【0001】
【発明の属する技術分野】
本発明は、熱交換器に関し、特に、使用に伴い熱変形した場合にも、熱交換率を維持することの可能な熱交換器、及びその製造方法に関する。
【0002】
【従来の技術】
熱交換器は、冷媒の流通する冷媒管や、高温の湯の流通する流湯管を備えており、これら冷媒管や流湯管内を流通する冷媒や湯の有する熱量を管材外部の気体や流体と熱交換をするものである。ここで、図9に、一従来例の流湯管90を示す。図9に示すように、流湯管90は、螺旋状(コイル状)に巻回されている。
【0003】
このような螺旋状に巻回された流湯管90の製造方法においては、まず、略真円状の断面積を有する管材91を螺旋状に巻回する。巻回後、隣り合う螺旋の管材相互が接触し、且つ管材の断面積が偏平となるように、流湯管90には螺旋の軸方向(矢印Z方向、及び、反矢印Z方向)より圧縮加工が施される。このように形成することにより、収納スペースを小さくすることができるとともに、隣合う流湯管90,90同士の接触面積を増やして、熱交換率を増やすことができるのである。
【0004】
また、夫々螺旋状に巻回された冷媒管と給湯水管とが交互に配置するように組み合わされるとともに、螺旋の両端に設けた端板をボルトとナットとにより前記管ば互いに圧接するように締結した熱交換器もある(特許文献1および2参照)。このように構成することにより、隣合う冷媒管と給湯水管との間で熱交換率を向上させるとともに、使用に伴って熱変形した場合にも隣合う冷媒管と給湯水管との密着状態を維持することができるのである。
【0005】
【特許文献1】
特開2001−241865号公報
【特許文献2】
特開昭62−268990号公報
【0006】
【発明が解決しようとする課題】
しかしながら、熱交換器を構成する管材には銅管が用いられるのが通常であるが、流湯管90内に湯が流通すると、流湯管90が熱変形により反りが発生する。すると、図10に示すように、螺旋の隣り合う流湯管90,90の間に隙間92が発生してしまう。即ち、隣合う流湯管90,90同士が面接触から線接触となってしまい、熱交換率が悪くなるという問題点があった。更には、図9に示す熱交換器の場合、単独で使用されず、図11に示すように、給湯タンク9001等に内接する必要があり、使用範囲が限定されてしまうという問題点もあった。
【0007】
また、夫々螺旋状に巻回された冷媒管と給湯水管とが交互に配置するように組み合わされる熱交換器においては、複数の管材を螺旋状に巻回する工程や、螺旋状に巻回した後、両管材を螺旋の両側より圧接する工程を行わなければならず、製造工程が煩雑で製造コストが高くなってしまうという問題点があった。また、両側より圧接すると両管材の残留内部応力が高くなり、使用に伴い熱変形すると、却って両管材間に間隙が発生してしまうという問題点もあった。更には、加工技術状(両管材ともに熱交換率の向上を目的として螺旋の径方向の長さを軸方向の長さよりも大きくされているため)、螺旋の径の小径化も限定され、その形状が限定されてしまうという問題点もあった。
【0008】
そこで、案出されたのが本発明であって、本発明は、使用に伴い熱変形しても熱交換率を維持することができるとともに、配設スペースに応じた自在な形状に加工することも容易で、広範囲な用途に使用することのできる製造コストの安価な熱交換器、及びその製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
この目的を達成するために、請求項1記載の熱交換器は、冷媒の流通する冷媒管、及び被冷媒の流通する被冷媒管の両管材が接触するように組み合わされて構成されるものであり、更に、前記冷媒管または被冷媒管のうちの何れか一方の管材を軸管として、該軸管の外周に沿って他方の管材が螺旋状に巻回されているものである。
請求項2記載の熱交換器は、請求項1記載の熱交換器において、軸管となる管材は、他方の管材が螺旋状に巻回される部分の径が、巻回されていない部分に比べて大きくされているものである。
請求項3記載の熱交換器は、請求項1または2に記載の熱交換器において、軸管となる管材は、他方の管材を巻回した後、軸管内を加圧することにより、螺旋状に巻回された前記他方の管材のうち隣合う管材間に凸部が形成されているものである。
請求項4記載の熱交換器の製造方法は、冷媒の流通する冷媒管、及び被冷媒の流通する被冷媒管の両管材が接触するように組み合わせることにより熱交換器を製造する方法であり、前記冷媒管および被冷媒管の両管材を組み合わせるために、前記両管材のうちの何れか一方の管材を軸管として、該軸管の外周に沿って他方の管材を螺旋状に巻回する巻回工程と、該巻回工程後、螺旋状に巻回された前記他方の管材のうち隣合う管材間に凸部を形成するために、前記軸管内を加圧する加圧工程とを備えている。
【0010】
【発明の実施の形態】
以下、添付図面を参照して本発明の好ましい実施例について説明する。勿論、下記実施例は、本発明の好ましい実施例を示すに過ぎず、本発明の技術的範囲は、下記実施例そのものに何ら限定されるものではない。例えば、下記実施例においては、冷媒が水であり被冷媒が湯である場合について説明しているが、冷媒は水以外の液体であっても更には気体であってもよく(例えば、クーラントや油、その他の低温流体)、同様に、被冷媒についても湯以外の液体であっても更には気体であっても良い(例えば、フロン22やCO2、メタンガス、その他の高温流体)。
【0011】
図1は、本発明の一実施例である熱交換器100の側面図である。図1に示すように、熱交換器100は、流水管10と、流湯管20とによって構成されている。流水管10は、水の流通するための管材であり、流湯管20は、湯の流通するための管材である。
【0012】
流湯管20は、流水管10を軸(軸管)として、流水管10の外周に沿って螺旋状に巻回されている。これにより、流水管10と流湯管20とを簡素に且つ強固に組み合わせることができる。また、本熱交換器100の配設スペースが縦長に限定されている場合にも、流水管10の形状を縦長(細長)等に加工することにより、熱交換器100全体の形状を配設スペースに応じた形状に加工することが容易である。特に、後述するような円筒形状の給湯タンク1001と併用する場合に、その給湯タンク1001の側方に沿って配設すれば、給湯タンク1001のデッドスペース(設置場所における壁材との間のスペース等)を有効活用することができるのである。
【0013】
また、流湯管20は、螺旋の軸方向の径が螺旋の径方向の径よりも大きくされている(楕円形状に形成されている)。これにより、流水管10と流湯管20との組合せ状態を安定させることができるとともに、熱交換率を高めることも可能となる。更には、熱交換器100全体の径を、より小さくすることもできる。
【0014】
一方、流水管10は、その中央部(流湯管20の巻回部)11aが両端部(流湯管20の非巻回部)11bに比べて、径が大きくされている。これにより、流水管10の周囲に巻回されている流湯管20の全巻回長を長くすることが、ひいては、流水管10と流湯管20との接触面積を大きくすることができる。また、内部に流通する流水管10が中央部11aにおいて攪拌し、熱交換率を高めることもできる。
【0015】
また、流水管10には、螺旋状に巻回された隣合う流湯管20,20の間に凸部11cが形成されている。従って、流水管10と流湯管20とを強固に密着させることができるとともに、使用に伴い流湯管20が熱変形した場合にも、流水管10との接触面積が減少してしまうことを防止できる。むしろ、熱変形に伴って、凸部11cの形状に合うように流湯管20が変形し、流水管10と流湯管20との接触面積がより増大するのである。ひいては、使用に伴い熱変形しても、熱交換率を高く維持できる。
【0016】
次に、図2および図3を参照して、上記のように構成された熱交換器100の製造方法について説明する。まず、図2に示すように、予め別工程で製造された流水管10の外周に沿って、同じく別工程において製造された流湯管20を巻回する(巻回工程)。流湯管20の巻回後、流水管10の両端より流体(流体であれば、空気等の気体、水等の液体、水銀等の固体等、その如何を問わない)を圧入する。この圧入に伴って、流水管10の内部が加圧され、螺旋状に巻回された隣合う流湯管20,20の間に凸部11cが形成されるのである。この凸部11cの形成がされたら、内部の気体等を排出して、熱交換器100の製造が終了する。
【0017】
次に、図4および図5を参照して、上記のように熱交換器100の設置例について説明する。
【0018】
図4は、熱交換器100を給湯タンク1001(給湯器の一種)と併用した風呂湯沸かしシステム1000の模式図であり、図5は、床暖房システム2000の模式図である。風呂湯沸かしシステム1000は、給湯タンク1001、風呂桶1002および混合弁1003が配管1004で接続されて構成されており、給湯タンク1001で温められた湯(飲料水等にも使用される)を混合弁1003を介して直接に供給することができることは勿論のこと、熱交換器100を利用して、風呂桶1002内の貯水を沸かす(又は、保温する)ものである。一方、床暖房システム2000は、床1005の暖房を行うものであり、風呂湯沸かしシステム1000と同様に構成されているので、その詳細な説明は割愛する。
【0019】
ここで、熱交換器100は、流水管10と流湯管20とが交互に接触するように組み合わされて構成されているので、給湯タンク1001の外側に設置することができる。ひいては、図11に示すような従来のシステム9000と異なり、給湯タンク9001の内部の配管1004aが破損した場合にも、給湯タンク9001内において、風呂の水が飲み水とが混ざったり、水道水の塩素分が混入してしまうことを防止することができる(即ち、衛生を確保したり、給湯タンク9001内部の腐食を防止することができる)。また、従来技術の熱交換器91が内蔵されている給湯タンク901のような専用タイプでなくても、汎用タイプの給湯タンクをそのまま有効活用することもできる。更には、図示はしないが、給湯タンク9001の大きさを小さくすることが可能となるし、給湯タンク9001以外の給湯器と併用することも可能となる。
【0020】
以上、実施例に基づき本発明を説明したが、上記実施例は、本発明の趣旨を逸脱しない範囲内で種々の改良変形することができることはいうまでもなく、本発明の技術的範囲内には、それら種々の改良変形をも含まれている。
【0021】
例えば、上記実施例においては、流水管10が軸管、流湯管20が螺旋管とされている。しかしながら、流水管10が螺旋管とされ、流湯管20が軸管とされても良いことはいうまでもない。
【0022】
また、上記実施例においては、流湯管20の形状が偏平(楕円)状とされている。しかしながら、その形状は偏平状に限られるものではなく、図6に示すように、真円状であっても良いし、図7に示すように、四角状であっても良い。この場合、図6に示すように、凸部11cを形成しても良いし、図7に示すように、凸部11cを形成しないようにしても良い。
【0023】
更に、上記実施例においては、流湯管20が流水管10の外周に間隔を空けて巻回されている。しかしながら、図8に示すように、間隔を空けないで巻回するようにしても良い。
【0024】
更に、上記実施例においては、流湯管20と流水管10とを密着させる方法として、流水管10内に流体を圧入することにより流水管10内を加圧する方法が用いられている。しかしながら、流水管10内に高温流体又は低温流体を流するとともに流湯管20内にその逆の流体を流して、その温度差により流湯管20及び流水管10を熱変形させて密着させる方法を用いても良い。
【0025】
更に、本実施例においては、流水管10は冷媒管の一例であり、流湯管20は被冷媒管の一例であるが、本発明に係る冷媒管は、温度の低い流体が流れる管であれば(低温流体管)、流水管10に限られるものではない。同様に、本発明に係る被冷媒管も、温度の高い流体が流れる管であれば(高温流体管)、流湯管20に限られるものではない。勿論、温度の高低は、相対的なものである。
【0026】
【発明の効果】
請求項1記載の熱交換器によれば、冷媒管または被冷媒管のうちの何れか一方の管材を軸管として、該軸管の外周に沿って他方の管材が螺旋状に巻回されているので、使用に伴い螺旋管が変形しても、両管材の密着状態を保持することができるという効果を奏する。
請求項2記載の熱交換器によれば、請求項1記載の熱交換器の奏する効果に加え、軸管となる管材は他方の管材が螺旋状に巻回される部分の径が巻回されていない部分に比べて大きくされているので、両管材の接触長さを増やすことができ、ひいては、熱交換率を高めることができるという効果を奏する。
請求項3記載の熱交換器によれば、請求項1または2に記載の熱交換器の奏する効果に加え、螺旋状に巻回された前記他方の管材のうち隣合う管材間に凸部が形成されているので、冷媒管および被冷媒管の一体性をより高めることができるという効果を奏する。
請求項4記載の熱交換器製造方法によれば、巻回工程において、前記冷媒管および被冷媒管の両管材のうちの何れか一方の管材を軸管として、該軸管の外周に沿って他方の管材が螺旋状に巻回されるので、使用に伴い螺旋管が変形しても、両管材の密着状態を保持することができるという効果を奏する。また、加圧工程において、軸管内が加圧されることにより、螺旋状に巻回された前記他方の管材のうち隣合う管材間に凸部が形成されるので、冷媒管および被冷媒管の一体性をより高めることができるという効果も奏する。
【図面の簡単な説明】
【図1】本発明の一実施例である熱交換器の部分断面側面図である。
【図2】上記熱交換器の製造方法の一部(巻回工程)を示す図である。
【図3】上記熱交換器の製造方法の一部(加圧工程)を示す図である。
【図4】本発明の熱交換器の設置例を示す図である。
【図5】本発明の熱交換器の他の設置例を示す図である。
【図6】上記実施例の熱交換器の変形例を示す部分断面側面図である。
【図7】上記実施例の熱交換器の他の変形例を示す部分断面側面図である。
【図8】上記実施例の熱交換器の更に他の変形例を示す部分断面側面図である。
【図9】従来技術の熱交換器の斜視図である。
【図10】上記従来技術の熱交換器を構成する管材が熱変形することにより、隣合う管材間に隙間が発生した様子を示す断面図である。
【図11】従来技術の熱交換器の設置例を示す図である。
【符号の説明】
10 流水管
20 流湯管
100 熱交換器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger, and more particularly to a heat exchanger capable of maintaining a heat exchange rate even when thermally deformed during use, and a method for manufacturing the same.
[0002]
[Prior art]
The heat exchanger is provided with a refrigerant pipe through which a refrigerant flows and a hot water pipe through which high-temperature hot water flows.The heat and heat of the refrigerant and the hot water flowing through these refrigerant pipes and the hot water pipe are converted into gas or fluid outside the pipe material. And heat exchange with it. Here, FIG. 9 shows a conventional hot water pipe 90. As shown in FIG. 9, the hot water pipe 90 is spirally wound (coiled).
[0003]
In the method of manufacturing such a spirally-running hot water pipe 90, first, a tube material 91 having a substantially circular cross-sectional area is spirally wound. After the winding, the flowing pipe 90 is compressed from the axial direction of the spiral (the direction of the arrow Z and the direction of the opposite arrow Z) so that the adjacent helical tubes come into contact with each other and the cross-sectional area of the tubing becomes flat. Processing is performed. By forming in this manner, the storage space can be reduced, and the contact area between the adjacent hot water pipes 90 can be increased to increase the heat exchange rate.
[0004]
In addition, the spirally wound refrigerant pipes and the hot water supply pipes are combined so as to be alternately arranged, and end plates provided at both ends of the spiral are fastened to each other by bolts and nuts so that the pipes are pressed against each other. There is also a heat exchanger (see Patent Documents 1 and 2). With this configuration, the heat exchange rate between the adjacent refrigerant pipe and the hot water supply pipe is improved, and even when the heat pipe is thermally deformed due to use, the close contact state between the adjacent refrigerant pipe and the hot water supply pipe is maintained. You can do it.
[0005]
[Patent Document 1]
JP 2001-241865 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 62-268990
[Problems to be solved by the invention]
However, copper pipes are usually used for the pipe material constituting the heat exchanger. However, when hot water flows through the hot water pipe 90, the hot water pipe 90 is warped due to thermal deformation. Then, as shown in FIG. 10, a gap 92 is generated between the adjacent hot water pipes 90, 90 of the spiral. That is, there is a problem that the adjacent hot water pipes 90 are changed from surface contact to line contact, and the heat exchange rate is deteriorated. Further, in the case of the heat exchanger shown in FIG. 9, the heat exchanger is not used alone, but needs to be inscribed in the hot water supply tank 9001 or the like, as shown in FIG. .
[0007]
Further, in the heat exchanger in which the spirally wound refrigerant pipes and the hot water supply pipes are combined so as to be alternately arranged, a step of spirally winding a plurality of pipes or a spirally winding step. Thereafter, a step of pressing both the pipe members from both sides of the spiral must be performed, and there is a problem that the manufacturing process is complicated and the manufacturing cost is increased. Further, there is also a problem that when the pipes are pressed from both sides, the residual internal stress of the two pipes increases, and when the pipes are thermally deformed during use, a gap is generated between the two pipes. Furthermore, the processing technology (since the length of the spiral in the radial direction is made larger than the length in the axial direction for the purpose of improving the heat exchange rate for both pipe materials), the reduction in the diameter of the spiral is also limited. There is also a problem that the shape is limited.
[0008]
Therefore, the present invention was devised, and the present invention can maintain a heat exchange rate even when thermally deformed with use, and can be processed into a free shape according to an installation space. It is an object of the present invention to provide a heat exchanger which is easy to use and can be used for a wide range of applications and has a low production cost, and a method for producing the same.
[0009]
[Means for Solving the Problems]
In order to achieve this object, the heat exchanger according to claim 1 is configured by being combined such that both pipe members of a refrigerant pipe through which a refrigerant flows and a refrigerant pipe through which a refrigerant flows are in contact with each other. In addition, one of the refrigerant pipe and the refrigerant pipe is used as a shaft pipe, and the other pipe is spirally wound along the outer circumference of the shaft pipe.
In the heat exchanger according to the second aspect, in the heat exchanger according to the first aspect, the diameter of a portion where the other tube is spirally wound is such that a diameter of a portion where the other tube is spirally wound is determined. It has been made larger than that.
According to a third aspect of the present invention, in the heat exchanger according to the first or second aspect, the tube material to be the shaft tube is spirally formed by winding the other tube material and then pressurizing the inside of the shaft tube. A projection is formed between adjacent ones of the other wound tube materials.
The method for manufacturing a heat exchanger according to claim 4 is a method for manufacturing a heat exchanger by combining a refrigerant pipe through which a refrigerant flows, and a pipe member through which the refrigerant flows through the refrigerant pipe so as to be in contact with each other, In order to combine the two pipes of the refrigerant pipe and the refrigerant pipe, one of the two pipes is used as a shaft pipe, and the other pipe is spirally wound along the outer circumference of the shaft pipe. A winding step, and after the winding step, a pressurizing step of pressurizing the inside of the shaft pipe in order to form a convex portion between adjacent pipes among the other pipes spirally wound. .
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Of course, the following examples are merely preferred embodiments of the present invention, and the technical scope of the present invention is not limited to the following examples. For example, in the following embodiment, the case where the refrigerant is water and the refrigerant is hot water is described, but the refrigerant may be a liquid other than water or even a gas (for example, coolant or Similarly, the refrigerant to be cooled may be a liquid other than hot water or may be a gas (for example, Freon 22, CO 2 , methane gas, or other high-temperature fluid).
[0011]
FIG. 1 is a side view of a heat exchanger 100 according to one embodiment of the present invention. As shown in FIG. 1, the heat exchanger 100 includes a flowing water pipe 10 and a flowing water pipe 20. The running water pipe 10 is a pipe for flowing water, and the flowing water pipe 20 is a pipe for flowing hot water.
[0012]
The hot water pipe 20 is spirally wound around the outer periphery of the flowing water pipe 10 with the flowing water pipe 10 as an axis (axial pipe). Thereby, the flowing water pipe 10 and the flowing water pipe 20 can be combined simply and firmly. Further, even when the space for disposing the heat exchanger 100 is limited to a vertically long space, the shape of the entire heat exchanger 100 can be reduced by processing the shape of the flowing water pipe 10 into a vertically long (elongated) shape. It is easy to process it into a shape according to. In particular, when used together with a cylindrical hot water supply tank 1001 as described later, if it is arranged along the side of the hot water supply tank 1001, the dead space of the hot water supply tank 1001 (the space between the hot water supply tank 1001 and the wall material at the installation location) Etc.) can be used effectively.
[0013]
Further, the flow pipe 20 has a spiral diameter in the axial direction larger than the spiral diameter in the spiral direction (formed in an elliptical shape). This makes it possible to stabilize the combined state of the flowing water pipe 10 and the flowing water pipe 20, and also to increase the heat exchange rate. Further, the diameter of the entire heat exchanger 100 can be made smaller.
[0014]
On the other hand, the diameter of the flowing water pipe 10 is larger at the center (the wound part of the flowing water pipe 20) 11a than at both ends (the unwound part of the flowing water pipe 20) 11b. Accordingly, it is possible to increase the total winding length of the flowing water pipe 20 wound around the flowing water pipe 10, thereby increasing the contact area between the flowing water pipe 10 and the flowing water pipe 20. Further, the flowing water pipe 10 flowing inside can be agitated in the central portion 11a to increase the heat exchange rate.
[0015]
Further, the running water pipe 10 is formed with a convex portion 11c between adjacent running water pipes 20, 20 spirally wound. Therefore, the running water pipe 10 and the running water pipe 20 can be firmly adhered to each other, and the contact area with the running water pipe 10 is reduced even when the running water pipe 20 is thermally deformed due to use. Can be prevented. Rather, the hot water pipe 20 is deformed to match the shape of the convex portion 11c with the thermal deformation, and the contact area between the flowing water pipe 10 and the hot water pipe 20 is further increased. As a result, the heat exchange rate can be maintained high even if the material is thermally deformed during use.
[0016]
Next, a method for manufacturing the heat exchanger 100 configured as described above will be described with reference to FIGS. First, as shown in FIG. 2, the hot water pipe 20 similarly manufactured in another process is wound along the outer periphery of the water pipe 10 manufactured in another process in advance (winding process). After winding the hot water pipe 20, a fluid (a fluid such as a gas such as air, a liquid such as water, a solid such as mercury, etc., regardless of the fluid) is injected from both ends of the flowing water pipe 10. Along with this press-fitting, the inside of the flowing water pipe 10 is pressurized, and a convex portion 11c is formed between the adjacent flowing water pipes 20, 20 which are spirally wound. When the projections 11c are formed, the internal gas and the like are discharged, and the manufacture of the heat exchanger 100 ends.
[0017]
Next, an example of installation of the heat exchanger 100 as described above will be described with reference to FIGS.
[0018]
FIG. 4 is a schematic diagram of a bath water heater system 1000 using the heat exchanger 100 in combination with a hot water supply tank 1001 (a type of water heater), and FIG. 5 is a schematic diagram of a floor heating system 2000. The bath water heating system 1000 includes a hot water supply tank 1001, a bath tub 1002, and a mixing valve 1003 connected by a pipe 1004, and mixes hot water (also used for drinking water) heated in the hot water supply tank 1001. It is possible to directly supply the water in the bathtub 1002 using the heat exchanger 100 (or to keep the water in the bathtub 1002), as well as to supply the water directly via the heat exchanger 1003. On the other hand, the floor heating system 2000 heats the floor 1005, and is configured in the same manner as the bath water heater system 1000.
[0019]
Here, since the heat exchanger 100 is configured by combining the flowing water pipes 10 and the flowing water pipes 20 alternately, the heat exchanger 100 can be installed outside the hot water supply tank 1001. In addition, unlike the conventional system 9000 as shown in FIG. 11, even when the pipe 1004a inside the hot water tank 9001 is broken, the bath water mixes with the drinking water in the hot water tank 9001, It is possible to prevent chlorine from being mixed (that is, it is possible to ensure hygiene and prevent corrosion inside the hot water supply tank 9001). Further, even if it is not a dedicated type such as the hot water tank 901 in which the heat exchanger 91 of the related art is built, a general-purpose type hot water tank can be effectively utilized as it is. Further, although not shown, the size of the hot water tank 9001 can be reduced, and it can be used in combination with a water heater other than the hot water tank 9001.
[0020]
As described above, the present invention has been described based on the embodiments. However, it is needless to say that the above embodiments can be variously modified and modified without departing from the spirit of the present invention. Also includes those various improved modifications.
[0021]
For example, in the above embodiment, the running water pipe 10 is a shaft pipe, and the running water pipe 20 is a spiral pipe. However, it goes without saying that the running water pipe 10 may be a spiral pipe and the running water pipe 20 may be a shaft pipe.
[0022]
In the above embodiment, the shape of the hot water pipe 20 is flat (elliptical). However, the shape is not limited to a flat shape, and may be a perfect circle as shown in FIG. 6 or a square as shown in FIG. In this case, the protrusion 11c may be formed as shown in FIG. 6, or the protrusion 11c may not be formed as shown in FIG.
[0023]
Further, in the above embodiment, the running water pipe 20 is wound around the outer circumference of the running water pipe 10 at intervals. However, as shown in FIG. 8, winding may be performed without an interval.
[0024]
Further, in the above embodiment, as a method of bringing the hot water pipe 20 into close contact with the flowing water pipe 10, a method of pressurizing the inside of the flowing water pipe 10 by injecting a fluid into the flowing water pipe 10 is used. However, a method in which a high-temperature fluid or a low-temperature fluid is caused to flow in the flowing water pipe 10 and the opposite fluid is caused to flow in the flowing water pipe 20, and the flowing water pipe 20 and the flowing water pipe 10 are thermally deformed and adhered to each other due to the temperature difference. May be used.
[0025]
Furthermore, in the present embodiment, the flowing water pipe 10 is an example of a refrigerant pipe, and the flowing water pipe 20 is an example of a pipe to be cooled. However, the refrigerant pipe according to the present invention may be a pipe through which a low-temperature fluid flows. If it is (low temperature fluid pipe), it is not limited to the flowing water pipe 10. Similarly, the refrigerant pipe according to the present invention is not limited to the hot water pipe 20 as long as it is a pipe through which a high-temperature fluid flows (high-temperature fluid pipe). Of course, the level of the temperature is relative.
[0026]
【The invention's effect】
According to the heat exchanger of the first aspect, any one of the refrigerant pipe and the refrigerant pipe is used as the shaft pipe, and the other pipe material is spirally wound along the outer circumference of the shaft pipe. Therefore, even if the helical tube is deformed with use, an effect of maintaining the close contact state between the two tube materials can be obtained.
According to the heat exchanger according to the second aspect, in addition to the effect achieved by the heat exchanger according to the first aspect, the diameter of the portion where the other tube is spirally wound is formed in the tube that becomes the shaft tube. Since it is made larger than the part which is not provided, it is possible to increase the contact length between the two pipe members, and thus it is possible to increase the heat exchange rate.
According to the heat exchanger according to the third aspect, in addition to the effect of the heat exchanger according to the first or second aspect, in addition to the effect of the heat exchanger according to the first or second aspect, a convex portion is formed between adjacent ones of the other helically wound pipes. Since it is formed, there is an effect that the integrity of the refrigerant pipe and the refrigerant pipe can be further improved.
According to the heat exchanger manufacturing method of the fourth aspect, in the winding step, any one of the two pipe members of the refrigerant pipe and the refrigerant pipe is used as a shaft pipe, and along the outer periphery of the shaft pipe. Since the other tube is spirally wound, even if the helical tube is deformed with use, an effect that both tubes can be kept in close contact with each other can be obtained. Further, in the pressurizing step, since the inside of the shaft pipe is pressurized, a convex portion is formed between the adjacent pipes among the other pipes spirally wound, so that the refrigerant pipe and the refrigerant pipe are formed. The effect that the integrity can be further improved is also exhibited.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional side view of a heat exchanger according to an embodiment of the present invention.
FIG. 2 is a view showing a part (winding step) of a method for manufacturing the heat exchanger.
FIG. 3 is a view showing a part (pressurizing step) of a method of manufacturing the heat exchanger.
FIG. 4 is a diagram showing an installation example of the heat exchanger of the present invention.
FIG. 5 is a diagram showing another installation example of the heat exchanger of the present invention.
FIG. 6 is a partial cross-sectional side view showing a modification of the heat exchanger of the embodiment.
FIG. 7 is a partial sectional side view showing another modified example of the heat exchanger of the embodiment.
FIG. 8 is a partial cross-sectional side view showing still another modified example of the heat exchanger of the embodiment.
FIG. 9 is a perspective view of a prior art heat exchanger.
FIG. 10 is a cross-sectional view showing a state in which a gap is generated between adjacent pipes due to thermal deformation of the pipes constituting the heat exchanger of the related art.
FIG. 11 is a diagram showing an installation example of a heat exchanger of the related art.
[Explanation of symbols]
10 running water pipe 20 running water pipe 100 heat exchanger