JPWO2019130386A1 - Heat exchanger manufacturing method and heat exchanger - Google Patents

Heat exchanger manufacturing method and heat exchanger Download PDF

Info

Publication number
JPWO2019130386A1
JPWO2019130386A1 JP2019561401A JP2019561401A JPWO2019130386A1 JP WO2019130386 A1 JPWO2019130386 A1 JP WO2019130386A1 JP 2019561401 A JP2019561401 A JP 2019561401A JP 2019561401 A JP2019561401 A JP 2019561401A JP WO2019130386 A1 JPWO2019130386 A1 JP WO2019130386A1
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
inner pipe
bending
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019561401A
Other languages
Japanese (ja)
Other versions
JP6861848B2 (en
Inventor
功介 山口
功介 山口
正章 我妻
正章 我妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019130386A1 publication Critical patent/JPWO2019130386A1/en
Application granted granted Critical
Publication of JP6861848B2 publication Critical patent/JP6861848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled

Abstract

熱交換器は、流体が流通する内管及び外管を備える。外管は、内管の外周面に螺旋状に巻き付けられた状態で内管に接合されている。内管において、外管が巻き付けられていない両端部の強度は、外管が巻き付けられている部分の強度よりも高くなるよう構成されている。The heat exchanger includes an inner tube and an outer tube through which a fluid flows. The outer pipe is joined to the inner pipe in a state of being spirally wound around the outer peripheral surface of the inner pipe. In the inner pipe, the strength of both ends where the outer pipe is not wound is configured to be higher than the strength of the portion where the outer pipe is wound.

Description

本発明は、流体が流通する内管及び外管を備えた熱交換器の製造方法、及び熱交換器に関するものである。 The present invention relates to a method for manufacturing a heat exchanger provided with an inner tube and an outer tube through which a fluid flows, and a heat exchanger.

熱交換器には、水が流通する内管と、冷媒が流通する外管とを備えるものがある。外管は、内管の外周面に巻き付けられている。このような構造を有する熱交換器において、内管と外管が、ロウ付け若しくははんだ付けにより伝熱接合される場合がある。ロウ付け若しくははんだ付けにより伝熱接合する場合、内管及び外管の他に、ロウ付けに用いるロウ材、又は、はんだ付けに用いるはんだが必要である。また、ロウ付け若しくははんだ付けのための熱源を確保しなければならない。そのため、このような伝熱接合は製造コストが高騰するという問題がある。そこで、例えば、特許文献1には、ロウ付け若しくははんだ付けを使用することなく、内管と外管とを接合する方法として、水等の液体によって内管を拡管させることにより、内管と外管とを密着させる方法が記載されている。 Some heat exchangers include an inner pipe through which water flows and an outer pipe through which refrigerant flows. The outer tube is wound around the outer peripheral surface of the inner tube. In a heat exchanger having such a structure, the inner pipe and the outer pipe may be heat-transfer-bonded by brazing or soldering. When heat transfer bonding is performed by brazing or soldering, in addition to the inner and outer pipes, the brazing material used for brazing or the solder used for soldering is required. In addition, a heat source for brazing or soldering must be secured. Therefore, such a heat transfer junction has a problem that the manufacturing cost rises. Therefore, for example, in Patent Document 1, as a method of joining the inner pipe and the outer pipe without using brazing or soldering, the inner pipe and the outer pipe are expanded by expanding the inner pipe with a liquid such as water. A method for bringing the tube into close contact is described.

特開2004−93057号公報Japanese Unexamined Patent Publication No. 2004-93057

特許文献1に記載されているように水等の液体によって内管を拡管する方法では、内管と外管とを十分に密着させるために、非常に高い圧力で内管を拡管させる必要がある。しかしながら、高い圧力を内管にかけると、内管において外管が巻き付けられていない部分は、外管が巻き付けられていない部分に比べ強度が弱いため、過剰に変形してしまう。このような内管の変形を回避するため、内管にかける圧力を抑えることが考えられる。しかしながら、内管にかける圧力が不十分だと、内管と外管との密着が弱い状態となり、十分な伝熱接合が得られない。その結果、内管を流通する水と外管を流通する冷媒との間で、高い熱交換率が得られないという問題がある。 In the method of expanding the inner pipe with a liquid such as water as described in Patent Document 1, it is necessary to expand the inner pipe with a very high pressure in order to sufficiently bring the inner pipe and the outer pipe into close contact with each other. .. However, when a high pressure is applied to the inner pipe, the portion of the inner pipe where the outer pipe is not wound is weaker than the portion where the outer pipe is not wound, and therefore is excessively deformed. In order to avoid such deformation of the inner pipe, it is conceivable to suppress the pressure applied to the inner pipe. However, if the pressure applied to the inner pipe is insufficient, the adhesion between the inner pipe and the outer pipe becomes weak, and sufficient heat transfer bonding cannot be obtained. As a result, there is a problem that a high heat exchange rate cannot be obtained between the water flowing through the inner pipe and the refrigerant flowing through the outer pipe.

本発明は、上記のような課題を解決するためになされたものであり、より高い熱交換率を有する熱交換器の製造方法、及び熱交換器を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for manufacturing a heat exchanger having a higher heat exchange rate and a heat exchanger.

本発明に係る熱交換器の製造方法は、流体が流通する内管及び外管を備え、前記外管は前記内管の両端部を除く外周面に螺旋状に巻き付けられた状態で前記内管に接合されている熱交換器の製造方法であって、前記内管の前記両端部の強度を、前記外管が巻き付けられる部分の強度よりも高くする補強工程と、前記外管が巻き付けられている前記内管の内部の圧力を上昇させて前記内管を拡管する拡管工程とを含んでいる。 The method for manufacturing a heat exchanger according to the present invention includes an inner pipe and an outer pipe through which fluid flows, and the outer pipe is spirally wound around an outer peripheral surface excluding both ends of the inner pipe. A method of manufacturing a heat exchanger joined to the above, wherein the strength of both ends of the inner pipe is made higher than the strength of the portion around which the outer pipe is wound, and the outer pipe is wound. It includes a tube expansion step of increasing the pressure inside the inner tube to expand the inner tube.

本発明に係る熱交換器は、流体が流通する内管及び外管を備え、前記外管は、前記内管の両端部を除く外周面に螺旋状に巻き付けられた状態で前記内管に接合されており、前記内管において、前記外管が巻き付けられていない前記両端部の強度は、前記外管が巻き付けられている部分の強度よりも高く構成されているものである。 The heat exchanger according to the present invention includes an inner pipe and an outer pipe through which a fluid flows, and the outer pipe is joined to the inner pipe in a state of being spirally wound around an outer peripheral surface excluding both ends of the inner pipe. In the inner pipe, the strength of both ends of the inner pipe from which the outer pipe is not wound is higher than the strength of the portion around which the outer pipe is wound.

本発明に係る熱交換器の製造方法によると、内管の両端部の強度を外管が巻き付けられている部分の強度よりも高くするので、内管を拡管したとき、外管が巻き付けられていない内管の両端部の過剰な変形を抑制することができる。従って、内管の拡管圧力をより高くすることができ、内管において外管が巻き付けられている部分と外管とを密着させることができる。その結果、内管と外管との間の熱交換効率がより高められた熱交換器が得られる。 According to the method for manufacturing a heat exchanger according to the present invention, the strength of both ends of the inner pipe is made higher than the strength of the portion around which the outer pipe is wound. Therefore, when the inner pipe is expanded, the outer pipe is wound. Excessive deformation of both ends of the inner tube can be suppressed. Therefore, the expansion pressure of the inner pipe can be made higher, and the portion of the inner pipe around which the outer pipe is wound can be brought into close contact with the outer pipe. As a result, a heat exchanger with higher heat exchange efficiency between the inner pipe and the outer pipe can be obtained.

本発明の実施の形態1に係る熱交換器を示す図である。It is a figure which shows the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の内管の一方の端部を拡大して示す図である。It is a figure which shows enlarged one end part of the inner tube of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の内管の他方の端部を拡大して示す図である。It is an enlarged view which shows the other end of the inner tube of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the heat exchanger which concerns on Embodiment 1 of this invention. 内管において焼きなまし処理を施す箇所を示す図である。It is a figure which shows the part where the annealing treatment is performed in the inner pipe. 拡管工程を実行する際の内管の一方の端部を拡大して示す図である。It is a figure which enlarges and shows one end part of the inner pipe at the time of performing a pipe expansion process. 拡管工程を実行する際の内管の他方の端部を拡大して示す図である。It is a figure which enlarges and shows the other end part of the inner pipe at the time of performing a pipe expansion process. 本発明の実施の形態2に係る熱交換器の内管の一方の端部を拡大して示す図である。It is a figure which shows enlarged one end part of the inner tube of the heat exchanger which concerns on Embodiment 2 of this invention.

以下に、本発明における熱交換器、及びその製造方法の実施の形態を図面に基づいて詳細に説明する。尚、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさ及び形状は実際の装置とは異なる場合がある。 Hereinafter, embodiments of the heat exchanger and the method for manufacturing the heat exchanger in the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below. Further, in the following drawings, the size and shape of each component may differ from the actual device.

実施の形態1.
図1は、本発明の実施の形態1に係る熱交換器を示す図である。熱交換器1は、内管10と、外管20A、外管20B、及び外管20Cとを有している。以降の説明において、外管20A、外管20B、及び外管20Cを総称して外管20と言う場合がある。内管10には水等の流体が流通する。すなわち、内管10は例えば水管である。外管20A、外管20B、及び外管20Cには、それぞれ冷媒等の流体が流通する。すなわち、外管20A、外管20B、及び外管20Cは、例えば冷媒管である。内管10は、一方の端部11と、他方の端部12と、螺旋構造部13とを有している。螺旋構造部13は、端部11と端部12との間に位置している。内管10は螺旋構造部13の複数箇所で曲げ加工されており、全体として略長方形の螺旋状に形成されている。内管10の両端部のうちの一方の端部11には配管30が接合され、他方の端部12には配管40が接合されている。
Embodiment 1.
FIG. 1 is a diagram showing a heat exchanger according to the first embodiment of the present invention. The heat exchanger 1 has an inner tube 10, an outer tube 20A, an outer tube 20B, and an outer tube 20C. In the following description, the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C may be collectively referred to as the outer pipe 20. A fluid such as water flows through the inner pipe 10. That is, the inner pipe 10 is, for example, a water pipe. A fluid such as a refrigerant flows through the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C, respectively. That is, the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C are, for example, refrigerant pipes. The inner pipe 10 has one end portion 11, the other end portion 12, and a spiral structure portion 13. The spiral structure portion 13 is located between the end portion 11 and the end portion 12. The inner pipe 10 is bent at a plurality of points of the spiral structure portion 13, and is formed in a substantially rectangular spiral shape as a whole. A pipe 30 is joined to one end 11 of both ends of the inner pipe 10, and a pipe 40 is joined to the other end 12.

図2は、本発明の実施の形態1に係る熱交換器の内管の一方の端部を拡大して示す図である。図3は、本発明の実施の形態1に係る熱交換器の内管の他方の端部を拡大して示す図である。尚、図2及び図3は、熱交換器1を内管10の管軸に沿って切断した断面を模式的に示している。図2には、内管10の端部11が拡大して示されており、図3には内管10の端部12が拡大されて示されている。図2及び図3に示すように、螺旋構造部13の外周面に3条の螺旋溝13A、螺旋溝13B、及び螺旋溝13Cが形成されている。螺旋溝13A、螺旋溝13B、及び螺旋溝13Cの間の山部13Dと、谷部である螺旋溝13A、螺旋溝13B、及び螺旋溝13Cとで、螺旋構造部13の螺旋構造が形成されている。螺旋構造部13の螺旋構造は、直管形状の伝熱管を加工することで得られる。端部11の外周面及び端部12の外周面には螺旋溝が形成されておらず、端部11及び端部12は直管形状を呈している。すなわち、端部11及び端部12はそれぞれ直管部を構成している。 FIG. 2 is an enlarged view of one end of an inner tube of the heat exchanger according to the first embodiment of the present invention. FIG. 3 is an enlarged view of the other end of the inner tube of the heat exchanger according to the first embodiment of the present invention. Note that FIGS. 2 and 3 schematically show a cross section of the heat exchanger 1 cut along the pipe axis of the inner pipe 10. FIG. 2 shows an enlarged end 11 of the inner pipe 10, and FIG. 3 shows an enlarged end 12 of the inner pipe 10. As shown in FIGS. 2 and 3, three spiral grooves 13A, a spiral groove 13B, and a spiral groove 13C are formed on the outer peripheral surface of the spiral structure portion 13. The spiral structure of the spiral structure portion 13 is formed by the mountain portion 13D between the spiral groove 13A, the spiral groove 13B, and the spiral groove 13C, and the spiral groove 13A, the spiral groove 13B, and the spiral groove 13C which are valley portions. There is. The spiral structure of the spiral structure portion 13 is obtained by processing a straight tube-shaped heat transfer tube. No spiral groove is formed on the outer peripheral surface of the end portion 11 and the outer peripheral surface of the end portion 12, and the end portion 11 and the end portion 12 have a straight pipe shape. That is, each of the end portion 11 and the end portion 12 constitutes a straight pipe portion.

螺旋溝13Aには外管20Aが巻き付けられ、螺旋溝13Bには外管20Bが巻き付けられ、螺旋溝13Cには外管20Cが巻き付けられている。外管20を内管10の外周面に螺旋状に巻き付けた状態で、すなわち、螺旋構造部13に外管20が巻き付けられ、端部11及び端部12には外管20が巻き付けられていない状態で、後述するように内管10の内部から液圧を加える。これにより、内管10が液圧拡管されて、外管20は内管10に接合された状態となっている。 The outer tube 20A is wound around the spiral groove 13A, the outer tube 20B is wound around the spiral groove 13B, and the outer tube 20C is wound around the spiral groove 13C. In a state where the outer tube 20 is spirally wound around the outer peripheral surface of the inner tube 10, that is, the outer tube 20 is wound around the spiral structure portion 13, and the outer tube 20 is not wound around the end 11 and the end 12. In this state, hydraulic pressure is applied from the inside of the inner tube 10 as described later. As a result, the inner pipe 10 is hydraulically expanded, and the outer pipe 20 is in a state of being joined to the inner pipe 10.

図2に示すように、端部11には、伝熱管である配管30が接続されている。配管30の内径は、端部11の外径よりも大きい。配管30の一方の端部に、内径が外側に向けて徐々に大きくなっているフレア部31が形成されている。配管30の肉厚は、端部11の肉厚よりも厚い。配管30は、フレア部31が外側を向くよう配置されている。配管30においてフレア部31が形成されていない側である他方の端部が内管10の端部11とロウ付けにより接合されている。配管30は、その内周面が端部11の外周面に接触した状態で接合されている。これにより直管部である端部11と配管30とにより二重構造が形成されている。 As shown in FIG. 2, a pipe 30 which is a heat transfer tube is connected to the end portion 11. The inner diameter of the pipe 30 is larger than the outer diameter of the end portion 11. A flare portion 31 having an inner diameter gradually increasing toward the outside is formed at one end of the pipe 30. The wall thickness of the pipe 30 is thicker than the wall thickness of the end portion 11. The pipe 30 is arranged so that the flare portion 31 faces outward. The other end of the pipe 30, which is the side on which the flare portion 31 is not formed, is joined to the end 11 of the inner pipe 10 by brazing. The pipe 30 is joined in a state where its inner peripheral surface is in contact with the outer peripheral surface of the end portion 11. As a result, a double structure is formed by the end portion 11 which is a straight pipe portion and the pipe 30.

図3に示すように、端部12には、伝熱管である配管40が接続されている。配管40の内径は、端部12の外径よりも大きい。配管40の肉厚は、端部12の肉厚よりも厚い。端部12と配管40は、ロウ付けにより接合されている。配管40は、その内周面が端部12の外周面に接触した状態で接合されている。これにより直管部である端部12と配管40とにより二重構造が形成されている。 As shown in FIG. 3, a pipe 40, which is a heat transfer tube, is connected to the end portion 12. The inner diameter of the pipe 40 is larger than the outer diameter of the end portion 12. The wall thickness of the pipe 40 is thicker than the wall thickness of the end portion 12. The end portion 12 and the pipe 40 are joined by brazing. The pipe 40 is joined in a state where its inner peripheral surface is in contact with the outer peripheral surface of the end portion 12. As a result, a double structure is formed by the end portion 12 which is a straight pipe portion and the pipe 40.

図4は、本発明の実施の形態1に係る熱交換器の製造方法の工程を示すフローチャートである。ステップS1において、内管10の焼なまし工程が実行される。上述のように、外管20A、外管20B、及び外管20Cが内管10の螺旋構造部13に巻き付けられた状態で、螺旋構造部13の複数箇所に曲げ加工をすることにより、図1に示すように、内管10が略長方形の螺旋状に成形された熱交換器1が得られる。このように内管10を成形するために、螺旋構造部13では、90度の角度に曲げられる箇所が存在する。螺旋構造部13は、螺旋溝13A、螺旋溝13B、及び螺旋溝13Cが形成されたことで、加工硬化している。従って、螺旋構造部13は、90度の角度に曲げる曲げ加工の加工性が悪い。そこで、この曲げ加工の加工性の悪さを解消するため、螺旋構造部13の一部に焼なましが行われる。 FIG. 4 is a flowchart showing a process of a method for manufacturing a heat exchanger according to the first embodiment of the present invention. In step S1, the annealing step of the inner pipe 10 is executed. As described above, in a state where the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C are wound around the spiral structure portion 13 of the inner pipe 10, the spiral structure portion 13 is bent at a plurality of locations, whereby FIG. As shown in the above, a heat exchanger 1 in which the inner tube 10 is formed into a substantially rectangular spiral shape is obtained. In order to form the inner tube 10 in this way, the spiral structure portion 13 has a portion that can be bent at an angle of 90 degrees. The spiral structure portion 13 is work-hardened due to the formation of the spiral groove 13A, the spiral groove 13B, and the spiral groove 13C. Therefore, the spiral structure portion 13 has poor workability in the bending process of bending at an angle of 90 degrees. Therefore, in order to eliminate the poor workability of the bending process, annealing is performed on a part of the spiral structure portion 13.

図5は、内管10において焼きなまし処理を施す箇所を示す図である。太矢印で示す第1曲げ加工部X1は、曲げ加工される複数の曲げ加工部のうち端部11に最も近い加工部である。太矢印で示す第2曲げ加工部X2は、曲げ加工される複数の曲げ加工部のうち、端部12に最も近い曲げ加工部である。ステップS1の焼なまし工程では、端部11から第1曲げ加工部X1の手前までの領域Y1に、焼なまし処理は施されず、また端部12から第2曲げ加工部X2の手前までの領域Y2に、焼なまし処理は施されない。そして、第1曲げ加工部X1から第2曲げ加工部X2までの領域Y3に焼なまし処理が施される。 FIG. 5 is a diagram showing a portion of the inner pipe 10 to be annealed. The first bending portion X1 indicated by the thick arrow is the processing portion closest to the end portion 11 among the plurality of bending processing portions to be bent. The second bending portion X2 indicated by the thick arrow is the bending portion closest to the end portion 12 among the plurality of bending portions to be bent. In the annealing step of step S1, the region Y1 from the end 11 to the front of the first bending portion X1 is not annealed, and from the end 12 to the front of the second bending portion X2. No annealing treatment is applied to the region Y2 of. Then, the region Y3 from the first bending portion X1 to the second bending portion X2 is annealed.

再び図4を参照すると、焼なまし工程の実行後、ステップS2において、内管10の両端部、すなわち端部11及び端部12の強度を、外管20が巻き付けられている螺旋構造部13の強度よりも高くする補強工程が実行される。換言すると、補強工程の実行前に、上述の焼なまし処理が施される。ステップS2の補強工程では、図2に示すように、端部11に配管30が嵌め合わされ、ロウ付けにより接合され、図3に示すように、端部12に配管40が嵌め合わされ、ロウ付けにより接合される。ここで、強度とは、内管10の内部から液圧がかけられた場合における耐圧強度を言う。その後、螺旋構造部13に外管20A、外管20B、及び外管20Cが巻き付けられる。 Referring to FIG. 4 again, after the annealing step is executed, in step S2, the strength of both ends of the inner pipe 10, that is, the ends 11 and 12, is adjusted to the strength of the spiral structure portion 13 around which the outer pipe 20 is wound. A reinforcement step is performed that is greater than the strength of. In other words, the above-mentioned annealing treatment is performed before the reinforcement step is executed. In the reinforcement step of step S2, as shown in FIG. 2, the pipe 30 is fitted to the end portion 11 and joined by brazing, and as shown in FIG. 3, the pipe 40 is fitted to the end portion 12 by brazing. Be joined. Here, the strength refers to the pressure resistance strength when hydraulic pressure is applied from the inside of the inner pipe 10. After that, the outer tube 20A, the outer tube 20B, and the outer tube 20C are wound around the spiral structure portion 13.

次いで、ステップS3において、外管20が巻き付けられた内管10を拡管する拡管工程が実行される。図6は、拡管工程を実行する際の内管の一方の端部を拡大して示す図である。図7は、拡管工程を実行する際の内管の他方の端部を拡大して示す図である。図6及び図7は、図2及び図3と同様、熱交換器1を内管10の管軸に沿って切断した断面を模式的に示している。図6に示すように、一方の端部11にポンプ50を接続し、図7に示すように、他方の端部12に蓋部材60を取り付ける。ポンプ50は例えば液体ポンプである。この状態でポンプ50を作動させて、内管10の内部の圧力を上昇させて内管10を拡管する拡管工程を実行することにより、内管10は液圧拡管される。 Next, in step S3, a pipe expansion step of expanding the inner pipe 10 around which the outer pipe 20 is wound is executed. FIG. 6 is an enlarged view showing one end of the inner pipe when the pipe expanding step is executed. FIG. 7 is an enlarged view showing the other end of the inner pipe when the pipe expanding step is executed. 6 and 7 schematically show a cross section of the heat exchanger 1 cut along the tube axis of the inner tube 10, as in FIGS. 2 and 3. As shown in FIG. 6, the pump 50 is connected to one end 11, and the lid member 60 is attached to the other end 12 as shown in FIG. The pump 50 is, for example, a liquid pump. By operating the pump 50 in this state to increase the pressure inside the inner pipe 10 and execute the pipe expanding step of expanding the inner pipe 10, the inner pipe 10 is hydraulically expanded.

再び図4を参照すると、拡管工程の実行後、ステップS4に進み、螺旋構造部13において、図5の第1曲げ加工部X1及び第2曲げ加工部X2を含む複数の曲げ加工部で、内管10を90度に曲げる曲げ工程が実行される。その結果、図1に示す熱交換器1が得られる。 Referring to FIG. 4 again, after the pipe expansion step is executed, the process proceeds to step S4, and in the spiral structure portion 13, a plurality of bending portions including the first bending portion X1 and the second bending portion X2 of FIG. A bending step of bending the tube 10 at 90 degrees is performed. As a result, the heat exchanger 1 shown in FIG. 1 is obtained.

そして、上述の工程で得られた熱交換器1において、内管10を流通する水と、外管20A、外管20B、及び外管20Cを流れる冷媒とが熱交換することにより、内管10を流通する水は、その温度が上昇し、湯となる。 Then, in the heat exchanger 1 obtained in the above step, the water flowing through the inner pipe 10 and the refrigerant flowing through the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C exchange heat with each other to exchange heat with the inner pipe 10. The temperature of the water circulating in the water rises and becomes hot water.

上述のように、螺旋構造部13の螺旋構造は、直管形状の伝熱管を加工することにより形成されており、螺旋構造部13は加工硬化している。さらに、螺旋構造部13の外周面には、外管20A、外管20B、及び外管20Cが巻き付けられている。一方、図2に示すように、端部11の外周面には外管20は巻き付けられておらず、端部11は直管のままである。同様に、図3に示すように、端部12の直管部の外周面には外管20は巻き付けられておらず、端部12は直管のままである。従って、内管10を液圧拡管する際の拡管圧力に対する強度は、端部11及び端部12よりも螺旋構造部13の方が高い。従って、螺旋構造部13における内管10と外管20の接合を十分なものとすべく、内管10の内部から液圧をかけると、直管部である端部11及び端部12は過剰に変形する可能性がある。これに対して、本実施の形態1の内管10は、先述したように端部11及び端部12の強度が補強された構成を有している。 As described above, the spiral structure of the spiral structure portion 13 is formed by processing a straight tube-shaped heat transfer tube, and the spiral structure portion 13 is work-hardened. Further, the outer tube 20A, the outer tube 20B, and the outer tube 20C are wound around the outer peripheral surface of the spiral structure portion 13. On the other hand, as shown in FIG. 2, the outer pipe 20 is not wound around the outer peripheral surface of the end portion 11, and the end portion 11 remains a straight pipe. Similarly, as shown in FIG. 3, the outer pipe 20 is not wound around the outer peripheral surface of the straight pipe portion of the end portion 12, and the end portion 12 remains a straight pipe. Therefore, the strength against the expansion pressure when the inner tube 10 is hydraulically expanded is higher in the spiral structure portion 13 than in the end portion 11 and the end portion 12. Therefore, when hydraulic pressure is applied from the inside of the inner pipe 10 in order to sufficiently join the inner pipe 10 and the outer pipe 20 in the spiral structure portion 13, the end portion 11 and the end portion 12 which are straight pipe portions are excessive. May be transformed into. On the other hand, the inner pipe 10 of the first embodiment has a structure in which the strength of the end portion 11 and the end portion 12 is reinforced as described above.

以上の構成により、外管20が巻き付けられていない部分である端部11及び端部12の強度は、外管20が巻き付けられている部分である螺旋構造部13の強度よりも、高くなっている。 With the above configuration, the strength of the end portion 11 and the end portion 12 which is the portion where the outer pipe 20 is not wound becomes higher than the strength of the spiral structure portion 13 which is the portion where the outer pipe 20 is wound. There is.

本実施の形態1によれば、端部11には端部11より肉厚の配管30が接合され、端部12には端部12より肉厚の配管40が接合されており、端部11及び端部12は強度が補強されている。従って、内管10の内部から液圧がかけられた場合でも、液圧により過剰な変形を起こすことを抑制することができる。そのため、内管10を液圧拡管する際、拡管圧力をより高くすることができ、内管10の螺旋構造部13における内管10と外管20の密着をより高めることができる。その結果、内管10と外管20との熱交換効率がより高められた熱交換器1が得られる。 According to the first embodiment, a pipe 30 thicker than the end 11 is joined to the end 11, and a pipe 40 thicker than the end 12 is joined to the end 12. And the end 12 is reinforced in strength. Therefore, even when the hydraulic pressure is applied from the inside of the inner pipe 10, it is possible to suppress excessive deformation due to the hydraulic pressure. Therefore, when the inner pipe 10 is hydraulically expanded, the expansion pressure can be further increased, and the adhesion between the inner pipe 10 and the outer pipe 20 in the spiral structure portion 13 of the inner pipe 10 can be further enhanced. As a result, the heat exchanger 1 in which the heat exchange efficiency between the inner pipe 10 and the outer pipe 20 is further improved can be obtained.

本実施の形態1では、端部11よりも肉厚の配管30を端部11にロウ付けし、端部12よりも肉厚の配管40を端部12にロウ付けすることにより、端部11及び端部12の液圧に対する強度を高めているがこれに限るものではない。強度の高い材料からなる配管を、端部11及び端部12に接合してもよい。この場合、配管の調質は、例えば日本工業規格における「H」以上の強度が望ましい。この場合も、端部11及び端部12の強度が補強されているため、上述の効果が得られる。 In the first embodiment, the end portion 11 is formed by brazing the pipe 30 thicker than the end portion 11 to the end portion 11 and brazing the pipe 40 thicker than the end portion 12 to the end portion 12. And the strength of the end portion 12 against hydraulic pressure is increased, but the strength is not limited to this. Piping made of a high-strength material may be joined to the end 11 and the end 12. In this case, it is desirable that the tempering of the piping is, for example, a strength of "H" or higher in the Japanese Industrial Standards. Also in this case, since the strength of the end portion 11 and the end portion 12 is reinforced, the above-mentioned effect can be obtained.

尚、端部11及び端部12において、螺旋構造部13よりも強度の高い二重管構造が構成できるのであれば、配管30と配管40の肉厚及び材料は、上述のものに限定されることはない。 If a double pipe structure having a strength higher than that of the spiral structure portion 13 can be formed at the end portion 11 and the end portion 12, the wall thickness and material of the pipe 30 and the pipe 40 are limited to those described above. There is no such thing.

焼なまし処理は、図5に示す領域Y1及び領域Y2には施されておらず、領域Y3に施されている。従って、端部11及び端部12の強度を低下させることなく、内管10を曲げ加工して図1に示すように成形するときの加工性をより良いものとすることができる。 The annealing treatment is not applied to the regions Y1 and Y2 shown in FIG. 5, but is applied to the region Y3. Therefore, the workability when the inner tube 10 is bent and molded as shown in FIG. 1 can be improved without lowering the strength of the end portion 11 and the end portion 12.

尚、直管部である端部11及び端部12に焼なまし処理を施さず、螺旋構造部13に焼なまし処理を施すようにしてもよい。 It should be noted that the end portion 11 and the end portion 12 which are the straight pipe portions may not be annealed, but the spiral structure portion 13 may be annealed.

また、本実施の形態1では、焼なまし処理を端部11及び端部12の補強処理の前に実行しているがこれに限るものではない。例えば、端部11及び端部12の補強処理の実行後に焼なまし処理を実行してもよい。 Further, in the first embodiment, the annealing treatment is executed before the reinforcement treatment of the end portion 11 and the end portion 12, but the present invention is not limited to this. For example, the annealing treatment may be executed after the reinforcement treatment of the end portion 11 and the end portion 12 is executed.

本実施の形態1では、螺旋構造部13の外周面に3条の螺旋溝13A、螺旋溝13B、及び螺旋溝13Cが形成されているが、螺旋溝の数はこれに限るものではない。螺旋構造部13に複数条の螺旋溝が形成され、各螺旋溝に外管が巻き付けられていればよい。 In the first embodiment, three spiral grooves 13A, a spiral groove 13B, and a spiral groove 13C are formed on the outer peripheral surface of the spiral structure portion 13, but the number of spiral grooves is not limited to this. It suffices that a plurality of spiral grooves are formed in the spiral structure portion 13 and an outer tube is wound around each spiral groove.

実施の形態2.
図8は、本発明の実施の形態2に係る熱交換器の内管の一方の端部を拡大して示す図である。図8には内管100の端部101が示されている。図8において、実施の形態1と同様の部材には同一の符号が付されている。内管100の螺旋構造部103は、実施の形態1の内管10の螺旋構造部13と同様の構成を有しており、その外周面には、外管20A、外管20B、及び外管20Cが巻き付けられている。内管100の両端部のうちの一方の端部101は直管部であり、縮管加工が施されている。すなわち、端部101の外径D1は、螺旋構造部103の外径D2よりも小さい。端部101は、縮管により加工硬化されている。尚、端部101において縮管加工を施す範囲は、内管10が形成する水回路の圧力損失を起こすことがなく、かつ、端部101の強度が最も高くなるよう、定められる。内管100の他方の端部においても、同様に縮管加工が施されており、加工硬化されている。また、実施の形態1と同様、端部101の先端部に、ポンプ50を取り付けるためのフレア部を形成してもよい。その他の構成は、実施の形態1と同様である。
Embodiment 2.
FIG. 8 is an enlarged view of one end of the inner tube of the heat exchanger according to the second embodiment of the present invention. FIG. 8 shows the end 101 of the inner tube 100. In FIG. 8, the same members as those in the first embodiment are designated by the same reference numerals. The spiral structure portion 103 of the inner pipe 100 has the same configuration as the spiral structure portion 13 of the inner pipe 10 of the first embodiment, and the outer pipe 20A, the outer pipe 20B, and the outer pipe are on the outer peripheral surface thereof. 20C is wrapped around. One end 101 of both ends of the inner pipe 100 is a straight pipe portion, and is subjected to a reduced pipe processing. That is, the outer diameter D1 of the end portion 101 is smaller than the outer diameter D2 of the spiral structure portion 103. The end 101 is work-hardened by a shrink tube. The range in which the end portion 101 is subjected to the contraction processing is determined so as not to cause a pressure loss in the water circuit formed by the inner pipe 10 and to have the highest strength of the end portion 101. The other end of the inner tube 100 is also work-hardened in the same manner. Further, as in the first embodiment, a flare portion for attaching the pump 50 may be formed at the tip end portion of the end portion 101. Other configurations are the same as those in the first embodiment.

端部101及び他方の端部の縮管加工は、上述の実施の形態1における補強工程で実行される。 The shrinkage tube processing of the end portion 101 and the other end portion is performed in the reinforcing step in the above-described first embodiment.

本実施の形態2によれば、内管100の端部101及び他方の端部は、加工硬化されており、強度が補強されている。従って、実施の形態1と同様の効果が得られる。さらに、縮管加工では、端部101及び他方の端部は加熱されない。従って、本実施の形態2によれば、端部101及び他方の端部において、加熱による強度の低下を回避することができる。 According to the second embodiment, the end 101 of the inner pipe 100 and the other end are work-hardened to reinforce the strength. Therefore, the same effect as that of the first embodiment can be obtained. Further, in the reduced tube processing, the end 101 and the other end are not heated. Therefore, according to the second embodiment, it is possible to avoid a decrease in strength due to heating at the end portion 101 and the other end portion.

1 熱交換器、10 内管、11 端部、12 端部、13 螺旋構造部、13A 螺旋溝、13B 螺旋溝、13C 螺旋溝、13D 山部、20 外管、20A 外管、20B 外管、20C 外管、30 配管、31 フレア部、40 配管、50 ポンプ、60 蓋部材、100 内管、101 端部、103 螺旋構造部、X1 第1曲げ加工部、X2 第2曲げ加工部、Y1 領域、Y2 領域、Y3 領域。 1 heat exchanger, 10 inner pipe, 11 end, 12 end, 13 spiral structure, 13A spiral groove, 13B spiral groove, 13C spiral groove, 13D mountain part, 20 outer pipe, 20A outer pipe, 20B outer pipe, 20C outer pipe, 30 pipes, 31 flare part, 40 pipes, 50 pumps, 60 lid members, 100 inner pipes, 101 ends, 103 spiral structure parts, X1 first bending part, X2 second bending part, Y1 area , Y2 area, Y3 area.

本発明に係る熱交換器の製造方法は、流体が流通する内管及び外管を備え、前記外管は前記内管の両端部を除く外周面に螺旋状に巻き付けられた状態で前記内管に接合されている熱交換器の製造方法であって、前記内管の一部を焼なましする焼なまし工程と、前記焼なまし工程の実行後に、前記内管の前記両端部の強度を、前記外管が巻き付けられる部分の強度よりも高くする補強工程と、前記外管が巻き付けられている前記内管の内部の圧力を上昇させて前記内管を拡管する拡管工程と、前記拡管工程の実行後に前記内管の複数箇所を曲げ加工し、螺旋状に形成する曲げ工程とを含み、前記焼なまし工程において、前記両端部のうちの一方の端部から、前記曲げ工程で曲げ加工される複数の曲げ加工部のうち前記一方の端部に最も近い第1曲げ加工部の手前までの領域に、焼なまし処理は施されず、前記両端部のうちの他方の端部から、前記曲げ工程で曲げ加工される複数の曲げ加工部のうち前記他方の端部に最も近い第2曲げ加工部の手前までの領域に、焼なまし処理は施されず、前記第1曲げ加工部から前記第2曲げ加工部までの領域に焼なまし処理が施されるものであるThe method for manufacturing a heat exchanger according to the present invention includes an inner pipe and an outer pipe through which fluid flows, and the outer pipe is spirally wound around an outer peripheral surface excluding both ends of the inner pipe. A method for manufacturing a heat exchanger joined to the inner tube , wherein a part of the inner tube is annealed, and after the annealing step is executed, the strength of both ends of the inner tube is increased. and a reinforcing step higher than the strength of the portion where the outer tube is wound, the tube expansion step of pipe expanding the inner pipe by increasing the pressure inside of the inner tube wherein the outer tube is wound, the tube expansion the inner tube is bent a plurality of locations in the after step, seen including a bending process to form spirally in the annealing step, from one end of said end portions, in the bending step The region up to the front of the first bending portion closest to the one end of the plurality of bending portions to be bent is not annealed, and the other end of the both ends is not subjected to the annealing treatment. Therefore, the area up to the front of the second bending portion closest to the other end of the plurality of bending portions to be bent in the bending step is not subjected to the annealing treatment, and the first bending is performed. The region from the processed portion to the second bending portion is annealed .

本発明に係る熱交換器は、流体が流通する内管及び外管を備え、前記外管は、前記内管の両端部を除く外周面に螺旋状に巻き付けられた状態で前記内管に接合されており、前記内管の一部が焼なましされ、前記内管の前記両端部の強度が、前記外管が巻き付けられる部分の強度よりも高くされ、前記外管が巻き付けられている前記内管が拡管され、前記内管の複数箇所が曲げ加工され、螺旋状に形成されている熱交換器において、前記両端部のうちの一方の端部から、曲げ加工されている複数の曲げ加工部のうち前記一方の端部に最も近い第1曲げ加工部の手前までの領域に、焼なまし処理は施されておらず、前記両端部のうちの他方の端部から、曲げ加工されている複数の曲げ加工部のうち前記他方の端部に最も近い第2曲げ加工部の手前までの領域に、焼なまし処理は施されておらず、前記第1曲げ加工部から前記第2曲げ加工部までの領域に焼なまし処理が施されているものである。 The heat exchanger according to the present invention includes an inner pipe and an outer pipe through which fluid flows, and the outer pipe is joined to the inner pipe in a state of being spirally wound around an outer peripheral surface excluding both ends of the inner pipe. The inner tube is partially annealed, the strength of both ends of the inner tube is made higher than the strength of the portion around which the outer tube is wound, and the outer tube is wound. In a heat exchanger in which an inner pipe is expanded and a plurality of parts of the inner pipe are bent to form a spiral shape, a plurality of bending processes are performed from one end of both ends. The region of the portion up to the front of the first bending portion closest to the one end is not annealed, and is bent from the other end of the both ends. The region of the plurality of bending portions up to the front of the second bending portion closest to the other end portion is not annealed, and the first bending portion to the second bending portion are not subjected to the annealing treatment. The area up to the processed part is annealed .

Claims (13)

流体が流通する内管及び外管を備え、前記外管は前記内管の両端部を除く外周面に螺旋状に巻き付けられた状態で前記内管に接合されている熱交換器の製造方法であって、
前記内管の前記両端部の強度を、前記外管が巻き付けられる部分の強度よりも高くする補強工程と、
前記外管が巻き付けられている前記内管の内部の圧力を上昇させて前記内管を拡管する拡管工程とを含む熱交換器の製造方法。
A method for manufacturing a heat exchanger, which comprises an inner pipe and an outer pipe through which a fluid flows, and the outer pipe is spirally wound around an outer peripheral surface excluding both ends of the inner pipe and joined to the inner pipe. There,
A reinforcing step of increasing the strength of both ends of the inner pipe to be higher than the strength of the portion around which the outer pipe is wound.
A method for manufacturing a heat exchanger, which comprises a tube expanding step of increasing the pressure inside the inner tube around which the outer tube is wound to expand the inner tube.
前記補強工程は、前記両端部の外径よりも内径が大きい配管を、前記両端部に嵌め合わせて接合する工程を含む請求項1に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 1, wherein the reinforcing step includes a step of fitting and joining a pipe having an inner diameter larger than the outer diameter of both ends to the both ends. 前記配管は、前記両端部よりも肉厚に構成された請求項2に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 2, wherein the pipe is thicker than both ends. 前記配管は、前記両端部よりも強度が高く構成された請求項2に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 2, wherein the piping is configured to have higher strength than both ends. 前記補強工程は、前記内管において、前記両端部の外径が、前記外管が巻き付けられている部分の外径よりも小さくなるよう、前記両端部を縮管加工する工程を含む請求項1に記載の熱交換器の製造方法。 The reinforcing step includes a step of shrinking both ends of the inner pipe so that the outer diameters of both ends thereof are smaller than the outer diameter of the portion around which the outer pipe is wound. The method for manufacturing a heat exchanger described in 1. 前記補強工程の実行前に、前記内管の一部を焼なましする焼なまし工程をさらに含み、
前記焼なまし工程は、前記外管が巻き付けられる部分に焼なまし処理を施す工程を含む請求項1〜5のいずれか一項に記載の熱交換器の製造方法。
Further including an annealing step of annealing a part of the inner pipe before executing the reinforcement step.
The method for manufacturing a heat exchanger according to any one of claims 1 to 5, wherein the annealing step includes a step of performing an annealing treatment on a portion around which the outer pipe is wound.
前記補強工程の実行前に、前記内管の一部を焼なましする焼なまし工程をさらに含み、
前記拡管工程の実行後に前記内管の複数箇所を曲げ加工し、螺旋状に形成する曲げ工程をさらに含み、
前記焼なまし工程において、
前記両端部のうちの一方の端部から、前記曲げ工程で曲げ加工される複数の曲げ加工部のうち前記一方の端部に最も近い第1曲げ加工部の手前までの領域に、焼なまし処理は施されず、
前記両端部のうちの他方の端部から、前記曲げ工程で曲げ加工される複数の曲げ加工部のうち前記他方の端部に最も近い第2曲げ加工部の手前までの領域に、焼なまし処理は施されず、
前記第1曲げ加工部から前記第2曲げ加工部までの領域に焼なまし処理が施される請求項1〜5のいずれか一項に記載の熱交換器の製造方法。
Further including an annealing step of annealing a part of the inner pipe before executing the reinforcement step.
Further including a bending step of bending a plurality of parts of the inner pipe to form a spiral shape after executing the pipe expanding step.
In the annealing step,
Annealing is performed in the region from one end of both ends to the front of the first bending portion closest to the one end of the plurality of bending portions to be bent in the bending step. No treatment,
Annealing is performed in the region from the other end of both ends to the front of the second bending portion closest to the other end of the plurality of bending portions to be bent in the bending step. No treatment,
The method for manufacturing a heat exchanger according to any one of claims 1 to 5, wherein the region from the first bending portion to the second bending portion is annealed.
流体が流通する内管及び外管を備え、
前記外管は、前記内管の両端部を除く外周面に螺旋状に巻き付けられた状態で前記内管に接合されており、
前記内管において、前記外管が巻き付けられていない前記両端部の強度は、前記外管が巻き付けられている部分の強度よりも高く構成されている熱交換器。
Equipped with an inner pipe and an outer pipe through which fluid flows
The outer pipe is joined to the inner pipe in a state of being spirally wound around the outer peripheral surface excluding both ends of the inner pipe.
A heat exchanger in which the strength of both ends of the inner pipe to which the outer pipe is not wound is higher than the strength of the portion to which the outer pipe is wound.
前記両端部に、前記両端部の外径よりも内径が大きい配管が、前記配管の内周面が前記両端部の外周面に接触した状態で接合されている請求項8に記載の熱交換器。 The heat exchanger according to claim 8, wherein a pipe having an inner diameter larger than the outer diameter of both ends is joined to both ends of the pipe in a state where the inner peripheral surface of the pipe is in contact with the outer peripheral surfaces of both ends. .. 前記配管は、前記両端部よりも肉厚に構成されている請求項9に記載の熱交換器。 The heat exchanger according to claim 9, wherein the pipe is thicker than both ends. 前記配管は、前記両端部よりも強度が高く構成されている請求項9に記載の熱交換器。 The heat exchanger according to claim 9, wherein the piping is configured to have higher strength than both ends. 前記両端部の外径は、前記外管が巻き付けられている部分の外径よりも小さい請求項8に記載の熱交換器。 The heat exchanger according to claim 8, wherein the outer diameters of both ends are smaller than the outer diameter of the portion around which the outer tube is wound. 前記内管は、前記両端部の間に位置し外周面に複数条の螺旋溝が形成されている螺旋構造部を有し、
前記外管は、前記螺旋溝に巻き付けられている請求項8〜12のいずれか一項に記載の熱交換器。
The inner pipe has a spiral structure portion located between both end portions and having a plurality of spiral grooves formed on the outer peripheral surface.
The heat exchanger according to any one of claims 8 to 12, wherein the outer tube is wound around the spiral groove.
JP2019561401A 2017-12-25 2017-12-25 Heat exchanger manufacturing method and heat exchanger Active JP6861848B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046406 WO2019130386A1 (en) 2017-12-25 2017-12-25 Method for manufacturing heat exchanger, and heat exchanger

Publications (2)

Publication Number Publication Date
JPWO2019130386A1 true JPWO2019130386A1 (en) 2020-09-24
JP6861848B2 JP6861848B2 (en) 2021-04-21

Family

ID=67063313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019561401A Active JP6861848B2 (en) 2017-12-25 2017-12-25 Heat exchanger manufacturing method and heat exchanger

Country Status (3)

Country Link
JP (1) JP6861848B2 (en)
CN (1) CN210570100U (en)
WO (1) WO2019130386A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040682B1 (en) * 2020-08-19 2022-03-23 日本精工株式会社 Ball screw device, manufacturing method of machine parts, manufacturing method of machinery, vehicle manufacturing method, machine parts, machinery, vehicle, hydraulic molding method, and molding mold for hydraulic molding
KR102386133B1 (en) * 2021-05-06 2022-04-14 이장근 Portable gas burner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344955A (en) * 1976-10-02 1978-04-22 Sumitomo Light Metal Ind Liquiddtooliquid heat exchanger
JP2004332969A (en) * 2003-05-01 2004-11-25 Taiheiyo Seiko Kk Heat exchanger and manufacturing method of heat exchanger
JP2005076915A (en) * 2003-08-28 2005-03-24 Kobe Steel Ltd Composite heat exchanger tube
JP2007333271A (en) * 2006-06-14 2007-12-27 Mitsubishi Electric Corp Method of manufacturing heat exchanger
JP2010159935A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Method for manufacturing twisted pipe type heat exchanger, and outdoor unit
WO2016174826A1 (en) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration cycle device using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199767U (en) * 1981-06-16 1982-12-18
JPS62136767U (en) * 1986-02-17 1987-08-28
JP2005164166A (en) * 2003-12-04 2005-06-23 Kobelco & Materials Copper Tube Inc Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344955A (en) * 1976-10-02 1978-04-22 Sumitomo Light Metal Ind Liquiddtooliquid heat exchanger
JP2004332969A (en) * 2003-05-01 2004-11-25 Taiheiyo Seiko Kk Heat exchanger and manufacturing method of heat exchanger
JP2005076915A (en) * 2003-08-28 2005-03-24 Kobe Steel Ltd Composite heat exchanger tube
JP2007333271A (en) * 2006-06-14 2007-12-27 Mitsubishi Electric Corp Method of manufacturing heat exchanger
JP2010159935A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Method for manufacturing twisted pipe type heat exchanger, and outdoor unit
WO2016174826A1 (en) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration cycle device using same

Also Published As

Publication number Publication date
CN210570100U (en) 2020-05-19
JP6861848B2 (en) 2021-04-21
WO2019130386A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP4941054B2 (en) Manufacturing method of seamless bend pipe, welded joint and manufacturing method thereof
JP6861848B2 (en) Heat exchanger manufacturing method and heat exchanger
JP2010185614A (en) Flat pipe joint
WO2016046926A1 (en) Coolant pipe and manufacturing method therefor, and heat exchanger provided with coolant pipe
KR20190128182A (en) Method of manufacturing clad steel pipe
US20170113257A1 (en) Method for producing a large multilayer pipe
CN104154778A (en) Heat exchanger and method for manufacturing heat exchanger
JP2009047394A (en) Manufacturing method of twisted tube-type heat exchanger
KR101483646B1 (en) Clad pipe manufactured by the manufacturing method, and clad pipe connected by the connecting method
JP2014145532A (en) Heat medium use device
JP2013066911A (en) Connection body of copper tube and stainless steel pipe and manufacturing method thereof
JP6489878B2 (en) Manufacturing method of joined tube
JP2010159935A (en) Method for manufacturing twisted pipe type heat exchanger, and outdoor unit
JP5689341B2 (en) Double tube heat exchanger and method for manufacturing the same
JP2006317046A (en) Heat exchanger tube
JP5404589B2 (en) Twisted tube heat exchanger
WO2010116730A1 (en) Heat exchanger and method for producing the same
JP2011099620A (en) Heat exchanger
JP5656786B2 (en) Manufacturing method of different diameter twisted tube heat exchanger
JP2007177848A (en) Piping
JP2009241145A (en) Method of manufacturing double pipe having bent part and double pipe having bent part
JP6333468B2 (en) Tube connection structure and heat exchanger
JP2020531790A (en) Double tube for heat exchange
JP2022008718A (en) Double pipe for heat exchange
JP4251746B2 (en) Tube manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210330

R150 Certificate of patent or registration of utility model

Ref document number: 6861848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150