JP2006336885A - Heat exchanger and its manufacturing method - Google Patents

Heat exchanger and its manufacturing method Download PDF

Info

Publication number
JP2006336885A
JP2006336885A JP2005158980A JP2005158980A JP2006336885A JP 2006336885 A JP2006336885 A JP 2006336885A JP 2005158980 A JP2005158980 A JP 2005158980A JP 2005158980 A JP2005158980 A JP 2005158980A JP 2006336885 A JP2006336885 A JP 2006336885A
Authority
JP
Japan
Prior art keywords
heat exchanger
water pipe
refrigerant
pipe
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005158980A
Other languages
Japanese (ja)
Other versions
JP4224793B2 (en
Inventor
Takayuki Yoshida
孝行 吉田
Takashi Kanetani
隆 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005158980A priority Critical patent/JP4224793B2/en
Publication of JP2006336885A publication Critical patent/JP2006336885A/en
Application granted granted Critical
Publication of JP4224793B2 publication Critical patent/JP4224793B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger and its manufacturing method, capable of substantially enlarging a contact area effective for transferring heat to water piping and refrigerant piping, reducing contact heat resistance, improving efficiency of fins, and substantially improving heat exchanging performance by synergic effect such as turbulence promotion. <P>SOLUTION: This heat exchanger comprises the water piping for heat exchange obtained by connecting a plurality of water pipes 2 on which trough portions of plural lines of crest and trough portions are continuously and spirally formed by each line on an outer periphery of an area excluding both end portions, and the refrigerant piping 5 wound along the trough portions of the crest and trough portions of the water piping for heat exchange, and further continuously wound on connecting portions 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばヒートポンプ式給湯機用の熱交換器の如く、水と冷媒との間の熱交換を促すための熱交換器及びその製造方法に関するものである。   The present invention relates to a heat exchanger for promoting heat exchange between water and a refrigerant, such as a heat exchanger for a heat pump water heater, and a method for manufacturing the same.

従来の水と冷媒との間の熱交換器は、配管の腐食等で冷媒と水が混じることを回避するために、漏洩検知溝を有する2重管を用いた3重構造が主流であったが、製造工程が複雑で高コストであるばかりでなく、曲げ加工等の自由度が少なく冷媒配管の長さ延長に限界があるなど、熱交換器としての性能向上にも限界があった。
このような問題を解決するために、水が流通する芯管(水配管)の外周に、冷媒が流通する冷媒管を螺旋状に巻きつけたり、水配管と平行に伝熱結合するようにした熱交換器が提案されている(例えば、特許文献1参照)。
Conventional heat exchangers between water and refrigerant mainly have a triple structure using a double pipe having a leakage detection groove in order to avoid mixing of refrigerant and water due to corrosion of piping or the like. However, not only is the manufacturing process complicated and expensive, but there is also a limit to improving the performance of the heat exchanger, such as the length of the refrigerant pipe is limited due to the low degree of freedom in bending and the like.
In order to solve such a problem, the heat which the refrigerant pipe | tube with which a refrigerant | coolant distribute | circulates around the outer periphery of the core pipe (water pipe | tube) through which water distribute | circulates spirally, or was heat-transfer-coupled in parallel with the water pipe | tube. An exchanger has been proposed (see, for example, Patent Document 1).

特開2002−228370号公報(第2〜3頁、図3、図5、図7)JP 2002-228370 A (pages 2 to 3, FIGS. 3, 5, and 7)

特許文献1の発明のように、水配管の外周に冷媒管を螺旋状に巻きつけた熱交換器では、水配管の外周が平滑なため、水配管と冷媒管との接触面積が小さく、伝熱性能が十分でないという問題があった。また、水配管をコルゲート管とする提案もなされているが、一般に、コルゲート管は、平滑管の外周にツールを押し当てて螺旋状に1条の連続溝を形成した管であり、外周側が逆円弧状で山谷が浅いため、水の乱流促進には効果があるものの、依然として水配管と冷媒管との接触面積が小さく、伝熱性能が十分でなかった。   As in the invention of Patent Document 1, in the heat exchanger in which the refrigerant pipe is spirally wound around the outer periphery of the water pipe, since the outer periphery of the water pipe is smooth, the contact area between the water pipe and the refrigerant pipe is small. There was a problem that the thermal performance was not sufficient. There is also a proposal that a corrugated pipe is used as a water pipe. In general, a corrugated pipe is a pipe in which a continuous groove is spirally formed by pressing a tool against the outer circumference of a smooth pipe, and the outer circumference is reversed. Although it has an arc shape and shallow valleys, it is effective in promoting turbulent water flow, but the contact area between the water pipe and the refrigerant pipe is still small, and the heat transfer performance is not sufficient.

また、水配管のコルゲートの円弧状の凹部に冷媒管を嵌合する場合は、円弧状の凹部の曲率を冷媒管の曲率と完全に一致させることによりはじめて面接触となるが、実際には、凹部の曲率を冷媒管の曲率より大きくしないと奥まで嵌入できないため、むしろ線接触に近くなり、接触伝熱面積を顕著に改善することは困難であった。   In addition, when the refrigerant pipe is fitted into the arc-shaped recess of the corrugation of the water pipe, surface contact is made only by matching the curvature of the arc-shaped recess completely with the curvature of the refrigerant pipe. If the curvature of the concave portion is not larger than the curvature of the refrigerant pipe, it cannot be inserted to the back, so it is rather close to line contact, and it has been difficult to remarkably improve the contact heat transfer area.

さらに、水配管をコルゲート形状に加工する場合、水配管を長尺にしようとすると加工機械が大型化してコスト高になるという問題があった。このため、コルゲート加工を施した短尺の水配管を複数本接続して熱交換器全長を構成した場合、水配管外周に螺旋巻きした冷媒管を水配管ごとに接合する必要がある。   Further, when the water pipe is processed into a corrugated shape, there is a problem that if the water pipe is made long, the processing machine becomes large and the cost becomes high. For this reason, when a plurality of short water pipes subjected to corrugation are connected to form the entire length of the heat exchanger, it is necessary to join a refrigerant pipe spirally wound around the outer circumference of the water pipe for each water pipe.

すなわち、複数本の冷媒管がコルゲート状の凹部に巻き付けられた複数の水配管を接続して偏平螺旋状に巻き付けて熱交換器を構成しているため、その中間部には複数の水配管接続部が存在し、また、この水配管接続部の近傍には、複数本の冷媒管接続部が存在する。なお冷媒管の接続は、黄銅材を切削加工した接続部材によりそれぞれロウ付け接合される。   That is, since a plurality of refrigerant pipes are connected to a plurality of water pipes wound around a corrugated recess and wound in a flat spiral shape to form a heat exchanger, a plurality of water pipe connections are made at the intermediate portion thereof. And there are a plurality of refrigerant pipe connecting portions in the vicinity of the water pipe connecting portion. The refrigerant pipes are connected by brazing using connecting members obtained by cutting a brass material.

このように、特許文献1の熱交換器は、水配管及び冷媒管の接続箇所が多数となるため、コストアップになるばかりでなく、ロウ付け部からの冷媒漏れやロウ材詰り等が発生し易く、信頼性が低下するという問題があった。また、冷媒配管の接合に要するスペースが必要となるため、熱交換器のコンパクト化が困難である等、多くの問題があった。   As described above, since the heat exchanger of Patent Document 1 has a large number of connection points between the water pipe and the refrigerant pipe, not only the cost is increased, but also leakage of the refrigerant from the brazing portion, clogging of the brazing material, and the like occur. There was a problem that it was easy and reliability was lowered. Further, since a space required for joining the refrigerant pipes is required, there are many problems such as difficulty in making the heat exchanger compact.

本発明は、上記の課題を解決するためになされたもので、水配管と冷媒配管との伝熱に有効な接触面積を大幅に拡大すると共に、接触熱抵抗の低減、フイン効率の向上、乱流促進等の相乗効果により熱交換性能を顕著に向上することができ、さらに、熱交換器の途中に冷媒配管の接合箇所を無くすことにより、コストアップを抑制し、信頼性を確保すると共に、コンパクト化を実現することのできる熱交換器及びその製造方法を提供することを目的としたものである。   The present invention has been made in order to solve the above-described problems, and greatly increases the contact area effective for heat transfer between the water pipe and the refrigerant pipe, while reducing the contact thermal resistance, improving the fin efficiency, The heat exchange performance can be remarkably improved by synergistic effects such as flow promotion, and further, by eliminating the joint part of the refrigerant pipe in the middle of the heat exchanger, the cost increase is suppressed and the reliability is ensured. It is an object of the present invention to provide a heat exchanger that can be made compact and a manufacturing method thereof.

本発明に係る熱交換器は、両端部を除く領域の外周に複数条の山谷部の谷部を各条ごとに連続して螺旋状に形成した複数の水配管を接続してなる熱交換用水配管と、該熱配管用水配管の山谷部の谷部に沿って巻き付けると共に、前記接続部にも連続して巻き付けた冷媒配管とを備えたものである。   The heat exchanger according to the present invention is a water for heat exchanging formed by connecting a plurality of water pipes in which the valleys of a plurality of peaks and valleys are continuously formed spirally for each stripe on the outer periphery of the region excluding both ends. The pipe is provided with a refrigerant pipe wound around the valley of the valley of the water pipe for heat pipe and continuously wound around the connecting portion.

また、本発明に係る熱交換器の製造方法は、両端部を除く領域の外周に複数条の山谷部が各条ごとに連続して形成された複数の水配管を接続して熱交換用水配管を形成し、該熱交換用水配管の一端から前記山谷部の谷部に沿って冷媒配管を巻き付けると共に前記水配管の接続部にも巻き付けて他端まで連続的に巻き付けるようにしたものである。   Moreover, the manufacturing method of the heat exchanger according to the present invention includes a plurality of water pipes in which a plurality of ridges and valleys are continuously formed for each line on the outer periphery of a region excluding both ends, and a water pipe for heat exchange. Is formed, and the refrigerant pipe is wound along the valley portion of the ridge and valley from one end of the water pipe for heat exchange, and is continuously wound to the other end by winding around the connection portion of the water pipe.

本発明に係る熱交換器によれば、水配管と冷媒配管との接触伝熱面積を大幅に拡大することができ、乱流促進効果やフイン効率の効果と相俟って伝熱性能を大幅に向上することができる。また、曲げ加工などに対する可撓性に優れるため形状の自由度が高く、さらに、熱交換器の途中に冷媒配管の接続箇所をなくしたので、低コストで信頼性を確保することのできるコンパクトで高性能の熱交換器を得ることができる。   According to the heat exchanger according to the present invention, the contact heat transfer area between the water pipe and the refrigerant pipe can be greatly expanded, and the heat transfer performance is greatly improved in combination with the effect of promoting turbulent flow and the effect of fin efficiency. Can be improved. In addition, because it has excellent flexibility for bending, etc., it has a high degree of freedom in shape. In addition, since there is no connection part of the refrigerant pipe in the middle of the heat exchanger, it is compact and can ensure reliability at low cost. A high-performance heat exchanger can be obtained.

[実施の形態1]
図1は本発明の実施の形態1に係る熱交換器を備えた給湯室外機の分解斜視図、図2は図1の冷凍サイクル回路と給湯回路の配管系統図である。
給湯室外機の最下段には熱交換器ユニット11が配置されており、その上部には蒸発器21と外気との熱交換をするために風を送る送風機22が配設されている。また、熱交換器ユニット11の上部には送風機22に隣接して圧縮機23が設置され、右側手前には給湯回路の水を循環するポンプ24が配置されており、給湯タンク(図示せず)からの水を水入口バルブ25を介して室内機内に取入れ、熱交換器ユニット11に設けた熱交換器1の水配管2を経て、給湯出口バルブ29から給湯タンクへ戻るようになっている。
[Embodiment 1]
1 is an exploded perspective view of a hot water supply outdoor unit equipped with a heat exchanger according to Embodiment 1 of the present invention, and FIG. 2 is a piping system diagram of the refrigeration cycle circuit and hot water supply circuit of FIG.
A heat exchanger unit 11 is disposed at the lowermost stage of the hot water supply outdoor unit, and a blower 22 for sending air to exchange heat between the evaporator 21 and the outside air is disposed above the heat exchanger unit 11. In addition, a compressor 23 is installed adjacent to the blower 22 in the upper part of the heat exchanger unit 11, and a pump 24 that circulates water in the hot water supply circuit is arranged in front of the right side, and a hot water supply tank (not shown). Water is taken into the indoor unit via the water inlet valve 25 and returns to the hot water supply tank from the hot water outlet valve 29 via the water pipe 2 of the heat exchanger 1 provided in the heat exchanger unit 11.

また、外郭は、前面にグリル19、左側面に外気の吸込み口を備えたフロントパネル18、右側面から蒸発器21の端部までを覆うバックパネル20、さらにバルブ類を覆うサービスパネル26がそれぞれ取付けられており、最上部にはトップパネル17が配設されている。   The outer shell includes a grille 19 on the front, a front panel 18 having an air inlet on the left side, a back panel 20 that covers from the right side to the end of the evaporator 21, and a service panel 26 that covers valves. A top panel 17 is disposed at the top.

上記のように構成した給湯設備において、圧縮機23により高温、高圧になった加熱ガス冷媒は、熱交換器1の冷媒配管5に流入し、ポンプ24により水入口バルブ25から取り入れられた給湯タンクの水が、熱交換器1の水配管2を通過する際に熱交換されて水が加熱され、給湯出口バルブ29を経て給湯タンクへ戻る。
また、水へ熱を伝えた冷媒は、絞り弁28により減圧されて蒸発器21に流入し、送風機22により送風された外気から吸熱し、蒸発ガス化されて内部熱交換器15で再加熱されて圧縮機23へ戻る。なお、内部熱交換器15へ流入する高圧冷媒の流量は、流量調整弁27で調整される。
In the hot water supply equipment configured as described above, the heated gas refrigerant that has become high temperature and high pressure by the compressor 23 flows into the refrigerant pipe 5 of the heat exchanger 1 and is taken in from the water inlet valve 25 by the pump 24. When the water passes through the water pipe 2 of the heat exchanger 1, heat is exchanged to heat the water, and the water returns to the hot water tank through the hot water outlet valve 29.
In addition, the refrigerant that has transferred heat to the water is decompressed by the throttle valve 28 and flows into the evaporator 21, absorbs heat from the outside air blown by the blower 22, is evaporated and is reheated by the internal heat exchanger 15. The process returns to the compressor 23. The flow rate of the high-pressure refrigerant flowing into the internal heat exchanger 15 is adjusted by the flow rate adjustment valve 27.

図3は上記の熱交換器ユニットの構成を示す斜視図、図4は図3の熱交換器の説明図、図5は図4の水配管の説明図、図6は図5の水配管に冷媒配管を巻き付けた状態を示す説明図である。
水配管2は外周に複数条(例えば、2〜4条)の山部3aと谷部3bが交互に設けられた山谷部3が、各条ごとに連続して螺旋状に設けられており、両端部には山谷部3が無い平滑部(接続部)が形成され、一方の平滑部の端部は袋状に拡管され後続する水配管2の平滑部が挿入されて接続できるようになっている。
3 is a perspective view showing the configuration of the heat exchanger unit, FIG. 4 is an explanatory view of the heat exchanger of FIG. 3, FIG. 5 is an explanatory view of the water pipe of FIG. 4, and FIG. 6 is a water pipe of FIG. It is explanatory drawing which shows the state which wound refrigerant | coolant piping.
The water pipe 2 has a plurality of (for example, 2 to 4) crests 3a and troughs 3b alternately provided on the outer periphery, and crests 3a are continuously provided in a spiral manner for each of the crests. A smooth part (connecting part) without the mountain-and-valley part 3 is formed at both ends, and the end part of one smoothing part is expanded in a bag shape so that the smoothing part of the subsequent water pipe 2 can be inserted and connected. Yes.

また、入口冷媒管7は接続部6aを介して複数の冷媒配管5に分岐され、水配管2の外周に設けた各条ごとの谷部3bにそれぞれ嵌入されて全長にわたって巻き付けられ、他端は合流する接続部6bを介して出口冷媒管8に接続されている。   In addition, the inlet refrigerant pipe 7 is branched into a plurality of refrigerant pipes 5 through the connection parts 6a, is fitted into the valley parts 3b for each strip provided on the outer periphery of the water pipe 2, and is wound over the entire length. It is connected to the outlet refrigerant pipe 8 through a connecting portion 6b that joins.

このようにして複数の冷媒配管5が巻き付けられた水配管2は、平面ほぼ楕円形の長円コイル状に形成され、その直線部には接続部4が位置している。そして、水配管2を流れる水と、冷媒配管5を流れる冷媒とは対向流になるように構成されている。冷媒配管5が連続的に巻き付けられた水配管2は図6のようになり、水配管2の山部3aと複数パスの冷媒配管5a,5b,5cが交互に見える外観となる。   The water pipe 2 around which the plurality of refrigerant pipes 5 are wound in this way is formed in a substantially elliptical elliptical coil shape, and the connection part 4 is located in the straight line part. The water flowing through the water pipe 2 and the refrigerant flowing through the refrigerant pipe 5 are configured to face each other. The water pipe 2 around which the refrigerant pipe 5 is continuously wound is as shown in FIG. 6, and has an appearance in which the crest 3a of the water pipe 2 and the refrigerant pipes 5a, 5b, 5c of a plurality of paths can be seen alternately.

次に、図7により本実施の形態に係る熱交換器1の製造方法について説明する。
図7(a)は複数の水配管2a,2b,…の接続前の状態を示し、図7(b)は接続後の状態を示すもので、接続部4はロウ付け等により金属接合され、このような接続を熱交換器1の全長に達するまで繰り返えす。以下、複数の水配管2a,2b,…が接続されて熱交換器の全長を構成する水配管を熱交換用水配管という。
Next, a method for manufacturing the heat exchanger 1 according to the present embodiment will be described with reference to FIG.
FIG. 7 (a) shows a state before connection of the plurality of water pipes 2a, 2b,..., FIG. 7 (b) shows a state after connection, and the connection portion 4 is metal-bonded by brazing or the like, Such a connection is repeated until the full length of the heat exchanger 1 is reached. Hereinafter, a water pipe that is connected to the plurality of water pipes 2a, 2b,... And constitutes the entire length of the heat exchanger is referred to as a heat exchange water pipe.

水配管2の接続が終ったときは、図7(c)に示すように、一方の端部の水配管2aの外周に設けた山谷部3の各谷部3bに沿って複数パス(図には3パスの場合が示してある)の冷媒配管5a,5b,5cを巻き付け、この冷媒配管5a,5b,5cを山谷部3のない接続部4にも巻き付ける。ついで、図7(d)に示すように、これに接続した水配管2bの各谷部3bに沿って連続的に巻き付け、このような作業を最終端の水配管2nまで繰り返えす。   When the connection of the water pipe 2 is finished, as shown in FIG. 7 (c), a plurality of paths (in the drawing) are provided along each valley 3b of the mountain valley 3 provided on the outer periphery of the water pipe 2a at one end. Is wrapped around the refrigerant pipes 5a, 5b, 5c, and the refrigerant pipes 5a, 5b, 5c are also wound around the connection part 4 without the mountain valley part 3. Next, as shown in FIG. 7 (d), winding is continuously performed along each valley 3b of the water pipe 2b connected thereto, and such work is repeated up to the final water pipe 2n.

このようにして、複数の水配管2a,2b,…,2nが接続された熱交換用水配管の全長にわたって冷媒配管5a,5b,5cが巻き付けられた熱交換器1は、図4に示すように、上下方向に複数段の長円コイル状に曲げ加工されたのち、ハンダ等の低融点金属により水配管2と冷媒配管5を一体に接合する。この際、水配管2の接続部4が長円コイル状の直線部に位置するように、あらかじめ水配管2の単品の長さを設定しておく。   In this way, the heat exchanger 1 in which the refrigerant pipes 5a, 5b, 5c are wound over the entire length of the water exchange water pipe to which the plurality of water pipes 2a, 2b,..., 2n are connected is as shown in FIG. After being bent into a plurality of elliptical coils in the vertical direction, the water pipe 2 and the refrigerant pipe 5 are integrally joined with a low melting point metal such as solder. At this time, the length of the single piece of the water pipe 2 is set in advance so that the connection part 4 of the water pipe 2 is positioned at the straight part of the elliptical coil shape.

上記のように構成した本実施の形態によれば、熱交換器1の入口及び出口以外には冷媒配管5の接続部がないので、冷媒配管5の接続箇所が大幅に減少する。このため、接続部のロウ付け部からの冷媒漏れやロウ付け材詰まりがほとんどなくなって信頼性が向上するばかりでなく、ロウ付け加工費を低減することができる。また、冷媒配管5の急拡大や急縮小がなくなるので、冷媒の流動損失が低減できると共に、水配管2に巻き付けた冷媒配管5の伝熱面積が増加するので、伝熱性能が向上する。
さらに、冷媒配管5の接続に要するスペースが不要になるので、熱交換器1をコンパクト化することができる。また、水配管2の接続部4が長円コイル状の直線部に位置するので、ロウ付け部からの水漏れを防止することができ、信頼性が向上する。
According to this Embodiment comprised as mentioned above, since there is no connection part of the refrigerant | coolant piping 5 other than the inlet_port | entrance and exit of the heat exchanger 1, the connection location of the refrigerant | coolant piping 5 reduces significantly. For this reason, there is almost no refrigerant leakage from the brazing part of the connecting part and clogging of the brazing material, so that not only the reliability is improved, but also the brazing processing cost can be reduced. Further, since the refrigerant pipe 5 is not suddenly expanded or contracted, the flow loss of the refrigerant can be reduced and the heat transfer area of the refrigerant pipe 5 wound around the water pipe 2 is increased, so that the heat transfer performance is improved.
Furthermore, since the space required for the connection of the refrigerant pipe 5 becomes unnecessary, the heat exchanger 1 can be made compact. Moreover, since the connection part 4 of the water piping 2 is located in the linear part of an ellipse coil shape, the water leak from a brazing part can be prevented and reliability improves.

[実施の形態2]
図8は本発明の実施の形態2に係る熱交換器の説明図、図9はその製造方法の説明図である。なお、実施の形態1と同じ部分はこれと同じ符号を付し、説明を省略する。
本実施の形態は、外周に設けた複数条の山谷部3の谷部3bに冷媒配管5a,5b,5cを巻き付けた水配管2を、偏平でほぼ楕円形状の長円渦巻状に形成したものである。なお、水配管2の接続部4は長円渦巻状の直線部に位置しており、また、水と冷媒は対向流になるように構成されている。
[Embodiment 2]
FIG. 8 is an explanatory view of a heat exchanger according to Embodiment 2 of the present invention, and FIG. 9 is an explanatory view of a manufacturing method thereof. In addition, the same part as Embodiment 1 attaches | subjects the same code | symbol as this, and abbreviate | omits description.
In the present embodiment, the water pipe 2 in which the refrigerant pipes 5a, 5b, 5c are wound around the valley portions 3b of the plurality of mountain valley portions 3 provided on the outer periphery is formed into a flat and substantially elliptical oval spiral shape. It is. In addition, the connection part 4 of the water piping 2 is located in an oval spiral linear part, and it is comprised so that water and a refrigerant | coolant may become a counterflow.

本実施の形態に係る熱交換器1の製造にあたっては、先ず、図9(a)に示すように、外周に設けた複数条(図には3条の場合が示してある)の山谷部3の谷部3bに3パスの冷媒配管5a,5b,5cが巻き付けられた第1の水配管2aに、図9(b)に示すように、第2の水配管2bを接続してロウ付け等により金属接合する。ついで、図9(c)に示すように、冷媒配管5a,5b,5cを接続部4に巻き付けたのち、引き続いて、図9(d)に示すように、第2の水配管2bの谷部3bに後端部まで巻き付ける。   In the manufacture of the heat exchanger 1 according to the present embodiment, first, as shown in FIG. 9A, a plurality of ridges and valleys 3 provided on the outer periphery (the case of three is shown in the figure). As shown in FIG. 9B, the second water pipe 2b is connected to the first water pipe 2a in which the three-pass refrigerant pipes 5a, 5b, and 5c are wound around the valley portion 3b, and brazed or the like. To join the metal. Then, as shown in FIG. 9 (c), the refrigerant pipes 5a, 5b, 5c are wound around the connection part 4, and subsequently, as shown in FIG. 9 (d), the valley part of the second water pipe 2b. Wind around 3b to the rear end.

そして、第1、第2の水配管2a,2bを図8の長円渦巻状の一部を形成するように曲げ加工する。そして、再び図9(b)に示すように、第2の水配管2bに第3の水配管を接続してその接続部4から谷部3bに冷媒配管5a,5b,5cを巻き付け、逐次曲げ加工する。
このような作業を全長に達するまで繰り返えし、偏平な長円渦巻状の熱交換器1を形成する。そして、全長にわたって曲げ加工が終了したのち、ハンダ等の低融点金属により水配管2と冷媒配管5a,5b,5cを一体に接合する。
Then, the first and second water pipes 2a and 2b are bent so as to form part of the elliptical spiral shape of FIG. Then, as shown in FIG. 9 (b) again, the third water pipe is connected to the second water pipe 2b, and the refrigerant pipes 5a, 5b, 5c are wound around the valley part 3b from the connecting part 4 and sequentially bent. Process.
Such an operation is repeated until the full length is reached, and the flat oval spiral heat exchanger 1 is formed. Then, after the bending process is completed over the entire length, the water pipe 2 and the refrigerant pipes 5a, 5b, 5c are integrally joined with a low melting point metal such as solder.

本実施の形態によれば、冷媒配管5が巻き付けられた水配管2を逐次曲げ加工するようにしたので、熱交換器1の全長にわたって長い状態で保持する必要がないため、加工設備を短かくすることができ、これにより加工費を低減することができる。その他の作用、効果は実施の形態1の場合と同様である。   According to the present embodiment, since the water pipe 2 around which the refrigerant pipe 5 is wound is sequentially bent, it is not necessary to hold the heat exchanger 1 in a long state over the entire length of the heat exchanger 1, so that the processing equipment can be shortened. This can reduce processing costs. Other actions and effects are the same as those in the first embodiment.

[実施の形態3]
図10は本発明の実施の形態3に係る熱交換器の要部断面図、図11は図10の一部拡大図である。なお、実施の形態1と同じ部分にはこれと同じ符号が付してある。
本実施の形態は、外周に設けた複数条(図には3条の場合が示してある)の山谷部3を各条ごとに連続して螺旋状に設けた水配管2に、3パスの冷媒配管5a,5b,5cを各条の谷部3bに沿ってそれぞれ螺旋状に巻き付け、水配管2と冷媒配管5a,5b,5cとの接触面積を拡大したものである。なお、本実施の形態においては、山谷部3の谷部3bをほぼ逆台形状に形成した。
[Embodiment 3]
10 is a cross-sectional view of a main part of a heat exchanger according to Embodiment 3 of the present invention, and FIG. 11 is a partially enlarged view of FIG. The same parts as those in the first embodiment are denoted by the same reference numerals.
In this embodiment, the water pipe 2 provided with a plurality of ridges and valleys 3 provided on the outer periphery (three cases are shown in the figure) continuously spirally for each row is provided with three passes. The refrigerant pipes 5a, 5b, 5c are spirally wound along the valleys 3b of the respective strips to enlarge the contact area between the water pipe 2 and the refrigerant pipes 5a, 5b, 5c. In the present embodiment, the valley portion 3b of the mountain valley portion 3 is formed in a substantially inverted trapezoidal shape.

そして、水配管2内の水の流れ方向(矢印で示す)に対して、入口で分岐した冷媒は冷媒配管5a,5b,5c内をそれぞれ螺旋状に対向流となるように逆方向に流れ、出口で再び合流して1本になる。この場合、冷媒にはCO2、HFC、HCFC、HC、H2O等を用いることができるが、これに限定するものではない。 Then, with respect to the flow direction of water in the water pipe 2 (indicated by arrows), the refrigerant branched at the inlet flows in the opposite direction so as to be spirally opposed in the refrigerant pipes 5a, 5b, 5c, It merges again at the exit and becomes one. In this case, CO 2 , HFC, HCFC, HC, H 2 O, or the like can be used as the refrigerant, but the refrigerant is not limited to this.

図11において、水配管2の外周に設けた山谷部3の山部3aの高さHは、冷媒配管5の半径Ro/2以上で直径Ro以下となるようにした。すなわち、谷部3bの山部側斜面3cと冷媒配管5との接触面積を安定して確保するために、山部3aの高さを冷媒配管5の半径Ro/2より大きくしたものである。また、山部3aのスパイラルピッチPは、冷媒配管5の直径Ro以上で直径Roの2倍以下となっている。 In FIG. 11, the height H of the crest 3 a of the crest 3 provided on the outer periphery of the water pipe 2 is set to be not less than the radius R o / 2 and not more than the diameter R o of the refrigerant pipe 5. That is, the height of the crest 3a is made larger than the radius R o / 2 of the refrigerant pipe 5 in order to stably secure the contact area between the crest 3c of the valley 3b and the refrigerant pipe 5. . Further, the spiral pitch P of the crest 3a is equal to or less than 2 times the diameter R o at least the diameter R o of the refrigerant pipe 5.

このように、水配管2の外周に特定範囲のピッチPで、特定範囲の山部3aの高さHで形成した山谷部3に沿って冷媒配管5を巻き付けるので、山谷部3がガイドとなって冷媒配管5を容易に所定の位置に巻き付けて固定することができ、冷媒配管5の過度の偏平化や座屈の発生を防止することができる。   As described above, the refrigerant pipe 5 is wound around the outer periphery of the water pipe 2 at the pitch P in the specific range and at the height H of the peak part 3a in the specific range, so that the mountain valley part 3 serves as a guide. Thus, the refrigerant pipe 5 can be easily wound and fixed at a predetermined position, and excessive flattening and buckling of the refrigerant pipe 5 can be prevented.

また、山谷部3の谷部3bの底部3dの幅Bを、冷媒配管5の内径Ri以上で、外径Ro+0.24mm以下とした。このように、内径マンドレルの挿入等によって谷部3bの幅Bを冷媒配管5の内径Ri以上とすることにより、冷媒配管5が谷部2bの底部3dに確実に接触すると共に、冷媒配管5を巻き付けるときの張力によって底部3dへの押し付け力が発生し易くなるので、接触熱抵抗を低減することができる。 Furthermore, the width B of the bottom 3d of the valley portion 3b of the peaks and valleys portion 3, at least the inside diameter R i of the refrigerant pipe 5, and the following outer diameter R o + 0.24 mm. Thus, by setting the width B of the valley 3b to be equal to or larger than the inner diameter R i of the refrigerant pipe 5 by inserting an inner diameter mandrel or the like, the refrigerant pipe 5 is surely in contact with the bottom 3d of the valley 2b, and the refrigerant pipe 5 Since the pressing force to the bottom 3d is easily generated by the tension at the time of winding, the contact thermal resistance can be reduced.

本実施の形態において、水配管2の外周に設けた山谷部3の山部3aの高さHが高すぎて冷媒配管5の直径Roを超えると、熱交換器としてのスペース効率が悪くなってコンパクト化を妨げると共に、山部3aのピッチPが冷媒配管5の直径Ro以下だと冷媒配管5を谷部3bの奥まで嵌め込むことができず、このため、冷媒配管5が谷部3bの底部3dに接触できないため、冷媒配管5と水配管2との接触伝熱面積が低下し、本来の目的を果すことができない。また、山部3aのピッチPが大きすぎて冷媒配管5の直径Roの2倍を超えると、水配管2の単位長さ当たりに対する冷媒配管5の全長が短かくなるので、熱交換器としての性能が低下し、好ましくない。 In this embodiment, the height H of the ridges 3a of the peaks and valleys portion 3 provided on the outer circumference of the water pipe 2 is too high than a diameter R o of the refrigerant pipe 5, space efficiency of the heat exchanger is deteriorated converting mechanism prevents the compact, the pitch P of the crest 3a can not be fitted the refrigerant pipe 5 that it follows the diameter R o of the refrigerant pipe 5 deep valleys 3b, Thus, the refrigerant pipe 5 is valley Since the bottom 3d of 3b cannot be contacted, the contact heat transfer area between the refrigerant pipe 5 and the water pipe 2 is reduced, and the original purpose cannot be achieved. If the pitch P of the crest 3a is too large and exceeds twice the diameter Ro of the refrigerant pipe 5, the total length of the refrigerant pipe 5 with respect to the unit length of the water pipe 2 becomes short. This is not preferable because the performance is reduced.

また、本実施の形態は、水配管2の谷部3bと冷媒配管5の接触面積をロウ付け等によって拡大する場合にも、谷部3bの山部側傾斜面3cと冷媒配管5と間のロウ付け隙間を設計することができる。一般に、ロウ付け品質を確保するためには、ロウ付け隙間は0.08mmから0.12mmとするのが工作上望ましく、このため、冷媒配管5と山部側傾斜面3cとの隙間を両側で0.16mmから0.24mmとすればよく、したがって、谷部3bの底部3dの幅Bを冷媒配管5の直径Ro+0.16〜0.24mmとすれば好適である。これにより、少ないロウ材で谷部3bと冷媒配管5との接触面積を拡大することができる。 Further, in the present embodiment, even when the contact area between the valley 3b of the water pipe 2 and the refrigerant pipe 5 is enlarged by brazing or the like, the gap between the mountain side inclined surface 3c of the valley 3b and the refrigerant pipe 5 is increased. A brazing gap can be designed. In general, in order to ensure brazing quality, it is desirable in terms of work that the brazing gap is 0.08 mm to 0.12 mm. For this reason, the gap between the refrigerant pipe 5 and the ridge-side inclined surface 3c is formed on both sides. well 0.24mm Tosureba from 0.16 mm, therefore, the width B of the bottom 3d of the valley 3b is preferred if the diameter R o + 0.16~0.24mm the refrigerant pipe 5. Thereby, the contact area of the trough part 3b and the refrigerant | coolant piping 5 can be expanded with few brazing materials.

また、水配管2の外周に設けた山谷部3は、図10に示すように、水配管2の内部に乱流が発生し易い形状となっているため、乱流促進効果により伝熱性能を向上することができる。
さらに、水配管2に設けた山谷部3の山部3aは、熱交換フインとしても作用するので、フイン効率アップ効果により熱伝導性が向上する。
In addition, as shown in FIG. 10, the mountain valley portion 3 provided on the outer periphery of the water pipe 2 has a shape in which turbulent flow is likely to occur inside the water pipe 2. Can be improved.
Furthermore, since the peak part 3a of the peak part 3 provided in the water piping 2 acts also as a heat exchange fin, thermal conductivity improves by the fin efficiency improvement effect.

本実施の形態によれば、冷媒配管5は水配管1の外周に設けた谷部3bの底部3dに接触すると共に、谷部3bの山部側傾斜面3cと冷媒配管5との最小隙間部分が、直接又はロウ付け等により接触するので、接触部分が3箇所となって伝熱的に接合される。このため、従来の平滑水配管に冷媒配管を巻き付けた熱交換器に比べて、有効接触伝熱面積を3倍以上に拡大することができ、このため、前述の乱流促進効果やフイン効率向上も相乗効果として作用することにより、単位水配管長さ当りのAK値(伝熱面積×熱通過率)を大幅に向上することができる。   According to the present embodiment, the refrigerant pipe 5 is in contact with the bottom 3d of the valley 3b provided on the outer periphery of the water pipe 1, and the minimum gap portion between the mountain side inclined surface 3c of the valley 3b and the refrigerant pipe 5 is used. However, since contact is made directly or by brazing or the like, there are three contact portions and heat transfer is joined. For this reason, the effective contact heat transfer area can be expanded more than three times compared to the heat exchanger in which the refrigerant pipe is wound around the conventional smooth water pipe, and therefore the above-described turbulent flow promotion effect and fin efficiency improvement. As a synergistic effect, AK value (heat transfer area × heat passage rate) per unit water pipe length can be greatly improved.

ここで、水配管2は、燐脱酸銅平滑管の両端部を固定し、内径側にマンドレルを挿入して捩り加工を加えることにより製造したが、これに限定するものではなく、液圧バルジ加工や鋳鍛造、切削加工、転造加工等、他の配管加工技術により水配管2を製造してもよい。また、水配管2の原材料を内面溝付き管とすれば、好適な効果を奏することができる。
また、水配管2及び冷媒配管5の材質は、燐脱酸銅に限定するものではなく、用途に応じて、銅、アルミニウム、鉄、ステンレス、チタンなどの配管用金属又はそれらの合金等を用いてもよい。
以下に、本実施の形態の実施例について説明する。
Here, the water pipe 2 was manufactured by fixing both ends of the phosphorous deoxidized copper smooth pipe, inserting a mandrel on the inner diameter side, and adding a twisting process, but the invention is not limited to this. The water pipe 2 may be manufactured by other pipe processing techniques such as processing, cast forging, cutting, and rolling. Moreover, if the raw material of the water pipe 2 is an internally grooved pipe, a suitable effect can be obtained.
Further, the material of the water pipe 2 and the refrigerant pipe 5 is not limited to phosphorous deoxidized copper, and pipe metals such as copper, aluminum, iron, stainless steel, titanium, or alloys thereof are used depending on the application. May be.
Examples of the present embodiment will be described below.

水配管2は、山谷部3の山部3aの外径SRo:14.0mm、内径SRi:8.0mm、条数:4、山部3aの高さH:2.5mm、山部3aのピッチP:4.8mm、谷部3bの底部3dの幅B:3.0mm、また、冷媒配管5は、外径Ro:3.2mm、内径Ri:2.0mm、冷媒は4パスで、ロウ付けは無し。
本実施例においては、水配管2の山谷部3と冷媒配管5の寸法関係を圧入気味に設定することにより、両者の間にロウ付けを行わなくても、比較的優れた伝熱性能を発揮できた。
The water pipe 2 has an outer diameter SR o : 14.0 mm, an inner diameter SR i : 8.0 mm, a number of ridges: 4, a height H of the mountain part 3a: 2.5 mm, and a mountain part 3a. Pitch P: 4.8 mm, bottom portion 3d width B: 3.0 mm, refrigerant pipe 5 has outer diameter R o : 3.2 mm, inner diameter R i : 2.0 mm, and refrigerant has four passes And there is no brazing.
In this embodiment, by setting the dimensional relationship between the crest and valley portion 3 of the water pipe 2 and the refrigerant pipe 5 to be indented, a relatively excellent heat transfer performance is exhibited without brazing between them. did it.

水配管2は、外径SRo:14.0mm、内径SRi:8.0mm、条数:3、山部3aの高さH:3.0mm、山部3aのピッチP:5.8mm、谷部3bの底部3dの幅B:3.5mm、また、冷媒配管5は、外径Ro:3.6mm、内径Ri:2.4mm、冷媒は3パスで、φ0.8のりん銅を螺旋状に巻き付けてロウ付けした。 The water pipe 2 has an outer diameter SR o : 14.0 mm, an inner diameter SR i : 8.0 mm, the number of ridges: 3, the height H of the ridge 3a: 3.0 mm, the pitch P of the ridge 3a: 5.8 mm, Width B of the bottom portion 3d of the valley portion 3b: 3.5 mm, the refrigerant pipe 5 has an outer diameter R o : 3.6 mm, an inner diameter R i : 2.4 mm, the refrigerant has three passes, and a phosphor copper of φ0.8 Was spirally wound and brazed.

本実施例においては、伝熱接触部にロウ付けにより伝熱接合を施したので、伝熱性能がさらに向上した。ロウ付けにあたっては、図12(a)に示すように、水配管2の山部3aと冷媒配管5との隙間、あるいは図12(b)に示すように、水配管2の谷部3bの底部3dと冷媒配管5との間の隙間に、ロウ材9又はハンダ材等を巻き付けてもよく、さらには、図13に示すように、水配管2の谷部3bの底部3dと冷媒配管5との間に、リボン状のロウ材9又はハンダ材等を巻き付けるなど、適宜実施することができる。   In this example, heat transfer performance was further improved because heat transfer bonding was performed by brazing the heat transfer contact portion. In brazing, as shown in FIG. 12 (a), the gap between the crest 3a of the water pipe 2 and the refrigerant pipe 5, or the bottom of the trough 3b of the water pipe 2 as shown in FIG. 12 (b). A brazing material 9 or solder material or the like may be wound around the gap between 3d and the refrigerant pipe 5, and furthermore, as shown in FIG. 13, the bottom 3d of the valley 3b of the water pipe 2 and the refrigerant pipe 5 In the meantime, a ribbon-like brazing material 9 or a solder material can be appropriately wound.

水配管2は、外径SRo:15.0mm、内径SRi:9.0mm、条数:2、山部3aの高さH:3.5mm、山部3aのピッチP:6.2mm、谷部3bの底部3dの幅B:4.0mm、また、冷媒配管5は、外径Ro:4.0mm、内径Ri:2.8mm、冷媒は2パスで、幅:3.5mm、厚み:0.2mmのリボン状のハンダ材9を、図13に示すようにセットしてハンダ付けした。 Water pipe 2 has an outer diameter SR o: 15.0 mm, inner diameter SR i: 9.0 mm, Conditions: 2, crest 3a height H: 3.5 mm, crest 3a of the pitch P: 6.2 mm, The width B of the bottom portion 3d of the valley portion 3b is 4.0 mm, the refrigerant pipe 5 has an outer diameter R o : 4.0 mm, an inner diameter R i : 2.8 mm, the refrigerant has two passes, and a width: 3.5 mm. A ribbon-shaped solder material 9 having a thickness of 0.2 mm was set and soldered as shown in FIG.

水配管2は、外径SRo:18.0mm、内径SRi:10.0mm、条数:4、山部3aの高さH:3.5mm、山部3aのピッチP:7.2mm、谷部3bの底部3dの幅B:5.0mm、また、冷媒配管5は、外径Ro:5.0mm、内径Ri:4.0mm、冷媒は2パスで、図13に示すように、水配管2の谷部3bの底部3dと冷媒配管5との間に、例えば、アルミニウム、ハンダ、ロウ材等のリボン状の低融点金属9を巻き付けて接合した。 Water pipe 2 has an outer diameter SR o: 18.0 mm, inner diameter SR i: 10.0 mm, Conditions: 4, crest 3a height H: 3.5 mm, crest 3a of the pitch P: 7.2 mm, As shown in FIG. 13, the width B of the bottom 3d of the valley 3b is 5.0 mm, the refrigerant pipe 5 has an outer diameter R o : 5.0 mm, an inner diameter R i : 4.0 mm, and the refrigerant has two passes. The ribbon-shaped low melting point metal 9 such as aluminum, solder, brazing material or the like is wound between and joined to the bottom 3 d of the valley 3 b of the water pipe 2 and the refrigerant pipe 5.

実施例4においては、水配管2の谷部3bの底部3dと冷媒配管5との間に、アルミニウム、ハンダ、ロウ材等の塑性変形能力の高い低融点金属を挟むようにしたので、加圧力が十分な場合には、実施例1の場合と同様に、加熱ロウ付けを行わなくても優れた伝熱接合を実現することができる。なお、実施例には示してないが、実験結果によれば、水配管2の山谷部3の山部3aの外径SR0は内径SRiの1.5倍以上2.5倍以下とすることが望ましく、また、水配管2の内径SRiは8mm以上12mm以下とすることが望ましい。 In Example 4, since a low melting point metal having high plastic deformation ability such as aluminum, solder, brazing material, etc. is sandwiched between the bottom 3d of the trough 3b of the water pipe 2 and the refrigerant pipe 5, the applied pressure If this is sufficient, similar to the case of Example 1, excellent heat transfer bonding can be realized without performing heat brazing. Although not shown in the embodiment, according to the experimental results, the outer diameter SR 0 of the crest 3a of the crest 3 of the water pipe 2 is 1.5 times or more and 2.5 times or less than the inner diameter SR i. The inner diameter SR i of the water pipe 2 is preferably 8 mm or more and 12 mm or less.

図14は水配管2の谷部3bに冷媒配管5を加熱ロウ付けした状態を示す説明図である。加熱ロウ付けは、炉中ロウ付け、高周波ロウ付け、ガスバーナーロウ付け等により行うことができる。なお、ハンダ付けの場合も同様である。   FIG. 14 is an explanatory view showing a state in which the refrigerant pipe 5 is heated and brazed to the valley 3b of the water pipe 2. FIG. Heat brazing can be performed by in-furnace brazing, high-frequency brazing, gas burner brazing, or the like. The same applies to soldering.

本実施の形態によれば、水配管2の外周に設けた山谷部3及びこれに巻き付けられる冷媒配管5の寸法を適宜設定することにより、両者の間にロウ付けを行うことなく、又は両者の間にアルミニウム、ハンダ、ロウ材等の塑性変形能力の高い低融点金属を介装することにより、加熱ロウ付けを行い、若しくは加圧力により両者を一体に接合するようにしたので、伝熱接合する際に顕著な生産性向上や品質の向上をはかることができ、優れた伝熱性能を発揮することができる。なお、本実施の形態は実施の形態1,2に適用しうることは云う迄もない。   According to the present embodiment, by appropriately setting the dimensions of the mountain valley portion 3 provided on the outer periphery of the water pipe 2 and the refrigerant pipe 5 wound around this, without brazing between them or both By interposing a low-melting-point metal with high plastic deformation ability such as aluminum, solder, brazing material in between, heat brazing is performed, or both are integrally joined by pressure, so heat transfer joining is performed. In particular, the productivity and quality can be improved remarkably, and excellent heat transfer performance can be exhibited. Needless to say, this embodiment can be applied to the first and second embodiments.

[実施の形態4]
図15は本発明の実施の形態4に係る水配管の外周に設けた山谷部の条数と、これに巻き付ける冷媒配管のパスパターンの事例を示す説明図である。
図15(a)は山谷部3が2条、冷媒配管5が2パスの例、図15(b)は山谷部3が3条、冷媒配管5が3パスの例を示し、図15(c)は山谷部3が3条、冷媒配管5が2パスの例、図15(d)は山谷部3が4条、冷媒配管5が4パスの例、図15(e)は山谷部3が4条、冷媒配管5が2パスの例をそれぞれ示す。これら2〜4パスに分岐された冷媒配管5は、前述のように入口及び出口で統合されてそれぞれ1本になる。
このような水配管2の山谷部3の条数と、これに巻き付けられる冷媒配管5のパス数は、冷媒の流量、流速、圧損などの特性に応じて好適に選択することができる。
[Embodiment 4]
FIG. 15 is an explanatory diagram showing an example of the number of ridges and valleys provided on the outer periphery of the water pipe according to Embodiment 4 of the present invention and the path pattern of the refrigerant pipe wound around this.
15A shows an example in which the mountain valley portion 3 has two lines and the refrigerant pipe 5 has two passes, and FIG. 15B shows an example in which the mountain valley portion 3 has three lines and the refrigerant pipe 5 has three passes. ) Is an example in which the mountain valley portion 3 has three strips and the refrigerant pipe 5 has two passes, FIG. 15D shows an example in which the mountain valley portion 3 has four strips and the refrigerant pipe 5 has four passes, and FIG. 4 and an example in which the refrigerant pipe 5 has two passes is shown. As described above, the refrigerant pipes 5 branched into these 2 to 4 paths are integrated at the inlet and the outlet, and become one each.
The number of ridges and valleys 3 of the water pipe 2 and the number of passes of the refrigerant pipe 5 wound around the water pipe 2 can be suitably selected according to characteristics such as the flow rate, flow velocity, and pressure loss of the refrigerant.

上記の説明では、冷媒配管5が巻き付けられた水配管2を曲げ加工して、長円コイル状又は長円渦巻状に形成した場合を示したが、これに限定するものではなく、例えば、冷媒配管5が巻き付けられた水配管2を曲げ加工して偏平な螺旋状(以下、偏平螺旋状という)に形成するなど、他の形状に形成してもよい。   In the above description, the water pipe 2 around which the refrigerant pipe 5 is wound is bent and formed into an oval coil shape or an oval spiral shape. However, the present invention is not limited to this. The water pipe 2 around which the pipe 5 is wound may be bent and formed into a flat spiral shape (hereinafter referred to as a flat spiral shape).

上述した本発明に係る熱交換器は、ヒートポンプ式給湯機用の熱交換器に限定するものではなく、水と冷媒に係る熱交換器に広く適用することができる。なお、本発明に係る熱交換器は、外周に断熱テープを巻いたり、断熱材で覆たりすることにより、熱交換性能をさらに向上させることができる。   The heat exchanger according to the present invention described above is not limited to a heat exchanger for a heat pump type hot water heater, and can be widely applied to a heat exchanger related to water and a refrigerant. In addition, the heat exchanger which concerns on this invention can further improve heat exchange performance by winding a heat insulation tape around an outer periphery, or covering with a heat insulating material.

本発明の実施の形態1に係る熱交換器を備えた給湯室外機の分解斜視図である。It is a disassembled perspective view of the hot water supply outdoor unit provided with the heat exchanger which concerns on Embodiment 1 of this invention. 図1の冷凍サイクル回路と給湯回路の配管系統図である。FIG. 2 is a piping system diagram of the refrigeration cycle circuit and hot water supply circuit of FIG. 1. 図1の熱交換器ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of the heat exchanger unit of FIG. 図3の捩り管形の熱交換器の説明図である。It is explanatory drawing of the twisted tube type heat exchanger of FIG. 図4の水配管の説明図である。It is explanatory drawing of the water piping of FIG. 図5の水配管に冷媒配管を巻き付けた状態を示す説明図である。It is explanatory drawing which shows the state which wound the refrigerant | coolant piping around the water piping of FIG. 実施の形態1に係る熱交換器の製造方法の説明図である。3 is an explanatory diagram of a method for manufacturing the heat exchanger according to Embodiment 1. FIG. 本発明の実施の形態2に係る熱交換器の説明図である。It is explanatory drawing of the heat exchanger which concerns on Embodiment 2 of this invention. 実施の形態2に係る熱交換器の製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing a heat exchanger according to Embodiment 2. FIG. 本発明の実施の形態3に係る熱交換器の要部断面図である。It is principal part sectional drawing of the heat exchanger which concerns on Embodiment 3 of this invention. 図10の一部拡大図である。FIG. 11 is a partially enlarged view of FIG. 10. 実施例2の説明図である。FIG. 6 is an explanatory diagram of Example 2. 実施例4の説明図である。It is explanatory drawing of Example 4. FIG. 水配管の谷部と冷媒配管とを加熱ロウ付けにより接合した状態を示す説明図である。It is explanatory drawing which shows the state which joined the trough part of water piping, and refrigerant | coolant piping by heating brazing. 本発明の実施形態4に係る水配管の山谷部の条数とこれに巻き付ける冷媒配管のパスパターンの事例を示す説明図である。It is explanatory drawing which shows the example of the path | route pattern of the refrigerant | coolant piping wound around this, and the number of the threads of the water piping which concern on Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 熱交換器、2 水配管、3 山谷部、3a 山部、3b 谷部、3c 山部側傾斜面、3d 底部、4 接続部、5 冷媒配管。
DESCRIPTION OF SYMBOLS 1 Heat exchanger, 2 water piping, 3 mountain valley part, 3a mountain part, 3b valley part, 3c mountain part side inclined surface, 3d bottom part, 4 connection part, 5 refrigerant | coolant piping.

Claims (17)

両端部を除く領域の外周に複数条の山谷部の谷部を各条ごとに連続して螺旋状に形成した複数の水配管を接続してなる熱交換用水配管と、
該熱配管用水配管の山谷部の谷部に沿って巻き付けると共に、前記接続部にも連続して巻き付けた冷媒配管とを備えたことを特徴とする熱交換器。
A heat exchange water pipe formed by connecting a plurality of water pipes formed continuously in a spiral shape to the outer circumference of the region excluding both ends, and a plurality of crests and valleys,
A heat exchanger comprising: a refrigerant pipe wound around the valley of the valley of the water pipe for the heat pipe and continuously wound around the connecting part.
前記熱交換用水配管に巻き付ける冷媒配管を複数パスとしたことを特徴とする請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein a plurality of refrigerant pipes are wound around the heat exchange water pipe. 前記冷媒配管が巻き付けられた熱交換器用水配管を長円コイル状、長円渦巻状又は偏平螺旋状に形成し、前記水配管の接続部をその直線部に位置させたことを特徴とする請求項1又は2記載の熱交換器。   The water pipe for a heat exchanger around which the refrigerant pipe is wound is formed in an oval coil shape, an oval spiral shape, or a flat spiral shape, and the connection portion of the water pipe is positioned at the straight portion. Item 3. The heat exchanger according to item 1 or 2. 前記熱交換用水配管を流れる水と、前記冷媒配管を流れる冷媒とが対向流となるように構成したことを特徴とする請求項1〜3のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein the water flowing through the heat exchange water pipe and the refrigerant flowing through the refrigerant pipe are opposed to each other. 前記水配管の山谷部の山部の外径を、その内径の1.5倍以上2.5倍以下としたことを特徴とする請求項1〜4のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 4, wherein an outer diameter of a peak portion of a mountain valley portion of the water pipe is 1.5 times or more and 2.5 times or less of an inner diameter thereof. 前記水配管の山谷部の山部の高さを、冷媒配管の外径の1/2以上で外径以下に形成したことを特徴とする請求項1〜5のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 5, wherein a height of a crest portion of the crest and trough portion of the water pipe is formed to be not less than 1/2 of the outer diameter of the refrigerant pipe and not more than the outer diameter. . 前記水配管の山谷部の山部nピッチを、冷媒配管の外径以上で径の2倍以下に形成したことを特徴とする請求項1〜6のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 6, wherein a peak n pitch of a mountain valley portion of the water pipe is formed to be not less than the outer diameter of the refrigerant pipe and not more than twice the diameter. 前記水配管の山谷部の谷部の底部の幅を、冷媒配管の内径以上で外径+0.16mm〜0.24mm以下に形成したことを特徴とする請求項1〜7のいずれかに記載の熱交換器。   The width of the bottom part of the valley part of the valley part of the said water piping was formed in the outer diameter + 0.16mm-0.24mm or less more than the internal diameter of refrigerant | coolant piping, The one in any one of Claims 1-7 characterized by the above-mentioned. Heat exchanger. 前記水配管の山谷部の山側傾斜面と冷媒配管との間に形成された最小隙間部分を伝熱的に接合したことを特徴とする請求項1〜8のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 8, wherein a minimum gap formed between a crest-side inclined surface of a crest and a valley of the water pipe and the refrigerant pipe is heat-transferred. 前記水配管の山谷部とこれに巻き付けられた冷媒配管とを、低融点金属により接合したことを特徴とする請求項1〜9記載の熱交換器。   The heat exchanger according to any one of claims 1 to 9, wherein a mountain valley portion of the water pipe and a refrigerant pipe wound around the water pipe are joined by a low melting point metal. 前記水配管の肉厚を0.5mm以上1.0mm以下としたことを特徴とする請求項1〜10記載の熱交換器。   The thickness of the said water piping was 0.5 mm or more and 1.0 mm or less, The heat exchanger of Claims 1-10 characterized by the above-mentioned. 前記水配管の内径が8mm以上12mm以下であることを特徴とする請求項1〜11記載の熱交換器。   The heat exchanger according to claim 1, wherein an inner diameter of the water pipe is 8 mm or more and 12 mm or less. 前記冷媒配管を流れる冷媒は、二酸化炭素冷媒であることを特徴とする請求項1〜12記載の熱交換器。   The heat exchanger according to claim 1, wherein the refrigerant flowing through the refrigerant pipe is a carbon dioxide refrigerant. 両端部を除く領域の外周に複数条の山谷部が各条ごとに連続して形成された複数の水配管を接続して熱交換用水配管を形成し、該熱交換用水配管の一端から前記山谷部の谷部に沿って冷媒配管を巻き付けると共に前記水配管の接続部にも巻き付けて他端まで連続的に巻き付けることを特徴とする熱交換器の製造方法。   A plurality of ridges and valleys connected to the outer periphery of the region excluding both ends are connected to a plurality of water pipes formed continuously for each stripe to form a heat exchange water pipe, and the ridges and valleys are formed from one end of the heat exchange water pipe. A method of manufacturing a heat exchanger, wherein a refrigerant pipe is wound along a trough portion of the section and is also wound around a connecting portion of the water pipe and continuously wound to the other end. 前記冷媒配管が巻き付けられた熱交換用水配管を、水配管の接続部が直線部に位置するように曲げ加工して長円コイル状又は長円渦巻状に形成することを特徴とする請求項14記載の熱交換器の製造方法。   15. The heat exchanging water pipe around which the refrigerant pipe is wound is bent so that the connecting portion of the water pipe is located in a straight portion, and formed into an oval coil shape or an oval spiral shape. The manufacturing method of the heat exchanger of description. 両端部を除く領域の外周に複数条の山谷部の谷部が各条ごとに連続して形成された水配管の一端から前記山谷部の谷部に沿って冷媒配管を巻き付け、該冷媒配管が他端に達したときは該水配管に次の水配管を接続し、前記冷媒配管を該接続部に巻き付けたのち次の水配管の山谷部に谷部に沿って端部まで巻き付け、この作業を繰り返えすことを特徴とする熱交換器の製造方法。   A refrigerant pipe is wound from one end of a water pipe in which a plurality of valleys of valleys are continuously formed on the outer periphery of the region excluding both ends along the valley of the valleys, When the other end is reached, the next water pipe is connected to the water pipe, and the refrigerant pipe is wound around the connecting portion, and then wound around the valley of the next water pipe to the end along the valley. The heat exchanger manufacturing method characterized by repeating. 前記冷媒配管が巻き付けられて接続された複数の水配管ごとに曲げ加工し、これら曲げ加工された水配管をその接続部が直線部に位置するように接続して長円コイル状又は長円渦巻状に形成することを特徴とする請求項16記載の熱交換器の製造方法。
The plurality of water pipes connected by winding the refrigerant pipe are bent, and the bent water pipes are connected so that the connecting parts are located in the straight part to form an elliptical coil shape or an elliptical spiral. The heat exchanger manufacturing method according to claim 16, wherein the heat exchanger is formed in a shape.
JP2005158980A 2005-05-31 2005-05-31 Heat exchanger and manufacturing method thereof Active JP4224793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158980A JP4224793B2 (en) 2005-05-31 2005-05-31 Heat exchanger and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158980A JP4224793B2 (en) 2005-05-31 2005-05-31 Heat exchanger and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006336885A true JP2006336885A (en) 2006-12-14
JP4224793B2 JP4224793B2 (en) 2009-02-18

Family

ID=37557593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158980A Active JP4224793B2 (en) 2005-05-31 2005-05-31 Heat exchanger and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4224793B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245344A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Molded motor, blower, air conditioner, and water heater, and water heater
JP2008281263A (en) * 2007-05-09 2008-11-20 Hitachi Cable Ltd Heat exchanger
JP2011089680A (en) * 2009-10-21 2011-05-06 Mitsubishi Electric Corp Method of manufacturing twisted pipe-type heat exchanger
JP2011202872A (en) * 2010-03-25 2011-10-13 Mitsubishi Electric Corp Twisted tube type heat exchanger and equipment device including the same
JP2012163225A (en) * 2011-02-03 2012-08-30 Mitsubishi Electric Corp Heat pump hot-water supply outdoor unit
CN107355914A (en) * 2017-06-15 2017-11-17 青岛海尔空调电子有限公司 A kind of air-conditioning heat dissipation structural parameter determining method and air-conditioning heat dissipation structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122762A (en) * 1996-10-22 1998-05-15 Matsushita Electric Ind Co Ltd Heat exchanger
JP2001304047A (en) * 2000-04-24 2001-10-31 Usui Internatl Ind Co Ltd Egr gas cooling device
JP2002228370A (en) * 2001-01-30 2002-08-14 Daikin Ind Ltd Heat exchanger
JP2002364989A (en) * 2001-06-07 2002-12-18 Daikin Ind Ltd Method for manufacturing heat exchanger
JP2003247747A (en) * 2002-02-26 2003-09-05 Sanyo Electric Co Ltd Heat exchanger and heat pump type hot water supply apparatus with usage of it
JP2004332969A (en) * 2003-05-01 2004-11-25 Taiheiyo Seiko Kk Heat exchanger and manufacturing method of heat exchanger
JP2005076915A (en) * 2003-08-28 2005-03-24 Kobe Steel Ltd Composite heat exchanger tube

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122762A (en) * 1996-10-22 1998-05-15 Matsushita Electric Ind Co Ltd Heat exchanger
JP2001304047A (en) * 2000-04-24 2001-10-31 Usui Internatl Ind Co Ltd Egr gas cooling device
JP2002228370A (en) * 2001-01-30 2002-08-14 Daikin Ind Ltd Heat exchanger
JP2002364989A (en) * 2001-06-07 2002-12-18 Daikin Ind Ltd Method for manufacturing heat exchanger
JP2003247747A (en) * 2002-02-26 2003-09-05 Sanyo Electric Co Ltd Heat exchanger and heat pump type hot water supply apparatus with usage of it
JP2004332969A (en) * 2003-05-01 2004-11-25 Taiheiyo Seiko Kk Heat exchanger and manufacturing method of heat exchanger
JP2005076915A (en) * 2003-08-28 2005-03-24 Kobe Steel Ltd Composite heat exchanger tube

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245344A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Molded motor, blower, air conditioner, and water heater, and water heater
JP4695111B2 (en) * 2007-03-26 2011-06-08 三菱電機株式会社 Mold electric motor, blower, air conditioner and water heater
JP2008281263A (en) * 2007-05-09 2008-11-20 Hitachi Cable Ltd Heat exchanger
JP2011089680A (en) * 2009-10-21 2011-05-06 Mitsubishi Electric Corp Method of manufacturing twisted pipe-type heat exchanger
JP2011202872A (en) * 2010-03-25 2011-10-13 Mitsubishi Electric Corp Twisted tube type heat exchanger and equipment device including the same
JP2012163225A (en) * 2011-02-03 2012-08-30 Mitsubishi Electric Corp Heat pump hot-water supply outdoor unit
CN107355914A (en) * 2017-06-15 2017-11-17 青岛海尔空调电子有限公司 A kind of air-conditioning heat dissipation structural parameter determining method and air-conditioning heat dissipation structure
CN107355914B (en) * 2017-06-15 2020-07-07 青岛海尔空调电子有限公司 Air conditioner heat dissipation structure parameter determination method and air conditioner heat dissipation structure

Also Published As

Publication number Publication date
JP4224793B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4211041B2 (en) Heat pump water heater
JP4449856B2 (en) Twisted tube heat exchanger
EP2312254B1 (en) Heat exchanger and air conditioner having the heat exchanger
JP3953074B2 (en) Heat exchanger
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
JP2001201275A (en) Double tube heat exchanger
JP2002228370A (en) Heat exchanger
JP4084174B2 (en) Heat exchanger
JP2005133999A (en) Heat pump type hot-water supplier
JP2006078163A (en) Flat tube, plate body for manufacturing flat tube, and heat exchanger
JP4437487B2 (en) Twisted tube heat exchanger and heat pump water heater
JP2010091266A (en) Twisted tube type heat exchanger
JP2009121708A (en) Heat exchanger
US20080047698A1 (en) Advanced gravity-film &amp; double-helix heat exchangers (&#34;gfx+™ &amp; &#34;dhx™&#34;)
JP4713562B2 (en) Heat exchanger and heat pump water heater using the same
JP2008249163A (en) Heat exchanger for supplying hot water
WO2013118762A1 (en) Fin tube-type heat exchanger
JP2005061667A (en) Heat exchanger
JP5073074B2 (en) Heat exchanger and heat pump water heater using the same
KR101016696B1 (en) turn fin type heat exchanger and manufacturing method for turn fin type heat exchanger
JP2005321122A (en) Tubular type heat exchanger
JP5334898B2 (en) Twisted tube heat exchanger and equipment equipped with the same
JP2008215766A (en) Heat exchanger for hot water supply
JP2005098612A (en) Heat exchanger and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4224793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250