JP2001201275A - Double tube heat exchanger - Google Patents

Double tube heat exchanger

Info

Publication number
JP2001201275A
JP2001201275A JP2000012626A JP2000012626A JP2001201275A JP 2001201275 A JP2001201275 A JP 2001201275A JP 2000012626 A JP2000012626 A JP 2000012626A JP 2000012626 A JP2000012626 A JP 2000012626A JP 2001201275 A JP2001201275 A JP 2001201275A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
double
tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000012626A
Other languages
Japanese (ja)
Inventor
Kazunari Kasai
一成 笠井
Kaori Yoshida
かおり 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000012626A priority Critical patent/JP2001201275A/en
Publication of JP2001201275A publication Critical patent/JP2001201275A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/026Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled and formed by bent members, e.g. plates, the coils having a cylindrical configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the performance of a double tube heat exchanger, while suppressing the increases of the weight and cost of the heat exchanger. SOLUTION: In this double tube heat exchanger, composed of an inner tube 11 and an outer tube 12, the length of the flow passage formed between the tubes 11 and 12 is increased, and at the same time, the flow velocity and turbulent state of a fluid flowing through the flow passage are increased by interposing a heat transfer accelerating body 19 which spirally partitions the inside flow passage of the outer pipe 12 between the tubes 11 and 12. Consequently, the transfer of heat from a fluid flowing through the inner tube 11 to the fluid flowing between the tubes 11 and 12 is accelerated and the performance of the heat exchanger per unit length can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、二重管式熱交換
器に関し、さらに詳しくは給湯装置における給湯用熱交
換器として用いられる二重管式熱交換器に関するもので
ある。
The present invention relates to a double-pipe heat exchanger, and more particularly to a double-pipe heat exchanger used as a hot-water supply heat exchanger in a hot-water supply apparatus.

【0002】[0002]

【従来の技術】例えば、図1に示すように、圧縮機1、
給湯用熱交換器2、電子膨張弁3および外気を熱源とす
る熱源側熱交換器4からなる冷媒サイクルAと、給水ポ
ンプ5、前記給湯用熱交換器2および給湯タンク6から
なる給湯サイクルBとを備え、給湯用熱交換器2におい
て圧縮機1からの吐出冷媒(例えば、炭酸ガス)により
給水ポンプ5からの水を加熱してお湯となし、該お湯を
給湯タンク6に溜め置くようにした給湯装置が知られて
いる。
2. Description of the Related Art For example, as shown in FIG.
A refrigerant cycle A including a heat exchanger 2 for hot water supply, an electronic expansion valve 3 and a heat source side heat exchanger 4 using outside air as a heat source, and a hot water supply cycle B including a water supply pump 5, the heat exchanger 2 for hot water supply, and a hot water tank 6 In the hot water supply heat exchanger 2, the water from the water supply pump 5 is heated by the refrigerant discharged from the compressor 1 (for example, carbon dioxide gas) to form hot water, and the hot water is stored in the hot water supply tank 6. Known hot water supply devices are known.

【0003】上記構成の給湯装置における給湯用熱交換
器2としては、図2ないし図4に示すように、内管11
を外管12内に同心状に挿入したものを環状に巻いて構
成し、内管11内を水の流路とする一方、内管11と外
管12との間の空間を冷媒の流路とした二重管式熱交換
器が通常採用されていた。符号13はバンド、14は内
管入口、15は外管出口、16は内管出口、17は外管
入口である。
As shown in FIGS. 2 to 4, an inner pipe 11 is used as the hot water supply heat exchanger 2 in the hot water supply apparatus having the above-described structure.
Is concentrically inserted into the outer tube 12 and is wound into an annular shape. The inner tube 11 serves as a water flow path, and the space between the inner pipe 11 and the outer pipe 12 serves as a refrigerant flow path. Double-tube heat exchangers were usually employed. Reference numeral 13 denotes a band, 14 denotes an inner tube inlet, 15 denotes an outer tube outlet, 16 denotes an inner tube outlet, and 17 denotes an outer tube inlet.

【0004】また、この種の給湯用熱交換器の場合、内
管11に腐食等が生じて内管11内と外管12内とが連
通状態となると、内管11内を流れる水に異物が混入す
るおそれがあるため、内管11を、管長方向に連続する
漏洩検知溝18,18・・を間に形成した二重管からな
る漏洩検知管により構成して、漏洩検知溝18,18・
・にまで腐食が進行して漏洩検知溝18,18・・に水
がしみだした時点で、これを検知することにより、漏洩
検知を行うようにすることが義務付けられている。
In the case of this type of hot water supply heat exchanger, when corrosion or the like occurs in the inner pipe 11 and the inner pipe 11 and the outer pipe 12 are in communication with each other, water flowing through the inner pipe 11 has foreign matter. May be mixed, the inner pipe 11 is constituted by a leak detecting pipe formed of a double pipe having leak detecting grooves 18, 18,.・
It is obliged that when the corrosion progresses to the point where water leaks into the leak detection grooves 18, 18,..., The leak is detected to detect the leak.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記した構
成の二重管式熱交換器の性能を向上させようとする場
合、内管の内外面に螺旋溝やローフィン等の面積拡大加
工を施す方法が採用されているが、当該方法での性能向
上には限度があり、管長を長くする以外になく、機器の
コンパクト性を犠牲にせざるを得なくなっている。
However, in order to improve the performance of the double-pipe heat exchanger having the above-described structure, a method of performing an area-enlarging process such as a spiral groove or a low fin on the inner and outer surfaces of the inner pipe. However, there is a limit to the performance improvement by this method, and the compactness of the equipment must be sacrificed without increasing the pipe length.

【0006】一方、この種二重管式熱交換器は、前記し
たように、外管内に二重管(漏洩検知管)からなる内管
を同心状に挿入して製作されるため、製作できる長さに
は限界(例えば、8m程度)がある。
On the other hand, this kind of double-pipe heat exchanger is manufactured by concentrically inserting an inner pipe consisting of a double pipe (leakage detection pipe) into an outer pipe as described above. The length has a limit (for example, about 8 m).

【0007】また、冷媒として炭酸ガス等の高圧冷媒を
用いた場合、従来の給湯用熱交換器と同様に内管と外管
との間の流路に冷媒を流すようにすると、耐圧強度を確
保するために外管の肉厚を上げる必要が生じ、重量およ
びコストの大幅な増加を招いてしまうという不具合があ
る。
When a high-pressure refrigerant such as carbon dioxide gas is used as the refrigerant, if the refrigerant is caused to flow through the flow path between the inner pipe and the outer pipe in the same manner as in a conventional heat exchanger for hot water supply, the pressure resistance is reduced. In order to ensure this, it is necessary to increase the thickness of the outer tube, which causes a problem that the weight and cost are significantly increased.

【0008】本願発明は、上記の点に鑑みてなされたも
ので、重量およびコストの増加を抑制しつつ、性能の向
上を図ることを目的とするものである。
The present invention has been made in view of the above points, and has as its object to improve performance while suppressing an increase in weight and cost.

【0009】[0009]

【課題を解決するための手段】請求項1の発明では、上
記課題を解決するための手段として、内管11と外管1
2とからなる二重管式熱交換器において、前記内管11
と外管12との間に、前記外管12の内側流路を螺旋状
に仕切る伝熱促進体19を介設している。
According to the first aspect of the present invention, the inner tube 11 and the outer tube 1 are provided as means for solving the above problems.
2. In the double-pipe heat exchanger consisting of
A heat transfer promoting body 19 that helically partitions the inside flow path of the outer tube 12 is provided between the outer tube 12 and the outer tube 12.

【0010】上記のように構成したことにより、内外管
11,12間の流路の流路長が増大されるとともに、該
流路を流れる流体の流速および乱流化が、前記流路を螺
旋状に仕切る伝熱促進体19により増加されることとな
る。従って、内管11内を流れる流体から内外管11,
12間を流れる流体への伝熱が促進されることとなり、
単位長さ当たりの性能を向上させることができる。しか
も、内外管11,12間に螺旋状の伝熱促進体19を介
設するようにしているため、例えば湾曲部においても内
外管11,12の同心性を確保し易くなる。
With the above construction, the length of the flow path between the inner and outer pipes 11 and 12 is increased, and the flow velocity and turbulence of the fluid flowing through the flow path are increased by spiraling the flow path. It is increased by the heat transfer accelerating body 19 that partitions the shape. Therefore, the fluid flowing through the inner tube 11 is separated from the inner and outer tubes 11,
Heat transfer to the fluid flowing between the 12 is promoted,
The performance per unit length can be improved. Moreover, since the helical heat transfer enhancer 19 is interposed between the inner and outer tubes 11 and 12, concentricity of the inner and outer tubes 11 and 12 can be easily ensured even in a curved portion, for example.

【0011】請求項2の発明におけるように、請求項1
記載の二重管式熱交換器において、前記伝熱促進体19
を前記内管11の外表面に突設した場合、外管12への
内管11の挿入と同時に伝熱促進体19の挿入が行える
こととなり、組付作業が容易となるとともに、伝熱促進
体19が伝熱フィンとしても作用することとなり、内管
11内を流れる流体から内外管11,12間を流れる流
体への伝熱がより一層促進されることとなる。
As in the second aspect of the present invention, the first aspect
In the double-pipe heat exchanger described in the above, the heat transfer enhancer 19
Is provided on the outer surface of the inner pipe 11, the heat transfer promoting body 19 can be inserted simultaneously with the insertion of the inner pipe 11 into the outer pipe 12, so that the assembling work is facilitated and the heat transfer is promoted. The body 19 also functions as a heat transfer fin, and heat transfer from the fluid flowing in the inner tube 11 to the fluid flowing between the inner and outer tubes 11 and 12 is further promoted.

【0012】請求項3の発明におけるように、請求項1
記載の二重管式熱交換器において、前記伝熱促進体19
を前記外管12の内表面に突設した場合、外管12への
内管11の挿入と同時に伝熱促進体19の挿入が行える
こととなり、組付作業が容易となる。
As in the invention of claim 3, claim 1
In the double-pipe heat exchanger described in the above, the heat transfer enhancer 19
Is projected on the inner surface of the outer tube 12, the heat transfer promoting body 19 can be inserted simultaneously with the insertion of the inner tube 11 into the outer tube 12, thereby facilitating the assembling work.

【0013】請求項4の発明におけるように、請求項
1、2および3のいずれか一項記載の二重管式熱交換器
において、前記内管11内を冷媒Xの流路となす一方、
前記内管11と外管12との間の空間を水Wの流路とし
た場合、冷媒Xとして高圧冷媒を採用したとしても、耐
圧強度確保のための管肉厚の増加を抑えることができる
こととなり、熱交換器の重量およびコストの増加、並び
にコイル曲げ時の加工性の低下を抑制することができ
る。
As in the fourth aspect of the present invention, in the double-pipe heat exchanger according to any one of the first, second and third aspects, the inside of the inner pipe 11 serves as a refrigerant X flow path,
When the space between the inner pipe 11 and the outer pipe 12 is a flow path of water W, even if a high-pressure refrigerant is used as the refrigerant X, it is possible to suppress an increase in pipe wall thickness for securing pressure resistance. Thus, it is possible to suppress an increase in the weight and cost of the heat exchanger and a decrease in workability at the time of coil bending.

【0014】請求項5の発明におけるように、請求項
1、2、3および4のいずれか一項記載の二重管式熱交
換器において、前記内管11内に、ネジレテープ等から
なる内管用伝熱促進体21を挿入した場合、内管11内
を流れる流体の増速と乱流化促進による伝熱促進効果に
より、単位長さ当たりの性能をより一層向上させること
ができる。
As in the fifth aspect of the present invention, in the double-pipe heat exchanger according to any one of the first, second, third and fourth aspects, the inner pipe 11 is formed of a twisted tape or the like. When the heat transfer promoting body 21 is inserted, the performance per unit length can be further improved by the heat transfer promoting effect by increasing the speed of the fluid flowing in the inner pipe 11 and promoting the turbulence.

【0015】請求項6の発明におけるように、請求項4
および5のいずれか一項記載の二重管式熱交換器におい
て、前記冷媒Xとして炭酸ガスを採用した場合、超臨界
では熱伝達性能が良くなるので、水の加熱効率が向上す
る。
As in the invention of claim 6, claim 4
6. In the double-pipe heat exchanger according to any one of the above items 5, when carbon dioxide gas is employed as the refrigerant X, heat transfer performance is improved in supercritical state, and thus water heating efficiency is improved.

【0016】請求項7の発明におけるように、請求項
4、5および6のいずれか一項記載の二重管式熱交換器
において、前記冷媒Xと水Wとを対向して流通させるよ
うにした場合、冷媒Xから水Wへの熱伝達性能を向上さ
せることができる。
According to the seventh aspect of the present invention, in the double-pipe heat exchanger according to any one of the fourth, fifth and sixth aspects, the refrigerant X and the water W are allowed to flow in opposition to each other. In this case, the heat transfer performance from the refrigerant X to the water W can be improved.

【0017】請求項8の発明におけるように、請求項
1、2、3、4、5、6および7のいずれか一項記載の
二重管式熱交換器において、前記内管11として、漏洩
検知溝18,18・・を有する漏洩検知管を採用した場
合、漏洩検知溝18,18・・への水漏れにより内管1
1の腐食等を早期に発見することが可能となり、安全性
を確保することができる。
As in the invention of claim 8, in the double-pipe heat exchanger according to any one of claims 1, 2, 3, 4, 5, 6, and 7, the inner pipe 11 has a leakage When a leak detecting tube having the detecting grooves 18, 18,... Is employed, the inner pipe 1 is formed due to water leaking into the leak detecting grooves 18, 18,.
1 can be found at an early stage, and safety can be ensured.

【0018】請求項9の発明におけるように、請求項
1、2、3、4、5、6、7および8のいずれか一項記
載の二重管式熱交換器において、前記内管11および外
管12を、管長方向に継ぎ目の無い連続した管体により
それぞれ構成した場合、2本の管体により熱交換器を構
成することができることとなり、製造コストを低減する
ことができる。
As in the ninth aspect of the present invention, in the double-pipe heat exchanger according to any one of the first, second, third, fourth, fifth, sixth, seventh and eighth aspects, the inner pipes 11 and When each of the outer tubes 12 is formed of a continuous tube having no seam in the tube length direction, the heat exchanger can be formed by two tubes, and the manufacturing cost can be reduced.

【0019】[0019]

【発明の実施の形態】以下、添付の図面を参照して、本
願発明の幾つかの好適な実施の形態について詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0020】第1の実施の形態 図5および図6には、本願発明の第1の実施の形態にか
かる二重管式熱交換器が示されている。
First Embodiment FIGS. 5 and 6 show a double-pipe heat exchanger according to a first embodiment of the present invention.

【0021】この二重管式熱交換器も、従来技術の項に
おいて説明した炭酸ガスを冷媒とする給湯装置(図1参
照)において給湯用熱交換器2として用いられるもので
あり、図2および図3に示すように、内管11を外管1
2内に同心状に挿入したものを環状に巻いて構成されて
いる。
This double-pipe heat exchanger is also used as the heat exchanger 2 for hot water supply in the hot water supply apparatus using carbon dioxide as a refrigerant (see FIG. 1) described in the section of the prior art. As shown in FIG. 3, the inner tube 11 is connected to the outer tube 1.
It is configured by concentrically inserted inside 2 and wound annularly.

【0022】そして、この二重管式熱交換器において
は、図5および図6に示すように、前記内管11と外管
12との間には、前記外管12の内側流路を螺旋状に仕
切る伝熱促進体19が介設されている。図5および図6
に示すものの場合、前記伝熱促進体19としては、4重
巻のスプリングが採用されている。従って、内外管1
1,12の間の空間は、伝熱促進体19により円周方向
に4分割された螺旋状流路20,20・・とされること
となっている。
In this double-pipe heat exchanger, as shown in FIGS. 5 and 6, an inner flow path of the outer pipe 12 is spirally provided between the inner pipe 11 and the outer pipe 12. A heat transfer promoting body 19 for partitioning in a shape is provided. 5 and 6
In the case of (1), a quadruple-wound spring is employed as the heat transfer promoting body 19. Therefore, the inner and outer tubes 1
The space between 1 and 12 is formed as a spiral flow path 20, 20.

【0023】本実施の形態においては、前記内管11内
は、冷媒(即ち、炭酸ガス)Xの流路とされる一方、内
外管11,12間の螺旋状流路20,20・・は、水W
の流路とされており、しかも冷媒Xと水Wとは対向流と
されている。
In the present embodiment, the inside of the inner pipe 11 is used as a flow path for the refrigerant (ie, carbon dioxide gas) X, while the spiral flow paths 20, 20,. , Water W
, And the refrigerant X and the water W are made to flow in opposite directions.

【0024】前記内管11は、管長方向に連続する漏洩
検知溝18,18・・を間に形成した熱良導性の二重管
11a,11b(例えば、銅管等)からなる漏洩検知管
により構成されている。また、外管12は、熱良導体で
なくとも良いが内管11との接合性等を考慮すれば、内
管11と同素材を採用するのが望ましい。なお、内管1
1および外管12は、管長方向に継ぎ目の無い連続した
管体によりそれぞれ構成されている。このようにする
と、2本の管体により熱交換器を構成することができる
こととなり、製造コストを低減することができる。
The inner tube 11 is a leak detecting tube made of a double tube 11a, 11b (for example, a copper tube or the like) having good thermal conductivity and having leak detecting grooves 18, 18,... It consists of. Further, the outer tube 12 may not be a good heat conductor, but it is preferable to use the same material as the inner tube 11 in consideration of the bonding property with the inner tube 11 and the like. In addition, inner pipe 1
The outer tube 1 and the outer tube 12 are each formed of a continuous tube having no seam in the tube length direction. In this case, the heat exchanger can be constituted by the two pipes, and the manufacturing cost can be reduced.

【0025】さらに、前記内管11内には、ネジレテー
プやスタティックミキサー等からなる内管用伝熱促進体
21が挿入されている。
Further, inside the inner tube 11, a heat transfer promoting body 21 for the inner tube, such as a twisted tape or a static mixer, is inserted.

【0026】上記のように構成された二重管式熱交換器
においては、次のような作用効果が得られる。
In the double-pipe heat exchanger configured as described above, the following operational effects can be obtained.

【0027】内外管11,12間の流路が4分割された
螺旋状流路20,20・・となるため、流路長が増大さ
れるとともに、該螺旋状流路20,20・・を流れる流
体である水Wの流速および乱流化が増加されることとな
る。従って、内管11内を流れる冷媒Xから内外管1
1,12間を流れる水Wへの伝熱が促進されることとな
り、単位長さ当たりの性能を向上させることができる。
しかも、内外管11,12間に螺旋状の伝熱促進体19
を介設するようにしているため、湾曲部においても内外
管11,12の同心性を確保し易くなる(特に4重巻の
スプリングを伝熱促進体19とした場合に顕著であ
る)。
Since the flow path between the inner and outer pipes 11 and 12 is divided into four helical flow paths 20, 20,..., The flow path length is increased and the helical flow paths 20, 20,. The flow velocity and turbulence of the flowing water W are increased. Accordingly, the refrigerant X flowing through the inner tube 11 is removed from the inner and outer tubes 1.
Heat transfer to the water W flowing between 1 and 12 is promoted, and performance per unit length can be improved.
Moreover, the spiral heat transfer enhancer 19 is provided between the inner and outer tubes 11 and 12.
The concentricity of the inner and outer tubes 11 and 12 is easily ensured even at the curved portion (particularly when the heat transfer promoting body 19 is a quadruple-wound spring).

【0028】本実施の形態においては、前記したように
内管11内を冷媒Xの流路としているので、前記伝熱促
進体19を内管11の外表面に接合すると、伝熱促進体
19を伝熱フィンとしても作用させることができること
となり、内管11内を流れる冷媒Xから内外管11,1
2間を流れる水Wへの伝熱がより一層促進されることと
なる。しかも、外管12への内管11の挿入と同時に伝
熱促進体19の挿入が行えることとなり、組付作業が容
易となる。
In the present embodiment, since the inside of the inner tube 11 is used as the flow path of the refrigerant X as described above, when the heat transfer enhancer 19 is joined to the outer surface of the inner tube 11, the heat transfer enhancer 19 Can also act as heat transfer fins, and the refrigerant X flowing through the inner tube 11 can be
Heat transfer to the water W flowing between the two is further promoted. In addition, the heat transfer promoting body 19 can be inserted at the same time as the insertion of the inner tube 11 into the outer tube 12, thereby facilitating the assembling work.

【0029】また、内管11内を冷媒Xの流路となす一
方、前記内外管11,12間の空間を水Wの流路として
いるため、冷媒Xとして本実施の形態におけるように高
圧冷媒である炭酸ガスを採用したとしても、耐圧強度確
保のための管肉厚の増加を抑えることができることとな
り、熱交換器の重量およびコストの増加、並びにコイル
曲げ時の加工性の低下を抑制することができる。
Since the inside of the inner tube 11 is used as a flow path for the refrigerant X, and the space between the inner and outer tubes 11 and 12 is used as a flow path for the water W, the high-pressure refrigerant is used as the refrigerant X as in this embodiment. Even if carbon dioxide is used, it is possible to suppress an increase in the pipe wall thickness for securing pressure resistance, thereby suppressing an increase in the weight and cost of the heat exchanger and a decrease in workability at the time of coil bending. be able to.

【0030】さらに、内管11内に、ネジレテープやス
タティックミキサー等からなる内管用伝熱促進体21を
挿入するようにしているため、内管11内を流れる冷媒
Xの増速と乱流化促進による伝熱促進効果により、単位
長さ当たりの性能をより一層向上させることができる。
Furthermore, since the heat transfer enhancer 21 for the inner pipe such as a twisted tape or a static mixer is inserted into the inner pipe 11, the speed of the refrigerant X flowing in the inner pipe 11 is increased and the turbulence is promoted. , The performance per unit length can be further improved.

【0031】さらにまた、内管11として、漏洩検知溝
18,18・・を有する漏洩検知管を採用しているた
め、漏洩検知溝18,18・・への水漏れにより内管1
1の腐食等を早期に発見することが可能となり、安全性
を確保することができる。
Further, since a leak detecting tube having leak detecting grooves 18, 18,... Is employed as the inner tube 11, water leaks into the leak detecting grooves 18, 18,.
1 can be found at an early stage, and safety can be ensured.

【0032】ところで、伝熱促進体19としては、図7
に示すように内外管11,12間の空間を2本の螺旋状
流路20,20とする2重巻のスプリングあるいは図8
に示すように内外管11,12間の空間を1本の螺旋状
流路20とする1重巻のスプリングを用いることもでき
る。
As the heat transfer promoting body 19, FIG.
As shown in FIG. 8, a double-wound spring in which the space between the inner and outer pipes 11 and 12 is two spiral flow paths 20 and 20 or FIG.
As shown in FIG. 5, a single-wound spring in which the space between the inner and outer tubes 11 and 12 is a single spiral flow path 20 can be used.

【0033】また、内管用伝熱促進体21として、図9
に示すように、単位長さ(例えば、ネジレ1周期の長
さ)のネジレテープ21a,21aを直交状に接合した
ものを採用すれば、冷媒Xの乱流化をより一層促進する
ことができる。
As the heat transfer promoting member 21 for the inner tube, FIG.
As shown in (1), the use of a tape in which unitary lengths (for example, the length of one twist) of the torsion tapes 21a, 21a are joined orthogonally can further promote the turbulent flow of the refrigerant X.

【0034】第2の実施の形態 図10には、本願発明の第2の実施の形態にかかる二重
管式熱交換器の断面が示されている。
Second Embodiment FIG. 10 shows a cross section of a double-pipe heat exchanger according to a second embodiment of the present invention.

【0035】この場合、伝熱促進体19として、4重巻
の断面4角形形状の螺旋状突起が採用されている。該螺
旋状突起19は、内管11の外表面あるいは外管12の
内表面に一体に突設されるが、内管11内を冷媒Xの流
路とする場合には、内管11の外表面に一体に突設する
ようにした方が、伝熱フィンとしても作用させることが
できるので、効果的である。なお、この場合にも、螺旋
状突起19を、第1の実施の形態におけると同様に、2
重巻あるいは1重巻とすることもできる。その他の構成
および作用効果は、第1の実施の形態におけると同様な
ので説明を省略する。
In this case, a quadrilateral spiral projection with a quadrangular cross section is employed as the heat transfer promoting body 19. The helical projection 19 is integrally formed on the outer surface of the inner tube 11 or the inner surface of the outer tube 12. It is more effective to integrally project from the surface because it can also function as a heat transfer fin. In this case as well, the helical projections 19 are connected to the 2nd as in the first embodiment.
Double winding or single winding can also be used. The other configuration and operation and effect are the same as those in the first embodiment, and thus the description is omitted.

【0036】第3の実施の形態 図11には、本願発明の第3の実施の形態にかかる二重
管式熱交換器の断面が示されている。
Third Embodiment FIG. 11 shows a cross section of a double tube heat exchanger according to a third embodiment of the present invention.

【0037】この場合、伝熱促進体19として、4重巻
の断面3角形形状の螺旋状突起が採用されている。該螺
旋状突起19は、頂点を内管11の外表面に向けた状態
で外管12の内表面に一体に突設されている。ところ
で、内管11内を冷媒Xの流路とする場合には、図10
におけると逆に頂点を外管12の内表面に向けた状態で
内管11の外表面に一体に突設するようにした方が、伝
熱フィンとしても作用させることができるので、効果的
である。なお、この場合にも、螺旋状突起19を、第1
の実施の形態におけると同様に、2重巻あるいは1重巻
とすることもできる。その他の構成および作用効果は、
第1の実施の形態におけると同様なので説明を省略す
る。
In this case, a quadrilateral spiral projection having a triangular cross section is employed as the heat transfer promoting body 19. The spiral projection 19 is integrally formed on the inner surface of the outer tube 12 with its apex facing the outer surface of the inner tube 11. By the way, when the inside of the inner tube 11 is used as a flow path for the refrigerant X, FIG.
Contrary to the above, it is more effective to integrally project from the outer surface of the inner tube 11 with the apex facing the inner surface of the outer tube 12 because it can also act as a heat transfer fin. is there. In this case as well, the spiral projection 19 is connected to the first
As in the embodiment described above, double winding or single winding may be employed. Other configurations and effects are
The description is omitted because it is the same as in the first embodiment.

【0038】第4の実施の形態 図12には、本願発明の第4の実施の形態にかかる二重
管式熱交換器の断面が示されている。
Fourth Embodiment FIG. 12 shows a cross section of a double tube heat exchanger according to a fourth embodiment of the present invention.

【0039】この場合、内管11における外側管11b
の外表面には、多数の螺旋状溝22,22・・が形成さ
れている。この場合、伝熱促進体19は外管12の内表
面に接合される。このようにすると、内管11の外表面
における伝熱促進効果を増大させることができることと
なり、単位長さ当たりの性能を向上させることができ
る。その他の構成および作用効果は、第1の実施の形態
におけると同様なので説明を省略する。
In this case, the outer tube 11b of the inner tube 11
Are formed on the outer surface thereof. In this case, the heat transfer promoting body 19 is joined to the inner surface of the outer tube 12. By doing so, the heat transfer promoting effect on the outer surface of the inner tube 11 can be increased, and the performance per unit length can be improved. The other configuration and operation and effect are the same as those in the first embodiment, and thus the description is omitted.

【0040】[0040]

【発明の効果】請求項1の発明によれば、内管11と外
管12とからなる二重管式熱交換器において、前記内管
11と外管12との間に、前記外管12の内側流路を螺
旋状に仕切る伝熱促進体19を介設して、内外管11,
12間の流路の流路長を増大させるとともに、該流路を
流れる流体の流速および乱流化を増加させることによ
り、内管11内を流れる流体から内外管11,12間を
流れる流体への伝熱が促進されることとなり、単位長さ
当たりの性能を向上させることができるようにしたの
で、コンパクトな構成で高性能の熱交換器が得られると
いう効果がある。しかも、内外管11,12間に螺旋状
の伝熱促進体19を介設するようにしているため、例え
ば湾曲部においても内外管11,12の同心性を確保し
易くなるという効果もある。
According to the first aspect of the present invention, in the double-pipe heat exchanger including the inner pipe 11 and the outer pipe 12, the outer pipe 12 is provided between the inner pipe 11 and the outer pipe 12. A heat transfer promoting body 19 that helically partitions the inner flow path of the inner and outer pipes 11
By increasing the flow path length of the flow path between the flow paths 12 and increasing the flow velocity and turbulence of the fluid flowing through the flow path, the flow from the fluid flowing through the inner pipe 11 to the fluid flowing between the inner and outer pipes 11 and 12 is increased. Is promoted, and the performance per unit length can be improved, so that a high-performance heat exchanger with a compact configuration can be obtained. In addition, since the helical heat transfer promoting body 19 is interposed between the inner and outer tubes 11 and 12, there is also an effect that the concentricity of the inner and outer tubes 11 and 12 can be easily ensured even in a curved portion, for example.

【0041】請求項2の発明におけるように、請求項1
記載の二重管式熱交換器において、前記伝熱促進体19
を前記内管11の外表面に突設した場合、外管12への
内管11の挿入と同時に伝熱促進体19の挿入が行える
こととなり、組付作業が容易となるとともに、伝熱促進
体19が伝熱フィンとしても作用することとなり、内管
11内を流れる流体から内外管11,12間を流れる流
体への伝熱がより一層促進されることとなる。
As in the invention of claim 2, claim 1
In the double-pipe heat exchanger described in the above, the heat transfer enhancer 19
Is provided on the outer surface of the inner pipe 11, the heat transfer promoting body 19 can be inserted simultaneously with the insertion of the inner pipe 11 into the outer pipe 12, so that the assembling work is facilitated and the heat transfer is promoted. The body 19 also functions as a heat transfer fin, and heat transfer from the fluid flowing in the inner tube 11 to the fluid flowing between the inner and outer tubes 11 and 12 is further promoted.

【0042】請求項3の発明におけるように、請求項1
記載の二重管式熱交換器において、前記伝熱促進体19
を前記外管12の内表面に突設した場合、外管12への
内管11の挿入と同時に伝熱促進体19の挿入が行える
こととなり、組付作業が容易となる。
As in the invention of claim 3, claim 1
In the double-pipe heat exchanger described in the above, the heat transfer enhancer 19
Is projected on the inner surface of the outer tube 12, the heat transfer promoting body 19 can be inserted simultaneously with the insertion of the inner tube 11 into the outer tube 12, thereby facilitating the assembling work.

【0043】請求項4の発明におけるように、請求項
1、2および3のいずれか一項記載の二重管式熱交換器
において、前記内管11内を冷媒Xの流路となす一方、
前記内管11と外管12との間の空間を水Wの流路とし
た場合、冷媒Xとして高圧冷媒を採用したとしても、耐
圧強度確保のための管肉厚の増加を抑えることができる
こととなり、熱交換器の重量およびコストの増加、並び
にコイル曲げ時の加工性の低下を抑制することができ
る。
As in the fourth aspect of the present invention, in the double-pipe heat exchanger according to any one of the first to third aspects, the inside of the inner pipe 11 serves as a flow path for the refrigerant X,
When the space between the inner pipe 11 and the outer pipe 12 is a flow path of water W, even if a high-pressure refrigerant is used as the refrigerant X, it is possible to suppress an increase in pipe wall thickness for securing pressure resistance. Thus, it is possible to suppress an increase in the weight and cost of the heat exchanger and a decrease in workability at the time of coil bending.

【0044】請求項5の発明におけるように、請求項
1、2、3および4のいずれか一項記載の二重管式熱交
換器において、前記内管11内に、ネジレテープ等から
なる内管用伝熱促進体21を挿入した場合、内管11内
を流れる流体の増速と乱流化促進による伝熱促進効果に
より、単位長さ当たりの性能をより一層向上させること
ができる。
As in the fifth aspect of the present invention, in the double-pipe heat exchanger according to any one of the first, second, third and fourth aspects, the inner pipe 11 includes a twisted tape or the like for the inner pipe. When the heat transfer promoting body 21 is inserted, the performance per unit length can be further improved by the heat transfer promoting effect by increasing the speed of the fluid flowing in the inner pipe 11 and promoting the turbulence.

【0045】請求項6の発明におけるように、請求項4
および5のいずれか一項記載の二重管式熱交換器におい
て、前記冷媒Xとして炭酸ガスを採用した場合、超臨界
では熱伝達性能が良くなるので、水の加熱効率が向上す
る。
As in the invention of claim 6, claim 4
6. In the double-pipe heat exchanger according to any one of the above items 5, when carbon dioxide gas is employed as the refrigerant X, heat transfer performance is improved in supercritical state, and thus water heating efficiency is improved.

【0046】請求項7の発明におけるように、請求項
4、5および6のいずれか一項記載の二重管式熱交換器
において、前記冷媒Xと水Wとを対向して流通させるよ
うにした場合、冷媒Xから水Wへの熱伝達性能を向上さ
せることができる。
In the double-pipe heat exchanger according to any one of claims 4, 5 and 6, as in the invention of claim 7, the refrigerant X and the water W are circulated so as to face each other. In this case, the heat transfer performance from the refrigerant X to the water W can be improved.

【0047】請求項8の発明におけるように、請求項
1、2、3、4、5、6および7のいずれか一項記載の
二重管式熱交換器において、前記内管11として、漏洩
検知溝18,18・・を有する漏洩検知管を採用した場
合、漏洩検知溝18,18・・への水漏れにより内管1
の腐食等を早期に発見することが可能となり、安全性を
確保することができる。
As in the invention of claim 8, in the double-pipe heat exchanger according to any one of claims 1, 2, 3, 4, 5, 6, and 7, the inner pipe 11 has a leakage. When a leak detecting tube having the detecting grooves 18, 18,... Is employed, the inner pipe 1 is formed due to water leaking into the leak detecting grooves 18, 18,.
Corrosion and the like can be detected at an early stage, and safety can be ensured.

【0048】請求項9の発明におけるように、請求項
1、2、3、4、5、6、7および8のいずれか一項記
載の二重管式熱交換器において、前記内管11および外
管12を、管長方向に継ぎ目の無い連続した管体により
それぞれ構成した場合、2本の管体により熱交換器を構
成することができることとなり、製造コストを低減する
ことができる。
As in the ninth aspect of the present invention, in the double-pipe heat exchanger according to any one of the first, second, third, fourth, fifth, sixth, seventh and eighth aspects, the inner pipes 11 and When each of the outer tubes 12 is formed of a continuous tube having no seam in the tube length direction, the heat exchanger can be formed by two tubes, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一般の給湯装置の回路構成図である。FIG. 1 is a circuit configuration diagram of a general hot water supply apparatus.

【図2】一般の給湯装置における給湯用熱交換器として
用いられる二重管式熱交換器の側面図である。
FIG. 2 is a side view of a double-pipe heat exchanger used as a hot water supply heat exchanger in a general hot water supply apparatus.

【図3】一般の給湯装置における給湯用熱交換器として
用いられる二重管式熱交換器の平面図である。
FIG. 3 is a plan view of a double-pipe heat exchanger used as a heat exchanger for hot water supply in a general hot water supply apparatus.

【図4】従来の二重管式熱交換器の断面図である。FIG. 4 is a cross-sectional view of a conventional double tube heat exchanger.

【図5】本願発明の第1の実施の形態にかかる二重管式
熱交換器の要部を示す一部を切除した斜視図である。
FIG. 5 is a partially cutaway perspective view showing a main part of the double-pipe heat exchanger according to the first embodiment of the present invention.

【図6】本願発明の第1の実施の形態にかかる二重管式
熱交換器の断面図である。
FIG. 6 is a cross-sectional view of the double-pipe heat exchanger according to the first embodiment of the present invention.

【図7】本願発明の第1の実施の形態にかかる二重管式
熱交換器の他の例を示す断面図である。
FIG. 7 is a cross-sectional view showing another example of the double-pipe heat exchanger according to the first embodiment of the present invention.

【図8】本願発明の第1の実施の形態にかかる二重管式
熱交換器のもう一つの他の例を示す断面図である。
FIG. 8 is a sectional view showing another example of the double-pipe heat exchanger according to the first embodiment of the present invention.

【図9】本願発明の第1の実施の形態にかかる二重管式
熱交換器における内管用伝熱促進体の他の例を示す斜視
図である。
FIG. 9 is a perspective view showing another example of the heat transfer enhancer for the inner pipe in the double-pipe heat exchanger according to the first embodiment of the present invention.

【図10】本願発明の第2の実施の形態にかかる二重管
式熱交換器の断面図である。
FIG. 10 is a sectional view of a double-pipe heat exchanger according to a second embodiment of the present invention.

【図11】本願発明の第3の実施の形態にかかる二重管
式熱交換器の断面図である。
FIG. 11 is a sectional view of a double-pipe heat exchanger according to a third embodiment of the present invention.

【図12】本願発明の第4の実施の形態にかかる二重管
式熱交換器の断面図である。
FIG. 12 is a sectional view of a double-pipe heat exchanger according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11は内管、12は外管、18は漏洩検知溝、19は伝
熱促進体、21は内管用伝熱促進体、Xは冷媒(炭酸ガ
ス)、Wは水。
11 is an inner tube, 12 is an outer tube, 18 is a leak detection groove, 19 is a heat transfer enhancer, 21 is a heat transfer enhancer for the inner tube, X is a refrigerant (carbon dioxide), and W is water.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3L065 EA12 3L103 AA01 AA05 AA35 AA39 AA44 BB43 CC02 CC40 DD04 DD19 DD38  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3L065 EA12 3L103 AA01 AA05 AA35 AA39 AA44 BB43 CC02 CC40 DD04 DD19 DD38

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 内管(11)と外管(12)とからな
り、前記内管(11)と外管(12)との間には、前記
外管(12)の内側流路を螺旋状に仕切る伝熱促進体
(19)を介設したことを特徴とする二重管式熱交換
器。
1. An inner pipe (11) and an outer pipe (12), and an inner flow path of the outer pipe (12) is spirally provided between the inner pipe (11) and the outer pipe (12). A double-pipe heat exchanger comprising a heat transfer promoting body (19) for partitioning the heat exchanger into a shape.
【請求項2】 前記伝熱促進体(19)を前記内管(1
1)の外表面に突設したことを特徴とする前記請求項1
記載の二重管式熱交換器。
2. The heat transfer promoting body (19) is connected to the inner pipe (1).
2. The method as claimed in claim 1, wherein the projection is provided on the outer surface.
The double tube heat exchanger as described.
【請求項3】 前記伝熱促進体(19)を前記外管(1
2)の内表面に突設したことを特徴とする前記請求項1
記載の二重管式熱交換器。
3. The heat transfer promoting body (19) is connected to the outer tube (1).
2. The method according to claim 1, wherein the projection is provided on the inner surface of the structure.
The double tube heat exchanger as described.
【請求項4】 前記内管(11)内を冷媒(X)の流路
となす一方、前記内管(11)と外管(12)との間の
空間を水(W)の流路としたことを特徴とする前記請求
項1、2および3のいずれか一項記載の二重管式熱交換
器。
4. A space between the inner pipe (11) and the outer pipe (12) is defined as a flow path for water (W) while the inside of the inner pipe (11) serves as a flow path for the refrigerant (X). The double-pipe heat exchanger according to any one of claims 1, 2 and 3, characterized in that:
【請求項5】 前記内管(11)内には、ネジレテープ
等からなる内管用伝熱促進体(21)を挿入したことを
特徴とする前記請求項1、2、3および4のいずれか一
項記載の二重管式熱交換器。
5. The heat transfer promoting member (21) for an inner pipe made of a twisted tape or the like is inserted into the inner pipe (11). The double-pipe heat exchanger according to the above item.
【請求項6】 前記冷媒(X)として炭酸ガスを採用し
たことを特徴とする前記請求項4および5のいずれか一
項記載の二重管式熱交換器。
6. The double-pipe heat exchanger according to claim 4, wherein carbon dioxide gas is employed as the refrigerant (X).
【請求項7】 前記冷媒(X)と水(W)とを対向して
流通させるようにしたことを特徴とする前記請求項4、
5および6のいずれか一項記載の二重管式熱交換器。
7. The method according to claim 4, wherein the refrigerant (X) and the water (W) are circulated so as to face each other.
The double-pipe heat exchanger according to any one of claims 5 and 6.
【請求項8】 前記内管(11)として、漏洩検知溝
(18),(18)・・を有する漏洩検知管を採用した
ことを特徴とする前記請求項1、2、3、4、5、6お
よび7のいずれか一項記載の二重管式熱交換器。
8. A leak detecting tube having leak detecting grooves (18), (18),... As said inner tube (11). The double-pipe heat exchanger according to any one of claims 1 to 6, 6 and 7.
【請求項9】 前記内管(11)および外管(12)
を、管長方向に継ぎ目の無い連続した管体によりそれぞ
れ構成したことを特徴とする前記請求項1、2、3、
4、5、6、7および8のいずれか一項記載の二重管式
熱交換器。
9. The inner pipe (11) and the outer pipe (12).
Wherein each of the pipes is constituted by a continuous pipe body having no seam in the pipe length direction.
The double-pipe heat exchanger according to any one of 4, 5, 6, 7, and 8.
JP2000012626A 2000-01-21 2000-01-21 Double tube heat exchanger Pending JP2001201275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000012626A JP2001201275A (en) 2000-01-21 2000-01-21 Double tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000012626A JP2001201275A (en) 2000-01-21 2000-01-21 Double tube heat exchanger

Publications (1)

Publication Number Publication Date
JP2001201275A true JP2001201275A (en) 2001-07-27

Family

ID=18540325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000012626A Pending JP2001201275A (en) 2000-01-21 2000-01-21 Double tube heat exchanger

Country Status (1)

Country Link
JP (1) JP2001201275A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222479A (en) * 2002-01-31 2003-08-08 Sanyo Electric Co Ltd Heat exchanger and heat pump-type hot water supply device
WO2004092673A1 (en) * 2003-04-16 2004-10-28 Param Co. Ltd. A heat exchange pipe for a refrigerating machine
JP2005221172A (en) * 2004-02-06 2005-08-18 Daikin Ind Ltd Heat exchanger for supplying hot water
WO2005088200A1 (en) * 2004-03-18 2005-09-22 Danfoss A/S A heat exchanger
JP2006046888A (en) * 2004-07-02 2006-02-16 Kobelco & Materials Copper Tube Inc Composite heat exchanger tube
JP2006258378A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Heat exchanger
CN1308642C (en) * 2002-12-10 2007-04-04 松下电器产业株式会社 Double-layer tube type heat exchanger
JP2007101151A (en) * 2005-10-07 2007-04-19 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007271146A (en) * 2006-03-31 2007-10-18 Hiroshima Univ Double-walled pipe construction
JP2008116096A (en) * 2006-11-02 2008-05-22 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2008175450A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008196790A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heat exchanger, and heat pump hot water supply system using it
JP2008261566A (en) * 2007-04-12 2008-10-30 Sumitomo Light Metal Ind Ltd Double-pipe heat exchanger
JP2008261612A (en) * 2007-04-16 2008-10-30 Sharp Corp Tube for heat exchanger, heat exchanger, heat pump water heater, and method of manufacturing tube for heat exchanger
JP2009015266A (en) * 2007-07-09 2009-01-22 Ricoh Co Ltd Cooling device and image forming apparatus
JP2010032183A (en) * 2008-07-31 2010-02-12 Panasonic Corp Heat exchanger
WO2010052925A1 (en) * 2008-11-07 2010-05-14 サンデン株式会社 Heat exchanger and hot-water supply device using same
WO2010131455A1 (en) * 2009-05-11 2010-11-18 サンデン株式会社 Double pipe-type heat exchanger
JP2011163640A (en) * 2010-02-09 2011-08-25 Panasonic Corp Heat exchanger
US8109296B2 (en) 2007-09-21 2012-02-07 Smc Kabushiki Kaisha Fluid flow passage structure and manufacturing method thereof
WO2013012348A1 (en) * 2011-07-21 2013-01-24 Aic Sp. Z.O.O. Heat exchanger pipe
KR101314900B1 (en) * 2013-02-06 2013-10-04 손계동 Air intake duct apparatus having multi-flow passage capable of improving efficiency of air intake in vehicle
WO2013150818A1 (en) * 2012-04-05 2013-10-10 シーアイ化成株式会社 Heat transfer tube, and heat exchanger using same
KR101365892B1 (en) 2012-11-10 2014-02-21 손계동 Air intake duct apparatus capable of improving efficiency of air intake in vehicle
JP2015516908A (en) * 2012-03-28 2015-06-18 ヴァレオ システム テルミク Electric heating devices for automobiles and associated heating, ventilation and / or air conditioning devices
JP2015135210A (en) * 2014-01-17 2015-07-27 シーアイ化成株式会社 Heat transfer tube for heat exchanger and heat exchanger
WO2015132921A1 (en) * 2014-03-05 2015-09-11 中国電力株式会社 Double tube, heat exchanger, and method for manufacturing double tube
JP2015200428A (en) * 2014-04-04 2015-11-12 日立アプライアンス株式会社 Heat exchanger and heat pump type heating apparatus employing the same
WO2016098263A1 (en) * 2014-12-19 2016-06-23 サンデンホールディングス株式会社 Heat exchanger and heat pump type hot water generating device using same
EP3171116A1 (en) * 2015-11-21 2017-05-24 Linde Aktiengesellschaft Wound heat exchanger comprising turbulators
KR101959999B1 (en) * 2018-11-23 2019-03-20 주식회사 성진엠텍 Double-tube type heat exchanger with high heat transfer by inducing sludge eddy flow and high digestion efficiency by dissolving cell bonds to increase activity of anaerobic microorganims
JP2019113222A (en) * 2017-12-21 2019-07-11 株式会社ニチリン Double-pipe heat exchanger
EP3594550A1 (en) * 2018-07-10 2020-01-15 Hamilton Sundstrand Corporation Heated pipe for liquid flows
CN110822976A (en) * 2019-11-12 2020-02-21 西安石油大学 Heat transfer pipe for open-frame seawater vaporizer
US10697708B2 (en) * 2016-04-18 2020-06-30 Hamilton Sunstrand Corporation Heat exchangers
KR20220146257A (en) * 2021-04-23 2022-11-01 손계동 Fluid duct device for vehicle capable of reducing air flow resistance
EP4079398A4 (en) * 2019-12-20 2023-09-06 M. Technique Co., Ltd. Flow reactor

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222479A (en) * 2002-01-31 2003-08-08 Sanyo Electric Co Ltd Heat exchanger and heat pump-type hot water supply device
CN1308642C (en) * 2002-12-10 2007-04-04 松下电器产业株式会社 Double-layer tube type heat exchanger
WO2004092673A1 (en) * 2003-04-16 2004-10-28 Param Co. Ltd. A heat exchange pipe for a refrigerating machine
JP4501446B2 (en) * 2004-02-06 2010-07-14 ダイキン工業株式会社 Heat exchanger for hot water supply
JP2005221172A (en) * 2004-02-06 2005-08-18 Daikin Ind Ltd Heat exchanger for supplying hot water
WO2005088200A1 (en) * 2004-03-18 2005-09-22 Danfoss A/S A heat exchanger
JP2006046888A (en) * 2004-07-02 2006-02-16 Kobelco & Materials Copper Tube Inc Composite heat exchanger tube
JP2006258378A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007101151A (en) * 2005-10-07 2007-04-19 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007271146A (en) * 2006-03-31 2007-10-18 Hiroshima Univ Double-walled pipe construction
JP2008116096A (en) * 2006-11-02 2008-05-22 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2008175450A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008196790A (en) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd Heat exchanger, and heat pump hot water supply system using it
JP2008261566A (en) * 2007-04-12 2008-10-30 Sumitomo Light Metal Ind Ltd Double-pipe heat exchanger
JP2008261612A (en) * 2007-04-16 2008-10-30 Sharp Corp Tube for heat exchanger, heat exchanger, heat pump water heater, and method of manufacturing tube for heat exchanger
JP2009015266A (en) * 2007-07-09 2009-01-22 Ricoh Co Ltd Cooling device and image forming apparatus
US8109296B2 (en) 2007-09-21 2012-02-07 Smc Kabushiki Kaisha Fluid flow passage structure and manufacturing method thereof
JP2010032183A (en) * 2008-07-31 2010-02-12 Panasonic Corp Heat exchanger
WO2010052925A1 (en) * 2008-11-07 2010-05-14 サンデン株式会社 Heat exchanger and hot-water supply device using same
JP2010112650A (en) * 2008-11-07 2010-05-20 Sanden Corp Heat exchanger and hot water supply device using the same
WO2010131455A1 (en) * 2009-05-11 2010-11-18 サンデン株式会社 Double pipe-type heat exchanger
JP2011163640A (en) * 2010-02-09 2011-08-25 Panasonic Corp Heat exchanger
WO2013012348A1 (en) * 2011-07-21 2013-01-24 Aic Sp. Z.O.O. Heat exchanger pipe
JP2015516908A (en) * 2012-03-28 2015-06-18 ヴァレオ システム テルミク Electric heating devices for automobiles and associated heating, ventilation and / or air conditioning devices
WO2013150818A1 (en) * 2012-04-05 2013-10-10 シーアイ化成株式会社 Heat transfer tube, and heat exchanger using same
JPWO2013150818A1 (en) * 2012-04-05 2015-12-17 シーアイ化成株式会社 Heat transfer tube and heat exchanger using it
CN103363820A (en) * 2012-04-05 2013-10-23 C.I.化成株式会社 Heat transfer tubes and a heat exchanger using the same
KR101365892B1 (en) 2012-11-10 2014-02-21 손계동 Air intake duct apparatus capable of improving efficiency of air intake in vehicle
KR101314900B1 (en) * 2013-02-06 2013-10-04 손계동 Air intake duct apparatus having multi-flow passage capable of improving efficiency of air intake in vehicle
JP2015135210A (en) * 2014-01-17 2015-07-27 シーアイ化成株式会社 Heat transfer tube for heat exchanger and heat exchanger
EP3115725A4 (en) * 2014-03-05 2017-07-05 The Chugoku Electric Power Co., Inc. Double tube, heat exchanger, and method for manufacturing double tube
WO2015132921A1 (en) * 2014-03-05 2015-09-11 中国電力株式会社 Double tube, heat exchanger, and method for manufacturing double tube
JP5873603B1 (en) * 2014-03-05 2016-03-01 中国電力株式会社 Double tube, heat exchanger, and method of manufacturing double tube
US20170074592A1 (en) * 2014-03-05 2017-03-16 The Chugoku Electric Power Co., Inc. Double tube, heat exchanger, and method to manufacture double tube
JP2015200428A (en) * 2014-04-04 2015-11-12 日立アプライアンス株式会社 Heat exchanger and heat pump type heating apparatus employing the same
WO2016098263A1 (en) * 2014-12-19 2016-06-23 サンデンホールディングス株式会社 Heat exchanger and heat pump type hot water generating device using same
EP3171116A1 (en) * 2015-11-21 2017-05-24 Linde Aktiengesellschaft Wound heat exchanger comprising turbulators
US10697708B2 (en) * 2016-04-18 2020-06-30 Hamilton Sunstrand Corporation Heat exchangers
JP2019113222A (en) * 2017-12-21 2019-07-11 株式会社ニチリン Double-pipe heat exchanger
JP6991567B2 (en) 2017-12-21 2022-01-12 株式会社ニチリン Double tube heat exchanger
EP3594550A1 (en) * 2018-07-10 2020-01-15 Hamilton Sundstrand Corporation Heated pipe for liquid flows
US10703500B2 (en) 2018-07-10 2020-07-07 Hamilton Sundstrand Corporation Heated pipe for liquid flows
EP4296555A1 (en) * 2018-07-10 2023-12-27 Hamilton Sundstrand Corporation Heated pipe for liquid flows
KR101959999B1 (en) * 2018-11-23 2019-03-20 주식회사 성진엠텍 Double-tube type heat exchanger with high heat transfer by inducing sludge eddy flow and high digestion efficiency by dissolving cell bonds to increase activity of anaerobic microorganims
CN110822976A (en) * 2019-11-12 2020-02-21 西安石油大学 Heat transfer pipe for open-frame seawater vaporizer
EP4079398A4 (en) * 2019-12-20 2023-09-06 M. Technique Co., Ltd. Flow reactor
KR20220146257A (en) * 2021-04-23 2022-11-01 손계동 Fluid duct device for vehicle capable of reducing air flow resistance
KR102529284B1 (en) * 2021-04-23 2023-05-03 손계동 Fluid duct device for vehicle capable of reducing air flow resistance

Similar Documents

Publication Publication Date Title
JP2001201275A (en) Double tube heat exchanger
KR20040050853A (en) Double-pipe heat exchanger
JP2007278688A (en) Internal heat exchanger having spiral standardized fin tube
JPS6053265B2 (en) Noise suppression supply pipes for refrigeration circuits
JP2002228370A (en) Heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2004286438A (en) Heat exchanger
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP2005221087A (en) Heat exchanger
JP2009264644A (en) Heat exchanger
JP2008057860A (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2010014312A (en) Double tube type supercooler
JP2005009832A (en) Double pipe type heat exchanger
JP2010151332A (en) Heat exchanger and heat pump type water heater
JP4947162B2 (en) Heat exchanger
JP4713562B2 (en) Heat exchanger and heat pump water heater using the same
JP2003156291A (en) Heat exchanger
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP2004044896A (en) Heat exchanger for hot-water supply
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP2010002060A (en) Heat exchanger
JP2003028583A (en) Heat exchanger
JP2003202194A (en) Heat exchanger
JP2005098612A (en) Heat exchanger and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929