JP2004085166A - Heat exchanger, its manufacturing method, and bath water heating system and floor heating system using the heat exchanger - Google Patents

Heat exchanger, its manufacturing method, and bath water heating system and floor heating system using the heat exchanger Download PDF

Info

Publication number
JP2004085166A
JP2004085166A JP2002352984A JP2002352984A JP2004085166A JP 2004085166 A JP2004085166 A JP 2004085166A JP 2002352984 A JP2002352984 A JP 2002352984A JP 2002352984 A JP2002352984 A JP 2002352984A JP 2004085166 A JP2004085166 A JP 2004085166A
Authority
JP
Japan
Prior art keywords
pipe
refrigerant pipe
refrigerant
heat exchanger
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002352984A
Other languages
Japanese (ja)
Other versions
JP3477531B1 (en
Inventor
Yukio Suzuki
鈴木幸男
Hirohisa Aizaki
相崎浩久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Engineering Corp
Original Assignee
Pacific Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Engineering Corp filed Critical Pacific Engineering Corp
Priority to JP2002352984A priority Critical patent/JP3477531B1/en
Application granted granted Critical
Publication of JP3477531B1 publication Critical patent/JP3477531B1/en
Publication of JP2004085166A publication Critical patent/JP2004085166A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger and its manufacturing method for preventing the formation of a clearance between the adjacent spiral tubes even if thermally deformed with use and furthermore preventing the degradation of heat exchanger effectiveness. <P>SOLUTION: This heat exchanger is provided with a water flow tube 10 through which a refrigerant flows, and a hot water flow tube 20 through which hot water flows. The water flow tube 10 and the hot water flow tube 20 are respectively formed by winding tubing formed in flat cross section beforehand and combining them after winding so as to alternately come in contact. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換器に関し、特に、使用に伴い熱変形した場合にも、熱交換率が悪化してしまうことを防止することができる熱交換器、及びその製造方法に関する。
【0002】
【従来の技術】
熱交換器は、冷媒の流通する冷媒管や、高温の湯の流通する流湯管を備えており、これら冷媒管や流湯管内を流通する冷媒や湯の有する熱量を管材外部の気体や流体と熱交換をするものである。ここで、図13に、一従来例の流湯管90を示す。図13に示すように、流湯管90は、螺旋状に巻回されている。
【0003】
このような螺旋状に巻回された流湯管90の製造方法においては、まず、略真円状の断面積を有する管材91を螺旋状に巻回する。巻回後、隣り合う螺旋の管材相互が接触し、且つ管材の断面積が偏平となるように、流湯管90には螺旋の軸方向(矢印Z方向、及び、反矢印Z方向)より圧縮加工が施される。このように形成することにより、収納スペースを小さくすることができるとともに、隣合う流湯管90,90同士の接触面積を増やして、熱交換率を増やすことができるのである。
【0004】
【発明が解決しようとする課題】
しかしながら、熱交換器を構成する管材には銅管が用いられるのが通常であるが、流湯管90内に湯が流通すると、流湯管90が熱変形により反りが発生する。すると、図14に示すように、螺旋の隣り合う流湯管90,90の間に隙間92が発生してしまう。即ち、隣合う流湯管90,90同士が面接触から線接触となってしまい、熱交換率が悪くなるという問題点があった。
【0005】
そこで、案出されたのが本発明であって、本発明は、使用に伴い熱変形しても、螺旋の隣合う管同士の間に隙間が生じてしまうことを防止することができる、ひいては、熱交換率の悪化を防止することができる熱交換器、及びその製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
この目的を達成するために請求項1記載の熱交換器は、冷媒(水や、湯、クーラントなどの冷却用低温流体)の流通する冷媒管と、被冷媒(湯、フロン、COなどの加熱用高温流体)の流通する被冷媒管とを備えており、前記冷媒管及び被冷媒管は、予め断面楕円形状に形成された管材が適宜間隔の空いた螺旋状に巻回加工されることにより夫々成形されるものであり、交互に接触するように組み合わされることにより構成されるものである。
請求項2記載の熱交換器は、請求項1記載の熱交換器において、冷媒管及び被冷媒管は、異径の断面真円形状の管材が異なる偏平率に加工されることにより、螺旋の径方向に対する管断面軸長さが同一であって且つ螺旋の軸方向に対する管断面軸長さが異なるように成形されるものである。
請求項3記載の熱交換器は、請求項1または2に記載の熱交換器において、冷媒管及び被冷媒管は、該冷媒管及び被冷媒管の管断面長軸方向が螺旋の径方向となるように夫々巻回されている。
請求項4記載の熱交換器は、請求項1から3のいずれかに記載の熱交換器において、冷媒管及び被冷媒管は、分離状態において、隣合う螺旋の間隔が管断面短軸より小さくされている。
請求項5記載の熱交換器の製造方法は、冷媒の流通する冷媒管と被冷媒の流通する被冷媒管と成形するとともに組み合わせる方法であり、前記冷媒管及び被冷媒管を成形するために断面楕円形状の管材を夫々適宜間隔を空けて巻回することにより巻回工程と、該巻回工程において成形された冷媒管及び被冷媒管を交互に接触するように組み合わせる組合工程とを備えている。
請求項6記載の熱交換器の製造方法は、冷媒の流通する冷媒管と被冷媒の流通する被冷媒管と成形するとともに組み合わせる方法であり、前記冷媒管及び被冷媒管を成形するために断面楕円形状の管材を夫々適宜間隔を空けて巻回することにより巻回工程を備えており、該巻回工程においては、冷媒管及び被冷媒管を重ねた状態で巻回することにより、冷媒管及び被冷媒管が成形されると同時に巻回後の冷媒管及び被冷媒管が交互に接触するように組み合わされる。
請求項7記載の熱交換器の製造方法は、請求項5または6に記載の熱交換器の製造方法において、組合工程又は巻回工程における断面楕円形状の冷媒管及び被冷媒管の組合後に、冷媒管及び被冷媒管の螺旋の軸方向両端より圧縮荷重を加える加圧工程を備えている。
請求項8記載の熱交換器の製造方法は、請求項5から7の何れかに記載の熱交換器の製造方法において、異径の断面真円形状の管材が異なる偏平率に偏平加工が施されることにより、両管材の管断面短軸又は管断面長軸の何れか一方の長さが同一となるように成形する偏平成形工程を備えており、巻回工程においては、該偏平成形工程において同一長さとされた両管材の管断面軸の方向が螺旋の径方向となるように巻回される。
請求項9記載の熱交換器の製造方法は、請求項6から8のいずれかに記載の熱交換器の製造方法において、巻回工程においては、冷媒管及び被冷媒管の管断面長軸がともに螺旋の径方向となるように巻回される。
請求項10記載の熱交換器の製造方法は、請求項6から9のいずれかに記載の熱交換器の製造方法において、巻回工程においては、冷媒管および被冷媒管の螺旋の軸方向に対する管断面軸長さよりも隣合う螺旋間の間隔が小さくなるように巻回される。
【0007】
【発明の実施の形態】
以下、添付図面を参照して本発明の好ましい実施例について説明する。勿論、下記実施例は、本発明の好ましい実施例を示すに過ぎず、本発明の技術的範囲は、下記実施例そのものに何ら限定されるものではない。例えば、下記実施例においては、冷媒が水であり被冷媒が湯である場合について説明しているが、冷媒は水以外の液体であっても更には気体であってもよく(例えば、クーラントや油)、同様に、被冷媒についても湯以外の液体であっても更には気体であっても良い(例えば、フロン22やCO、メタンガス)。
【0008】
図1は、本発明の一実施例である熱交換器100の側面図であり、図2は、かかる熱交換器100の矢印A方向からの平面図であり、図3は、図2のIII−III線における断面図である。図1から図3に示すように、熱交換器100は、流水管10と、流湯管20とを備えている。
【0009】
流水管10は、冷媒(水)の流通する管であり、予め偏平加工の施された管材(例えば、管断面長軸長:20.44mm、管断面短軸長:8.4mm)が螺旋状に巻回加工されることにより形成される管である。そして、この流水管10内を流通する冷媒は、流水管10の両端部に夫々設けられた冷媒管側接続口11を介して流水管10内に流入し、流出する。
【0010】
一方、流湯管20は、湯の流通する管であり、流水管10と同様に、予め偏平加工の施された管材(例えば、管断面長軸長:20.44mm、管断面短軸長:8.4mm)が流水管10と同一径の螺旋状に巻回加工されることにより形成される管である。そして、この流湯管20内を流通する湯は、流湯管20の両端部に夫々設けられた流湯管側接続口21を介して流湯管20内に流入し、流出する。ここで、発明の理解を容易とするために、内部に流れる液体の温度の低い方を流水管10とし、一方、温度の高い方を流湯管20としている(即ち、冷媒の流れる管を流水管としている)。
【0011】
図3に示すように、流水管10及び流湯管20は、共に、偏平状(楕円状)に成形されており、このように偏平加工された流水管10及び流湯管20が同一径の螺旋状に巻回されているのである。ここで、流水管10及び流湯管20は、夫々、螺旋の径方向が流水管10及び流湯管20の管断面長軸(大径)(φ)方向となるように巻回されている。従って、流水管10及び流湯管20を組み合わせた後、該組み合わせ後の流湯管20内の湯の流通により流湯管20及び流水管10が熱変形した場合に、管断面長軸(小径)(φ)方向に巻回した場合に比べて、互いの接触面積を大きくすることができる。
【0012】
また、流水管10及び流湯管20は、共に、巻回加工前に偏平状に成形加工が為されており、このように偏平加工の為された後の流水管10及び流湯管20が組み合わされている。このため、流水管10及び流湯管20の有する応力を低減することができ、ひいては、流湯管20内を湯が流通した場合、湯の有する熱量が流湯管20、更には流湯管20を介して流水管10に伝達するが、この熱量の伝達に伴い熱変形した場合にも、隣合う流水管10と流湯管20との間に隙間が発生してしまうことを防止することができる。更には、図4に示すように、使用に伴い熱変形すると、流水管10と流湯管20との接触面積が増大し、熱交換率を増加させることもできる。
【0013】
次に、図5および図6を参照して、上記のように構成された熱交換器100の製造方法について説明する。まず、図5に示すように、断面略真円状(管断面直径:15.88mm)の真っ直ぐな管材11(21)を偏平加工(座屈加工)する偏平成形工程が施される(偏平後、偏平前に適宜な長さに切断される)。偏平工程後、偏平状とされた管材12(22)を螺旋状に巻回する巻回加工が施される。この際、偏平方向(管断面長軸(φ)方向)が螺旋の径方向となるように、更には、隣合う螺旋の間隔(隙間)が管断面短軸の長さ(φ)となるように巻回される。巻回に伴い、流水管10(流湯管20)が成形される。巻回後、図6に示すように、かかる螺旋状に形成された流水管10および流湯管20が交互に接触するように組み合わす組合加工が施される。
【0014】
流水管10および流湯管20の組合後、両管が密着するように螺旋の軸方向両端より圧縮荷重が加える加圧工程が施され(管断面短軸長:8.0)、加圧工程の終了に伴い、熱交換器100の製造工程が終了する。
【0015】
「第2実施例」
次に、図7を参照して、上述の実施例とは別の実施例(第2実施例)について説明する。なお、第1実施例と同一の部分には同一の符号を付してその説明を省略し、異なる部分のみを説明する。
【0016】
第2実施例の熱交換器200は、第1実施例の熱交換器100に対して、隣合う螺旋の間隔が変更されたものである。具体的には、第1実施例の熱交換器100においては流水管10及び流湯管20の螺旋の間隔が管断面短軸の長さと略同一とされているのに対し、第2実施例の熱交換器200を構成する冷媒管210及び流湯管220においては、組合せ前において(分離状態において)、隣合う螺旋の間隔が管断面短軸の長さの略半分(1/2(2分の1)φ)とされている。従って、巻回状の冷媒管210と流湯管220とを組み合わせる時には、冷媒管210及び流湯管220が共に螺旋の軸方向に伸張し、組合わせ後においては、該伸張した冷媒管210及び流湯管220が収縮しようとするので、この収縮力により、組み合わせ後の冷媒管210及び流湯管220の相互を密着(圧接)させることができる。ひいては、組合せ後の冷媒管210及び流湯管220とが不用意に分離してしまうことを防止することができるのである。
【0017】
「第3実施例」
次に、図8および図9を参照して、上述の実施例とは別の実施例(第3実施例)について説明する。なお、上述の実施例と同一の部分には同一の符号を付してその説明を省略し、異なる部分のみを説明する。
【0018】
第3実施例の熱交換器300においては、該熱交換器300を構成する冷媒管310の管断面長軸(φH1)の長さと流湯管320の管断面長軸(φH2)の長さとが同一の長さに成形される一方、かかる冷媒管310の管断面短軸(φL1)の長さと流湯管320の管断面短軸(φL2)の長さが異なる長さに形成されている。より具体的には、冷媒管310の管断面短軸(φL1)の長さが流湯管320の管断面短軸(φL2)よりも大きくなるように成形されている。従って、冷媒管310と流湯管320との間の熱交換率(より具体的には、流湯管320内に流れる湯の冷却率)を増大させることができる。近年においてはCOを冷媒として用いる熱交換器が市販されているが、このようにフロン(R−22)に比べて圧縮時に高温、高圧となる冷媒を用いた場合においても、発生する大熱量を放熱することができるのである。このように、冷媒管310の管断面短軸(φL1)と流湯管320の管断面短軸(φL2)の長さの比率を変更することにより、流湯管320に流れる湯の冷却率(換言すれば、流水管310内に流れる水の上温率)を所望の大きさに変更することができる。
【0019】
また、冷媒管310および流湯管320は、それぞれ断面円形状の管材が異なる偏平率に加工されることにより成形されている。このため、冷媒管310の管断面長軸(φH1)の長さと流湯管320の管断面長軸(φH2)の長さとが同一の長さとなるように偏平とした場合にも、両管310,320の肉厚を同一とすることができる。ひいては、冷媒が圧縮時に高熱、高圧となる特性を有している場合にも、応力又は圧力により、冷媒管310および流湯管320が破損(例えば、ひびが入ったり、孔があいたり)してしまうことを防止することができる。
【0020】
次に、図10および図11を参照して、本発明の熱交換器100,200,300の応用例について説明する(以下、便宜上、第1実施例の熱交換器100を用いて説明する。)。
【0021】
図10は、熱交換器100を給湯タンク501(給湯器の一種)と併用した風呂湯沸かしシステム1000の模式図であり、図11は、床暖房システム2000の模式図である。風呂湯沸かしシステム1000は、給湯タンク1001、風呂桶1002および混合弁1003が配管1004で接続されて構成されており、給湯タンク1001で温められた湯(飲料水等にも使用される)を混合弁1003を介して直接に供給することができることは勿論のこと、熱交換器100を利用して、風呂桶502内の貯水を沸かす(又は、保温する)ものである。一方、床暖房システム2000は、床503の暖房を行うものであり、風呂湯沸かしシステム1000と同様に構成されているので、その詳細な説明は割愛する。
【0022】
ここで、熱交換器100は、冷媒管10と流湯管20とが交互に接触するように組み合わされて構成されているので、給湯タンク501の外側に設置することができる。ひいては、図15に示すような従来のシステム9000と異なり、給湯タンク501の内部の配管1004aが破損した場合にも、給湯タンク501内において、風呂の水が飲み水とが混ざったり、水道水の塩素分が混入してしまうことを防止することができる(即ち、衛生を確保したり、給湯タンク501内部の腐食を防止することができる)。また、従来技術の熱交換器91が内蔵されている給湯タンク901のような専用タイプでなくても、汎用タイプの給湯タンクをそのまま有効活用することもできる。更には、図示はしないが、給湯タンク501の大きさを小さくすることが可能となるし、給湯タンク501以外の給湯器と併用することも可能となる。
【0023】
以上、実施例に基づき本発明を説明したが、上記実施例は、本発明の趣旨を逸脱しない範囲内で種々の改良変形することができることはいうまでもなく、本発明の技術的範囲内には、それら種々の改良変形をも含まれている。
【0024】
例えば、図8および図9に示す第3実施例においては、熱交換器300を構成する冷媒管310の管断面長軸(φH1)および流湯管320の管断面長軸(φH2)の方向が螺旋の径方向となるようにされている。しかしながら、例えば、図12に示すように、冷媒管310の管断面長軸φH1が螺旋の軸方向となるようにされても良い。即ち、冷媒管310のまたは流湯管320の少なくともいずれか一方の管断面長軸(φH1,φH2)の方向が螺旋の軸方向となるようにされても良い。
【0025】
なお、本発明には、以下の発明が含まれる。
冷媒の流通する冷媒管と、湯の流通する流湯管とを備えた熱交換器において、前記冷媒管および流湯管は、予め断面が偏平状に成形された管材が巻回加工されて夫々成形されるとともに、該巻回加工後に交互に接触するように組み合わされていることを特徴とする熱交換器(A)。
熱交換器(A)において、冷媒管及び流湯管は、該冷媒管及び流湯管の偏平状断面の大径方向が螺旋の径方向となるように夫々巻回されていることを特徴とする熱交換器(B)。
熱交換器(A)または(B)において、冷媒管及び流湯管は、分離状態において、隣合う螺旋の間隔が断面小径より小さくされていることを特徴とする熱交換器(C)。
冷媒の流通する冷媒管と湯の流通する流湯管とを備えた熱交換器の製造方法において、冷媒管及び流湯管を夫々偏平状に成形する偏平成形工程と、該偏平成形加工の施された冷媒管及び流湯管を夫々間隔を空けて巻回する巻回工程と、該巻回工程による巻回加工後の冷媒管及び流湯管を交互に接触するように組み合わせる組合工程とを備えていることを特徴とする熱交換器の製造方法(D)。
熱交換器の製造方法(D)において、巻回工程においては、冷媒管及び流湯管の管断面長軸方向が螺旋の径方向となるように巻回されることを特徴とする熱交換器の製造方法(E)。
熱交換器の製造方法(D)または(E)において、巻回工程においては、隣合う螺旋の間隔が断面小径より小さくなるように巻回されることを特徴とする熱交換器の製造方法(F)。
【0026】
【発明の効果】
請求項1記載の熱交換器によれば、予め断面楕円形状に形成された管材が適宜間隔の空いた螺旋状に巻回加工されることにより夫々成形された冷媒管および被冷媒管が交互に接触するように組み合わされることにより構成されるので、冷媒管および被冷媒管の夫々に潜在する応力を低減することができ、ひいては、冷媒管および被冷媒管が使用に伴い経年劣化的に熱変形した場合においても、接触する冷媒管および被冷媒管の間に隙間が発生してしまうことを防止することができるという効果がある。
請求項2記載の熱交換器によれば、請求項1記載の熱交換器の奏する効果に加え、異径の断面真円形状の管材が異なる偏平率に加工されることにより、螺旋の径方向に対する管断面軸長さが同一であって且つ螺旋の軸方向に対する管断面軸長さが異なるように冷媒管および被冷媒管が成形されるので、冷媒管と被冷媒管との螺旋の軸方向長さの比率を変更することにより、交互に組み合わされる冷媒管と被冷媒管との間の熱交換率を所望の大きさに変更することができるという効果がある。また、冷媒管および被冷媒管の肉厚を同一の厚みに成形することができ、ひいては、発熱等を原因とする応力が加わった場合にも、冷媒管および被冷媒管が破損してしまうことを防止することができるという効果がある。更には、冷媒管および被冷媒管を巻回する作業を簡素化することができるとともに、組み合わせ後における冷媒管および被冷媒管が不用意に分離してしまうことを防止することができるという効果も奏する。
請求項3記載の熱交換器によれば、請求項1または2に記載の熱交換器の奏する効果に加え、更に、管断面長軸方向が螺旋の径方向となるように冷媒管及び被冷媒管が夫々巻回されて成るので、隣合う冷媒管及び被冷媒管の両管の熱交換率を増加することができるという効果がある。
請求項4記載の熱交換器によれば、請求項1から3のいずれかに記載の熱交換器の奏する効果に加え、更に、冷媒管及び被冷媒管は隣合う螺旋の間隔が管断面短軸より小さくされているので、巻回後に組み合わせた冷媒管及び被冷媒管がバネの収縮力により互いに密着させることができるという効果がある。
請求項5記載の熱交換器の製造方法によれば、予め断面楕円形状に形成された管材が適宜間隔の空いた螺旋状に巻回加工されることにより夫々成形された冷媒管および被冷媒管が交互に接触するように組み合わされることにより構成されるので、冷媒管および被冷媒管の夫々に潜在する応力を低減することができ、ひいては、冷媒管および被冷媒管が使用に伴い経年劣化的に熱変形した場合においても、接触する冷媒管および被冷媒管の間に隙間が発生してしまうことを防止することができるという効果がある。
請求項6記載の熱交換器の製造方法によれば、予め断面楕円形状に形成された管材が適宜間隔の空いた螺旋状に巻回加工されることにより夫々成形された冷媒管および被冷媒管が交互に接触するように組み合わされることにより構成されるので、冷媒管および被冷媒管の夫々に潜在する応力を低減することができ、ひいては、冷媒管および被冷媒管が使用に伴い経年劣化的に熱変形した場合においても、接触する冷媒管および被冷媒管の間に隙間が発生してしまうことを防止することができるという効果がある。
請求項7記載の熱交換器の製造方法によれば、請求項5または6に記載の熱交換器の奏する効果に加え、組合工程又は巻回工程における断面楕円形状の冷媒管及び被冷媒管の組合後に、加圧工程により、該冷媒管及び被冷媒管の螺旋の軸方向両端より圧縮荷重が加えられるので、組み合わされた冷媒管及び被冷媒管を密着させることができるとともに、接触部位に蓄積(潜在)する応力を低減することができるという効果を奏する。
請求項8記載の熱交換器の製造方法によれば、請求項5から7の何れかに記載の熱交換器の奏する効果に加え、偏平成形工程により、異径の断面真円形状の管材が異なる偏平率に加工されて、両管材の管断面短軸又は管断面長軸の何れか一方の長さが同一となるように成形されるので、冷媒管と被冷媒管との管断面軸長さ(螺旋の軸方向)の比率を変更することにより、交互に組み合わされる冷媒管と被冷媒管との間の熱交換率を所望の大きさに変更することができるという効果がある。また、冷媒管および被冷媒管の肉厚を同一の厚みに成形することができ、ひいては、発熱等を原因とする応力が加わった場合にも、冷媒管および被冷媒管が破損してしまうことを防止することができるという効果がある。更には、冷媒管および被冷媒管を巻回する作業を簡素化することができるとともに、組み合わせ後における冷媒管および被冷媒管が不用意に分離してしまうことを防止することができるという効果も奏する。
請求項9記載の熱交換器の製造方法によれば、請求項5から8のいずれかに記載の熱交換器の製造方法の奏する効果に加え、更に、巻回工程において冷媒管及び被冷媒管の管断面長軸方向が螺旋の径方向となるように巻回されるので、巻回後に組み合わせた隣り合う冷媒管及び被冷媒管の接触面積を増加させることができるという効果がある。
請求項10記載の熱交換器の製造方法においては、請求項5から9のいずれかに記載の熱交換器の製造方法の奏する効果に加え、更に、巻回工程により、冷媒管および被冷媒管の螺旋の軸方向に対する管断面軸長さよりも隣合う螺旋間の間隔が小さくなるように巻回されるので、巻回後に組み合わせた冷媒管及び被冷媒管をバネの収縮力により密着させることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例である熱交換器の側面図である。
【図2】上記熱交換器の矢印A方向からの平面図である。
【図3】上記熱交換器のIII−III線における断面図である。
【図4】上記熱交換器を構成する流水管及び流湯管が熱変形する様子を示す断面拡大図である。
【図5】上記熱交換器を構成する流水管(流湯管)の製造工程を示す図である。
【図6】(a)は、上記熱交換器を構成する流水管及び流湯管の斜視図であり、(b)は、かかる流水管及び流湯管が組み合わされた状態を示す斜視図である。
【図7】(a)は、第2実施例の熱交換器を構成する流水管及び流湯管の斜視図であり、(b)は、かかる流水管及び流湯管が組み合わされた状態を示す斜視図である。
【図8】第3実施例の熱交換器の側面図である。
【図9】図8に示す熱交換器を構成する流水管及び流湯管の断面拡大図である。
【図10】本発明の熱交換器の設置例を示す図である。
【図11】本発明の熱交換器の他の設置例を示す図である。
【図12】第4実施例の熱交換器の断面図である。
【図13】従来技術の熱交換器の斜視図である。
【図14】上記従来技術の熱交換器を構成する管材が熱変形することにより、隣合う管材間に隙間が発生した様子を示す断面図である。
【図15】従来技術の熱交換器の設置例を示す図である。
【符号の説明】
10  流水管
20  流湯管
100 熱交換器
200 熱交換器
300 熱交換器
210 流水管
220 流湯管
310 流水管
320 流湯管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger, and more particularly to a heat exchanger that can prevent a heat exchange rate from being deteriorated even when thermally deformed during use, and a method for manufacturing the same.
[0002]
[Prior art]
The heat exchanger is provided with a refrigerant pipe through which a refrigerant flows and a hot water pipe through which high-temperature hot water flows.The heat and heat of the refrigerant and the hot water flowing through these refrigerant pipes and the hot water pipe are converted into gas or fluid outside the pipe material. And heat exchange with it. Here, FIG. 13 shows a conventional hot water pipe 90. As shown in FIG. 13, the hot water pipe 90 is spirally wound.
[0003]
In the method of manufacturing such a spirally-running hot water pipe 90, first, a tube material 91 having a substantially circular cross-sectional area is spirally wound. After the winding, the flowing pipe 90 is compressed from the axial direction of the spiral (the direction of the arrow Z and the direction of the opposite arrow Z) so that the adjacent helical tubes come into contact with each other and the cross-sectional area of the tubing becomes flat. Processing is performed. By forming in this manner, the storage space can be reduced, and the contact area between the adjacent hot water pipes 90 can be increased to increase the heat exchange rate.
[0004]
[Problems to be solved by the invention]
However, copper pipes are usually used for the pipe material constituting the heat exchanger. However, when hot water flows through the hot water pipe 90, the hot water pipe 90 is warped due to thermal deformation. Then, as shown in FIG. 14, a gap 92 is generated between the adjacent hot water pipes 90, 90 of the spiral. That is, there is a problem that the adjacent hot water pipes 90 are changed from surface contact to line contact, and the heat exchange rate is deteriorated.
[0005]
Therefore, the present invention has been devised, and the present invention can prevent a gap from being formed between adjacent tubes of a spiral even if it is thermally deformed with use. It is an object of the present invention to provide a heat exchanger capable of preventing the heat exchange rate from deteriorating, and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
In order to achieve this object, the heat exchanger according to claim 1 includes a refrigerant pipe through which a refrigerant (low-temperature cooling fluid such as water, hot water, or coolant) flows, and a refrigerant pipe (such as hot water, Freon, or CO 2 ). A refrigerant pipe through which a high-temperature fluid for heating) flows, wherein the refrigerant pipe and the refrigerant pipe are formed by winding a pipe material previously formed into an elliptical cross section in a spiral shape with an appropriate interval. , And are formed by being combined so as to contact alternately.
In the heat exchanger according to the second aspect, in the heat exchanger according to the first aspect, the refrigerant pipe and the refrigerant pipe are formed in a helical shape by processing pipe materials having different diameters of a perfect circular cross section into different flatness. The tube is formed so that the tube section axial length in the radial direction is the same and the tube section axis length in the spiral axial direction is different.
According to a third aspect of the present invention, in the heat exchanger according to the first or second aspect, the refrigerant pipe and the refrigerant pipe are arranged such that a longitudinal direction of a cross section of the refrigerant pipe and the refrigerant pipe is a radial direction of a spiral. Each is wound to become.
The heat exchanger according to claim 4 is the heat exchanger according to any one of claims 1 to 3, wherein the refrigerant pipe and the refrigerant pipe are separated from each other in a separated state, and a space between adjacent spirals is smaller than a short axis of the pipe cross section. Have been.
The method for manufacturing a heat exchanger according to claim 5 is a method of forming and combining a refrigerant pipe through which a refrigerant flows and a refrigerant pipe through which a refrigerant flows, and a cross section for forming the refrigerant pipe and the refrigerant pipe. A winding step of winding the elliptical pipe members at appropriate intervals, and a combining step of combining the refrigerant pipes and the refrigerant pipes formed in the winding step so as to alternately contact each other. .
The method for manufacturing a heat exchanger according to claim 6 is a method of forming and combining a refrigerant pipe through which a refrigerant flows and a refrigerant pipe through which a refrigerant flows, and a cross section for forming the refrigerant pipe and the refrigerant pipe. A winding step is provided by winding each of the elliptical pipe members at appropriate intervals, and in the winding step, the refrigerant pipe is wound by winding the refrigerant pipe and the refrigerant pipe in an overlapping state. At the same time as the refrigerant pipes are formed, they are combined so that the wound refrigerant pipes and the refrigerant pipes come into contact alternately.
The method for manufacturing a heat exchanger according to claim 7 is the method for manufacturing a heat exchanger according to claim 5 or 6, wherein after the combination of the refrigerant pipe and the refrigerant pipe having an elliptical cross section in the combining step or the winding step, A pressurizing step of applying a compressive load from both ends of the spiral of the refrigerant pipe and the refrigerant pipe in the axial direction is provided.
According to a eighth aspect of the present invention, in the method for manufacturing a heat exchanger according to any one of the fifth to seventh aspects, the flat tubes having different diameters of the perfect circular cross section are subjected to flattening to different flatness factors. In the winding step, there is provided an unbalanced forming step in which the length of one of the short-axis of the pipe section and the long axis of the cross-section of the two pipes is the same. In the forming step, the two pipe materials having the same length are wound so that the direction of the cross-sectional axis of the pipes is the radial direction of the spiral.
According to a ninth aspect of the present invention, in the method for manufacturing a heat exchanger according to any one of the sixth to eighth aspects, in the winding step, the longitudinal axis of the refrigerant pipe and the pipe to be cooled is changed. Both are wound so as to be in the spiral radial direction.
According to a tenth aspect of the present invention, in the method for manufacturing a heat exchanger according to any one of the sixth to ninth aspects, in the winding step, the spiral direction of the refrigerant pipe and the pipe to be cooled with respect to the axial direction of the spiral pipe. It is wound so that the space between adjacent spirals is smaller than the tube cross-sectional axis length.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Of course, the following examples are merely preferred embodiments of the present invention, and the technical scope of the present invention is not limited to the following examples. For example, in the following embodiment, the case where the refrigerant is water and the refrigerant is hot water is described, but the refrigerant may be a liquid other than water or even a gas (for example, coolant or Similarly, the refrigerant to be cooled may be a liquid other than hot water or may be a gas (for example, Freon 22, CO 2 , or methane gas).
[0008]
FIG. 1 is a side view of a heat exchanger 100 according to an embodiment of the present invention, FIG. 2 is a plan view of the heat exchanger 100 from the direction of arrow A, and FIG. It is sectional drawing in the -III line. As shown in FIGS. 1 to 3, the heat exchanger 100 includes a flowing water pipe 10 and a flowing water pipe 20.
[0009]
The flowing water pipe 10 is a pipe through which a refrigerant (water) flows, and a pipe material (for example, a pipe cross-section major axis length: 20.44 mm, a pipe cross-section minor axis length: 8.4 mm) that has been subjected to flattening in advance has a spiral shape. It is a tube formed by being wound into a tube. The refrigerant flowing through the water pipe 10 flows into and out of the water pipe 10 via the refrigerant pipe side connection ports 11 provided at both ends of the water pipe 10.
[0010]
On the other hand, the flowing water pipe 20 is a pipe through which hot water flows, and like the flowing water pipe 10, a pipe material (for example, a pipe cross-section major axis length: 20.44 mm, a pipe cross-section minor axis length: 8.4 mm) is a pipe formed by being spirally wound into the same diameter as the flowing water pipe 10. The hot water flowing through the hot water pipe 20 flows into and out of the hot water pipe 20 through the hot water pipe side connection ports 21 provided at both ends of the hot water pipe 20. Here, in order to facilitate understanding of the invention, the one with the lower temperature of the liquid flowing inside is the flowing water pipe 10, and the one with the higher temperature is the flowing water pipe 20 (that is, the pipe through which the refrigerant flows is the flowing water pipe). Tube).
[0011]
As shown in FIG. 3, the running water pipe 10 and the running water pipe 20 are both formed in a flat shape (elliptical shape), and the running water pipe 10 and the running water pipe 20 thus flattened have the same diameter. It is spirally wound. Here, the flowing water pipe 10 and the flowing water pipe 20 are wound so that the radial direction of the spiral is the direction of the pipe cross-section long axis (large diameter) (φ H ) of the flowing water pipe 10 and the flowing water pipe 20, respectively. I have. Therefore, after the flowing water pipe 10 and the flowing water pipe 20 are combined, if the flowing water in the flowing flowing water pipe 20 and the flowing water pipe 10 are thermally deformed due to the flow of the hot water in the flowing flowing water pipe 20, the pipe section long axis (small diameter) ) The contact area with each other can be increased as compared with the case of winding in the (φ L ) direction.
[0012]
Further, the flowing water pipe 10 and the flowing water pipe 20 are both formed into a flat shape before the winding processing, and the flowing water pipe 10 and the flowing water pipe 20 after the flat processing are performed in this manner. Are combined. For this reason, the stress which the flowing water pipe 10 and the flowing water pipe 20 have can be reduced, and when the hot water circulates through the flowing water pipe 20, the amount of heat which the hot water has becomes the flowing water pipe 20, furthermore, the flowing water pipe. The heat is transmitted to the flowing water pipe 10 via the heat pipe 20, and even if the heat is deformed due to the transmission of the heat, it is possible to prevent a gap from being generated between the adjacent flowing water pipe 10 and the flowing water pipe 20. Can be. Further, as shown in FIG. 4, when thermally deformed during use, the contact area between the flowing water pipe 10 and the flowing water pipe 20 increases, and the heat exchange rate can be increased.
[0013]
Next, a method of manufacturing the heat exchanger 100 configured as described above will be described with reference to FIGS. First, as shown in FIG. 5, a straight-Heisei type process of flattening (buckling) a straight pipe material 11 (21) having a substantially circular cross section (tube diameter: 15.88 mm) is performed (flattening). After that, it is cut to an appropriate length before flattening). After the flattening step, a winding process of spirally winding the flattened tube 12 (22) is performed. At this time, the flat direction (the direction of the pipe cross-section major axis (φ H )) is the radial direction of the spiral, and the interval (gap) between adjacent spirals is set to the length (φ L ) of the pipe cross-section minor axis. It is wound to become. With the winding, the flowing water pipe 10 (the flowing water pipe 20) is formed. After the winding, as shown in FIG. 6, a combination process is performed to combine the spirally formed running water pipes 10 and running water pipes 20 so that they alternately contact each other.
[0014]
After the combination of the flowing water pipe 10 and the flowing water pipe 20, a pressurizing step of applying a compressive load from both ends in the axial direction of the spiral so that the two pipes are in close contact with each other (pipe cross-section short axis length: 8.0) is performed. With the end of the process, the manufacturing process of the heat exchanger 100 ends.
[0015]
"Second embodiment"
Next, another embodiment (second embodiment) different from the above-described embodiment will be described with reference to FIG. The same portions as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. Only different portions will be described.
[0016]
The heat exchanger 200 according to the second embodiment is different from the heat exchanger 100 according to the first embodiment in that the interval between adjacent spirals is changed. More specifically, in the heat exchanger 100 of the first embodiment, the interval between the spirals of the flowing water pipe 10 and the flowing water pipe 20 is substantially equal to the length of the short axis of the cross section of the pipe. In the refrigerant pipe 210 and the hot-water pipe 220 constituting the heat exchanger 200 of the first embodiment, before the combination (in a separated state), the interval between the adjacent spirals is approximately half (1/2 (2) 1) φ L ). Therefore, when the wound refrigerant pipe 210 and the hot water pipe 220 are combined, the refrigerant pipe 210 and the hot water pipe 220 both extend in the spiral axial direction, and after the combination, the expanded refrigerant pipe 210 and Since the hot water pipe 220 is about to contract, the contraction force allows the combined refrigerant pipe 210 and hot water pipe 220 to be in close contact with each other (press-contact). As a result, it is possible to prevent the refrigerant pipe 210 and the hot water pipe 220 after being combined from being separated carelessly.
[0017]
"Third embodiment"
Next, another embodiment (third embodiment) different from the above-described embodiment will be described with reference to FIGS. The same parts as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. Only different parts will be described.
[0018]
In the heat exchanger 300 of the third embodiment, the length of the pipe cross-section major axis (φ H1 ) of the refrigerant pipe 310 and the length of the pipe cross-section major axis (φ H2 ) of the hot water pipe 320 that constitute the heat exchanger 300 are described. Are formed to have the same length, while the length of the tube cross-section short axis (φ L1 ) of the refrigerant tube 310 is different from the length of the tube cross-section short axis (φ L2 ) of the hot water pipe 320. Have been. More specifically, the refrigerant pipe 310 is formed so that the length of the pipe cross-section minor axis (φ L1 ) is longer than the pipe cross-section minor axis (φ L2 ) of the hot water pipe 320. Therefore, the heat exchange rate between the refrigerant pipe 310 and the hot water pipe 320 (more specifically, the cooling rate of the hot water flowing in the hot water pipe 320) can be increased. In recent years, heat exchangers using CO 2 as a refrigerant have been marketed. However, even when a refrigerant having a high temperature and a high pressure during compression as compared with Freon (R-22) is used, a large amount of heat generated is generated. Can be dissipated. As described above, by changing the ratio of the lengths of the short-axis (φ L1 ) of the cross-section of the refrigerant pipe 310 and the short-axis (φ L2 ) of the cross-section of the hot-water pipe 320, cooling of the hot water flowing through the hot-water pipe 320 is performed. The rate (in other words, the upper temperature rate of the water flowing in the water pipe 310) can be changed to a desired size.
[0019]
In addition, the refrigerant pipe 310 and the hot water pipe 320 are formed by processing pipe materials having a circular cross section into different flat rates. Therefore, even when the length of the pipe cross-section major axis (φ H1 ) of the refrigerant pipe 310 and the length of the pipe cross-section major axis (φ H2 ) of the hot water pipe 320 are the same, even when both are flat, The pipes 310 and 320 can have the same thickness. In addition, even when the refrigerant has a characteristic of high heat and high pressure during compression, the refrigerant pipe 310 and the hot water pipe 320 are damaged (for example, cracked or perforated) due to stress or pressure. Can be prevented.
[0020]
Next, application examples of the heat exchangers 100, 200, and 300 of the present invention will be described with reference to FIGS. 10 and 11 (hereinafter, for convenience, the description will be made using the heat exchanger 100 of the first embodiment). ).
[0021]
FIG. 10 is a schematic diagram of a bath water heater system 1000 in which the heat exchanger 100 is used in combination with a hot water supply tank 501 (a type of water heater), and FIG. 11 is a schematic diagram of a floor heating system 2000. The bath water heating system 1000 includes a hot water supply tank 1001, a bath tub 1002, and a mixing valve 1003 connected by a pipe 1004, and mixes hot water (also used for drinking water) heated in the hot water supply tank 1001 with a mixing valve. The water can be supplied directly via the heat exchanger 1003, and the stored water in the bathtub 502 is heated (or kept warm) using the heat exchanger 100. On the other hand, the floor heating system 2000 heats the floor 503, and is configured in the same manner as the bath water heater system 1000.
[0022]
Here, since the heat exchanger 100 is configured such that the refrigerant pipe 10 and the hot water pipe 20 are alternately contacted with each other, the heat exchanger 100 can be installed outside the hot water supply tank 501. As a result, unlike the conventional system 9000 as shown in FIG. 15, even when the pipe 1004a inside the hot water tank 501 is broken, the bath water mixes with the drinking water in the hot water tank 501 or the tap water does not. It is possible to prevent chlorine from being mixed (that is, it is possible to ensure hygiene and prevent corrosion inside the hot water supply tank 501). Further, even if it is not a dedicated type such as the hot water tank 901 in which the heat exchanger 91 of the related art is built, a general-purpose type hot water tank can be effectively utilized as it is. Further, although not shown, the size of the hot water supply tank 501 can be reduced, and the hot water supply tank 501 can be used in combination with a water heater other than the hot water supply tank 501.
[0023]
As described above, the present invention has been described based on the embodiments. However, it is needless to say that the above embodiments can be variously modified and modified without departing from the spirit of the present invention. Also includes those various improved modifications.
[0024]
For example, in the third embodiment shown in FIGS. 8 and 9, the longitudinal axis (φ H1 ) of the refrigerant pipe 310 and the longitudinal axis (φ H2 ) of the flowing water pipe 320 of the heat exchanger 300 are different. The direction is the radial direction of the helix. However, for example, as shown in FIG. 12, the tube cross-section long axis phi H1 of the refrigerant pipe 310 may be such that the axial direction of the spiral. That is, the direction of the pipe cross-section major axis (φ H1 , φ H2 ) of at least one of the refrigerant pipe 310 and the hot water pipe 320 may be the spiral axial direction.
[0025]
The present invention includes the following inventions.
In a heat exchanger provided with a refrigerant pipe through which a refrigerant flows and a hot water pipe through which hot water flows, each of the refrigerant pipe and the hot water pipe is formed by winding a pipe material whose cross section is previously formed into a flat shape. A heat exchanger (A), which is formed and combined so as to contact alternately after the winding process.
In the heat exchanger (A), the refrigerant pipe and the hot water pipe are each wound so that the large-diameter direction of the flat cross section of the refrigerant pipe and the hot water pipe is the radial direction of the spiral. Heat exchanger (B).
The heat exchanger (C) in the heat exchanger (A) or (B), wherein the interval between the adjacent spirals in the separated state of the refrigerant pipe and the hot water pipe is smaller than the small diameter of the cross section.
In a method for manufacturing a heat exchanger having a refrigerant pipe through which a refrigerant flows and a hot water pipe through which hot water flows, an oblique-shaped process in which each of the refrigerant tube and the hot-water tube is formed into a flat shape; Step of winding the refrigerant pipe and the hot water pipe provided with each other at intervals, and a combination step of combining the refrigerant pipe and the hot water pipe after the winding process in the winding step so as to come into contact alternately. A method (D) for producing a heat exchanger, comprising:
In the method (D) for producing a heat exchanger, in the winding step, the heat exchanger is wound so that the longitudinal direction of the cross section of the refrigerant pipe and the hot water pipe is the radial direction of the spiral. Production method (E).
In the method (D) or (E) for producing a heat exchanger, in the winding step, the spiral is wound so that an interval between adjacent spirals is smaller than a small cross-sectional diameter. F).
[0026]
【The invention's effect】
According to the heat exchanger of the first aspect, the refrigerant pipe and the refrigerant pipe that are respectively formed by alternately winding the pipe material previously formed into an elliptical cross-section into a spiral shape with an appropriate interval are alternately formed. Since it is configured by being combined so as to be in contact with each other, it is possible to reduce the potential stress in each of the refrigerant pipe and the refrigerant pipe, and as a result, the refrigerant pipe and the refrigerant pipe undergo thermal deformation due to aging with use. Also in this case, there is an effect that a gap can be prevented from being generated between the refrigerant pipe and the pipe to be cooled.
According to the heat exchanger according to the second aspect, in addition to the effects achieved by the heat exchanger according to the first aspect, the pipe material having a perfect circular cross-section having a different diameter is processed into a different flattening ratio, so that the radial direction of the helix can be improved. The refrigerant pipes and the refrigerant pipes are formed so that the pipe cross-section axis lengths of the refrigerant pipes are the same and the pipe cross-section axis lengths of the spiral pipes are different from each other. By changing the length ratio, there is an effect that the heat exchange rate between the refrigerant pipes and the refrigerant pipes that are alternately combined can be changed to a desired size. In addition, the thickness of the refrigerant pipe and the pipe to be cooled can be formed to the same thickness, and thus, even when stress due to heat generation or the like is applied, the refrigerant pipe and the pipe to be cooled are damaged. There is an effect that can be prevented. In addition, the operation of winding the refrigerant pipe and the refrigerant pipe can be simplified, and the refrigerant pipe and the refrigerant pipe after combination can be prevented from being inadvertently separated. Play.
According to the heat exchanger of the third aspect, in addition to the effects of the heat exchanger of the first or second aspect, the refrigerant tube and the refrigerant to be cooled are further arranged such that the longitudinal direction of the tube cross section is the radial direction of the spiral. Since the tubes are respectively wound, there is an effect that the heat exchange rate of both the adjacent refrigerant tube and the refrigerant tube can be increased.
According to the heat exchanger according to the fourth aspect, in addition to the effect of the heat exchanger according to any one of the first to third aspects, the refrigerant pipe and the refrigerant pipe are arranged such that the space between adjacent spirals is short. Since it is smaller than the shaft, there is an effect that the refrigerant pipe and the refrigerant pipe combined after winding can be brought into close contact with each other by the contraction force of the spring.
According to the method of manufacturing a heat exchanger according to the fifth aspect, a refrigerant pipe and a refrigerant pipe are formed by winding a pipe material formed in advance into an elliptical cross section into a spiral shape with an appropriate interval. Are combined so that they alternately come into contact with each other, so that the potential stress in each of the refrigerant pipe and the refrigerant pipe can be reduced. Thus, even when the refrigerant pipe is thermally deformed, it is possible to prevent a gap from being generated between the refrigerant pipe and the refrigerant pipe that are in contact with each other.
According to the method of manufacturing a heat exchanger according to the sixth aspect, the refrigerant pipe and the refrigerant pipe are formed by winding a pipe formed in advance into an elliptical cross-section into a spiral with an appropriate interval. Are combined so that they alternately come into contact with each other, so that the potential stress in each of the refrigerant pipe and the refrigerant pipe can be reduced. Thus, even when the refrigerant pipe is thermally deformed, it is possible to prevent a gap from being generated between the refrigerant pipe and the refrigerant pipe that are in contact with each other.
According to the method of manufacturing a heat exchanger according to claim 7, in addition to the effects of the heat exchanger according to claim 5, the refrigerant pipe and the refrigerant pipe having an elliptical cross section in the combining step or the winding step are formed. After the combination, a compressive load is applied from both ends of the spiral of the refrigerant pipe and the refrigerant pipe by the pressurizing step, so that the combined refrigerant pipe and the refrigerant pipe can be brought into close contact with each other and accumulated at the contact portion. This has the effect that (latent) stress can be reduced.
According to the method for manufacturing a heat exchanger according to claim 8, in addition to the effect of the heat exchanger according to any one of claims 5 to 7, the tubular material having a cross section of a perfect circular shape having a different diameter due to the unbalanced step. Are processed so as to have different flatness ratios, and are formed so that either one of the tube cross-section short axis and the tube cross-section long axis has the same length. By changing the ratio of the length (axial direction of the helix), there is an effect that the heat exchange rate between the refrigerant pipe and the refrigerant pipe that are alternately combined can be changed to a desired size. In addition, the thickness of the refrigerant pipe and the pipe to be cooled can be formed to the same thickness, and thus, even when stress due to heat generation or the like is applied, the refrigerant pipe and the pipe to be cooled are damaged. There is an effect that can be prevented. In addition, the operation of winding the refrigerant pipe and the refrigerant pipe can be simplified, and the refrigerant pipe and the refrigerant pipe after combination can be prevented from being inadvertently separated. Play.
According to the method of manufacturing a heat exchanger according to the ninth aspect, in addition to the effect of the method of manufacturing a heat exchanger according to any one of the fifth to eighth aspects, a refrigerant pipe and a refrigerant pipe in the winding step are further provided. Is wound so that the long axis direction of the cross section of the tube is the radial direction of the spiral, so that it is possible to increase the contact area between the adjacent refrigerant pipe and the refrigerant pipe combined after the winding.
In the method for manufacturing a heat exchanger according to claim 10, in addition to the effect of the method for manufacturing a heat exchanger according to any of claims 5 to 9, the winding step further includes a refrigerant pipe and a refrigerant pipe. It is wound so that the interval between adjacent spirals is smaller than the axial length of the pipe cross section with respect to the axial direction of the spiral, so that the combined refrigerant pipe and refrigerant pipe can be brought into close contact with each other by the contraction force of the spring after the winding. There is an effect that can be.
[Brief description of the drawings]
FIG. 1 is a side view of a heat exchanger according to an embodiment of the present invention.
FIG. 2 is a plan view of the heat exchanger as viewed from an arrow A direction.
FIG. 3 is a sectional view taken along line III-III of the heat exchanger.
FIG. 4 is an enlarged cross-sectional view showing a state in which a flowing water pipe and a flowing hot water pipe constituting the heat exchanger are thermally deformed.
FIG. 5 is a view showing a process of manufacturing a flowing water pipe (flowing water pipe) constituting the heat exchanger.
FIG. 6A is a perspective view of a flowing water pipe and a flowing hot water pipe constituting the heat exchanger, and FIG. 6B is a perspective view showing a state where the flowing water pipe and the flowing hot water pipe are combined. is there.
FIG. 7A is a perspective view of a flowing water pipe and a flowing water pipe constituting the heat exchanger of the second embodiment, and FIG. 7B shows a state where the flowing water pipe and the flowing water pipe are combined. FIG.
FIG. 8 is a side view of a heat exchanger according to a third embodiment.
FIG. 9 is an enlarged cross-sectional view of a flowing water pipe and a flowing hot water pipe constituting the heat exchanger shown in FIG.
FIG. 10 is a diagram showing an installation example of the heat exchanger of the present invention.
FIG. 11 is a view showing another installation example of the heat exchanger of the present invention.
FIG. 12 is a sectional view of a heat exchanger according to a fourth embodiment.
FIG. 13 is a perspective view of a conventional heat exchanger.
FIG. 14 is a cross-sectional view showing a state in which a gap is generated between adjacent pipes due to thermal deformation of the pipes constituting the heat exchanger of the related art.
FIG. 15 is a diagram showing an example of installation of a heat exchanger of the related art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Flow water pipe 20 Flow water pipe 100 Heat exchanger 200 Heat exchanger 300 Heat exchanger 210 Flow water pipe 220 Flow water pipe 310 Flow water pipe 320 Flow water pipe

Claims (10)

冷媒の流通する冷媒管と、被冷媒の流通する被冷媒管とを備えた熱交換器において、
前記冷媒管及び被冷媒管は、予め断面楕円形状に形成された管材が適宜間隔の空いた螺旋状に巻回加工されることにより夫々成形されるものであり、交互に接触するように組み合わされていることを特徴とする熱交換器。
In a heat exchanger including a refrigerant pipe through which a refrigerant flows and a refrigerant pipe through which a refrigerant flows,
The refrigerant pipe and the refrigerant pipe are formed by winding a tubing previously formed into an elliptical cross section in a spiral shape with an appropriate interval, and are combined so as to contact alternately. A heat exchanger.
冷媒管及び被冷媒管は、異径の断面真円形状の管材が異なる偏平率に加工されることにより、螺旋の径方向に対する管断面軸長さが同一であって且つ螺旋の軸方向に対する管断面軸長さが異なるように成形されることを特徴とする請求項1記載の熱交換器。The refrigerant pipe and the refrigerant pipe have the same tube cross-sectional axis length in the radial direction of the spiral and the pipe in the axial direction of the spiral by processing the pipe materials having a perfect circular cross section of different diameters into different flatness. The heat exchanger according to claim 1, wherein the heat exchanger is formed so as to have different cross-sectional axis lengths. 冷媒管及び被冷媒管は、該冷媒管及び被冷媒管の管断面長軸方向が螺旋の径方向となるように夫々巻回されていることを特徴とする請求項1又は2に記載の熱交換器。The heat pipe according to claim 1, wherein the refrigerant pipe and the refrigerant pipe are respectively wound such that a longitudinal axis of the cross section of the refrigerant pipe and the refrigerant pipe becomes a spiral radial direction. 4. Exchanger. 冷媒管及び被冷媒管は、分離状態において、隣合う螺旋の間隔が管断面短軸より小さくされていることを特徴とする請求項1から3の何れかに記載の熱交換器。The heat exchanger according to any one of claims 1 to 3, wherein, in the separated state, the interval between adjacent spirals of the refrigerant pipe and the refrigerant pipe is smaller than the short axis of the cross section of the pipe. 冷媒の流通する冷媒管と被冷媒の流通する被冷媒管とを備えた熱交換器の製造方法において、
前記冷媒管及び被冷媒管を成形するために断面楕円形状の管材を夫々適宜間隔を空けて巻回することにより巻回工程と、
該巻回工程において成形された冷媒管及び被冷媒管を交互に接触するように組み合わせる組合工程とを備えていることを特徴とする熱交換器の製造方法。
In a method for manufacturing a heat exchanger including a refrigerant pipe through which a refrigerant flows and a refrigerant pipe through which a refrigerant flows,
A winding step by winding a tube material having an elliptical cross section at appropriate intervals to form the refrigerant tube and the refrigerant tube,
A combining step of combining the refrigerant pipes and the refrigerant pipes formed in the winding step so as to come into contact alternately with each other.
冷媒の流通する冷媒管と被冷媒の流通する被冷媒管とを備えた熱交換器の製造方法において、
前記冷媒管及び被冷媒管を成形するために断面楕円形状の管材を夫々適宜間隔を空けて巻回することにより巻回工程を備えており、
該巻回工程においては、冷媒管及び被冷媒管を重ねた状態で巻回することにより、冷媒管及び被冷媒管が成形されると同時に巻回後の冷媒管及び被冷媒管が交互に接触するように組み合わされることを特徴とする熱交換器の製造方法。
In a method for manufacturing a heat exchanger including a refrigerant pipe through which a refrigerant flows and a refrigerant pipe through which a refrigerant flows,
A winding step is provided by winding a pipe material having an elliptical cross section at appropriate intervals to form the refrigerant pipe and the refrigerant pipe,
In the winding step, by winding the refrigerant pipe and the refrigerant pipe in an overlapping state, the refrigerant pipe and the refrigerant pipe are formed, and at the same time, the refrigerant pipe and the refrigerant pipe after winding come into contact alternately. The method for manufacturing a heat exchanger, wherein the heat exchanger is combined.
組合工程又は巻回工程における断面楕円形状の冷媒管及び被冷媒管の組合後に、該冷媒管及び被冷媒管の螺旋の軸方向両端より圧縮荷重を加える加圧工程を備えていることを特徴とする請求項5又は6に記載の熱交換器の製造方法。After combining the refrigerant pipe and the refrigerant pipe having an elliptical cross section in the combination step or the winding step, a pressurizing step of applying a compressive load from both axial ends of the spiral of the refrigerant pipe and the refrigerant pipe is provided. The method for producing a heat exchanger according to claim 5. 異径の断面真円形状の管材が異なる偏平率に偏平加工が施されることにより、両管材の管断面短軸又は管断面長軸の何れか一方の長さが同一となるように成形する偏平成形工程を備えており、
巻回工程においては、該偏平成形工程において同一長さとされた両管材の管断面軸方向が螺旋の径方向となるように巻回されることを特徴とする請求項5から7の何れかに記載の熱交換器の製造方法。
By flattening the pipe materials having different diameters in the shape of a perfect circle in cross section, the two flat materials are formed so that either one of the short axis of the pipe cross section or the long axis of the cross section of the pipe becomes the same. Equipped with a Heisei type process,
8. The winding process according to claim 5, wherein the winding process is performed such that the pipe section axial direction of both pipe materials having the same length in the unbalanced forming process is the radial direction of the spiral. 3. The method for producing a heat exchanger according to item 1.
巻回工程においては、冷媒管及び被冷媒管の管断面長軸がともに螺旋の径方向となるように巻回されることを特徴とする請求項6から8の何れかに記載の熱交換器の製造方法。9. The heat exchanger according to claim 6, wherein in the winding step, the refrigerant pipe and the pipe to be cooled are wound such that the longitudinal axes of the pipes are both in the spiral radial direction. 10. Manufacturing method. 巻回工程においては、冷媒管および被冷媒管の螺旋の軸方向に対する管断面軸長さよりも隣合う螺旋間の間隔が小さくなるように巻回されることを特徴とする請求項6から9の何れかに記載の熱交換器の製造方法。In the winding step, the winding is performed such that a space between adjacent spirals is smaller than an axial length of a cross section of the spirals of the refrigerant pipe and the refrigerant pipe in the axial direction of the spiral. A method for manufacturing the heat exchanger according to any one of the above.
JP2002352984A 2002-07-04 2002-12-04 Heat exchanger and method for producing the same, and bath water heating system and floor heating system using such heat exchanger Expired - Fee Related JP3477531B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352984A JP3477531B1 (en) 2002-07-04 2002-12-04 Heat exchanger and method for producing the same, and bath water heating system and floor heating system using such heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002196121 2002-07-04
JP2002-196121 2002-07-04
JP2002352984A JP3477531B1 (en) 2002-07-04 2002-12-04 Heat exchanger and method for producing the same, and bath water heating system and floor heating system using such heat exchanger

Publications (2)

Publication Number Publication Date
JP3477531B1 JP3477531B1 (en) 2003-12-10
JP2004085166A true JP2004085166A (en) 2004-03-18

Family

ID=30117382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352984A Expired - Fee Related JP3477531B1 (en) 2002-07-04 2002-12-04 Heat exchanger and method for producing the same, and bath water heating system and floor heating system using such heat exchanger

Country Status (1)

Country Link
JP (1) JP3477531B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079788A (en) * 2007-09-25 2009-04-16 Sanden Corp Refrigerating device
ITPD20090111A1 (en) * 2009-04-27 2010-10-28 Mta Spa MICROCANAL EXCHANGER
CN102261859A (en) * 2011-05-19 2011-11-30 吴洪峰 Hot water overflowing warmer for scouring bath
FR2963415A1 (en) * 2010-07-28 2012-02-03 Muller & Cie Soc Water-heater i.e. thermodynamic water-heater, for use in heating installation to e.g. heat domestic water, has tube comprising lengthened section whose large dimension is higher than or equal to three times small dimension of section
CN102798302A (en) * 2011-05-24 2012-11-28 哈尔滨工大金涛科技股份有限公司 Spiral runner type sewage heat exchanger
JP2013011404A (en) * 2011-06-29 2013-01-17 Noritz Corp Heat exchanger and method of manufacturing the same
JP2013160479A (en) * 2012-02-08 2013-08-19 Hitachi Appliances Inc Heat exchanger and heat pump type water heater using the same
WO2014199479A1 (en) * 2013-06-13 2014-12-18 三菱電機株式会社 Heat pump device
WO2023135461A1 (en) * 2022-01-11 2023-07-20 Wallace Technologies One-piece heat exchanger

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079788A (en) * 2007-09-25 2009-04-16 Sanden Corp Refrigerating device
ITPD20090111A1 (en) * 2009-04-27 2010-10-28 Mta Spa MICROCANAL EXCHANGER
WO2010125017A1 (en) * 2009-04-27 2010-11-04 M.T.A. S.P.A. Microchannel exchanger
FR2963415A1 (en) * 2010-07-28 2012-02-03 Muller & Cie Soc Water-heater i.e. thermodynamic water-heater, for use in heating installation to e.g. heat domestic water, has tube comprising lengthened section whose large dimension is higher than or equal to three times small dimension of section
CN102261859A (en) * 2011-05-19 2011-11-30 吴洪峰 Hot water overflowing warmer for scouring bath
CN102798302A (en) * 2011-05-24 2012-11-28 哈尔滨工大金涛科技股份有限公司 Spiral runner type sewage heat exchanger
JP2013011404A (en) * 2011-06-29 2013-01-17 Noritz Corp Heat exchanger and method of manufacturing the same
JP2013160479A (en) * 2012-02-08 2013-08-19 Hitachi Appliances Inc Heat exchanger and heat pump type water heater using the same
WO2014199479A1 (en) * 2013-06-13 2014-12-18 三菱電機株式会社 Heat pump device
JP6075451B2 (en) * 2013-06-13 2017-02-08 三菱電機株式会社 Heat pump equipment
WO2023135461A1 (en) * 2022-01-11 2023-07-20 Wallace Technologies One-piece heat exchanger

Also Published As

Publication number Publication date
JP3477531B1 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
AU2006249166B2 (en) Heat exchanger
JP2002228370A (en) Heat exchanger
JP2005133999A (en) Heat pump type hot-water supplier
JP2004085166A (en) Heat exchanger, its manufacturing method, and bath water heating system and floor heating system using the heat exchanger
JP2008121908A (en) Heat exchanger
JP2006046888A (en) Composite heat exchanger tube
JP2004190922A (en) Heat exchanger
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP2005083667A (en) Heat exchanger
JP2004340455A (en) Heat exchanger
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP4075732B2 (en) Heat exchanger for heat pump water heater
JP2005201625A (en) Heat exchanger and its manufacturing method
JP2007271194A (en) Heat exchanger
JP2006003028A (en) Heat exchanger and heat pump water heater using the same
JP2010091266A (en) Twisted tube type heat exchanger
JP2009264643A (en) Heat exchanger
JP2005009832A (en) Double pipe type heat exchanger
JP3938053B2 (en) Heat exchanger
JP2004332969A (en) Heat exchanger and manufacturing method of heat exchanger
JP2008249163A (en) Heat exchanger for supplying hot water
JP3937990B2 (en) Heat exchanger
JP2005024109A (en) Heat exchanger
JP2008057908A (en) Heat exchanger
JP2008082600A (en) Water-refrigerant heat exchanger and heat pump hot water supply device using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees