JP2008116096A - Water heat exchanger for water heater - Google Patents

Water heat exchanger for water heater Download PDF

Info

Publication number
JP2008116096A
JP2008116096A JP2006298520A JP2006298520A JP2008116096A JP 2008116096 A JP2008116096 A JP 2008116096A JP 2006298520 A JP2006298520 A JP 2006298520A JP 2006298520 A JP2006298520 A JP 2006298520A JP 2008116096 A JP2008116096 A JP 2008116096A
Authority
JP
Japan
Prior art keywords
water
pipe
heat exchanger
tube
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006298520A
Other languages
Japanese (ja)
Other versions
JP4958150B2 (en
Inventor
Naoe Sasaki
直栄 佐々木
Shigenao Maruyama
重直 圓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Light Metal Industries Ltd
Original Assignee
Tohoku University NUC
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Light Metal Industries Ltd filed Critical Tohoku University NUC
Priority to JP2006298520A priority Critical patent/JP4958150B2/en
Publication of JP2008116096A publication Critical patent/JP2008116096A/en
Application granted granted Critical
Publication of JP4958150B2 publication Critical patent/JP4958150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water heat exchanger, improving heat exchange performance in comparatively simple and compact structure, improving heat transfer acceleration on the water side, and restraining adhesion of scales in a water side passage. <P>SOLUTION: An inner pipe 14 having a small diameter for circulating a heat exchange medium in the pipe is inserted in an outer pipe 12 having a large diameter, and supported in contact with a plurality of portions on the inner peripheral surface of the outer pipe 12 by a plurality of support legs 16 provided to project from the outer peripheral surface of the inner pipe 14 outward in the radial direction and extend in the axial direction. A plurality of spaces formed between the inner peripheral surface of the outer pipe 12 and the outer peripheral surface of the inner pipe 14 by contact supporting at the plurality of portions have an inner surface shape enclosed in a smooth curve as a whole and projecting outward, including a plurality of corner parts curved or making an obtuse angle. Thus, a passage 20 for water to be heat-exchanged is constructed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱交換媒体と水との間で熱交換を行う給湯機用水熱交換器に係り、中でも、炭酸ガスを主体とする冷媒を熱交換媒体として、これと水とを熱交換するための給湯機用の水熱交換器に関するものである。   The present invention relates to a water heat exchanger for a water heater that performs heat exchange between a heat exchange medium and water, and in particular, for heat exchange between this and water using a refrigerant mainly composed of carbon dioxide as a heat exchange medium. The present invention relates to a water heat exchanger for water heaters.

従来から、熱交換媒体(冷媒)と水とを熱交換する給湯機用水熱交換器として、かかる冷媒を流通させる流路(冷媒側流路)と水を流通させる流路(水側流路)とを、2つの伝熱管を組み合わせて構成し、それら水と冷媒との間で熱交換を行うようにした水熱交換器が、各種用いられてきている。   Conventionally, as a water heat exchanger for a hot water heater for exchanging heat between a heat exchange medium (refrigerant) and water, a flow path for circulating such a refrigerant (refrigerant side flow path) and a flow path for circulating water (water side flow path) Are used in combination with two heat transfer tubes, and various types of water heat exchangers that exchange heat between the water and the refrigerant have been used.

また、そのような水熱交換器で用いられる熱交換媒体(冷媒)としては、従来のフロン系冷媒に代えて、オゾン層保護や地球温暖化防止の観点から、温暖化係数の低い自然冷媒が注目されてきており、近年、この自然冷媒を利用した熱交換器の開発が行われている。そして、そのような自然冷媒の中でも、炭酸ガスを用いた場合にあっては、高温高圧のガス条件が得られることから、特に注目を受けている。   In addition, as a heat exchange medium (refrigerant) used in such a water heat exchanger, a natural refrigerant having a low warming coefficient is used in place of the conventional chlorofluorocarbon refrigerant from the viewpoint of protecting the ozone layer and preventing global warming. In recent years, heat exchangers using this natural refrigerant have been developed. Among such natural refrigerants, when carbon dioxide gas is used, it is particularly attracting attention because high-temperature and high-pressure gas conditions can be obtained.

ところで、このような炭酸ガスを主体とする冷媒と水との間で熱交換を行う方式の熱交換器としては、従来より、特許文献1〜4に開示されているもののように、内部に冷媒を流通させる伝熱管と、内部に水を流通させる伝熱管とを組み合わせて、一つの熱交換器を構成したものが、各種提案されている。   By the way, as a heat exchanger of such a system that performs heat exchange between the refrigerant mainly composed of carbon dioxide gas and water, the refrigerant internally is disclosed as disclosed in Patent Documents 1 to 4. Various proposals have been made in which one heat exchanger is configured by combining a heat transfer tube through which water is circulated and a heat transfer tube through which water is circulated.

例えば、特開2003−214778号公報(特許文献1)においては、内部に被熱交換液が流される第1熱交換パイプの周壁に、その軸方向に沿って窪み部を形成し、その窪み部内に、内部に所定の熱媒体が流される第2熱交換パイプを配設すると共に、それら第1熱交換パイプと第2熱交換パイプをロウ付けして、一体化することにより、両者間に隙間を発生させることなく、第2熱交換パイプ内を流れる熱媒体の熱が、ロウ材を介して、第1熱交換パイプ内を流れる被熱交換液に伝達されて、熱交換されるようにしたものが、明らかにされている。   For example, in Japanese Patent Application Laid-Open No. 2003-214778 (Patent Document 1), a hollow portion is formed along the axial direction on the peripheral wall of a first heat exchange pipe through which the heat exchange liquid flows, and the inside of the hollow portion In addition, a second heat exchange pipe through which a predetermined heat medium flows is disposed inside, and the first heat exchange pipe and the second heat exchange pipe are brazed and integrated to form a gap between the two. The heat of the heat medium flowing in the second heat exchange pipe is transmitted to the heat exchange liquid flowing in the first heat exchange pipe via the brazing material, so that the heat exchange is performed. Things have been revealed.

一方、特開2003−202194号公報(特許文献2)においては、水通路を構成する大径の芯管の内周面に、冷媒通路を構成する複数の小径の細管を、芯管の内壁に沿って長手方向に平行に配設し、それらをロウ付け等によって一体的に組み付けてなる熱交換器が、明らかにされている。さらに、特開2002−122390号公報(特許文献3)においては、内部に冷媒が流通せしめられる多数本の微細チューブを、熱交換される水が流通せしめられる水チューブ内に同軸的に配置せしめた、所謂二重管式の熱交換器が、明らかにされている。   On the other hand, in Japanese Patent Application Laid-Open No. 2003-202194 (Patent Document 2), a plurality of small-diameter thin tubes constituting the refrigerant passage are provided on the inner wall of the core tube on the inner peripheral surface of the large-diameter core tube constituting the water passage. A heat exchanger is disclosed that is arranged in parallel to the longitudinal direction along the longitudinal direction and integrally assembled by brazing or the like. Further, in Japanese Patent Laid-Open No. 2002-122390 (Patent Document 3), a large number of fine tubes in which a refrigerant is circulated are arranged coaxially in a water tube in which water to be heat-exchanged is circulated. A so-called double tube heat exchanger has been clarified.

また、そのような二重管式の熱交換器の伝熱促進効果を向上させ得るものとして、特開2001−201275号公報(特許文献4)においては、内管と外管からなる二重管式の熱交換器において、内管と外管との間に形成される流路を螺旋状に仕切る伝熱促進体を介設して、かかる流路の流路長を増大させると共に、流れる流体の流速および乱流化を増大せしめて、内管内を流れる流体から内管と外管との間を流れる流体への伝熱が促進されるようにした二重管式熱交換器が、明らかにされている。   Moreover, as what can improve the heat-transfer acceleration | stimulation effect of such a double pipe type heat exchanger, in JP 2001-201275 A (patent documents 4), a double pipe which consists of an inner pipe and an outer pipe In the heat exchanger of the type, a heat transfer facilitator that interposes the flow path formed between the inner pipe and the outer pipe in a spiral manner is interposed to increase the flow path length of the flow path and to flow the fluid A double-tube heat exchanger that increases the flow rate and turbulence of the pipe to facilitate heat transfer from the fluid flowing in the inner pipe to the fluid flowing between the inner pipe and the outer pipe. Has been.

しかしながら、それら提案技術のうち、例えば特許文献1に開示のものにあっては、水側流路となる第1熱交換パイプに冷媒側流路である第2熱交換パイプを嵌め込むための窪み部が形成されて、第1熱交換パイプの外壁部分が水側流路内に張り出した形状とされているために、水側の圧力損失が増大するといった問題が内在しているのである。また、特許文献2に開示のものにあっても、水通路とされる大径の芯管の内周面に冷媒通路とされる小径の細管がロウ付けされて、一体化されているところから、特許文献1の熱交換器と同様に、水側の圧力損失が増大してしまうのである。そして、このように、水側の圧力損失が増大するようになると、給水ポンプの揚程不足を招く恐れがあるところから、その対策のためには、給水ポンプの能力を大きくする必要があり、その結果、給湯機全体として生産コストの増大を引き起こしてしまうといった問題が、新たに惹起されることとなる。   However, among those proposed technologies, for example, the one disclosed in Patent Document 1 is a recess for fitting the second heat exchange pipe that is the refrigerant side flow path into the first heat exchange pipe that is the water side flow path. The problem is that the pressure loss on the water side increases because the outer wall portion of the first heat exchange pipe protrudes into the water side flow path. Further, even in the one disclosed in Patent Document 2, a small-diameter thin tube serving as a refrigerant passage is brazed and integrated on the inner peripheral surface of a large-diameter core tube serving as a water passage. As with the heat exchanger disclosed in Patent Document 1, the pressure loss on the water side increases. And as the pressure loss on the water side increases in this way, it is necessary to increase the capacity of the water supply pump for the countermeasure, since there is a possibility that the head of the water supply pump will be insufficient. As a result, the problem of causing an increase in production cost as a whole of the hot water heater is newly induced.

また、特許文献1や特許文献2に開示の熱交換器のように、水側流路となる管体と冷媒側流路となる管体とをロウ付けにて接合して、熱交換器を構成したものにあっては、そのようなロウ付け部におけるロウ付け不良により、冷媒側流路と水側流路の接触面積不足を招き易く、性能のばらつきが生じ易いという欠点がある。さらに、ロウ付け不良による歩留低下を引き起こし易く、生産コストが向上してしまうという問題も内在している。   In addition, as in the heat exchangers disclosed in Patent Document 1 and Patent Document 2, the pipe body serving as the water-side flow path and the pipe body serving as the refrigerant-side flow path are joined by brazing, and the heat exchanger is In the configuration, due to such a brazing failure in the brazing portion, there is a drawback that the contact area between the refrigerant-side flow path and the water-side flow path is likely to be insufficient, resulting in performance variations. Furthermore, there is a problem that the yield is likely to decrease due to poor brazing and the production cost is increased.

一方、特許文献3にて開示されている二重管式熱交換器にあっては、高温側である冷媒流路が、低温側となる水側流路の中に完全に封じ込められた形態とされているため、水側流路の管体と冷媒側流路の管体とをロウ付けにて接合した形態のものよりも、冷媒の熱が外気へと放出されてしまうことが低く抑えられるという利点を有しているのであるが、水側への伝熱面積を増加するためには、流路長を長くする必要があるところから、熱交換器の小型化が難しくなる問題がある。   On the other hand, in the double-pipe heat exchanger disclosed in Patent Document 3, the coolant channel on the high temperature side is completely enclosed in the water channel on the low temperature side. Therefore, it is possible to suppress the heat of the refrigerant from being released to the outside air, as compared with the configuration in which the water-side channel tube and the refrigerant-side channel tube are joined by brazing. However, in order to increase the heat transfer area to the water side, there is a problem that it is difficult to reduce the size of the heat exchanger because it is necessary to increase the flow path length.

そこで、そのような二重管式熱交換器の、水側の伝熱促進効果を高めるための方法として、特許文献4においては、水側流路(外管)と冷媒側流路(内管)との間に、螺旋状の伝熱促進体を介設するようにした構造が、明らかにされている。しかしながら、かかる文献に開示されている熱交換器においては、水側流路におけるスケール形成の問題が生じやすいという問題が、新たに惹起されることとなる。つまり、熱交換器を長期に亘って使用することにより、水道水に含まれるカルシウム等の成分が水流路内にスケールとして析出して、流路壁に付着し、そしてその付着量(厚さ)が経時的に増大することによって、最終的には流路を閉塞してしまうようになるのである。そこで、かかるスケールの付着が或る程度進行したときに、その付着したスケールを除去する作業が必要となるのであるが、水側流路に介設されている螺旋状の伝熱促進体の存在によって、その作業は非常に行い難くなるのである。このため、現実的には、熱交換器全体を交換することとなり、これが、運用コストの悪化に繋がる問題を内在しているのである。   Thus, as a method for enhancing the water-side heat transfer enhancement effect of such a double-tube heat exchanger, in Patent Document 4, a water-side channel (outer tube) and a refrigerant-side channel (inner tube) ), A structure in which a spiral heat transfer facilitator is interposed is clarified. However, in the heat exchanger disclosed in such a document, a problem that a problem of scale formation in the water-side flow path is likely to be newly generated. In other words, by using the heat exchanger for a long period of time, components such as calcium contained in tap water precipitate as scales in the water flow channel, adhere to the flow channel wall, and the amount of adhesion (thickness) As the time increases with time, the channel will eventually be blocked. Therefore, when the scale adheres to some extent, it is necessary to remove the adhered scale. However, the existence of a spiral heat transfer facilitator interposed in the water-side flow path is necessary. This makes it very difficult to do that. For this reason, in reality, the entire heat exchanger is replaced, and this inherently has a problem that leads to a deterioration in operation costs.

加えて、かかる二重管式熱交換器において、その内部に形成される水側流路に、角部や鋭角の凹部が存在すると、その部分の水流が澱むことにより、熱伝達が他の部分より劣化することとなる。また、その様な角部では、二次渦等の剥離流れを生じ、その剥離流れも、角部における局所熱伝達率の低下を招く。そして、局所熱伝達率が低下した領域では、壁面過熱度が増加し、その部分において、水中のスケール成分の濃縮が進むこととなるのであり、その結果として、水道水に含まれるカルシウム等の成分が、スケールとして析出し易くなるのであって、これが、また、上記した問題を大きくしているのである。   In addition, in such a double-pipe heat exchanger, if there are corners or acute-angled recesses in the water-side flow passage formed in the interior of the double-tube heat exchanger, the water flow in that part stagnates, so that heat transfer is performed to other parts. It will deteriorate more. Moreover, in such a corner | angular part, peeling flow, such as a secondary vortex, arises, and the peeling flow also causes the fall of the local heat transfer coefficient in a corner | angular part. And in the area | region where the local heat transfer rate fell, the wall surface superheat degree will increase and the concentration of the scale component in water will advance in the part, As a result, components, such as calcium contained in tap water, However, it becomes easy to precipitate as a scale, and this also increases the above-mentioned problem.

特開2003−214778号公報JP 2003-214778 A 特開2003−202194号公報JP 2003-202194 A 特開2002−122390号公報JP 2002-122390 A 特開2001−201275号公報JP 2001-201275 A

ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、比較的単純で、コンパクトな構造にて、熱交換性能を大幅に向上させることの出来る、給湯機用水熱交換器を提供することにあり、また、他の課題とするところは、水側の伝熱促進を効果的に向上せしめ、且つ水側流路内におけるスケールの付着を効果的に抑制することの出来る水熱交換器を、提供することにもある。   Here, the present invention has been made in the background of such circumstances, and the problem to be solved is that the heat exchange performance is greatly improved with a relatively simple and compact structure. It is to provide a water heat exchanger for hot water heaters that can be produced, and another object is to effectively improve the heat transfer on the water side and to effectively adhere the scale in the water side flow path. There is also the provision of a water heat exchanger that can be suppressed in a controlled manner.

そして、本発明にあっては、そのような課題の解決のために、所定の熱交換媒体が管内を流通せしめられる1本の細径の内管が、それとは別体の太径の外管内に挿入されて、該内管の外周面から径方向外方に突出し且つ軸方向に延びる複数の支持脚によって、該外管内周面に複数箇所において接触せしめられて支持されていると共に、かかる複数箇所における接触支持によって該外管内周面と該内管外周面との間に形成される複数の空間が、湾曲形状又は鈍角を為す複数の角部を含んで構成される、全体として滑らかな曲線にて囲まれる外方に凸なる内面形状とされて、熱交換されるべき水の流路として構成されていることを特徴とする給湯機用水熱交換器を、その要旨とするものである。   And in this invention, in order to solve such a subject, one thin inner pipe | tube through which the predetermined heat exchange medium distribute | circulates the inside of a pipe | tube is separate from the inside of a large diameter outer pipe | tube. Inserted into the outer peripheral surface of the inner tube and supported in contact with the inner peripheral surface of the outer tube at a plurality of locations by a plurality of support legs that protrude radially outward from the outer peripheral surface and extend in the axial direction. As a whole, a plurality of spaces formed between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube by contact support at a location are configured to include a plurality of corner portions having a curved shape or an obtuse angle. The gist is a water heat exchanger for a hot water heater, characterized in that it is formed as an outwardly convex inner surface shape surrounded by, and is configured as a flow path of water to be heat exchanged.

なお、かかる本発明に従う給湯機用水熱交換器の望ましい態様の一つによれば、前記内管としては、その内面に伝熱促進手段を設けた伝熱管が、有利に用いられ、また、前記外管としても、その内面に伝熱促進手段が設けられた伝熱管が、用いられることとなる。   In addition, according to one of the desirable aspects of the water heat exchanger for a hot water heater according to the present invention, as the inner pipe, a heat transfer pipe provided with heat transfer promotion means on its inner surface is advantageously used. As the outer tube, a heat transfer tube provided with heat transfer promoting means on its inner surface is used.

また、本発明に従う給湯機用水熱交換器の望ましい態様の他の一つによれば、前記内管は、銅又は銅合金にて構成されることが望ましい。   Moreover, according to the other one of the desirable aspects of the water heat exchanger for water heaters according to this invention, it is desirable that the said inner pipe | tube is comprised with copper or a copper alloy.

さらに、本発明の別の望ましい態様によれば、前記熱交換媒体としては、炭酸ガスを主体とする冷媒が用いられることとなる。   Furthermore, according to another desirable aspect of the present invention, a refrigerant mainly composed of carbon dioxide gas is used as the heat exchange medium.

このように、本発明に従う給湯機用水熱交換器にあっては、太径の外管内に、一本の細径の内管が、かかる外管の内周面に複数箇所接触するように内挿されて、形成されていることによって、比較的単純な、コンパクトな構造にて、熱交換媒体側流路と水側流路とが有利に形成され得ていると共に、それら熱交換媒体側流路と低温の水側流路との間の隔壁には、圧着部やロウ付部が存在していないことによって、それらの間の伝熱に際しての熱損失を効果的に抑制し得て、水側への伝熱促進効果を有利に高めることが可能となる。   As described above, in the water heat exchanger for a water heater according to the present invention, an inner tube with a single small diameter is placed in a large-diameter outer tube so that the inner surface of the outer tube contacts a plurality of locations. By being inserted and formed, the heat exchange medium side flow path and the water side flow path can be advantageously formed in a relatively simple and compact structure, and the heat exchange medium side flow The partition wall between the channel and the low-temperature water-side channel has no crimping part or brazing part, so that heat loss during heat transfer between them can be effectively suppressed. The effect of promoting heat transfer to the side can be advantageously increased.

しかも、かかる本発明に従う給湯機用水熱交換器にあっては、外管内周面と内管外周面との間に形成される複数の空間が、外方に凸状の、滑らかな曲線で囲まれる断面形状を与える内面形状において形成されて、水側流路として構成されていることにより、スケール生成の大きな要因である二次渦の発生を効果的に抑制することが出来ることとなるのであり、以て、水側流路におけるスケールの発生を効果的に抑制乃至は阻止して、そのようなスケールの生成によるところの熱損失を、有利に抑制せしめ、熱交換性能の大幅な向上を、効果的に達成し得るのである。   Moreover, in the water heat exchanger for a hot water heater according to the present invention, a plurality of spaces formed between the outer peripheral surface of the outer tube and the outer peripheral surface of the inner tube are surrounded by a smooth curve that is convex outward. It is possible to effectively suppress the generation of secondary vortices, which is a major factor in scale generation, because it is formed in the inner surface shape that gives the cross-sectional shape to be formed and is configured as a water-side flow path. Therefore, the generation of scale in the water side channel is effectively suppressed or prevented, and the heat loss due to the generation of such scale is advantageously suppressed, and the heat exchange performance is greatly improved. It can be achieved effectively.

以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1及び図2には、本発明に従う水熱交換器の一実施形態が、示されている。そこにおいて、図1は、かかる水熱交換器を、横断面図の形態において、また図2は、図1に示される水熱交換器を、縦断面図(図1におけるA−A断面)の形態において、それぞれ示している。そして、それらの図から明らかなように、水熱交換器10は、太径の外管12の内部に、それとは別体の、略矩形の横断面形状とされた細径の内管14が、その四つの角部から外方に延びるそれぞれの支持脚16によって、同軸的に支持されて、位置固定に配置せしめられている。   First, FIG.1 and FIG.2 shows one Embodiment of the water heat exchanger according to this invention. 1 shows such a water heat exchanger in the form of a cross-sectional view, and FIG. 2 shows the water heat exchanger shown in FIG. 1 in a longitudinal cross-sectional view (A-A cross section in FIG. 1). In the form, each is shown. As is clear from these drawings, the water heat exchanger 10 has a thin inner tube 14 having a substantially rectangular cross-sectional shape that is separate from the outer tube 12 having a large diameter. Each of the support legs 16 extending outward from the four corners is coaxially supported and fixedly positioned.

より具体的には、外管12は、銅や銅合金等の所定の金属材料を用いて形成された、一般に外径:8〜20mm、肉厚:0.3〜1.0mm程度の、太径の、断面が円形の管体にて構成されている。また、内管14は、かかる外管12と同様に、銅や銅合金等の所定の金属材料を用いて、略矩形の横断面形状を呈する角筒形態において形成されていると共に、それぞれの角部が、管径方向外方に突出せしめられて、軸方向に延びる支持脚16として、それぞれ構成されている。しかも、かかる内管14の各辺の外周面は、その周方向両側に位置する支持脚16,16の側面と共に、径方向内方に凹陥した、滑らかな連続した曲面にて与えられる湾曲面18にて構成されている。一方、そのような内管14の管内には、図1に示される如く、一体的に設けられた支持脚16の内側にそれぞれ頂点(特異点)を有し、そしてそれぞれの頂点を内方に凹陥する曲線で結んだ、略矩形の断面形状を有する内孔が形成されている。また、この内管14の各角部に一体的に設けた支持脚16の先端部が、その両側面において外方に向って湾曲して広がる、扇型形状を呈するように、形成されているのである。   More specifically, the outer tube 12 is formed using a predetermined metal material such as copper or copper alloy, and generally has an outer diameter of about 8 to 20 mm and a wall thickness of about 0.3 to 1.0 mm. It is composed of a pipe body having a circular cross section. Similarly to the outer tube 12, the inner tube 14 is formed in a rectangular tube shape having a substantially rectangular cross-sectional shape using a predetermined metal material such as copper or copper alloy, and each corner is formed. The portions are respectively configured as support legs 16 that protrude outward in the pipe radial direction and extend in the axial direction. In addition, the outer peripheral surface of each side of the inner tube 14 is a curved surface 18 provided by a smooth continuous curved surface that is recessed inward in the radial direction together with the side surfaces of the support legs 16 and 16 located on both sides in the circumferential direction. It is composed of. On the other hand, as shown in FIG. 1, each of the inner pipes 14 has apexes (singular points) inside the integrally provided support legs 16, and each apex is inward. An inner hole having a substantially rectangular cross-sectional shape connected by a concave curve is formed. Further, the tip end portions of the support legs 16 integrally provided at the respective corner portions of the inner tube 14 are formed so as to exhibit a fan-shaped shape that curves and spreads outward on both side surfaces thereof. It is.

そして、かかる別体に形成されてなる外管12と内管14とを用い、外管12内に内管14を挿入して、抽伸加工等によって、外管12を縮径させることにより、内管14の四つの支持脚16の先端部を、外管12の内周面に当接させて、密着せしめるようにすることにより、それら外管12の内周面と内管14の外周面との間の空間が、4つに仕切られて、それぞれ独立した水側流路20が、管軸方向に形成される一方、内管14の管内が、所定の熱交換媒体の流路22とされた二重管構造の水熱交換器10が、構成されるのである。しかも、このような水熱交換器10においては、支持脚16の先端部の側面が、湾曲した形状において構成され、これによって、外管12の内面に連続した形態において接続されて、外管12と内管14との間に形成される4つの水側流路20が、何れも略楕円形状の横断面とされて、全体として滑らかな曲線にて囲まれる外方に凸なる内面形状(内側に凸状となっている部分が存在しない形状)を呈するように、構成されているのである。   Then, by using the outer tube 12 and the inner tube 14 formed separately, the inner tube 14 is inserted into the outer tube 12, and the outer tube 12 is reduced in diameter by drawing or the like. The tips of the four support legs 16 of the tube 14 are brought into contact with and closely attached to the inner peripheral surface of the outer tube 12, so that the inner peripheral surface of the outer tube 12 and the outer peripheral surface of the inner tube 14 are The space between the two is divided into four, and independent water-side flow paths 20 are formed in the direction of the pipe axis, while the inside of the inner pipe 14 is a flow path 22 of a predetermined heat exchange medium. The double-pipe structure water heat exchanger 10 is configured. Moreover, in such a water heat exchanger 10, the side surface of the distal end portion of the support leg 16 is configured in a curved shape, and is thus connected in a continuous form to the inner surface of the outer tube 12. The four water-side flow paths 20 formed between the inner pipe 14 and the inner pipe 14 are all substantially elliptical cross-sections, and are outwardly convex inner surfaces (inner sides) surrounded by a smooth curve as a whole. In other words, it is configured so as to exhibit a shape in which no convex portion exists.

従って、このような構造の水熱交換器10にあっては、内管14の管内流路22には、所定の高温の熱交換媒体、特に炭酸ガスを主体とする冷媒が流通せしめられる一方、外管12と内管14との間に形成された4つの略楕円形状の水側流路20内には、加熱されるべき低温の水が流通せしめられることとなるのであるが、かかる水側流路20が、その横断面形状において、外方に凸なる湾曲した滑らかな曲線で囲まれる内面形状において構成され、複雑な断面形状を呈するものではないところから、熱損失を効果的に抑制しつつ、スケール生成の大きな要因である二次渦の発生を、有利に抑制乃至は阻止することが出来ることとなるのであり、以て、水側流路20におけるスケールの付着が、効果的に抑制され得るようになっているのである。   Therefore, in the water heat exchanger 10 having such a structure, a predetermined high-temperature heat exchange medium, in particular, a refrigerant mainly composed of carbon dioxide gas is circulated in the pipe internal flow path 22 of the inner pipe 14. Low-temperature water to be heated is circulated in the four substantially elliptical water-side flow paths 20 formed between the outer tube 12 and the inner tube 14. The flow path 20 is configured in an inner surface shape surrounded by a curved smooth curve that protrudes outward in the cross-sectional shape thereof, and does not exhibit a complicated cross-sectional shape, thereby effectively suppressing heat loss. On the other hand, the generation of secondary vortices, which is a major factor in scale generation, can be advantageously suppressed or prevented, so that scale adhesion in the water-side channel 20 is effectively suppressed. Because it is supposed to be .

要するに、熱交換器の長期使用により、水道水に含まれるカルシウム等の成分が、スケールとして析出し、流路壁に付着して、堆積し、流路を閉塞するようになるのであるが、本実施形態に係る水熱交換器10においては、水側流路20が、その断面形状において、略楕円形状の滑らかな曲線とされているところから、二次渦の発生が、効果的に抑制され得ることとなるのであり、以て、スケールが発生し難くなっているのであり、また、スケールが発生しても、滑らかな曲線にて構成される内面形状の故に、その除去が容易となっており、例えば、通常の配管洗浄剤で洗い流す等の手段を採用することによって、充分に対応し得るのである。   In short, due to the long-term use of heat exchangers, components such as calcium contained in tap water precipitate as scales, adhere to the flow channel walls, accumulate, and block the flow channel. In the water heat exchanger 10 according to the embodiment, since the water-side flow path 20 has a substantially elliptical smooth curve in its cross-sectional shape, generation of secondary vortices is effectively suppressed. Therefore, even if the scale is generated, it is easy to remove the scale because of the shape of the inner surface constituted by a smooth curve. For example, by adopting a means such as washing with a normal pipe cleaning agent, it is possible to cope with it sufficiently.

また、かくの如き構成の水熱交換器10にあっては、太径の外管12内に、一本の細径の内管14が、かかる外管12の内周面に、複数箇所(ここでは、4箇所)において接触するように内挿されて、構成されているところから、比較的簡単な構造において、コンパクトに形成され得、また熱交換媒体流路22と低温の水側流路20との間の隔壁に、従来の水熱交換器の如く、圧着部やロウ付部が存在することはなく、そのために、熱損失を効果的に抑制することも可能となっているのである。   Further, in the water heat exchanger 10 having such a configuration, a single small-diameter inner tube 14 is provided on the inner peripheral surface of the outer tube 12 at a plurality of locations ( Here, since it is inserted and configured so as to be in contact at four locations), it can be formed compactly with a relatively simple structure, and the heat exchange medium flow path 22 and the low-temperature water-side flow path can be formed. There is no crimping part or brazing part in the partition between 20 and the conventional water heat exchanger, so that it is possible to effectively suppress heat loss. .

なお、ここでは、外管12や内管14の材質に、熱伝導率の高い銅や銅合金を用いるようにすることによって、内管14内を流通せしめられる熱交換媒体の熱を、外管12と内管14との間に形成される外側の水側流路20内を流通せしめられる水に対して、効果的に伝達することが出来るようになっており、以て、熱交換器10の熱交換効率が、効果的に向上させられ得るようになっている。   Here, by using copper or a copper alloy having high thermal conductivity as the material of the outer tube 12 or the inner tube 14, the heat of the heat exchange medium circulated in the inner tube 14 is changed to the outer tube. 12 can be effectively transmitted to the water circulated in the outer water-side flow path 20 formed between the inner pipe 14 and the inner pipe 14. The heat exchange efficiency can be effectively improved.

さらに、内管14内の流路22を流通せしめられる熱交換媒体として、炭酸ガスを主体とする冷媒が用いられるようにすることによって、従来のフロン系冷媒のように、オゾン層破壊の恐れや、地球温暖化の問題が、有利に解消せしめられると共に、高温・高圧ガス条件が得られるところから、かかる水熱交換器を単段の熱交換器として用いた場合にあっても、高い湯温が得られるといった利点も、享受し得ることとなる。   Furthermore, by using a refrigerant mainly composed of carbon dioxide as a heat exchange medium that can be circulated through the flow path 22 in the inner pipe 14, there is a risk of ozone layer destruction as in the case of conventional chlorofluorocarbon refrigerants. Since the problem of global warming can be advantageously eliminated and high-temperature and high-pressure gas conditions can be obtained, even when such a water heat exchanger is used as a single-stage heat exchanger, The advantage that can be obtained can also be enjoyed.

ところで、このような、外管12の内周面に対して、内管14の外周面から一体的に延びる複数の支持脚16の先端部を当接せしめてなる構造の水熱交換器10は、例えば、以下に示すような方法によって、製造されることとなる。   By the way, the water heat exchanger 10 having such a structure in which the tips of the plurality of support legs 16 extending integrally from the outer peripheral surface of the inner tube 14 are brought into contact with the inner peripheral surface of the outer tube 12 as described above. For example, it is manufactured by the following method.

先ず、外管12として、また内管14を与える素管として、それぞれ、単純な円形断面を有する管体が用意される。ここでは、その一例として、外径:9.52mm、肉厚:0.5mmの単純円筒断面の管体が、外管12として準備される一方、内管14を与える素管としては、外径:7.00mm、肉厚:0.5mmの単純な円形断面の管体が、準備されている。なお、それら二つの管体の材質は、何れも、りん脱酸銅(JIS H 3300 C1220)とされている。   First, as the outer tube 12 and the elementary tube that gives the inner tube 14, tubes having simple circular cross sections are prepared. Here, as an example, a tube having a simple cylindrical cross section with an outer diameter of 9.52 mm and a wall thickness of 0.5 mm is prepared as the outer tube 12, while the raw tube that provides the inner tube 14 has an outer diameter. A tube having a simple circular cross section with a thickness of 7.00 mm and a thickness of 0.5 mm is prepared. Note that the materials of these two pipes are both phosphorous deoxidized copper (JIS H 3300 C1220).

そして、内管14を与える単純円形断面の素管には、その外表面(外周面)に対して、曲面を有する凸部を備えた複数のダイスを押し当て、徐々にダイス間距離を狭めることにより、外表面に、曲面からなる複数(ここでは、4つ)の凹部(18)を、周方向に対称的に形成すると共に、隣接する凹部の接続部が外方に突出した支持脚16として形成された異形管が、製作されることとなる。なお、この異形管の大きさとしては、外管12を与える管体の内周面に略内接する程度の寸法、換言すればスムーズに挿入することが出来、且つ出来るだけその内周面との間の隙間が小さくなるような寸法とされている。   Then, a plurality of dies having convex portions having curved surfaces are pressed against the outer surface (outer peripheral surface) of the simple circular cross-section element tube that gives the inner tube 14, and the distance between the dies is gradually reduced. Thus, a plurality of (here, four) concave portions (18) made of a curved surface are formed on the outer surface symmetrically in the circumferential direction, and the connecting portions of the adjacent concave portions project outward as support legs 16 The formed deformed tube is manufactured. The size of the deformed tube is such that it is approximately inscribed in the inner peripheral surface of the tubular body that gives the outer tube 12, in other words, can be inserted smoothly, and as much as possible with the inner peripheral surface. The dimensions are such that the gap between them is small.

次いで、このようにして得られた異形管(内管14)を、前記外管12としての管体内に挿入して、それら管体(外管)と異形管(内管)の一端を固定した状態において、縮径ダイスを用いて、抽伸加工することにより、かかる管体にて構成される外管12の内周面に、異形管からなる内管14の支持脚16の先端部を密着せしめるようにすることによって、図示の如き略楕円形状の水側流路20の4つが形成されてなる水熱交換器10が、完成されるのである。なお、前記したサイズの外管用管体や内管用素管を用いた場合において、水熱交換器10に形成される水側流路20の楕円形状は、長径が約5.5mm、短径が約2.3mm程度のものとなっている。   Subsequently, the deformed tube (inner tube 14) thus obtained was inserted into the tube body as the outer tube 12, and one end of the tube (outer tube) and the deformed tube (inner tube) was fixed. In this state, the tip end portion of the support leg 16 of the inner tube 14 made of a deformed tube is brought into close contact with the inner peripheral surface of the outer tube 12 constituted by such a tube body by drawing using a diameter reducing die. By doing so, the water heat exchanger 10 in which four of the substantially elliptical water-side flow paths 20 as shown in the figure are formed is completed. In addition, in the case of using the outer tube or the inner tube for the above-described size, the elliptical shape of the water-side flow path 20 formed in the water heat exchanger 10 has a major axis of about 5.5 mm and a minor axis of about 5. It is about 2.3 mm.

また、かくの如き構成の水熱交換器10において、内管14より一体的に延びる支持脚16にて、内管14と外管12との間の空間が、複数箇所において仕切られることによって形成される複数の水側流路(20)は、その横断面において、例示の如き略楕円形状とされたり、円形形状とされていることが、水側流路(20)における二次渦の発生の抑制に最も効果的となるのであり、そのために、外管12の内周面に対して、内管14の支持脚16先端部の当接部において、湾曲面18が滑らかな曲線において、外管12の内周面に繋がるように、図1に示される如く湾曲(R)形状とされていることが、望ましい。なお、図3(a)〜(c)には、支持脚16の先端部における外管12内面との各種の接続形態が示されており、(a)では、湾曲(R)形状をもって接続され、また(b)においては、鈍角を為す角部の複数を含んで形成されており、更に(c)においては、鋭角を為す角部をもって接続されている。   Further, in the water heat exchanger 10 having such a configuration, the space between the inner tube 14 and the outer tube 12 is formed at a plurality of locations by the support legs 16 extending integrally from the inner tube 14. The plurality of water-side flow paths (20) that are formed in the transverse cross-section have a substantially elliptical shape as illustrated, or a circular shape, which indicates that secondary vortices are generated in the water-side flow path (20). For this reason, the curved surface 18 has a smooth curve at the abutting portion of the distal end portion of the support leg 16 of the inner tube 14 with respect to the inner peripheral surface of the outer tube 12. It is desirable to have a curved (R) shape as shown in FIG. 1 so as to be connected to the inner peripheral surface of the tube 12. 3A to 3C show various connection forms with the inner surface of the outer tube 12 at the tip of the support leg 16, and in FIG. 3A, the connection is made with a curved (R) shape. Moreover, in (b), it is formed including a plurality of corners that make an obtuse angle, and in (c), it is connected with corners that make an acute angle.

そして、かかる図3に示される如き外管12の内周面に対する接続形態において、水側流路(20)における二次渦抑制効果は、(c)の接続構造に比べて、(b)、(a)の接続構造の順に良好となるところから、本発明にあっては、かかる(a)や(b)の接続構造が、有利に採用されることとなるのである。また、そのような(a)の如き接続構造においても、そのR形状の曲率半径が、大きくなる程良好となるところから、本発明にあっては、可及的に大きな曲率半径のR形状が、有利に採用されることとなる。また、(a)に示されるR形状や、(b)に示される多角形状となるように、外管12の内周面に対する内管14における支持脚16の側面形状を選択して、外管12と内管14との組付け、一体化が行われることとなるのである。   And in the connection form with respect to the inner peripheral surface of the outer tube 12 as shown in FIG. 3, the secondary vortex suppressing effect in the water side flow path (20) is (b), compared with the connection structure of (c), In the present invention, the connection structure (a) or (b) is advantageously employed because the connection structure (a) becomes better in order. Further, even in such a connection structure as shown in (a), since the radius of curvature of the R shape becomes better as the radius of curvature increases, in the present invention, an R shape having a radius of curvature as large as possible is obtained. , Will be advantageously employed. Further, the side surface shape of the support leg 16 in the inner tube 14 with respect to the inner peripheral surface of the outer tube 12 is selected so that the R shape shown in (a) and the polygonal shape shown in (b) are selected, and the outer tube The assembly and integration of 12 and the inner pipe 14 are performed.

以上、本発明の代表的な実施形態の一つについて詳述してきたが、それは、あくまでも例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものでないことが、理解されるべきである。   As described above, one of the representative embodiments of the present invention has been described in detail. However, this is merely an example, and the present invention is not limited by the specific description according to such an embodiment. It should be understood that this is not to be construed as limiting.

例えば、前述した実施形態においては、外管12と内管14との間に、4つの水側流路20が形成されているのであるが、そのような水側流路20の個数は、何等限定されるものではなく、例えば、図4に示される如く、3つの水側流路20が形成されていても、また図5や図6に示される如く、8つの水側流路20が形成されていても、何等、差支えないのである。更に、内管14内に形成される熱交換媒体の流路22の形状としては、水側流路20のように限定されるものではなく、各種の断面形状が採用可能であり、図5に示される如き円形断面形状であっても、図6に示される如き水側流路20に対応して内方に突出した形状を備えた流路22とされていても、何等、差支えないのである。   For example, in the above-described embodiment, four water-side flow paths 20 are formed between the outer pipe 12 and the inner pipe 14, but the number of such water-side flow paths 20 is any number. For example, as shown in FIG. 4, even if three water-side channels 20 are formed, as shown in FIGS. 5 and 6, eight water-side channels 20 are formed. Even if it is done, there is no problem. Furthermore, the shape of the flow path 22 of the heat exchange medium formed in the inner pipe 14 is not limited to the shape of the water side flow path 20, and various cross-sectional shapes can be adopted. Even if it is a circular cross-sectional shape as shown, even if it is a flow path 22 having a shape protruding inward corresponding to the water side flow path 20 as shown in FIG. 6, there is no problem. .

そして、外管12の外形形状にあっても、図1〜図6の如き円形形状の他、図7に示される如き矩形形状として、目的とする水熱交換器10を構成することも、可能である。   And even if it exists in the external shape of the outer tube | pipe 12, it is also possible to comprise the target water heat exchanger 10 as a rectangular shape as shown in FIG. 7 besides the circular shape as shown in FIGS. It is.

また、本発明に従う水熱交換器10にあっては、その内管14を介しての熱交換媒体と水との間の熱交換を有利に実現すべく、内管14の内面に、従来と同様に、溝や突起を設けたり、微細構造面を付与して、熱交換媒体側の伝熱面積を増やすことが有効であり、その一例が、図8に示されている。そこでは、内管14の内周面に、多数の突起24が一体的に設けられて、流路22内を流通せしめられる熱交換媒体に接触せしめられ得るようになっている。   Further, in the water heat exchanger 10 according to the present invention, in order to advantageously realize heat exchange between the heat exchange medium and the water via the inner tube 14, the inner surface of the inner tube 14 is Similarly, it is effective to increase the heat transfer area on the heat exchange medium side by providing grooves and protrusions or providing a fine structure surface, an example of which is shown in FIG. In this case, a large number of protrusions 24 are integrally provided on the inner peripheral surface of the inner tube 14 so as to be brought into contact with a heat exchange medium circulated in the flow path 22.

さらに、水側の伝熱面積を増やす方法として、図9に示されるように、外管12の内面に、突起26を一体的に設けたり、またそのような突起26に代えて、溝を設けたり、或いは微細構造面を付与したりすることも可能である。特に、図9に示される如き突起26を外管12内面に形成することにより、付着するスケールが一定量に達したときに、それを剥離させるようにする作用を発揮させることも可能である。   Furthermore, as a method for increasing the heat transfer area on the water side, as shown in FIG. 9, a protrusion 26 is provided integrally on the inner surface of the outer tube 12, or a groove is provided instead of such a protrusion 26. It is also possible to provide a fine structure surface. In particular, by forming the projections 26 as shown in FIG. 9 on the inner surface of the outer tube 12, it is possible to exert an action of peeling the scales when they reach a certain amount.

加えて、上述した実施の形態においては、内管14として、その管内を所定の熱交換媒体が流通せしめられる単純な構造の伝熱管が用いられているが、例えば、図10に示される如く、内周面に、漏洩検知機能28を設けてなる構造の伝熱管を採用することも、可能である。なお、そのような漏洩検知機能を有する伝熱管としての内管14の構造については、特開2005−69620号公報等において明らかにされている公知の構造が、そのまま採用され得るものであるところから、ここでは、その詳細は省略することとする。   In addition, in the above-described embodiment, a heat transfer tube having a simple structure that allows a predetermined heat exchange medium to flow through the tube is used as the inner tube 14, but for example, as shown in FIG. It is also possible to employ a heat transfer tube having a structure in which a leakage detection function 28 is provided on the inner peripheral surface. In addition, about the structure of the inner tube | pipe 14 as such a heat exchanger tube which has such a leak detection function, since the well-known structure clarified in Unexamined-Japanese-Patent No. 2005-69620 etc. can be employ | adopted as it is. The details are omitted here.

また、流路20を流通せしめられる水と流路22を流通せしめられる熱交換媒体の流通方向にあっても、図2に示される如き、同一方向とされる他、互いに異なる方向の対向流として流通させられ得るものであることは、言うまでもないところである。   In addition, even in the flow direction of the water that flows through the flow path 20 and the heat exchange medium that flows through the flow path 22, as shown in FIG. It goes without saying that it can be distributed.

その他、一々列挙はしないが、本発明が、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施されるものであり、また、そのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることは、言うまでもないところである。   In addition, although not enumerated one by one, the present invention is carried out in a mode to which various changes, modifications, improvements, etc. are added based on the knowledge of those skilled in the art. It goes without saying that any one of them falls within the scope of the present invention without departing from the spirit of the present invention.

本発明に従う給湯機用水熱交換器の一例を示す、管軸に垂直な方向の断面となる横断面の説明図である。It is explanatory drawing of the cross section used as the cross section of the direction perpendicular | vertical to a pipe axis which shows an example of the water heat exchanger for water heaters according to this invention. 図1におけるA−A断面説明図である。It is AA cross-section explanatory drawing in FIG. 内管から延びる支持脚の先端部が、外管の内面に接続せしめられる形態を示す断面説明図であって、(a)〜(c)は、それぞれ異なる接続形態を示している。It is sectional explanatory drawing which shows the form by which the front-end | tip part of the support leg extended from an inner pipe is connected to the inner surface of an outer pipe, Comprising: (a)-(c) has shown the different connection form, respectively. 本発明に従う水熱交換器の他の一例を示す、図1に対応する断面説明図である。It is sectional explanatory drawing corresponding to FIG. 1 which shows another example of the water heat exchanger according to this invention. 本発明に従う水熱交換器の更に他の一例を示す、図1に対応する断面説明図である。It is a section explanatory view corresponding to Drawing 1 showing still another example of the water heat exchanger according to the present invention. 本発明に従う水熱交換器の別の一例を示す、図1に対応する断面説明図である。It is sectional explanatory drawing corresponding to FIG. 1 which shows another example of the water heat exchanger according to this invention. 本発明に従う水熱交換器の更に別の一例を示す、図1に対応する断面説明図である。It is sectional explanatory drawing corresponding to FIG. 1 which shows another example of the water heat exchanger according to this invention. 本発明に従う水熱交換器の異なる一例を示す、図1に対応する断面説明図である。It is sectional explanatory drawing corresponding to FIG. 1 which shows a different example of the water heat exchanger according to this invention. 本発明に従う水熱交換器の更に異なる一例を示す、図1に対応する断面説明図である。It is sectional explanatory drawing corresponding to FIG. 1 which shows a further different example of the water heat exchanger according to this invention. 本発明に従う水熱交換器の異なる別の例を示す、図1に対応する断面説明図である。It is sectional explanatory drawing corresponding to FIG. 1 which shows another example from which the water heat exchanger according to this invention differs.

符号の説明Explanation of symbols

10 水熱交換器
12 外管
14 内管
16 支持脚
18 湾曲面
20 水側流路
22 流路
24,26 突起
28 漏洩検知機能
DESCRIPTION OF SYMBOLS 10 Water heat exchanger 12 Outer tube 14 Inner tube 16 Support leg 18 Curved surface 20 Water side channel 22 Channel 24, 26 Protrusion 28 Leak detection function

Claims (5)

所定の熱交換媒体が管内を流通せしめられる1本の細径の内管が、それとは別体の太径の外管内に挿入されて、該内管の外周面から径方向外方に突出し且つ軸方向に延びる複数の支持脚によって、該外管内周面に複数箇所において接触せしめられて支持されていると共に、かかる複数箇所における接触支持によって該外管内周面と該内管外周面との間に形成される複数の空間が、湾曲形状又は鈍角を為す複数の角部を含んで構成される、全体として滑らかな曲線にて囲まれる外方に凸なる内面形状とされて、熱交換されるべき水の流路として構成されていることを特徴とする給湯機用水熱交換器。   One thin inner tube through which a predetermined heat exchange medium is allowed to flow is inserted into a large outer tube separate from the inner tube, and protrudes radially outward from the outer peripheral surface of the inner tube; A plurality of support legs extending in the axial direction are supported by being brought into contact with the inner peripheral surface of the outer tube at a plurality of locations, and between the inner peripheral surface of the outer tube and the outer peripheral surface of the inner tube by contact support at the plurality of locations. The plurality of spaces formed in the shape of the curved surface or the plurality of corners having an obtuse angle are formed into an outwardly convex inner surface shape surrounded by a smooth curve as a whole, and are subjected to heat exchange. A water heat exchanger for a hot water heater, characterized by being configured as a flow path for water. 前記内管が、内面に伝熱促進手段を設けた伝熱管であることを特徴とする請求項1に記載の給湯機用水熱交換器。   The water heat exchanger for a hot water heater according to claim 1, wherein the inner pipe is a heat transfer pipe having an inner surface provided with heat transfer promoting means. 前記外管が、内面に伝熱促進手段を設けた伝熱管であることを特徴とする請求項1又は請求項2に記載の給湯機用水熱交換器。   The water heat exchanger for a hot water heater according to claim 1 or 2, wherein the outer pipe is a heat transfer pipe having an inner surface provided with heat transfer promotion means. 前記内管が、銅又は銅合金にて構成されていることを特徴とする請求項1乃至請求項3の何れか一つに記載の給湯機用水熱交換器。   The water heat exchanger for a hot water heater according to any one of claims 1 to 3, wherein the inner pipe is made of copper or a copper alloy. 前記熱交換媒体が、炭酸ガスを主体とする冷媒であることを特徴とする請求項1乃至請求項4の何れか一つに記載の給湯機用水熱交換器。
The water heat exchanger for a hot water heater according to any one of claims 1 to 4, wherein the heat exchange medium is a refrigerant mainly composed of carbon dioxide gas.
JP2006298520A 2006-11-02 2006-11-02 Water heat exchanger for water heater Active JP4958150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298520A JP4958150B2 (en) 2006-11-02 2006-11-02 Water heat exchanger for water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298520A JP4958150B2 (en) 2006-11-02 2006-11-02 Water heat exchanger for water heater

Publications (2)

Publication Number Publication Date
JP2008116096A true JP2008116096A (en) 2008-05-22
JP4958150B2 JP4958150B2 (en) 2012-06-20

Family

ID=39502174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298520A Active JP4958150B2 (en) 2006-11-02 2006-11-02 Water heat exchanger for water heater

Country Status (1)

Country Link
JP (1) JP4958150B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131455A1 (en) * 2009-05-11 2010-11-18 サンデン株式会社 Double pipe-type heat exchanger
JP2011043289A (en) * 2009-08-21 2011-03-03 Daikin Industries Ltd Heat exchanger and refrigerating device including the same
JP2012007767A (en) * 2010-06-23 2012-01-12 Sumitomo Light Metal Ind Ltd Double tube for heat exchanger
KR101348179B1 (en) * 2010-12-14 2014-01-06 최상필 Water pipe with heating or cooling pipe
JP2014032005A (en) * 2012-08-03 2014-02-20 Tom Richards Inc In-line ultrapure heat exchanger
JP2015010758A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015010757A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015025577A (en) * 2013-07-24 2015-02-05 岩谷マテリアル株式会社 Method of manufacturing triple tube type heat exchanger
CN105026742A (en) * 2013-01-25 2015-11-04 伍德沃德有限公司 Heat exchange in a vehicle engine system
CN109120090A (en) * 2017-06-22 2019-01-01 东芝三菱电机产业系统株式会社 Totally-enclosed external fan type rotating electrical machine and cooler
CN112815744A (en) * 2021-01-13 2021-05-18 瀚润联合高科技发展(北京)有限公司 Three-dimensional cooling evaporation condensation heat exchanger
CN114206640A (en) * 2019-10-23 2022-03-18 株式会社Uacj Heat transfer double-layer pipe, inner pipe for heat transfer double-layer pipe, and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046268A (en) * 1998-07-28 2000-02-18 Nippon Steel Corp Adhesion preventing apparatus for piping connecting part
JP2001201275A (en) * 2000-01-21 2001-07-27 Daikin Ind Ltd Double tube heat exchanger
JP2005009833A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Double pipe type heat exchanger
JP2006078062A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006145056A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006242553A (en) * 2005-02-03 2006-09-14 Furukawa Electric Co Ltd:The Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046268A (en) * 1998-07-28 2000-02-18 Nippon Steel Corp Adhesion preventing apparatus for piping connecting part
JP2001201275A (en) * 2000-01-21 2001-07-27 Daikin Ind Ltd Double tube heat exchanger
JP2005009833A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Double pipe type heat exchanger
JP2006078062A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006145056A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006242553A (en) * 2005-02-03 2006-09-14 Furukawa Electric Co Ltd:The Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131455A1 (en) * 2009-05-11 2010-11-18 サンデン株式会社 Double pipe-type heat exchanger
JP2011043289A (en) * 2009-08-21 2011-03-03 Daikin Industries Ltd Heat exchanger and refrigerating device including the same
JP2012007767A (en) * 2010-06-23 2012-01-12 Sumitomo Light Metal Ind Ltd Double tube for heat exchanger
KR101348179B1 (en) * 2010-12-14 2014-01-06 최상필 Water pipe with heating or cooling pipe
US9562703B2 (en) 2012-08-03 2017-02-07 Tom Richards, Inc. In-line ultrapure heat exchanger
JP2014032005A (en) * 2012-08-03 2014-02-20 Tom Richards Inc In-line ultrapure heat exchanger
CN105026742A (en) * 2013-01-25 2015-11-04 伍德沃德有限公司 Heat exchange in a vehicle engine system
JP2015010758A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015010757A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015025577A (en) * 2013-07-24 2015-02-05 岩谷マテリアル株式会社 Method of manufacturing triple tube type heat exchanger
CN109120090A (en) * 2017-06-22 2019-01-01 东芝三菱电机产业系统株式会社 Totally-enclosed external fan type rotating electrical machine and cooler
CN114206640A (en) * 2019-10-23 2022-03-18 株式会社Uacj Heat transfer double-layer pipe, inner pipe for heat transfer double-layer pipe, and method for manufacturing same
CN114206640B (en) * 2019-10-23 2024-03-08 株式会社Uacj Heat transfer double pipe, inner pipe for heat transfer double pipe, and method for manufacturing same
CN112815744A (en) * 2021-01-13 2021-05-18 瀚润联合高科技发展(北京)有限公司 Three-dimensional cooling evaporation condensation heat exchanger

Also Published As

Publication number Publication date
JP4958150B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4958150B2 (en) Water heat exchanger for water heater
JP2005164166A (en) Heat exchanger
JP2008261566A (en) Double-pipe heat exchanger
JP2008121908A (en) Heat exchanger
JP2005133999A (en) Heat pump type hot-water supplier
JP2008032296A (en) Heat exchanger
JP2008045868A (en) Heat exchanger for water heater, and its manufacturing method
JP2005083667A (en) Heat exchanger
JP2006242553A (en) Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater
JP2007298266A (en) Water heat exchanger for water heater
JP2006078062A (en) Heat exchanger
JP2008190787A (en) Spiral tube and heat exchanger using the same
JP2008281249A (en) Heat exchanger
JP7199842B2 (en) water heat exchanger, gas cooler
JP2008188599A (en) Method of manufacturing heat exchanger
JP2008014624A (en) Water heat exchanger for water heater, and manufacturing method therefor
JP2008107013A (en) Heat transfer tube having leakage detecting mechanism and heat exchanger using the same
JP2007271194A (en) Heat exchanger
JP2008249163A (en) Heat exchanger for supplying hot water
JP2010210137A (en) Heat exchanger
JP2009024969A (en) Heat exchanger
JP2005024109A (en) Heat exchanger
JP5431210B2 (en) Heat transfer tube and heat exchanger
JP2008082600A (en) Water-refrigerant heat exchanger and heat pump hot water supply device using the same
WO2009125699A1 (en) Heat exchanger and hot-water supply apparatus employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250