JP2006078062A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2006078062A
JP2006078062A JP2004261081A JP2004261081A JP2006078062A JP 2006078062 A JP2006078062 A JP 2006078062A JP 2004261081 A JP2004261081 A JP 2004261081A JP 2004261081 A JP2004261081 A JP 2004261081A JP 2006078062 A JP2006078062 A JP 2006078062A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
inner tube
fluid
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004261081A
Other languages
Japanese (ja)
Inventor
朋子 ▲はま▼川
Tomoko Hamakawa
Takumi Kida
琢己 木田
Osao Kido
長生 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004261081A priority Critical patent/JP2006078062A/en
Publication of JP2006078062A publication Critical patent/JP2006078062A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger having a small-sized and inexpensive leak detecting structure while ensuring a high heat exchange efficiency. <P>SOLUTION: The heat exchanger 1X comprises a triple tube 1, and the triple tube 1 includes a middle tube 3 substantially concentric with an inner tube 2 and containing the inner tube 2, and an outer tube substantially concentric with the middle tube 3 and containing the inner tube 3. In the triple tube 1, only the middle tube 3 is formed of a dissimilar tube having continuous irregularities 5 and projections 6 on both inner and outer walls of a circular tube. According to this, since a plurality of small grooves 7 and a plurality of passages 8 which form the leak detecting structure can be formed in the middle tube 3 by forming the small grooves 7 with the inner tube 2 by the continuous irregularities 5 partially closely fitted to the inner tube 2, and the plurality of passages 8 with the outer tube 4 by the projections 6 closely fitted to the outer tube 4, the number of dissimilar tubes with high unit cost, which are needed to form the small grooves 7 and the passages 8, can be reduced to one while ensuring a sufficient heat transfer area between fluids to obtain a high heat exchange efficiency. Consequently, a heat exchanger having a small-sized and inexpensive leak detecting structure while ensuring a high heat exchange efficiency can be obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヒートポンプ式の給湯機や家庭用、業務用の空気調和機などにおいて、液体と冷媒との熱交換器に関するものである。   The present invention relates to a heat exchanger for a liquid and a refrigerant in a heat pump type hot water heater, an air conditioner for home use, and for business use.

近年、地球環境への意識が高まる中、給湯機市場では、自然冷媒の二酸化炭素を用いたヒートポンプ式給湯機が発売された。二酸化炭素の高温高圧、超臨界となる冷媒特性から、給湯用熱交換器は従来と異なる種々の形態が提案、採用されている。また、給湯用熱交換器は、管が腐食した場合でも、水と冷媒が混ざらない構造が必要である。   In recent years, as the awareness of the global environment has increased, heat pump water heaters using carbon dioxide, a natural refrigerant, have been released in the hot water heater market. Due to the high-temperature and high-pressure and supercritical refrigerant characteristics of carbon dioxide, various types of heat exchangers for hot water supply different from conventional ones have been proposed and adopted. Moreover, the heat exchanger for hot water supply needs a structure in which water and the refrigerant are not mixed even when the pipe is corroded.

以下、図面を参照しながら、従来の二酸化炭素を用いたヒートポンプ式給湯機用の水熱交換器を説明する。   Hereinafter, a conventional water heat exchanger for a heat pump type water heater using carbon dioxide will be described with reference to the drawings.

図7は特許文献1に記載された従来の熱交換器の概略構成図である。図7に示すように、従来の熱交換器100は、内部に水が流動する銅製の扁平管101と、アルミニウム製の内部にCO2冷媒が流動する扁平多穴管102を備え、扁平管101と扁平多穴管102との扁平面を合わせて螺旋状に巻いた構成で、扁平多穴管102により、高圧なCO2冷媒に対して耐圧強度を確保しつつ、冷媒管の寸法増大を抑えた熱交換器である。   FIG. 7 is a schematic configuration diagram of a conventional heat exchanger described in Patent Document 1. As shown in FIG. 7, a conventional heat exchanger 100 includes a copper flat tube 101 in which water flows inside, and a flat multi-hole tube 102 in which a CO 2 refrigerant flows inside aluminum, and the flat tube 101 Heat that suppresses an increase in the size of the refrigerant tube while ensuring a pressure resistant strength against high-pressure CO 2 refrigerant by the flat multi-hole tube 102 in a configuration in which the flat surface with the flat multi-hole tube 102 is spirally wound. It is an exchanger.

以上のように構成された上記の熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

通常、扁平管101と管102、または、扁平管101と扁平多穴管102は、熱の授受を行い、高温の冷媒からの熱で低温の水を加温する。また、どちらか一方が腐食して穴が空いた場合でも、冷媒管と水管を独立した管で構成したことにより、水に異物が混入せず、漏洩を検知できる構造となっている。
特開2002−107069号公報
Usually, the flat tube 101 and the tube 102, or the flat tube 101 and the flat multi-hole tube 102 exchange heat and warm low-temperature water with heat from a high-temperature refrigerant. Further, even when either one of them is corroded and a hole is formed, the refrigerant pipe and the water pipe are configured as independent pipes, so that foreign matters are not mixed into the water and leakage can be detected.
JP 2002-107069 A

しかしながら、上記従来の熱交換器100の構成では、扁平管101と扁平多穴管102を交互に重ねているため、熱交換効率を高めようとすると、巻き数を増やして伝熱面積を大きくしたり、扁平管101と扁平多穴管102との扁平面の接触面の熱抵抗を低減するため、外圧をかけて圧着する必要があり、小型化にも限界があるという課題があった。   However, in the configuration of the conventional heat exchanger 100 described above, the flat tubes 101 and the flat multi-hole tubes 102 are alternately stacked. Therefore, to increase the heat exchange efficiency, the number of turns is increased to increase the heat transfer area. In order to reduce the thermal resistance of the flat contact surface between the flat tube 101 and the flat multi-hole tube 102, it is necessary to apply pressure by applying external pressure, and there is a problem that downsizing is limited.

本発明は、上記従来の課題を解決するもので、熱交換効率が高く、小型で安価な漏洩検知構造を有する熱交換器を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a heat exchanger having a leak detection structure that is high in heat exchange efficiency, small, and inexpensive.

上記従来の課題を解決するために、本発明の熱交換器は、内部に流体Aが流動する内管と、前記内管とほぼ同軸で内部に前記内管を備えた中管と、前記中管とほぼ同軸で内部に前記中管を備え、前記中管との間に流体Bが流動する外管とからなる三重管であって、前記中管は、前記内管に部分的に密着する内壁と、前記外管に部分的に密着する外壁を持つものである。   In order to solve the above-described conventional problems, a heat exchanger according to the present invention includes an inner tube in which a fluid A flows, an inner tube that is substantially coaxial with the inner tube and includes the inner tube, A triple pipe comprising an outer pipe in which the fluid B flows between the inner pipe and the inner pipe, the inner pipe being partially in close contact with the inner pipe. It has an inner wall and an outer wall that is partially in close contact with the outer tube.

これによって、三本の管を一体とした三重管とすることで、流体Aと流体Bとの間の熱抵抗も低く、十分な伝熱面積を確保できる。さらに、中管を内外両壁とも異型な管とすることで、内管との間に小溝、外管との間に流体Bの複数の流路を形成して、三重管の中の異型管本数は最小の一本で、小溝と流体Bの流路の両方を得て、内管または中管が腐食した場合、腐食の進行が流体Aまたは流体Bの夫々の流路に達する前に、腐食した管側の管内流体が小溝から漏洩して、漏洩を検知することができる。また、流体Bの流路を確保し、加えて、流体直径を小さくして流体Bの熱伝達率を高くし、熱交換効率を高めることができる。   Thus, by forming a triple tube in which three tubes are integrated, the thermal resistance between the fluid A and the fluid B is low, and a sufficient heat transfer area can be secured. Furthermore, by making the inner tube an unusual tube on both the inner and outer walls, a small groove is formed between the inner tube and a plurality of flow paths for fluid B between the outer tube and the odd tube in the triple tube. If the number is the smallest and both the small groove and the flow path of the fluid B are obtained, and the inner pipe or the middle pipe is corroded, before the progress of the corrosion reaches the respective flow paths of the fluid A or the fluid B, Corroded pipe-side fluid leaks from the small groove, and leakage can be detected. Moreover, the flow path of the fluid B can be ensured, and in addition, the fluid diameter can be reduced to increase the heat transfer coefficient of the fluid B, and the heat exchange efficiency can be increased.

本発明の熱交換器は、流体Aと流体Bとの間の熱抵抗も低く、十分な伝熱面積を確保して、高い熱交換効率を得ることができる。また、漏洩知構造となる小溝と流体Bの流路の両方を一本の異型管で得て、単価高な異型管を最小本数とできるので、異型管によるコスト増大を最小限に抑制することができる。従って、熱交換効率が高く、小型で安価な漏洩検知構造を有する熱交換器を得ることができる。   The heat exchanger of the present invention has a low thermal resistance between the fluid A and the fluid B, and can secure a sufficient heat transfer area to obtain a high heat exchange efficiency. In addition, since both the small groove and the flow path of the fluid B, which form the leakage detection structure, can be obtained with a single irregular pipe, the number of irregular pipes with high unit prices can be minimized, so that the cost increase due to the irregular pipe can be minimized. Can do. Therefore, it is possible to obtain a heat exchanger having a small and inexpensive leak detection structure with high heat exchange efficiency.

請求項1に記載の発明は、内部に流体Aが流動する内管と、前記内管とほぼ同軸で内部に前記内管を備えた中管と、前記中管とほぼ同軸で内部に前記中管を備え、前記中管との間に流体Bが流動する外管とからなる三重管であって、前記中管は、前記内管に部分的に密着する内壁と、前記外管に部分的に密着する外壁を持つものである。これによって、流体Aと流体Bとの間の熱抵抗も低く、十分な伝熱面積を確保して、高い熱交換効率を得ることができる。さらに、中管を内外両壁とも異型な管とすることで、内管との間に小溝、外管との間に流体Bの複数の流路を形成して、異型管は最小本数の一本で、小溝と流体Bの流路の両方を得る。小溝は、内管または中管が腐食した場合、腐食の進行が流体Aまたは流体Bの夫々の流路に達する前に、腐食した管側の管内流体が漏洩する漏洩検知構造となり、また、中管の外管に部分的に密着する外壁が、流体Bの流路を確保し、加えて、流体直径を小さくして流体Bの熱伝達率を高くし、熱交換効率を高めることができる。さらに、単価高な異型管を最小本数にすることで、異型管によるコスト増大を抑制することができる。従って、熱交換効率が高く、小型で安価な漏洩検知構造を有する熱交換器を得ることができる。   The invention described in claim 1 includes an inner tube in which fluid A flows, an inner tube that is substantially coaxial with the inner tube and includes the inner tube therein, and an inner tube that is substantially coaxial with the inner tube and internally disposed therein. A triple pipe comprising a pipe and an outer pipe through which fluid B flows between the inner pipe, the inner pipe partially contacting the inner pipe, and a partial pipe on the outer pipe It has an outer wall that adheres closely to the surface. Thereby, the thermal resistance between the fluid A and the fluid B is also low, and a sufficient heat transfer area can be ensured to obtain high heat exchange efficiency. Furthermore, by making the inner tube an atypical tube on both the inner and outer walls, a small groove is formed between the inner tube and a plurality of flow paths for the fluid B between the outer tube and the number of the atypical tubes is the minimum number. In the book, both the small groove and the flow path of the fluid B are obtained. When the inner pipe or the middle pipe corrodes, the small groove has a leakage detection structure in which the fluid in the pipe on the corroded pipe side leaks before the progress of the corrosion reaches the respective flow paths of the fluid A or the fluid B. The outer wall partially in close contact with the outer tube of the tube secures the flow path of the fluid B. In addition, the fluid diameter can be reduced to increase the heat transfer coefficient of the fluid B, and the heat exchange efficiency can be increased. Furthermore, by increasing the number of atypical pipes with a high unit price, an increase in cost due to the atypical pipes can be suppressed. Therefore, it is possible to obtain a heat exchanger having a small and inexpensive leak detection structure with high heat exchange efficiency.

請求項2に記載の発明は、請求項1に記載の発明において、前記中管は、内壁に連続した凹凸と外壁に突起を有するものであり、これによって、内壁の連続した凹凸が内管と密着することで、内管の外周に万遍なく漏洩検知構造となる小溝を形成しつつ、部分的に密着して内管と中管との間で高い熱伝導を実現することができる。また、外壁の突起が外管と密着することで、流体Bの流路を形成して流体Bの流路を確保することができる。従って、熱交換効率が高く、確実に漏洩を検知できる構造を有する熱交換器を得る。   According to a second aspect of the present invention, in the first aspect of the invention, the middle tube has a concavo-convex continuous on the inner wall and a protrusion on the outer wall. By closely contacting, a small groove that becomes a leak detection structure is uniformly formed on the outer periphery of the inner tube, and it is possible to realize high heat conduction between the inner tube and the middle tube by partially contacting closely. Further, since the protrusion on the outer wall is in close contact with the outer tube, the flow path of fluid B can be formed by securing the flow path of fluid B. Therefore, a heat exchanger having a high heat exchange efficiency and a structure capable of reliably detecting leakage is obtained.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記中管は、略均一な管肉厚の凹部と凸部が交互に連続した周壁を有するものであり、周壁の凹部が内管と密着することで小溝を形成して漏洩検知構造を得ることができ、周壁の凸部が外管と密着することで流体Bの流路を形成して、流体Bの流路を確保することができる。また、中管の管肉厚は略均一で肉厚に偏った部分がないため、余分な管肉厚がなく、中管を軽量化することができる。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the intermediate tube has a peripheral wall in which concave portions and convex portions having a substantially uniform tube thickness are alternately continued. A leak detection structure can be obtained by forming a small groove by closely contacting the concave portion with the inner tube, and a fluid B channel is formed by the convex portion of the peripheral wall closely contacting the outer tube. Can be secured. Further, since the tube thickness of the middle tube is substantially uniform and there is no portion biased to the wall thickness, there is no extra tube wall thickness, and the middle tube can be reduced in weight.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、前記内管の外壁において、前記中管の内壁の密着部が非密着部より大きいものであり、これによって、中管と内管との接触面の熱抵抗を小さくして、内管と中管との間で高い熱伝導を実現することができる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein in the outer wall of the inner tube, the close contact portion of the inner wall of the intermediate tube is larger than the non-contact portion. Thereby, the thermal resistance of the contact surface between the inner tube and the inner tube can be reduced, and high heat conduction can be realized between the inner tube and the inner tube.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、前記中管の前記内管に部分的に密着する内壁は、管軸方向に対して略平行に延びるものである。これによって、管の腐食時、中管と内管との間に形成される小溝を通って漏洩する流体Aまたは流体Bの、管軸方向に対して略平行でない方向の流動摩擦を、螺旋状溝などに比して、極力小さく抑えて漏洩し易くして、漏洩を検知し易くすることができる。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the inner wall of the intermediate tube that is partially adhered to the inner tube is substantially parallel to the tube axis direction. It extends. Thereby, when the pipe is corroded, the flow friction of the fluid A or the fluid B leaking through the small groove formed between the middle pipe and the inner pipe in a direction not substantially parallel to the pipe axis direction is spirally formed. Compared to a groove or the like, the leakage can be easily suppressed by minimizing the leakage and the leakage can be easily detected.

請求項6に記載の発明は、請求項1から5のいずれか一項に記載の発明において、前記流体Aを水、前記流体Bを二酸化炭素とするものであり、ヒートポンプ給湯機用の水冷媒熱交換器として使用することで高いヒートポンプ効率を得ることができる。   The invention according to claim 6 is the water refrigerant for a heat pump water heater according to any one of claims 1 to 5, wherein the fluid A is water and the fluid B is carbon dioxide. High heat pump efficiency can be obtained by using it as a heat exchanger.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、この発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器の要部斜視図、図2は、同実施の形態における熱交換器の三重管の管軸方向に垂直な要部断面図、図3は、同実施の形態における熱交換器の管軸方向の断面図である。図4は、同実施の形態における他の熱交換器の三重管の管軸方向に垂直な要部断面図である。
(Embodiment 1)
1 is a perspective view of a main part of a heat exchanger according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of the main part perpendicular to the tube axis direction of the triple tube of the heat exchanger according to the same embodiment, FIG. These are sectional drawings of the pipe-axis direction of the heat exchanger in the embodiment. FIG. 4 is a cross-sectional view of the main part perpendicular to the tube axis direction of the triple tube of another heat exchanger in the same embodiment.

図1から図3において、熱交換器1Xは三重管1からなり、三重管1は、内部に水が流動する内管2と、内管2とほぼ同軸で内部に内管2を備えた中管3と、中管3とほぼ同軸で内部に中管3を備え、中管3との間に二酸化炭素が冷媒として流動する外管4とからなる。内管2と外管4は円管である。中管3は、内管2に部分的に密着する連続した小さな凹凸5を持った内壁3aと、外管4に密着する突起6を持った外壁3bを有する。連続した凹凸5が内管2に密着して複数の小溝7を形成するとともに、突起6が外管4に密着して外管4との間に二酸化炭素が流動する複数の流路8を形成する。ここで、内管2の外壁2bにおける中管3の内壁3aの密着部は非密着部より大きい。三重管1の管端にキャップ9を取り付けて、内管2と中管3を貫通させ、外管4の管端を閉塞する。キャップ9内の溝10が二酸化炭素の出入口となる。小溝7は、管軸方向に対して略平行に、キャップ9の外側まで延びている。内管2、中管3、外管4は耐食性、熱伝導性の良い銅製である。   1 to 3, the heat exchanger 1 </ b> X includes a triple pipe 1, and the triple pipe 1 includes an inner pipe 2 in which water flows and an inner pipe 2 that is substantially coaxial with the inner pipe 2 and has an inner pipe 2 inside. The pipe 3 and the middle pipe 3 are substantially coaxial and provided with the middle pipe 3 inside, and between the middle pipe 3, an outer pipe 4 in which carbon dioxide flows as a refrigerant. The inner tube 2 and the outer tube 4 are circular tubes. The middle tube 3 has an inner wall 3 a having continuous small irregularities 5 that are partially in close contact with the inner tube 2 and an outer wall 3 b having protrusions 6 that are in close contact with the outer tube 4. The continuous irregularities 5 are in close contact with the inner tube 2 to form a plurality of small grooves 7, and the protrusions 6 are in close contact with the outer tube 4 to form a plurality of flow paths 8 in which carbon dioxide flows between the outer tube 4. To do. Here, the contact portion of the inner wall 3a of the inner tube 3 in the outer wall 2b of the inner tube 2 is larger than the non-contact portion. A cap 9 is attached to the tube end of the triple tube 1, the inner tube 2 and the middle tube 3 are penetrated, and the tube end of the outer tube 4 is closed. The groove 10 in the cap 9 serves as a carbon dioxide entrance / exit. The small groove 7 extends to the outside of the cap 9 substantially parallel to the tube axis direction. The inner tube 2, the middle tube 3, and the outer tube 4 are made of copper having good corrosion resistance and thermal conductivity.

以上のように構成された熱交換器1Xについて、以下その動作を説明する。   The operation of the heat exchanger 1X configured as described above will be described below.

三重管1の内管2の内部を水が、中管3と外管4との間の複数の流路6に二酸化炭素が対向して流れ、部分的に密着した内管2と中管3の管壁を介して、水と二酸化炭素が熱交換する。   Water flows inside the inner tube 2 of the triple tube 1, and carbon dioxide flows through a plurality of flow paths 6 between the middle tube 3 and the outer tube 4, and the inner tube 2 and the middle tube 3 that are partially adhered to each other. Water and carbon dioxide exchange heat through the tube wall.

以上のように本実施の形態の熱交換器1Xは、三本の管を一体とした三重管1とすることにより、流体Aと流体Bとの間の熱抵抗も低く、十分な伝熱面積を確保して、高い熱交換効率を得ることができる。   As described above, the heat exchanger 1X of the present embodiment is a triple tube 1 in which three tubes are integrated, so that the heat resistance between the fluid A and the fluid B is low, and a sufficient heat transfer area is obtained. And high heat exchange efficiency can be obtained.

さらに、中管3の内壁3aの連続した凹凸5が内管2に密着して内管2の外周に万遍なく複数の小溝7を形成しつつ、部分的に密着して内管2と中管3との間で高い熱伝導を実現することができ、外壁3bの突起6が外管4に密着して外管4との間に二酸化炭素が流動する複数の流路8を形成して、三重管1のうち、単価高な異型管は最小本数の一本で、小溝7と二酸化炭素の流路8の両方を得ることができる。異型管によるコスト増大を最小限に抑制することができる。また、内管2の外壁2aにおける中管3の内壁3aの密着部は非密着部より大きくすることにより、内管2と中管3との接触面の熱抵抗を小さくして、高い熱伝導を実現できる。水などで内管2が腐食した場合、小溝7から水がキャップ9の外側まで漏洩して、漏洩を検知できる。さらに、小溝7は管軸方向に対して略平行に延びていることにより、小溝7を通る水の、管軸方向に対して略平行でない方向の流動摩擦を極力小さく抑えて漏洩し易くし、漏洩を検知し易くしている。また、突起6が三重管1の変形や潰れ等を防いで、二酸化炭素の流路8を確保することができる。加えて、流路8の流体直径を小さくして、二酸化炭素の熱伝達率を高くし、熱交換効率を高めることができる。従って、熱交換効率が高く、小型で安価な漏洩検知構造を有する熱交換器を得ることができる。   Further, the continuous irregularities 5 of the inner wall 3a of the inner tube 3 are in close contact with the inner tube 2 to form a plurality of small grooves 7 on the outer periphery of the inner tube 2, while being in close contact with the inner tube 2 and the inner tube 2. High heat conduction can be realized between the pipe 3 and the projections 6 of the outer wall 3b are in close contact with the outer pipe 4 to form a plurality of flow paths 8 through which carbon dioxide flows between the outer pipe 4 and Of the triple tubes 1, the atypical tube with a high unit price is a minimum number, and both the small groove 7 and the carbon dioxide channel 8 can be obtained. An increase in cost due to the irregular pipe can be minimized. Further, by making the contact portion of the inner wall 3a of the inner tube 3 in the outer wall 2a of the inner tube 2 larger than the non-contact portion, the thermal resistance of the contact surface between the inner tube 2 and the inner tube 3 is reduced, and high heat conduction is achieved. Can be realized. When the inner pipe 2 is corroded by water or the like, water leaks from the small groove 7 to the outside of the cap 9, and the leakage can be detected. Furthermore, since the small groove 7 extends substantially parallel to the tube axis direction, the flow friction of the water passing through the small groove 7 in a direction not substantially parallel to the tube axis direction is suppressed as much as possible to facilitate leakage, It makes it easy to detect leaks. Further, the projection 6 prevents the triple tube 1 from being deformed or crushed, and the carbon dioxide channel 8 can be secured. In addition, the fluid diameter of the flow path 8 can be reduced, the heat transfer coefficient of carbon dioxide can be increased, and the heat exchange efficiency can be increased. Therefore, it is possible to obtain a heat exchanger having a small and inexpensive leak detection structure with high heat exchange efficiency.

尚、本実施の形態では、中管3の外壁3bに4つの突起6を立てて、外管4との間の流路8を、環状に複数の略矩形流路を形成する異型管を示したが、図4に示すような、外管4との間の流路8を、環状に複数の2個の円弧で囲まれた流路を形成する異型管としても同様の効果を奏する。   In the present embodiment, an irregular tube is shown in which four protrusions 6 are erected on the outer wall 3b of the middle tube 3, and the flow channel 8 between the outer tube 4 is formed into a plurality of substantially rectangular channels in a ring shape. However, the same effect can be obtained by forming the flow path 8 between the outer pipe 4 and the outer pipe 4 as shown in FIG. 4 as a modified pipe that forms a flow path surrounded by a plurality of two circular arcs.

尚、本実施の形態では、内管2、中管3、外管4は銅製としたが、真ちゅう、SUS等でも同様な効果を得る。内部に水が流動する内管2は、好ましくは耐食性の良い材料(例えば銅、ステンレス)で、冷媒が流動し、直径が大きく、肉厚も厚くなる外管4は、好ましくは高強度で、熱伝導性の良い材料(例えば銅、アルミニウム等の合金)で作るものがよい。   In this embodiment, the inner tube 2, the middle tube 3, and the outer tube 4 are made of copper, but the same effect can be obtained with brass, SUS, or the like. The inner tube 2 in which water flows is preferably made of a material having good corrosion resistance (for example, copper, stainless steel), and the outer tube 4 in which the coolant flows, the diameter is large, and the wall thickness is thick, is preferably high strength, A material made of a material having good thermal conductivity (for example, an alloy such as copper or aluminum) is preferable.

また、流体Aを水、流体Bを二酸化炭素として、当該熱交換器1Xをヒートポンプ給湯機用水冷媒熱交換器として使用することで、高いヒートポンプ効率を得ることができる。   Moreover, high heat pump efficiency can be obtained by using the fluid A as water, the fluid B as carbon dioxide, and using the heat exchanger 1X as a water-refrigerant heat exchanger for a heat pump water heater.

尚、本発明の実施の形態では、流体Aを水、流体Bを二酸化炭素としたが、これに限らず、R410A、R32等その他の高圧冷媒と水や、温度差を持つ同一流体間の熱交換に用いても同様な効果を得る。   In the embodiment of the present invention, the fluid A is water and the fluid B is carbon dioxide. However, the present invention is not limited to this. Other high-pressure refrigerants such as R410A and R32 and water, or heat between the same fluid having a temperature difference. Even if it is used for replacement, the same effect is obtained.

(実施の形態2)
図5は、本発明の実施の形態2における熱交換器の三重管の管軸方向に垂直な要部断面図である。尚、上述の実施の形態と同一構成については、同一符号を付して詳細な説明を省略する。
(Embodiment 2)
FIG. 5 is a cross-sectional view of a main part perpendicular to the tube axis direction of the triple tube of the heat exchanger according to Embodiment 2 of the present invention. In addition, about the same structure as the above-mentioned embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図5において、熱交換器1Xの中管11は、略均一な管肉厚の凹部11aと凸部11bが交互に連続し、管軸方向に対して略平行に延びた周壁11Aを有する異型な管である。   In FIG. 5, the intermediate tube 11 of the heat exchanger 1X has an irregular shape having peripheral walls 11A in which concave portions 11a and convex portions 11b having a substantially uniform tube thickness are alternately continuous and extend substantially parallel to the tube axis direction. It is a tube.

中管11は、周壁11Aの凸部11bと内管2とで小溝7を、周壁11Aの凹部11aと外管4とで流路8を形成する。ここで、内管2の外壁2bにおける、中管11の周壁11Aの密着部は非密着部より大きい。   In the intermediate tube 11, a small groove 7 is formed by the convex portion 11 b of the peripheral wall 11 </ b> A and the inner tube 2, and a flow path 8 is formed by the concave portion 11 a of the peripheral wall 11 </ b> A and the outer tube 4. Here, in the outer wall 2b of the inner tube 2, the contact portion of the peripheral wall 11A of the middle tube 11 is larger than the non-contact portion.

以上のように本実施の形態の熱交換器1Xは、中管11は、略均一な管肉厚の凹部11aと凸部11bが交互に連続した周壁11Aを有することにより、周壁11Aの凹部11a、凸部11bが内管2、外管4と密着することで、小溝7と、二酸化炭素の流路8を形成して、三重管1のうち、単価高な異型管は最小本数の一本で、漏洩検知構造となる小溝7と二酸化炭素の流路8の両方を得ることができる。   As described above, in the heat exchanger 1X of the present embodiment, the intermediate tube 11 has the peripheral wall 11A in which the concave portions 11a and the convex portions 11b having a substantially uniform tube thickness are alternately arranged, whereby the concave portion 11a of the peripheral wall 11A. The convex portion 11b is in close contact with the inner tube 2 and the outer tube 4, thereby forming a small groove 7 and a carbon dioxide flow path 8. Among the triple tubes 1, the atypical tube having a high unit price is one of the minimum number. Thus, it is possible to obtain both the small groove 7 and the carbon dioxide flow path 8 serving as a leakage detection structure.

また、中管11の管肉厚は略均一で偏った部分がないため、余分な管肉厚の部位がなく、中管11を軽量化することができる。また、略均一な管肉厚で、引抜き加工に適する形状であり、引抜き加工で製作した場合、連続鋳造などに比して、製造コストを低減できる。   Further, since the tube thickness of the intermediate tube 11 is substantially uniform and there is no biased portion, there is no portion with an excessive tube thickness, and the intermediate tube 11 can be reduced in weight. In addition, it has a substantially uniform tube thickness and is suitable for drawing, and when manufactured by drawing, manufacturing costs can be reduced compared to continuous casting.

尚、本発明の実施の形態では、周壁の凹部11a、凸部11bは、連続した矩形として示したが、これに限定されるものではなく、図6に示すような三角波状や、正弦波状(図示せず)等種々の形状で、同様の効果を奏する。   In the embodiment of the present invention, the concave portion 11a and the convex portion 11b on the peripheral wall are shown as continuous rectangles, but the present invention is not limited to this, and is not limited to this. The same effect can be obtained with various shapes such as (not shown).

以上のように、本発明にかかる熱交換器は、三重管のうち、中管を内外両壁が異型な管とすることで、単価高な異型管を最小本数の一本にして、漏洩検知構造となる小溝と流体Bの流路の両方を得て、十分な伝熱面積を有して高い熱交換効率を得るとともに、異型管によるコスト増大を抑制することができるので、熱交換効率が高く、小型で安価な漏洩検知構造を有する熱交換器を得ることができるので、ヒートポンプ給湯機や家庭用、業務用の空気調和機、燃料電池等の用途にも適用できる。   As described above, in the heat exchanger according to the present invention, among the triple pipes, the inner pipe is made of an unusual shape on both the inner and outer walls, so that the number of unusual shaped pipes with a high unit price is one and the number of leaks is detected. It is possible to obtain both the small groove as the structure and the flow path of the fluid B, to obtain a high heat exchange efficiency with a sufficient heat transfer area, and to suppress an increase in cost due to the deformed pipe. Since it is possible to obtain a heat exchanger having a high, small and inexpensive leakage detection structure, it can be applied to applications such as heat pump water heaters, domestic and commercial air conditioners, and fuel cells.

本発明の実施の形態1における熱交換器の要部斜視図The principal part perspective view of the heat exchanger in Embodiment 1 of this invention 同実施の形態における熱交換器の三重管の管軸方向に垂直な要部断面図Cross-sectional view of the main part perpendicular to the tube axis direction of the triple tube of the heat exchanger in the same embodiment 同実施の形態における熱交換器の管軸方向の断面図Sectional drawing of the pipe-axis direction of the heat exchanger in the embodiment 同実施の形態における他の熱交換器の三重管の管軸方向に垂直な要部断面図Sectional drawing perpendicular to the tube-axis direction of the triple tube of the other heat exchanger in the same embodiment 本発明の実施の形態2における熱交換器の三重管の管軸方向に垂直な要部断面図Sectional drawing perpendicular | vertical to the pipe-axis direction of the triple tube of the heat exchanger in Embodiment 2 of this invention 同実施の形態における他の熱交換器の三重管の管軸方向に垂直な要部断面図Sectional drawing perpendicular to the tube-axis direction of the triple tube of the other heat exchanger in the same embodiment 従来の熱交換器の概略構成図Schematic configuration diagram of a conventional heat exchanger

符号の説明Explanation of symbols

1X 熱交換器
1 三重管
2 内管
2b 内管の外壁
3、11 中管
3a 中管の内壁
3b 中管の外壁
4 外管
5 連続した凹凸
6 突起
11A 周壁
11a 凹部
11b 凸部
1X heat exchanger 1 triple pipe 2 inner pipe 2b outer wall of inner pipe 3, 11 inner pipe 3a inner wall of middle pipe 3b outer wall of middle pipe 4 outer pipe 5 continuous irregularities 6 projection 11A peripheral wall 11a concave 11b convex

Claims (6)

内部に流体Aが流動する内管と、前記内管とほぼ同軸で内部に前記内管を備えた中管と、前記中管とほぼ同軸で内部に前記中管を備え、前記中管との間に流体Bが流動する外管とからなる三重管であって、前記中管は、前記内管に部分的に密着する内壁と、前記外管に部分的に密着する外壁を持つことを特徴とした熱交換器。 An inner tube in which fluid A flows, an inner tube that is substantially coaxial with the inner tube and includes the inner tube, and an inner tube that is substantially coaxial with the inner tube and includes the inner tube. A triple tube comprising an outer tube through which fluid B flows, wherein the middle tube has an inner wall that is partially in close contact with the inner tube and an outer wall that is partially in close contact with the outer tube. Heat exchanger. 前記中管は、内壁に連続した凹凸と外壁に突起を有することを特徴とした請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the middle tube has a concavity and convexity continuous with the inner wall and a protrusion on the outer wall. 前記中管は、略均一な管肉厚の凹部と凸部が交互に連続した周壁を有することを特徴とした請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the intermediate tube has a peripheral wall in which concave portions and convex portions having a substantially uniform tube thickness are alternately continued. 前記内管の外壁において、前記中管の内壁の密着部が非密着部より大きいことを特徴とした請求項1から3に記載の熱交換器。 4. The heat exchanger according to claim 1, wherein a contact portion of the inner wall of the inner tube is larger than a non-contact portion in the outer wall of the inner tube. 前記中管の前記内管に部分的に密着する内壁は、管軸方向に対して略平行に延びることを特徴とした請求項1から4のいずれか一項に記載の熱交換器。 5. The heat exchanger according to claim 1, wherein an inner wall of the middle tube that is partially in close contact with the inner tube extends substantially parallel to a tube axis direction. 前記流体Aを水、前記流体Bを二酸化炭素とすることを特徴とした請求項1から5のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5, wherein the fluid A is water and the fluid B is carbon dioxide.
JP2004261081A 2004-09-08 2004-09-08 Heat exchanger Pending JP2006078062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261081A JP2006078062A (en) 2004-09-08 2004-09-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261081A JP2006078062A (en) 2004-09-08 2004-09-08 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2006078062A true JP2006078062A (en) 2006-03-23

Family

ID=36157664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261081A Pending JP2006078062A (en) 2004-09-08 2004-09-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2006078062A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210469B1 (en) * 2005-10-24 2007-05-01 International Engine Intellectual Property Company, Llc Oxidation catalyst coating in a heat exchanger
US7210468B1 (en) * 2005-10-24 2007-05-01 International Engine Intellectual Property Company, Llc Heat exchanger method and apparatus
JP2008116096A (en) * 2006-11-02 2008-05-22 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2008188599A (en) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd Method of manufacturing heat exchanger
JP2009216285A (en) * 2008-03-10 2009-09-24 Showa Denko Kk Double-tube heat exchanger
JP2012042088A (en) * 2010-08-18 2012-03-01 Topre Corp Refrigerating apparatus using triple-tube type heat exchanger
KR101350349B1 (en) 2013-09-25 2014-01-13 (주)보영테크 Double pipe of semiconductor manufacturing process
KR20140112611A (en) * 2013-03-11 2014-09-24 주식회사 두원공조 Cooling system for vehicle
JP2015010757A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015010758A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015025577A (en) * 2013-07-24 2015-02-05 岩谷マテリアル株式会社 Method of manufacturing triple tube type heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210469B1 (en) * 2005-10-24 2007-05-01 International Engine Intellectual Property Company, Llc Oxidation catalyst coating in a heat exchanger
US7210468B1 (en) * 2005-10-24 2007-05-01 International Engine Intellectual Property Company, Llc Heat exchanger method and apparatus
JP2008116096A (en) * 2006-11-02 2008-05-22 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2008188599A (en) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd Method of manufacturing heat exchanger
JP2009216285A (en) * 2008-03-10 2009-09-24 Showa Denko Kk Double-tube heat exchanger
JP2012042088A (en) * 2010-08-18 2012-03-01 Topre Corp Refrigerating apparatus using triple-tube type heat exchanger
KR20140112611A (en) * 2013-03-11 2014-09-24 주식회사 두원공조 Cooling system for vehicle
KR102086378B1 (en) * 2013-03-11 2020-03-10 주식회사 두원공조 Cooling system for vehicle
JP2015010757A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015010758A (en) * 2013-06-28 2015-01-19 岩谷マテリアル株式会社 Triple-tube type heat exchanger
JP2015025577A (en) * 2013-07-24 2015-02-05 岩谷マテリアル株式会社 Method of manufacturing triple tube type heat exchanger
KR101350349B1 (en) 2013-09-25 2014-01-13 (주)보영테크 Double pipe of semiconductor manufacturing process

Similar Documents

Publication Publication Date Title
JP4958150B2 (en) Water heat exchanger for water heater
WO2010089957A1 (en) Heat exchanger
JP2006078062A (en) Heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2005069620A (en) Heat exchanger
JP4572662B2 (en) Heat exchanger
JP2009216309A (en) Heat exchanger
JP2006207936A (en) Heat exchanger
JP2010038429A (en) Heat exchanger
JP2006317094A (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2010112663A (en) Heat exchanger
JP2008267631A (en) Heat exchanger
JP2009264643A (en) Heat exchanger
JP2007271194A (en) Heat exchanger
JP2006234355A (en) Heat exchanger
JP2007101151A (en) Heat exchanger
JP3922088B2 (en) Heat exchanger
JP2010255980A (en) Heat exchanger and heat pump water heater using the same
JP2008175450A (en) Heat exchanger
JP2010210137A (en) Heat exchanger
JP2008267632A (en) Heat exchanger
JP2008196792A (en) Heat exchanger
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP4552567B2 (en) Heat exchanger