WO2019130386A1 - Method for manufacturing heat exchanger, and heat exchanger - Google Patents

Method for manufacturing heat exchanger, and heat exchanger Download PDF

Info

Publication number
WO2019130386A1
WO2019130386A1 PCT/JP2017/046406 JP2017046406W WO2019130386A1 WO 2019130386 A1 WO2019130386 A1 WO 2019130386A1 JP 2017046406 W JP2017046406 W JP 2017046406W WO 2019130386 A1 WO2019130386 A1 WO 2019130386A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat exchanger
inner pipe
wound
exchanger according
Prior art date
Application number
PCT/JP2017/046406
Other languages
French (fr)
Japanese (ja)
Inventor
功介 山口
正章 我妻
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201790000814.2U priority Critical patent/CN210570100U/en
Priority to JP2019561401A priority patent/JP6861848B2/en
Priority to PCT/JP2017/046406 priority patent/WO2019130386A1/en
Publication of WO2019130386A1 publication Critical patent/WO2019130386A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled

Definitions

  • the present invention relates to a method of manufacturing a heat exchanger provided with an inner pipe and an outer pipe through which fluid flows, and a heat exchanger.
  • Some heat exchangers include an inner pipe through which water flows and an outer pipe through which a refrigerant flows.
  • the outer pipe is wound around the outer peripheral surface of the inner pipe.
  • the inner pipe and the outer pipe may be heat transfer-joined by brazing or soldering.
  • a brazing material used for brazing or a solder used for soldering is required.
  • a heat source for brazing or soldering must be secured. Therefore, such heat transfer bonding has a problem that the manufacturing cost rises.
  • Patent Document 1 as a method of joining the inner pipe and the outer pipe without using brazing or soldering, the inner pipe and the outer pipe are expanded by expanding the inner pipe with a liquid such as water. A method of intimate contact with the tube is described.
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a method of manufacturing a heat exchanger having a higher heat exchange rate, and a heat exchanger.
  • a method of manufacturing a heat exchanger according to the present invention includes an inner pipe and an outer pipe through which fluid flows, and the outer pipe is spirally wound around an outer peripheral surface excluding both ends of the inner pipe.
  • a heat exchanger comprises an inner pipe and an outer pipe through which fluid flows, and the outer pipe is joined to the inner pipe in a state of being spirally wound around the outer peripheral surface excluding the both ends of the inner pipe.
  • strength of the both ends where the outer pipe is not wound is configured to be higher than strength of a part where the outer pipe is wound.
  • the strength of both ends of the inner pipe is made higher than the strength of the portion where the outer pipe is wound, when the inner pipe is expanded, the outer pipe is wound Excessive deformation of both ends of the inner pipe can be suppressed. Therefore, the expansion pressure of the inner pipe can be further increased, and the portion of the inner pipe on which the outer pipe is wound can be brought into close contact with the outer pipe. As a result, a heat exchanger in which the heat exchange efficiency between the inner pipe and the outer pipe is further enhanced is obtained.
  • FIG. 1 is a view showing a heat exchanger according to Embodiment 1 of the present invention.
  • the heat exchanger 1 has an inner pipe 10, an outer pipe 20A, an outer pipe 20B, and an outer pipe 20C.
  • the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C may be collectively referred to as the outer pipe 20.
  • a fluid such as water flows through the inner pipe 10. That is, the inner pipe 10 is, for example, a water pipe.
  • a fluid such as a refrigerant flows through the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C. That is, the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C are, for example, refrigerant pipes.
  • the inner pipe 10 has one end 11, the other end 12, and a helical structure 13.
  • the helical structure 13 is located between the end 11 and the end 12.
  • the inner pipe 10 is bent at a plurality of locations in the helical structure portion 13 and formed in a generally rectangular spiral shape as a whole.
  • a pipe 30 is joined to one end 11 of the both ends of the inner pipe 10, and a pipe 40 is joined to the other end 12.
  • FIG. 2 is an enlarged view of one end of the inner pipe of the heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 3 is an enlarged view of the other end of the inner pipe of the heat exchanger according to Embodiment 1 of the present invention.
  • 2 and 3 schematically show a cross section of the heat exchanger 1 taken along the axis of the inner pipe 10. As shown in FIG. In FIG. 2, the end 11 of the inner pipe 10 is shown enlarged and in FIG. 3 the end 12 of the inner pipe 10 is shown enlarged. As shown in FIGS. 2 and 3, three helical grooves 13A, a helical groove 13B, and a helical groove 13C are formed on the outer peripheral surface of the helical structure portion 13.
  • the spiral structure of the spiral structure 13 is formed by the ridges 13D between the spiral groove 13A, the spiral groove 13B, and the spiral groove 13C, and the spiral groove 13A, the spiral groove 13B, and the spiral groove 13C, which are valleys.
  • the helical structure of the helical structure portion 13 is obtained by processing a heat transfer tube having a straight tube shape.
  • the helical groove is not formed in the outer peripheral surface of the edge part 11 and the outer peripheral surface of the edge part 12, and the edge part 11 and the edge part 12 have a straight pipe shape. That is, the end 11 and the end 12 respectively constitute a straight pipe portion.
  • the outer tube 20A is wound around the spiral groove 13A
  • the outer tube 20B is wound around the spiral groove 13B
  • the outer tube 20C is wound around the spiral groove 13C.
  • a pipe 30 which is a heat transfer pipe is connected to the end portion 11.
  • the inner diameter of the pipe 30 is larger than the outer diameter of the end 11.
  • a flared portion 31 whose inner diameter gradually increases outward is formed.
  • the thickness of the pipe 30 is thicker than the thickness of the end 11.
  • the pipe 30 is disposed such that the flare portion 31 faces outward.
  • the other end of the pipe 30 on which the flare portion 31 is not formed is joined to the end 11 of the inner pipe 10 by brazing.
  • the pipe 30 is joined in a state where the inner circumferential surface is in contact with the outer circumferential surface of the end portion 11.
  • a double structure is formed by the end portion 11 which is a straight pipe portion and the pipe 30.
  • a pipe 40 which is a heat transfer pipe, is connected to the end 12.
  • the inner diameter of the pipe 40 is larger than the outer diameter of the end 12.
  • the thickness of the pipe 40 is thicker than the thickness of the end 12.
  • the end 12 and the pipe 40 are joined by brazing.
  • the pipe 40 is joined in a state where the inner circumferential surface is in contact with the outer circumferential surface of the end 12.
  • a double structure is formed by the end portion 12 which is a straight pipe portion and the pipe 40.
  • FIG. 4 is a flowchart showing steps of a method of manufacturing a heat exchanger according to Embodiment 1 of the present invention.
  • step S1 an annealing process of the inner pipe 10 is performed.
  • bending is performed on a plurality of portions of the spiral structure 13 as shown in FIG.
  • FIG. 2 the heat exchanger 1 is obtained in which the inner pipe 10 is formed into a substantially rectangular spiral shape.
  • the inner pipe 10 is formed into a substantially rectangular spiral shape.
  • the helical structure portion 13 is work-hardened because the helical groove 13A, the helical groove 13B, and the helical groove 13C are formed. Therefore, the helical structure 13 has poor processability of bending at an angle of 90 degrees. Then, in order to eliminate the inferiority of the workability of this bending process, annealing is performed to a part of helical structure part 13. FIG.
  • FIG. 5 is a view showing a portion of the inner pipe 10 to be subjected to the annealing process.
  • the first bending portion X1 indicated by a thick arrow is the processing portion closest to the end portion 11 among the plurality of bending portions to be bent.
  • the second bending portion X2 indicated by a thick arrow is the bending portion closest to the end portion 12 among the plurality of bending portions to be bent.
  • the annealing process is not applied to the region Y1 from the end 11 to the front of the first bending portion X1, and from the end 12 to the front of the second bending portion X2.
  • the annealing process is not applied to the area Y2 of.
  • the annealing process is performed on the region Y3 from the first bent portion X1 to the second bent portion X2.
  • step S2 the strength of both ends of the inner pipe 10, that is, the end 11 and the end 12 is determined by the helical structure 13 in which the outer pipe 20 is wound.
  • a reinforcement step is performed to make the strength higher than.
  • the annealing process described above is performed before the reinforcement process is performed.
  • the pipe 30 is fitted to the end 11 and joined by brazing, and as shown in FIG. 3, the pipe 40 is fitted to the end 12 and brazed It is joined.
  • the strength refers to the pressure resistance when the fluid pressure is applied from the inside of the inner pipe 10.
  • the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C are wound around the helical structure portion 13.
  • FIG. 6 is an enlarged view of one end of the inner pipe when the pipe expansion step is performed.
  • FIG. 7 is an enlarged view of the other end of the inner pipe when the pipe expansion step is performed.
  • 6 and 7 schematically show cross sections of the heat exchanger 1 taken along the axis of the inner pipe 10, as in FIGS.
  • the pump 50 is connected to one end 11, and the lid 60 is attached to the other end 12 as shown in FIG. 7.
  • the pump 50 is, for example, a liquid pump. In this state, the pump 50 is operated to raise the pressure in the inner pipe 10 to perform the pipe expansion step of expanding the inner pipe 10, whereby the inner pipe 10 is expanded in hydraulic pressure.
  • step S4 in the helical structure portion 13, a plurality of bending portions including the first bending portion X1 and the second bending portion X2 of FIG. A bending step is performed to bend the tube 10 to 90 degrees. As a result, the heat exchanger 1 shown in FIG. 1 is obtained.
  • the heat flowing between the water flowing through the inner pipe 10 and the refrigerant flowing through the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C exchanges heat.
  • the water flowing through the water its temperature rises and becomes hot water.
  • the helical structure of the helical structure portion 13 is formed by processing a straight tube-shaped heat transfer tube, and the helical structure portion 13 is work-hardened. Furthermore, an outer pipe 20A, an outer pipe 20B, and an outer pipe 20C are wound around the outer peripheral surface of the helical structure portion 13. On the other hand, as shown in FIG. 2, the outer pipe 20 is not wound around the outer peripheral surface of the end portion 11, and the end portion 11 remains as a straight pipe. Similarly, as shown in FIG. 3, the outer pipe 20 is not wound around the outer peripheral surface of the straight pipe portion of the end 12, and the end 12 remains as a straight pipe.
  • the strength against the expansion pressure when expanding the inner pipe 10 with a hydraulic pressure is higher in the spiral structure 13 than in the end 11 and the end 12. Therefore, when hydraulic pressure is applied from the inside of the inner pipe 10 in order to ensure sufficient bonding between the inner pipe 10 and the outer pipe 20 in the helical structure 13, the ends 11 and 12 which are straight pipes are excessive. May be transformed into On the other hand, the inner pipe 10 of the first embodiment has a configuration in which the strength of the end 11 and the end 12 is reinforced as described above.
  • the strengths of the end portion 11 and the end portion 12 which are portions where the outer tube 20 is not wound are higher than the strengths of the spiral structure portion 13 which is a portion where the outer tube 20 is wound. There is.
  • a pipe 30 thicker than the end 11 is joined to the end 11, and a pipe 40 thicker than the end 12 is joined to the end 12.
  • the end 12 is reinforced in strength. Therefore, even when the fluid pressure is applied from the inside of the inner pipe 10, it is possible to suppress the occurrence of excessive deformation due to the fluid pressure. Therefore, when the inner pipe 10 is expanded hydraulically, the expansion pressure can be further increased, and the close contact between the inner pipe 10 and the outer pipe 20 in the spiral structure 13 of the inner pipe 10 can be further enhanced. As a result, the heat exchanger 1 in which the heat exchange efficiency between the inner pipe 10 and the outer pipe 20 is further enhanced is obtained.
  • the end portion 11 is formed by brazing the pipe 30 thicker than the end portion 11 to the end portion 11 and brazing the pipe 40 thicker than the end portion 12 to the end portion 12. And the strength with respect to the hydraulic pressure of the end 12 is increased, but it is not limited thereto.
  • a pipe made of a high strength material may be joined to the end 11 and the end 12. In this case, it is desirable that the quality of the pipe is, for example, a strength of “H” or more according to Japanese Industrial Standards. Also in this case, since the strength of the end 11 and the end 12 is reinforced, the above-described effect can be obtained.
  • the thickness and materials of the pipes 30 and 40 are limited to those described above as long as the end 11 and the end 12 can form a double pipe structure having higher strength than the helical structure 13. There is nothing to do.
  • the annealing process is not applied to the area Y1 and the area Y2 shown in FIG. 5, but is applied to the area Y3. Therefore, the processability when bending the inner pipe 10 and forming it as shown in FIG. 1 can be made better without reducing the strength of the end portion 11 and the end portion 12.
  • the helical structure portion 13 may be subjected to an annealing treatment without being subjected to the annealing treatment to the end portions 11 and 12 which are straight pipe portions.
  • the annealing process is performed before the end 11 and the end 12 reinforcement process, but the present invention is not limited to this.
  • the annealing process may be performed after the end 11 and the end 12 are reinforced.
  • the three spiral grooves 13A, the spiral grooves 13B, and the spiral grooves 13C are formed on the outer peripheral surface of the spiral structure 13.
  • the number of spiral grooves is not limited to this.
  • a plurality of spiral grooves may be formed in the spiral structure portion 13 and the outer tube may be wound around each spiral groove.
  • FIG. 8 is an enlarged view of one end of an inner pipe of a heat exchanger according to Embodiment 2 of the present invention.
  • the end 101 of the inner pipe 100 is shown in FIG. In FIG. 8, the same members as those in Embodiment 1 are given the same reference numerals.
  • the helical structure portion 103 of the inner tube 100 has the same configuration as the helical structure portion 13 of the inner tube 10 of the first embodiment, and the outer tube 20A, the outer tube 20B, and the outer tube are provided on the outer peripheral surface thereof. 20C is wound.
  • One end 101 of the both ends of the inner pipe 100 is a straight pipe, and is subjected to a contraction process.
  • the outer diameter D1 of the end portion 101 is smaller than the outer diameter D2 of the helical structure portion 103.
  • the end portion 101 is work-hardened by a contraction tube.
  • the range which performs a pipe contraction process in the edge part 101 is defined so that the pressure loss of the water circuit which the inner pipe
  • the other end of the inner pipe 100 is similarly subjected to a contraction process and is work-hardened.
  • a flared portion for attaching the pump 50 may be formed at the tip of the end portion 101.
  • the other configuration is the same as that of the first embodiment.
  • the contraction of the end 101 and the other end is performed in the reinforcing step in the first embodiment described above.
  • the end portion 101 and the other end portion of the inner pipe 100 are work-hardened to reinforce the strength. Therefore, the same effect as that of the first embodiment can be obtained. Furthermore, in the pipe reduction process, the end 101 and the other end are not heated. Therefore, according to the second embodiment, a decrease in strength due to heating can be avoided at the end 101 and the other end.
  • Reference Signs List 1 heat exchanger 10 inner pipe, 11 end, 12 end, 13 spiral structure portion, 13A spiral groove, 13B spiral groove, 13C spiral groove, 13D peak portion, 20 outer pipe, 20A outer pipe, 20B outer pipe, 20C Outer pipe, 30 piping, 31 flared part, 40 piping, 50 pump, 60 lid member, 100 inner pipe, 101 end, 103 helical structure part, X1 first bending part, X2 second bending part, Y1 area , Y2 area, Y3 area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

This heat exchanger is provided with an inner tube and an outer tube, in which fluids circulate, respectively. The outer tube is joined to the inner tube in a state of being spirally wound on the outer peripheral surface of the inner tube. The inner tube is configured such that the strength of both end sections on which the outer tube is not wound is higher than the strength of a part on which the outer tube is wound.

Description

熱交換器の製造方法及び熱交換器Heat exchanger manufacturing method and heat exchanger
 本発明は、流体が流通する内管及び外管を備えた熱交換器の製造方法、及び熱交換器に関するものである。 The present invention relates to a method of manufacturing a heat exchanger provided with an inner pipe and an outer pipe through which fluid flows, and a heat exchanger.
 熱交換器には、水が流通する内管と、冷媒が流通する外管とを備えるものがある。外管は、内管の外周面に巻き付けられている。このような構造を有する熱交換器において、内管と外管が、ロウ付け若しくははんだ付けにより伝熱接合される場合がある。ロウ付け若しくははんだ付けにより伝熱接合する場合、内管及び外管の他に、ロウ付けに用いるロウ材、又は、はんだ付けに用いるはんだが必要である。また、ロウ付け若しくははんだ付けのための熱源を確保しなければならない。そのため、このような伝熱接合は製造コストが高騰するという問題がある。そこで、例えば、特許文献1には、ロウ付け若しくははんだ付けを使用することなく、内管と外管とを接合する方法として、水等の液体によって内管を拡管させることにより、内管と外管とを密着させる方法が記載されている。 Some heat exchangers include an inner pipe through which water flows and an outer pipe through which a refrigerant flows. The outer pipe is wound around the outer peripheral surface of the inner pipe. In a heat exchanger having such a structure, the inner pipe and the outer pipe may be heat transfer-joined by brazing or soldering. In the case of heat transfer bonding by brazing or soldering, in addition to the inner and outer tubes, a brazing material used for brazing or a solder used for soldering is required. In addition, a heat source for brazing or soldering must be secured. Therefore, such heat transfer bonding has a problem that the manufacturing cost rises. Therefore, for example, in Patent Document 1, as a method of joining the inner pipe and the outer pipe without using brazing or soldering, the inner pipe and the outer pipe are expanded by expanding the inner pipe with a liquid such as water. A method of intimate contact with the tube is described.
特開2004-93057号公報JP 2004-93057 A
 特許文献1に記載されているように水等の液体によって内管を拡管する方法では、内管と外管とを十分に密着させるために、非常に高い圧力で内管を拡管させる必要がある。しかしながら、高い圧力を内管にかけると、内管において外管が巻き付けられていない部分は、外管が巻き付けられていない部分に比べ強度が弱いため、過剰に変形してしまう。このような内管の変形を回避するため、内管にかける圧力を抑えることが考えられる。しかしながら、内管にかける圧力が不十分だと、内管と外管との密着が弱い状態となり、十分な伝熱接合が得られない。その結果、内管を流通する水と外管を流通する冷媒との間で、高い熱交換率が得られないという問題がある。 In the method of expanding the inner pipe with a liquid such as water as described in Patent Document 1, it is necessary to expand the inner pipe at a very high pressure in order to sufficiently contact the inner pipe and the outer pipe. . However, when high pressure is applied to the inner pipe, the portion of the inner pipe where the outer pipe is not wound is excessively deformed because the strength is weaker than the portion where the outer pipe is not wound. In order to avoid such deformation of the inner pipe, it is conceivable to suppress the pressure applied to the inner pipe. However, if the pressure applied to the inner pipe is insufficient, the adhesion between the inner pipe and the outer pipe becomes weak, and sufficient heat transfer bonding can not be obtained. As a result, there is a problem that a high heat exchange rate can not be obtained between the water flowing through the inner pipe and the refrigerant flowing through the outer pipe.
 本発明は、上記のような課題を解決するためになされたものであり、より高い熱交換率を有する熱交換器の製造方法、及び熱交換器を提供することを目的とする。 The present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a method of manufacturing a heat exchanger having a higher heat exchange rate, and a heat exchanger.
 本発明に係る熱交換器の製造方法は、流体が流通する内管及び外管を備え、前記外管は前記内管の両端部を除く外周面に螺旋状に巻き付けられた状態で前記内管に接合されている熱交換器の製造方法であって、前記内管の前記両端部の強度を、前記外管が巻き付けられる部分の強度よりも高くする補強工程と、前記外管が巻き付けられている前記内管の内部の圧力を上昇させて前記内管を拡管する拡管工程とを含んでいる。 A method of manufacturing a heat exchanger according to the present invention includes an inner pipe and an outer pipe through which fluid flows, and the outer pipe is spirally wound around an outer peripheral surface excluding both ends of the inner pipe. A method of manufacturing a heat exchanger joined to the core, wherein the strength of the ends of the inner pipe is made higher than the strength of the portion around which the outer pipe is wound; Expanding the pressure inside the inner pipe, thereby expanding the inner pipe.
 本発明に係る熱交換器は、流体が流通する内管及び外管を備え、前記外管は、前記内管の両端部を除く外周面に螺旋状に巻き付けられた状態で前記内管に接合されており、前記内管において、前記外管が巻き付けられていない前記両端部の強度は、前記外管が巻き付けられている部分の強度よりも高く構成されているものである。 A heat exchanger according to the present invention comprises an inner pipe and an outer pipe through which fluid flows, and the outer pipe is joined to the inner pipe in a state of being spirally wound around the outer peripheral surface excluding the both ends of the inner pipe. In the inner pipe, strength of the both ends where the outer pipe is not wound is configured to be higher than strength of a part where the outer pipe is wound.
 本発明に係る熱交換器の製造方法によると、内管の両端部の強度を外管が巻き付けられている部分の強度よりも高くするので、内管を拡管したとき、外管が巻き付けられていない内管の両端部の過剰な変形を抑制することができる。従って、内管の拡管圧力をより高くすることができ、内管において外管が巻き付けられている部分と外管とを密着させることができる。その結果、内管と外管との間の熱交換効率がより高められた熱交換器が得られる。 According to the method of manufacturing a heat exchanger according to the present invention, since the strength of both ends of the inner pipe is made higher than the strength of the portion where the outer pipe is wound, when the inner pipe is expanded, the outer pipe is wound Excessive deformation of both ends of the inner pipe can be suppressed. Therefore, the expansion pressure of the inner pipe can be further increased, and the portion of the inner pipe on which the outer pipe is wound can be brought into close contact with the outer pipe. As a result, a heat exchanger in which the heat exchange efficiency between the inner pipe and the outer pipe is further enhanced is obtained.
本発明の実施の形態1に係る熱交換器を示す図である。It is a figure which shows the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の内管の一方の端部を拡大して示す図である。It is a figure which expands and shows one end part of the inner tube of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の内管の他方の端部を拡大して示す図である。It is a figure which expands and shows the other end part of the inner tube of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the heat exchanger which concerns on Embodiment 1 of this invention. 内管において焼きなまし処理を施す箇所を示す図である。It is a figure which shows the location which anneal-treats in an inner pipe. 拡管工程を実行する際の内管の一方の端部を拡大して示す図である。It is a figure expanding and showing one end of an inner pipe at the time of performing a pipe expansion process. 拡管工程を実行する際の内管の他方の端部を拡大して示す図である。It is a figure which expands and shows the other end part of the inner pipe | tube at the time of performing a pipe expansion process. 本発明の実施の形態2に係る熱交換器の内管の一方の端部を拡大して示す図である。It is a figure which expands and shows one end part of the inner tube of the heat exchanger which concerns on Embodiment 2 of this invention.
 以下に、本発明における熱交換器、及びその製造方法の実施の形態を図面に基づいて詳細に説明する。尚、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさ及び形状は実際の装置とは異なる場合がある。 Hereinafter, embodiments of a heat exchanger and a method of manufacturing the same according to the present invention will be described in detail based on the drawings. The present invention is not limited by the embodiments described below. Moreover, in the following drawings, the size and shape of each component may differ from the actual device.
実施の形態1.
 図1は、本発明の実施の形態1に係る熱交換器を示す図である。熱交換器1は、内管10と、外管20A、外管20B、及び外管20Cとを有している。以降の説明において、外管20A、外管20B、及び外管20Cを総称して外管20と言う場合がある。内管10には水等の流体が流通する。すなわち、内管10は例えば水管である。外管20A、外管20B、及び外管20Cには、それぞれ冷媒等の流体が流通する。すなわち、外管20A、外管20B、及び外管20Cは、例えば冷媒管である。内管10は、一方の端部11と、他方の端部12と、螺旋構造部13とを有している。螺旋構造部13は、端部11と端部12との間に位置している。内管10は螺旋構造部13の複数箇所で曲げ加工されており、全体として略長方形の螺旋状に形成されている。内管10の両端部のうちの一方の端部11には配管30が接合され、他方の端部12には配管40が接合されている。
Embodiment 1
FIG. 1 is a view showing a heat exchanger according to Embodiment 1 of the present invention. The heat exchanger 1 has an inner pipe 10, an outer pipe 20A, an outer pipe 20B, and an outer pipe 20C. In the following description, the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C may be collectively referred to as the outer pipe 20. A fluid such as water flows through the inner pipe 10. That is, the inner pipe 10 is, for example, a water pipe. A fluid such as a refrigerant flows through the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C. That is, the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C are, for example, refrigerant pipes. The inner pipe 10 has one end 11, the other end 12, and a helical structure 13. The helical structure 13 is located between the end 11 and the end 12. The inner pipe 10 is bent at a plurality of locations in the helical structure portion 13 and formed in a generally rectangular spiral shape as a whole. A pipe 30 is joined to one end 11 of the both ends of the inner pipe 10, and a pipe 40 is joined to the other end 12.
 図2は、本発明の実施の形態1に係る熱交換器の内管の一方の端部を拡大して示す図である。図3は、本発明の実施の形態1に係る熱交換器の内管の他方の端部を拡大して示す図である。尚、図2及び図3は、熱交換器1を内管10の管軸に沿って切断した断面を模式的に示している。図2には、内管10の端部11が拡大して示されており、図3には内管10の端部12が拡大されて示されている。図2及び図3に示すように、螺旋構造部13の外周面に3条の螺旋溝13A、螺旋溝13B、及び螺旋溝13Cが形成されている。螺旋溝13A、螺旋溝13B、及び螺旋溝13Cの間の山部13Dと、谷部である螺旋溝13A、螺旋溝13B、及び螺旋溝13Cとで、螺旋構造部13の螺旋構造が形成されている。螺旋構造部13の螺旋構造は、直管形状の伝熱管を加工することで得られる。端部11の外周面及び端部12の外周面には螺旋溝が形成されておらず、端部11及び端部12は直管形状を呈している。すなわち、端部11及び端部12はそれぞれ直管部を構成している。 FIG. 2 is an enlarged view of one end of the inner pipe of the heat exchanger according to Embodiment 1 of the present invention. FIG. 3 is an enlarged view of the other end of the inner pipe of the heat exchanger according to Embodiment 1 of the present invention. 2 and 3 schematically show a cross section of the heat exchanger 1 taken along the axis of the inner pipe 10. As shown in FIG. In FIG. 2, the end 11 of the inner pipe 10 is shown enlarged and in FIG. 3 the end 12 of the inner pipe 10 is shown enlarged. As shown in FIGS. 2 and 3, three helical grooves 13A, a helical groove 13B, and a helical groove 13C are formed on the outer peripheral surface of the helical structure portion 13. The spiral structure of the spiral structure 13 is formed by the ridges 13D between the spiral groove 13A, the spiral groove 13B, and the spiral groove 13C, and the spiral groove 13A, the spiral groove 13B, and the spiral groove 13C, which are valleys. There is. The helical structure of the helical structure portion 13 is obtained by processing a heat transfer tube having a straight tube shape. The helical groove is not formed in the outer peripheral surface of the edge part 11 and the outer peripheral surface of the edge part 12, and the edge part 11 and the edge part 12 have a straight pipe shape. That is, the end 11 and the end 12 respectively constitute a straight pipe portion.
 螺旋溝13Aには外管20Aが巻き付けられ、螺旋溝13Bには外管20Bが巻き付けられ、螺旋溝13Cには外管20Cが巻き付けられている。外管20を内管10の外周面に螺旋状に巻き付けた状態で、すなわち、螺旋構造部13に外管20が巻き付けられ、端部11及び端部12には外管20が巻き付けられていない状態で、後述するように内管10の内部から液圧を加える。これにより、内管10が液圧拡管されて、外管20は内管10に接合された状態となっている。 The outer tube 20A is wound around the spiral groove 13A, the outer tube 20B is wound around the spiral groove 13B, and the outer tube 20C is wound around the spiral groove 13C. In a state in which the outer tube 20 is spirally wound around the outer peripheral surface of the inner tube 10, that is, the outer tube 20 is wound around the helical structure 13 and the outer tube 20 is not wound around the end 11 and the end 12 In the state, hydraulic pressure is applied from the inside of the inner pipe 10 as described later. As a result, the inner pipe 10 is expanded in hydraulic pressure, and the outer pipe 20 is joined to the inner pipe 10.
 図2に示すように、端部11には、伝熱管である配管30が接続されている。配管30の内径は、端部11の外径よりも大きい。配管30の一方の端部に、内径が外側に向けて徐々に大きくなっているフレア部31が形成されている。配管30の肉厚は、端部11の肉厚よりも厚い。配管30は、フレア部31が外側を向くよう配置されている。配管30においてフレア部31が形成されていない側である他方の端部が内管10の端部11とロウ付けにより接合されている。配管30は、その内周面が端部11の外周面に接触した状態で接合されている。これにより直管部である端部11と配管30とにより二重構造が形成されている。 As shown in FIG. 2, a pipe 30 which is a heat transfer pipe is connected to the end portion 11. The inner diameter of the pipe 30 is larger than the outer diameter of the end 11. At one end of the pipe 30, a flared portion 31 whose inner diameter gradually increases outward is formed. The thickness of the pipe 30 is thicker than the thickness of the end 11. The pipe 30 is disposed such that the flare portion 31 faces outward. The other end of the pipe 30 on which the flare portion 31 is not formed is joined to the end 11 of the inner pipe 10 by brazing. The pipe 30 is joined in a state where the inner circumferential surface is in contact with the outer circumferential surface of the end portion 11. Thus, a double structure is formed by the end portion 11 which is a straight pipe portion and the pipe 30.
 図3に示すように、端部12には、伝熱管である配管40が接続されている。配管40の内径は、端部12の外径よりも大きい。配管40の肉厚は、端部12の肉厚よりも厚い。端部12と配管40は、ロウ付けにより接合されている。配管40は、その内周面が端部12の外周面に接触した状態で接合されている。これにより直管部である端部12と配管40とにより二重構造が形成されている。 As shown in FIG. 3, a pipe 40, which is a heat transfer pipe, is connected to the end 12. The inner diameter of the pipe 40 is larger than the outer diameter of the end 12. The thickness of the pipe 40 is thicker than the thickness of the end 12. The end 12 and the pipe 40 are joined by brazing. The pipe 40 is joined in a state where the inner circumferential surface is in contact with the outer circumferential surface of the end 12. Thus, a double structure is formed by the end portion 12 which is a straight pipe portion and the pipe 40.
 図4は、本発明の実施の形態1に係る熱交換器の製造方法の工程を示すフローチャートである。ステップS1において、内管10の焼なまし工程が実行される。上述のように、外管20A、外管20B、及び外管20Cが内管10の螺旋構造部13に巻き付けられた状態で、螺旋構造部13の複数箇所に曲げ加工をすることにより、図1に示すように、内管10が略長方形の螺旋状に成形された熱交換器1が得られる。このように内管10を成形するために、螺旋構造部13では、90度の角度に曲げられる箇所が存在する。螺旋構造部13は、螺旋溝13A、螺旋溝13B、及び螺旋溝13Cが形成されたことで、加工硬化している。従って、螺旋構造部13は、90度の角度に曲げる曲げ加工の加工性が悪い。そこで、この曲げ加工の加工性の悪さを解消するため、螺旋構造部13の一部に焼なましが行われる。 FIG. 4 is a flowchart showing steps of a method of manufacturing a heat exchanger according to Embodiment 1 of the present invention. In step S1, an annealing process of the inner pipe 10 is performed. As described above, in a state in which the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C are wound around the spiral structure 13 of the inner pipe 10, bending is performed on a plurality of portions of the spiral structure 13 as shown in FIG. As shown in FIG. 2, the heat exchanger 1 is obtained in which the inner pipe 10 is formed into a substantially rectangular spiral shape. Thus, in order to shape the inner pipe 10, in the helical structure portion 13, there is a point where it is bent at an angle of 90 degrees. The helical structure portion 13 is work-hardened because the helical groove 13A, the helical groove 13B, and the helical groove 13C are formed. Therefore, the helical structure 13 has poor processability of bending at an angle of 90 degrees. Then, in order to eliminate the inferiority of the workability of this bending process, annealing is performed to a part of helical structure part 13. FIG.
 図5は、内管10において焼きなまし処理を施す箇所を示す図である。太矢印で示す第1曲げ加工部X1は、曲げ加工される複数の曲げ加工部のうち端部11に最も近い加工部である。太矢印で示す第2曲げ加工部X2は、曲げ加工される複数の曲げ加工部のうち、端部12に最も近い曲げ加工部である。ステップS1の焼なまし工程では、端部11から第1曲げ加工部X1の手前までの領域Y1に、焼なまし処理は施されず、また端部12から第2曲げ加工部X2の手前までの領域Y2に、焼なまし処理は施されない。そして、第1曲げ加工部X1から第2曲げ加工部X2までの領域Y3に焼なまし処理が施される。 FIG. 5 is a view showing a portion of the inner pipe 10 to be subjected to the annealing process. The first bending portion X1 indicated by a thick arrow is the processing portion closest to the end portion 11 among the plurality of bending portions to be bent. The second bending portion X2 indicated by a thick arrow is the bending portion closest to the end portion 12 among the plurality of bending portions to be bent. In the annealing step of step S1, the annealing process is not applied to the region Y1 from the end 11 to the front of the first bending portion X1, and from the end 12 to the front of the second bending portion X2. The annealing process is not applied to the area Y2 of. Then, the annealing process is performed on the region Y3 from the first bent portion X1 to the second bent portion X2.
 再び図4を参照すると、焼なまし工程の実行後、ステップS2において、内管10の両端部、すなわち端部11及び端部12の強度を、外管20が巻き付けられている螺旋構造部13の強度よりも高くする補強工程が実行される。換言すると、補強工程の実行前に、上述の焼なまし処理が施される。ステップS2の補強工程では、図2に示すように、端部11に配管30が嵌め合わされ、ロウ付けにより接合され、図3に示すように、端部12に配管40が嵌め合わされ、ロウ付けにより接合される。ここで、強度とは、内管10の内部から液圧がかけられた場合における耐圧強度を言う。その後、螺旋構造部13に外管20A、外管20B、及び外管20Cが巻き付けられる。 Referring again to FIG. 4, after execution of the annealing step, in step S2, the strength of both ends of the inner pipe 10, that is, the end 11 and the end 12 is determined by the helical structure 13 in which the outer pipe 20 is wound. A reinforcement step is performed to make the strength higher than. In other words, the annealing process described above is performed before the reinforcement process is performed. In the reinforcing step of step S2, as shown in FIG. 2, the pipe 30 is fitted to the end 11 and joined by brazing, and as shown in FIG. 3, the pipe 40 is fitted to the end 12 and brazed It is joined. Here, the strength refers to the pressure resistance when the fluid pressure is applied from the inside of the inner pipe 10. Thereafter, the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C are wound around the helical structure portion 13.
 次いで、ステップS3において、外管20が巻き付けられた内管10を拡管する拡管工程が実行される。図6は、拡管工程を実行する際の内管の一方の端部を拡大して示す図である。図7は、拡管工程を実行する際の内管の他方の端部を拡大して示す図である。図6及び図7は、図2及び図3と同様、熱交換器1を内管10の管軸に沿って切断した断面を模式的に示している。図6に示すように、一方の端部11にポンプ50を接続し、図7に示すように、他方の端部12に蓋部材60を取り付ける。ポンプ50は例えば液体ポンプである。この状態でポンプ50を作動させて、内管10の内部の圧力を上昇させて内管10を拡管する拡管工程を実行することにより、内管10は液圧拡管される。 Next, in step S3, an expansion step of expanding the inner pipe 10 around which the outer pipe 20 is wound is performed. FIG. 6 is an enlarged view of one end of the inner pipe when the pipe expansion step is performed. FIG. 7 is an enlarged view of the other end of the inner pipe when the pipe expansion step is performed. 6 and 7 schematically show cross sections of the heat exchanger 1 taken along the axis of the inner pipe 10, as in FIGS. As shown in FIG. 6, the pump 50 is connected to one end 11, and the lid 60 is attached to the other end 12 as shown in FIG. 7. The pump 50 is, for example, a liquid pump. In this state, the pump 50 is operated to raise the pressure in the inner pipe 10 to perform the pipe expansion step of expanding the inner pipe 10, whereby the inner pipe 10 is expanded in hydraulic pressure.
 再び図4を参照すると、拡管工程の実行後、ステップS4に進み、螺旋構造部13において、図5の第1曲げ加工部X1及び第2曲げ加工部X2を含む複数の曲げ加工部で、内管10を90度に曲げる曲げ工程が実行される。その結果、図1に示す熱交換器1が得られる。 Referring again to FIG. 4, after execution of the pipe expansion step, the process proceeds to step S4, and in the helical structure portion 13, a plurality of bending portions including the first bending portion X1 and the second bending portion X2 of FIG. A bending step is performed to bend the tube 10 to 90 degrees. As a result, the heat exchanger 1 shown in FIG. 1 is obtained.
 そして、上述の工程で得られた熱交換器1において、内管10を流通する水と、外管20A、外管20B、及び外管20Cを流れる冷媒とが熱交換することにより、内管10を流通する水は、その温度が上昇し、湯となる。 Then, in the heat exchanger 1 obtained in the above process, the heat flowing between the water flowing through the inner pipe 10 and the refrigerant flowing through the outer pipe 20A, the outer pipe 20B, and the outer pipe 20C exchanges heat. The water flowing through the water, its temperature rises and becomes hot water.
 上述のように、螺旋構造部13の螺旋構造は、直管形状の伝熱管を加工することにより形成されており、螺旋構造部13は加工硬化している。さらに、螺旋構造部13の外周面には、外管20A、外管20B、及び外管20Cが巻き付けられている。一方、図2に示すように、端部11の外周面には外管20は巻き付けられておらず、端部11は直管のままである。同様に、図3に示すように、端部12の直管部の外周面には外管20は巻き付けられておらず、端部12は直管のままである。従って、内管10を液圧拡管する際の拡管圧力に対する強度は、端部11及び端部12よりも螺旋構造部13の方が高い。従って、螺旋構造部13における内管10と外管20の接合を十分なものとすべく、内管10の内部から液圧をかけると、直管部である端部11及び端部12は過剰に変形する可能性がある。これに対して、本実施の形態1の内管10は、先述したように端部11及び端部12の強度が補強された構成を有している。 As described above, the helical structure of the helical structure portion 13 is formed by processing a straight tube-shaped heat transfer tube, and the helical structure portion 13 is work-hardened. Furthermore, an outer pipe 20A, an outer pipe 20B, and an outer pipe 20C are wound around the outer peripheral surface of the helical structure portion 13. On the other hand, as shown in FIG. 2, the outer pipe 20 is not wound around the outer peripheral surface of the end portion 11, and the end portion 11 remains as a straight pipe. Similarly, as shown in FIG. 3, the outer pipe 20 is not wound around the outer peripheral surface of the straight pipe portion of the end 12, and the end 12 remains as a straight pipe. Therefore, the strength against the expansion pressure when expanding the inner pipe 10 with a hydraulic pressure is higher in the spiral structure 13 than in the end 11 and the end 12. Therefore, when hydraulic pressure is applied from the inside of the inner pipe 10 in order to ensure sufficient bonding between the inner pipe 10 and the outer pipe 20 in the helical structure 13, the ends 11 and 12 which are straight pipes are excessive. May be transformed into On the other hand, the inner pipe 10 of the first embodiment has a configuration in which the strength of the end 11 and the end 12 is reinforced as described above.
 以上の構成により、外管20が巻き付けられていない部分である端部11及び端部12の強度は、外管20が巻き付けられている部分である螺旋構造部13の強度よりも、高くなっている。 With the above configuration, the strengths of the end portion 11 and the end portion 12 which are portions where the outer tube 20 is not wound are higher than the strengths of the spiral structure portion 13 which is a portion where the outer tube 20 is wound. There is.
 本実施の形態1によれば、端部11には端部11より肉厚の配管30が接合され、端部12には端部12より肉厚の配管40が接合されており、端部11及び端部12は強度が補強されている。従って、内管10の内部から液圧がかけられた場合でも、液圧により過剰な変形を起こすことを抑制することができる。そのため、内管10を液圧拡管する際、拡管圧力をより高くすることができ、内管10の螺旋構造部13における内管10と外管20の密着をより高めることができる。その結果、内管10と外管20との熱交換効率がより高められた熱交換器1が得られる。 According to the first embodiment, a pipe 30 thicker than the end 11 is joined to the end 11, and a pipe 40 thicker than the end 12 is joined to the end 12. And the end 12 is reinforced in strength. Therefore, even when the fluid pressure is applied from the inside of the inner pipe 10, it is possible to suppress the occurrence of excessive deformation due to the fluid pressure. Therefore, when the inner pipe 10 is expanded hydraulically, the expansion pressure can be further increased, and the close contact between the inner pipe 10 and the outer pipe 20 in the spiral structure 13 of the inner pipe 10 can be further enhanced. As a result, the heat exchanger 1 in which the heat exchange efficiency between the inner pipe 10 and the outer pipe 20 is further enhanced is obtained.
 本実施の形態1では、端部11よりも肉厚の配管30を端部11にロウ付けし、端部12よりも肉厚の配管40を端部12にロウ付けすることにより、端部11及び端部12の液圧に対する強度を高めているがこれに限るものではない。強度の高い材料からなる配管を、端部11及び端部12に接合してもよい。この場合、配管の調質は、例えば日本工業規格における「H」以上の強度が望ましい。この場合も、端部11及び端部12の強度が補強されているため、上述の効果が得られる。 In the first embodiment, the end portion 11 is formed by brazing the pipe 30 thicker than the end portion 11 to the end portion 11 and brazing the pipe 40 thicker than the end portion 12 to the end portion 12. And the strength with respect to the hydraulic pressure of the end 12 is increased, but it is not limited thereto. A pipe made of a high strength material may be joined to the end 11 and the end 12. In this case, it is desirable that the quality of the pipe is, for example, a strength of “H” or more according to Japanese Industrial Standards. Also in this case, since the strength of the end 11 and the end 12 is reinforced, the above-described effect can be obtained.
 尚、端部11及び端部12において、螺旋構造部13よりも強度の高い二重管構造が構成できるのであれば、配管30と配管40の肉厚及び材料は、上述のものに限定されることはない。 The thickness and materials of the pipes 30 and 40 are limited to those described above as long as the end 11 and the end 12 can form a double pipe structure having higher strength than the helical structure 13. There is nothing to do.
 焼なまし処理は、図5に示す領域Y1及び領域Y2には施されておらず、領域Y3に施されている。従って、端部11及び端部12の強度を低下させることなく、内管10を曲げ加工して図1に示すように成形するときの加工性をより良いものとすることができる。 The annealing process is not applied to the area Y1 and the area Y2 shown in FIG. 5, but is applied to the area Y3. Therefore, the processability when bending the inner pipe 10 and forming it as shown in FIG. 1 can be made better without reducing the strength of the end portion 11 and the end portion 12.
 尚、直管部である端部11及び端部12に焼なまし処理を施さず、螺旋構造部13に焼なまし処理を施すようにしてもよい。 The helical structure portion 13 may be subjected to an annealing treatment without being subjected to the annealing treatment to the end portions 11 and 12 which are straight pipe portions.
 また、本実施の形態1では、焼なまし処理を端部11及び端部12の補強処理の前に実行しているがこれに限るものではない。例えば、端部11及び端部12の補強処理の実行後に焼なまし処理を実行してもよい。 In the first embodiment, the annealing process is performed before the end 11 and the end 12 reinforcement process, but the present invention is not limited to this. For example, the annealing process may be performed after the end 11 and the end 12 are reinforced.
 本実施の形態1では、螺旋構造部13の外周面に3条の螺旋溝13A、螺旋溝13B、及び螺旋溝13Cが形成されているが、螺旋溝の数はこれに限るものではない。螺旋構造部13に複数条の螺旋溝が形成され、各螺旋溝に外管が巻き付けられていればよい。 In the first embodiment, the three spiral grooves 13A, the spiral grooves 13B, and the spiral grooves 13C are formed on the outer peripheral surface of the spiral structure 13. However, the number of spiral grooves is not limited to this. A plurality of spiral grooves may be formed in the spiral structure portion 13 and the outer tube may be wound around each spiral groove.
実施の形態2.
 図8は、本発明の実施の形態2に係る熱交換器の内管の一方の端部を拡大して示す図である。図8には内管100の端部101が示されている。図8において、実施の形態1と同様の部材には同一の符号が付されている。内管100の螺旋構造部103は、実施の形態1の内管10の螺旋構造部13と同様の構成を有しており、その外周面には、外管20A、外管20B、及び外管20Cが巻き付けられている。内管100の両端部のうちの一方の端部101は直管部であり、縮管加工が施されている。すなわち、端部101の外径D1は、螺旋構造部103の外径D2よりも小さい。端部101は、縮管により加工硬化されている。尚、端部101において縮管加工を施す範囲は、内管10が形成する水回路の圧力損失を起こすことがなく、かつ、端部101の強度が最も高くなるよう、定められる。内管100の他方の端部においても、同様に縮管加工が施されており、加工硬化されている。また、実施の形態1と同様、端部101の先端部に、ポンプ50を取り付けるためのフレア部を形成してもよい。その他の構成は、実施の形態1と同様である。
Second Embodiment
FIG. 8 is an enlarged view of one end of an inner pipe of a heat exchanger according to Embodiment 2 of the present invention. The end 101 of the inner pipe 100 is shown in FIG. In FIG. 8, the same members as those in Embodiment 1 are given the same reference numerals. The helical structure portion 103 of the inner tube 100 has the same configuration as the helical structure portion 13 of the inner tube 10 of the first embodiment, and the outer tube 20A, the outer tube 20B, and the outer tube are provided on the outer peripheral surface thereof. 20C is wound. One end 101 of the both ends of the inner pipe 100 is a straight pipe, and is subjected to a contraction process. That is, the outer diameter D1 of the end portion 101 is smaller than the outer diameter D2 of the helical structure portion 103. The end portion 101 is work-hardened by a contraction tube. In addition, the range which performs a pipe contraction process in the edge part 101 is defined so that the pressure loss of the water circuit which the inner pipe | tube 10 forms may not occur, and the intensity | strength of the edge part 101 becomes the highest. The other end of the inner pipe 100 is similarly subjected to a contraction process and is work-hardened. Further, as in the first embodiment, a flared portion for attaching the pump 50 may be formed at the tip of the end portion 101. The other configuration is the same as that of the first embodiment.
 端部101及び他方の端部の縮管加工は、上述の実施の形態1における補強工程で実行される。 The contraction of the end 101 and the other end is performed in the reinforcing step in the first embodiment described above.
 本実施の形態2によれば、内管100の端部101及び他方の端部は、加工硬化されており、強度が補強されている。従って、実施の形態1と同様の効果が得られる。さらに、縮管加工では、端部101及び他方の端部は加熱されない。従って、本実施の形態2によれば、端部101及び他方の端部において、加熱による強度の低下を回避することができる。 According to the second embodiment, the end portion 101 and the other end portion of the inner pipe 100 are work-hardened to reinforce the strength. Therefore, the same effect as that of the first embodiment can be obtained. Furthermore, in the pipe reduction process, the end 101 and the other end are not heated. Therefore, according to the second embodiment, a decrease in strength due to heating can be avoided at the end 101 and the other end.
 1 熱交換器、10 内管、11 端部、12 端部、13 螺旋構造部、13A 螺旋溝、13B 螺旋溝、13C 螺旋溝、13D 山部、20 外管、20A 外管、20B 外管、20C 外管、30 配管、31 フレア部、40 配管、50 ポンプ、60 蓋部材、100 内管、101 端部、103 螺旋構造部、X1 第1曲げ加工部、X2 第2曲げ加工部、Y1 領域、Y2 領域、Y3 領域。 Reference Signs List 1 heat exchanger, 10 inner pipe, 11 end, 12 end, 13 spiral structure portion, 13A spiral groove, 13B spiral groove, 13C spiral groove, 13D peak portion, 20 outer pipe, 20A outer pipe, 20B outer pipe, 20C Outer pipe, 30 piping, 31 flared part, 40 piping, 50 pump, 60 lid member, 100 inner pipe, 101 end, 103 helical structure part, X1 first bending part, X2 second bending part, Y1 area , Y2 area, Y3 area.

Claims (13)

  1.  流体が流通する内管及び外管を備え、前記外管は前記内管の両端部を除く外周面に螺旋状に巻き付けられた状態で前記内管に接合されている熱交換器の製造方法であって、
     前記内管の前記両端部の強度を、前記外管が巻き付けられる部分の強度よりも高くする補強工程と、
     前記外管が巻き付けられている前記内管の内部の圧力を上昇させて前記内管を拡管する拡管工程とを含む熱交換器の製造方法。
    A method of manufacturing a heat exchanger, comprising: an inner pipe and an outer pipe through which fluid flows, wherein the outer pipe is joined to the inner pipe in a state of being spirally wound around the outer peripheral surface except for both ends of the inner pipe. There,
    Strengthening the ends of the inner pipe at a strength higher than the strength of the portion around which the outer pipe is wound;
    And b. Expanding the inner tube by raising the pressure in the inner tube around which the outer tube is wound to expand the inner tube.
  2.  前記補強工程は、前記両端部の外径よりも内径が大きい配管を、前記両端部に嵌め合わせて接合する工程を含む請求項1に記載の熱交換器の製造方法。 The method of manufacturing a heat exchanger according to claim 1, wherein the reinforcing step includes the step of fitting and joining a pipe having an inner diameter larger than the outer diameter of the both ends to the both ends.
  3.  前記配管は、前記両端部よりも肉厚に構成された請求項2に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 2, wherein the pipe is thicker than the both ends.
  4.  前記配管は、前記両端部よりも強度が高く構成された請求項2に記載の熱交換器の製造方法。 The method for manufacturing a heat exchanger according to claim 2, wherein the pipe is configured to have a higher strength than the both ends.
  5.  前記補強工程は、前記内管において、前記両端部の外径が、前記外管が巻き付けられている部分の外径よりも小さくなるよう、前記両端部を縮管加工する工程を含む請求項1に記載の熱交換器の製造方法。 The reinforcing step includes a step of contracting the both ends so that the outer diameter of the both ends in the inner pipe is smaller than the outer diameter of the portion around which the outer pipe is wound. The manufacturing method of the heat exchanger as described in.
  6.  前記補強工程の実行前に、前記内管の一部を焼なましする焼なまし工程をさらに含み、
     前記焼なまし工程は、前記外管が巻き付けられる部分に焼なまし処理を施す工程を含む請求項1~5のいずれか一項に記載の熱交換器の製造方法。
    The method further includes an annealing step of annealing a portion of the inner pipe before performing the reinforcement step,
    The method of manufacturing a heat exchanger according to any one of claims 1 to 5, wherein the annealing step includes the step of annealing the portion around which the outer tube is wound.
  7.  前記補強工程の実行前に、前記内管の一部を焼なましする焼なまし工程をさらに含み、
     前記拡管工程の実行後に前記内管の複数箇所を曲げ加工し、螺旋状に形成する曲げ工程をさらに含み、
     前記焼なまし工程において、
     前記両端部のうちの一方の端部から、前記曲げ工程で曲げ加工される複数の曲げ加工部のうち前記一方の端部に最も近い第1曲げ加工部の手前までの領域に、焼なまし処理は施されず、
     前記両端部のうちの他方の端部から、前記曲げ工程で曲げ加工される複数の曲げ加工部のうち前記他方の端部に最も近い第2曲げ加工部の手前までの領域に、焼なまし処理は施されず、
     前記第1曲げ加工部から前記第2曲げ加工部までの領域に焼なまし処理が施される請求項1~5のいずれか一項に記載の熱交換器の製造方法。
    The method further includes an annealing step of annealing a portion of the inner pipe before performing the reinforcement step,
    The method further includes a bending step of bending a plurality of portions of the inner pipe after the execution of the pipe expansion step to form a spiral.
    In the annealing step,
    Annealing in a region from one end of the both ends to the front of the first bent portion closest to the one end among the plurality of bent portions to be bent in the bending step There is no treatment.
    Annealing in the region from the other end of the two ends to the front of the second bending portion closest to the other end of the plurality of bending portions to be bent in the bending step There is no treatment.
    The method for manufacturing a heat exchanger according to any one of claims 1 to 5, wherein the region from the first bending portion to the second bending portion is annealed.
  8.  流体が流通する内管及び外管を備え、
     前記外管は、前記内管の両端部を除く外周面に螺旋状に巻き付けられた状態で前記内管に接合されており、
     前記内管において、前記外管が巻き付けられていない前記両端部の強度は、前記外管が巻き付けられている部分の強度よりも高く構成されている熱交換器。
    It has an inner pipe and an outer pipe through which fluid flows,
    The outer pipe is joined to the inner pipe in a state of being spirally wound around an outer peripheral surface excluding both ends of the inner pipe,
    The heat exchanger according to claim 1, wherein in the inner pipe, strengths of the both ends where the outer pipe is not wound are higher than strengths of a part where the outer pipe is wound.
  9.  前記両端部に、前記両端部の外径よりも内径が大きい配管が、前記配管の内周面が前記両端部の外周面に接触した状態で接合されている請求項8に記載の熱交換器。 The heat exchanger according to claim 8, wherein a pipe whose inner diameter is larger than the outer diameter of the both ends is joined to the both ends in a state where the inner peripheral surface of the pipe is in contact with the outer peripheral surface of the both ends. .
  10.  前記配管は、前記両端部よりも肉厚に構成されている請求項9に記載の熱交換器。 The heat exchanger according to claim 9, wherein the pipe is thicker than the end portions.
  11.  前記配管は、前記両端部よりも強度が高く構成されている請求項9に記載の熱交換器。 The heat exchanger according to claim 9, wherein the pipe is configured to have a higher strength than the both ends.
  12.  前記両端部の外径は、前記外管が巻き付けられている部分の外径よりも小さい請求項8に記載の熱交換器。 The heat exchanger according to claim 8, wherein the outer diameter of each of the end portions is smaller than the outer diameter of a portion around which the outer pipe is wound.
  13.  前記内管は、前記両端部の間に位置し外周面に複数条の螺旋溝が形成されている螺旋構造部を有し、
     前記外管は、前記螺旋溝に巻き付けられている請求項8~12のいずれか一項に記載の熱交換器。
    The inner pipe has a helical structure located between the both ends and having a plurality of helical grooves formed on the outer peripheral surface,
    The heat exchanger according to any one of claims 8 to 12, wherein the outer tube is wound around the spiral groove.
PCT/JP2017/046406 2017-12-25 2017-12-25 Method for manufacturing heat exchanger, and heat exchanger WO2019130386A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201790000814.2U CN210570100U (en) 2017-12-25 2017-12-25 Heat exchanger
JP2019561401A JP6861848B2 (en) 2017-12-25 2017-12-25 Heat exchanger manufacturing method and heat exchanger
PCT/JP2017/046406 WO2019130386A1 (en) 2017-12-25 2017-12-25 Method for manufacturing heat exchanger, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046406 WO2019130386A1 (en) 2017-12-25 2017-12-25 Method for manufacturing heat exchanger, and heat exchanger

Publications (1)

Publication Number Publication Date
WO2019130386A1 true WO2019130386A1 (en) 2019-07-04

Family

ID=67063313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046406 WO2019130386A1 (en) 2017-12-25 2017-12-25 Method for manufacturing heat exchanger, and heat exchanger

Country Status (3)

Country Link
JP (1) JP6861848B2 (en)
CN (1) CN210570100U (en)
WO (1) WO2019130386A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230175577A1 (en) * 2020-08-19 2023-06-08 Nsk Ltd. Ball screw device, machine component manufacturing method, machine manufacturing method, vehicle manufacturing method, machine component, machine, vehicle, hydraulic forming method, and hydraulic forming die
KR102386133B1 (en) * 2021-05-06 2022-04-14 이장근 Portable gas burner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344955A (en) * 1976-10-02 1978-04-22 Sumitomo Light Metal Ind Liquiddtooliquid heat exchanger
JPS57199767U (en) * 1981-06-16 1982-12-18
JPS62136767U (en) * 1986-02-17 1987-08-28
JP2004332969A (en) * 2003-05-01 2004-11-25 Taiheiyo Seiko Kk Heat exchanger and manufacturing method of heat exchanger
JP2005076915A (en) * 2003-08-28 2005-03-24 Kobe Steel Ltd Composite heat exchanger tube
JP2005164166A (en) * 2003-12-04 2005-06-23 Kobelco & Materials Copper Tube Inc Heat exchanger
JP2007333271A (en) * 2006-06-14 2007-12-27 Mitsubishi Electric Corp Method of manufacturing heat exchanger
JP2010159935A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Method for manufacturing twisted pipe type heat exchanger, and outdoor unit
WO2016174826A1 (en) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration cycle device using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344955A (en) * 1976-10-02 1978-04-22 Sumitomo Light Metal Ind Liquiddtooliquid heat exchanger
JPS57199767U (en) * 1981-06-16 1982-12-18
JPS62136767U (en) * 1986-02-17 1987-08-28
JP2004332969A (en) * 2003-05-01 2004-11-25 Taiheiyo Seiko Kk Heat exchanger and manufacturing method of heat exchanger
JP2005076915A (en) * 2003-08-28 2005-03-24 Kobe Steel Ltd Composite heat exchanger tube
JP2005164166A (en) * 2003-12-04 2005-06-23 Kobelco & Materials Copper Tube Inc Heat exchanger
JP2007333271A (en) * 2006-06-14 2007-12-27 Mitsubishi Electric Corp Method of manufacturing heat exchanger
JP2010159935A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Method for manufacturing twisted pipe type heat exchanger, and outdoor unit
WO2016174826A1 (en) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration cycle device using same

Also Published As

Publication number Publication date
JPWO2019130386A1 (en) 2020-09-24
CN210570100U (en) 2020-05-19
JP6861848B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
US3877518A (en) Heat exchange coil
JP4941054B2 (en) Manufacturing method of seamless bend pipe, welded joint and manufacturing method thereof
JP2006317114A (en) Heat exchanger
KR20190128182A (en) Method of manufacturing clad steel pipe
WO2019130386A1 (en) Method for manufacturing heat exchanger, and heat exchanger
KR20150053135A (en) Heat exchanger and Manufacturing method fo the same
JP2010185614A (en) Flat pipe joint
KR101483646B1 (en) Clad pipe manufactured by the manufacturing method, and clad pipe connected by the connecting method
CN104154778A (en) Heat exchanger and method for manufacturing heat exchanger
JP2009047394A (en) Manufacturing method of twisted tube-type heat exchanger
US3828412A (en) Method of forming high integrity epoxy joint between aluminum tubes
JP2014145532A (en) Heat medium use device
JP2013066911A (en) Connection body of copper tube and stainless steel pipe and manufacturing method thereof
JP6489878B2 (en) Manufacturing method of joined tube
JP2012000645A (en) Joining method of aluminum pipe and copper pipe, joining structure and heat exchanger having the joining structure
JP2016138731A (en) Heat exchanger
JP2010159935A (en) Method for manufacturing twisted pipe type heat exchanger, and outdoor unit
JP5404589B2 (en) Twisted tube heat exchanger
WO2010116730A1 (en) Heat exchanger and method for producing the same
JP2011099620A (en) Heat exchanger
JP6207833B2 (en) Heat exchanger
JP5656786B2 (en) Manufacturing method of different diameter twisted tube heat exchanger
JP2008180460A (en) Method for producing heat exchanger, and heat exchange produced by the method
JP2009241145A (en) Method of manufacturing double pipe having bent part and double pipe having bent part
JPH10197186A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561401

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936955

Country of ref document: EP

Kind code of ref document: A1