項1又は2いずれか1項記載の給湯用熱交換器。   The total extension of said 1st circular arc part, said 2nd circular arc part, and a connection part occupies 70% or more of the length of the water flow-path pipe | tube of a heat exchange part, Either 1 or 2 characterized by the above-mentioned. Heat exchanger for hot water supply. 前記冷媒が、二酸化炭素を主成分とする冷媒であることを特徴とする請求項1〜3いずれか1項記載の給湯用熱交換器。   The heat exchanger for hot water supply according to any one of claims 1 to 3, wherein the refrigerant is a refrigerant mainly composed of carbon dioxide.
JP2009161639A 2009-07-08 2009-07-08 Heat exchanger for hot water supply Pending JP2011017475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161639A JP2011017475A (en) 2009-07-08 2009-07-08 Heat exchanger for hot water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161639A JP2011017475A (en) 2009-07-08 2009-07-08 Heat exchanger for hot water supply

Publications (1)

Publication Number Publication Date
JP2011017475A true JP2011017475A (en) 2011-01-27

Family

ID=43595400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161639A Pending JP2011017475A (en) 2009-07-08 2009-07-08 Heat exchanger for hot water supply

Country Status (1)

Country Link
JP (1) JP2011017475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068358A (en) * 2011-09-22 2013-04-18 Mitsubishi Electric Corp Twisted tube type heat exchanger with different diameter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068358A (en) * 2011-09-22 2013-04-18 Mitsubishi Electric Corp Twisted tube type heat exchanger with different diameter

Similar Documents

Publication Publication Date Title
JP6172950B2 (en) Double tube for heat exchanger
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
JP6032585B2 (en) Triple tube structure and heat exchanger
JP2008261566A (en) Double-pipe heat exchanger
JP2009270755A (en) Heat-transfer pipe for heat exchanger and heat exchanger using the same
JP2017075711A (en) Heat transfer pipe for heat exchanger and heat exchanger using it
JP2008139008A (en) Heat exchanger tube and heat exchanger using the same
JP2008032296A (en) Heat exchanger
KR20150030201A (en) Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP2009216309A (en) Heat exchanger
JP5785883B2 (en) Heat exchanger and heat pump type water heater using the same
JP2011017475A (en) Heat exchanger for hot water supply
CN107270744A (en) Efficient coaxial sleeve heat exchanger
JP5289088B2 (en) Heat exchanger and heat transfer tube
JP6377628B2 (en) Finned tube element, method for manufacturing the same, and heat exchanger provided with finned tube element
JP2008190787A (en) Spiral tube and heat exchanger using the same
JP5404589B2 (en) Twisted tube heat exchanger
JP4947162B2 (en) Heat exchanger
JP2011017476A (en) Double tube type heat exchanger
JP2004340455A (en) Heat exchanger
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP5431210B2 (en) Heat transfer tube and heat exchanger
JP5760105B2 (en) Heat exchanger for hot water supply
JP2012007771A (en) Heat exchanger
JP4985456B2 (en) Heat exchanger