JP2015025577A - Method of manufacturing triple tube type heat exchanger - Google Patents

Method of manufacturing triple tube type heat exchanger Download PDF

Info

Publication number
JP2015025577A
JP2015025577A JP2013153551A JP2013153551A JP2015025577A JP 2015025577 A JP2015025577 A JP 2015025577A JP 2013153551 A JP2013153551 A JP 2013153551A JP 2013153551 A JP2013153551 A JP 2013153551A JP 2015025577 A JP2015025577 A JP 2015025577A
Authority
JP
Japan
Prior art keywords
tube
leaf
pipe
heat exchanger
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013153551A
Other languages
Japanese (ja)
Other versions
JP6211330B2 (en
Inventor
明夫 栗原
Akio Kurihara
明夫 栗原
紀伸 橘
Kishin Tachibana
紀伸 橘
伊佐雄 片野
Isao Katano
伊佐雄 片野
孝史 若竹
Takashi Wakatake
孝史 若竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIYAMA SEISAKUSHO KK
Noritz Corp
Iwatani Materials Corp
Original Assignee
NISHIYAMA SEISAKUSHO KK
Noritz Corp
Iwatani Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIYAMA SEISAKUSHO KK, Noritz Corp, Iwatani Materials Corp filed Critical NISHIYAMA SEISAKUSHO KK
Priority to JP2013153551A priority Critical patent/JP6211330B2/en
Publication of JP2015025577A publication Critical patent/JP2015025577A/en
Application granted granted Critical
Publication of JP6211330B2 publication Critical patent/JP6211330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a triple tube type heat exchanger which assures high heat exchanging performance by configuring a multi-leaf tube in which an inner tube and a leakage detection tube are repeated as a mountain part and a valley part in circumferential direction.SOLUTION: A triple tube type heat exchanger 1 is configured to perform heat exchange between a fluid that flows inside an inner tube 2 and a fluid that flows a gap in a leakage detection tube 3 and an outer tube 4. A double multi-leaf tube 7 including the inner tube 2 and the leakage detection tube 3 is inserted in an outer tube material tube 4A having a circular cross section as the outer tube 4 whose inner diameter is similar to the size of the outer diameter of the double multi-leaf tube 7. By applying a diameter contraction process to the outer tube material tube 4A in which the double multi-leaf tube 7 is inserted so that a contraction rate becomes 84% or less, an inner peripheral surface of the outer tube 4 is made to tightly contact to the mountain part of the double multi-leaf tube 7.

Description

本発明は、3重管式熱交換器の製造方法に関し、特に内管とこの内管に外嵌された漏洩検知管からなる2重構造の多葉管を外管の内部に収容した3重管式熱交換器の製造方法に関する。   The present invention relates to a method for manufacturing a triple tube heat exchanger, and more particularly, a triple tube in which a multi-leaf tube having a double structure including an inner tube and a leak detection tube fitted to the inner tube is accommodated inside the outer tube. The present invention relates to a method for manufacturing a tubular heat exchanger.

ガス燃焼式熱源機やヒートポンプ式熱源機や燃料電池等で加熱した湯水を貯湯する貯湯給湯装置、湯水を用いる暖房装置、その他の種々の産業分野においては、高温の流体と低温の流体との間で熱交換させる為の種々の熱交換器が使用されている。   In hot water storage and hot water storage devices that store hot water heated by gas combustion heat source devices, heat pump heat source devices, fuel cells, etc., heating devices that use hot water, and other various industrial fields, there is a gap between hot and cold fluids. Various heat exchangers for heat exchange are used.

特に、2重管式熱交換器は、熱交換性能に優れ且つ製作費の面で有利であるため広く採用されており、最近では、内管として管壁が周方向に山部と谷部を繰り返す波形形状をなす多葉管を用い、その多葉管を外管の内部に収納した2重管式熱交換器も広く採用されている。   In particular, the double-pipe heat exchanger has been widely adopted because it has excellent heat exchange performance and is advantageous in terms of manufacturing cost. Recently, the pipe wall as an inner pipe has a crest and a trough in the circumferential direction. A double-tube heat exchanger in which a multi-leaf tube having a repetitive waveform shape is used and the multi-leaf tube is housed inside an outer tube is also widely used.

例えば、特許文献1に開示された2重管式熱交換器においては、山部と谷部を周方向に交互に繰り返す波形形状の多葉管からなる内管を外管の内部に収納し、6つの山部の頂部を外管の内周面に密着させ、6つの谷部は相互に離間した状態に形成されている。   For example, in the double-pipe heat exchanger disclosed in Patent Document 1, an inner tube made up of a corrugated multi-leaf tube that alternately repeats crests and valleys in the circumferential direction is housed inside the outer tube, The tops of the six peaks are brought into close contact with the inner peripheral surface of the outer tube, and the six valleys are formed in a state of being separated from each other.

ここで、例えば貯湯給湯装置に用いる2重管式熱交換器において、内管内に冷媒を流し、内管と外管との間の隙間に湯水を流すような場合に、内管に亀裂が発生すると冷媒が漏洩して湯水に混入する虞がある。   Here, for example, in a double-pipe heat exchanger used in a hot water storage hot water supply apparatus, when a coolant is passed through the inner pipe and hot water is passed through the gap between the inner pipe and the outer pipe, a crack occurs in the inner pipe. Then, there exists a possibility that a refrigerant | coolant may leak and mix with hot water.

そこで、特許文献2には、管部材の内部を流れる流体が管部材の外部へ漏出した場合に、その漏洩を検知すると共に漏洩した流体が管部材の外側の流体に混入するのを防止するため、内周面に多数条の漏洩検知溝を形成した漏洩検知用外管を、前記管部材に密着状に外嵌させた2重構造漏洩検知管が開示されている。   Therefore, in Patent Document 2, when the fluid flowing inside the tube member leaks to the outside of the tube member, the leakage is detected and the leaked fluid is prevented from being mixed into the fluid outside the tube member. In addition, a double structure leak detection tube is disclosed in which a leak detection outer tube having a large number of leak detection grooves formed on the inner peripheral surface thereof is tightly fitted to the tube member.

特開2008−232449号公報JP 2008-232449 A 特許第3933083号公報Japanese Patent No. 3933083

特許文献1に記載の2重管式熱交換器では、多葉管からなる内管が漏洩防止機能を備えていないため、内管内を流れる流体の漏洩の虞があることから、漏洩防止機能のある内管とすることが望ましい。そこで、特許文献2に記載の2重構造の漏洩検知管を2重多葉管
に成形加工し、その2重多葉管と外管とからなる3重管式熱交換器を製作した場合、2重管式熱交換器の管壁内の多数条の漏洩検知溝に空気層があるため、高い熱交換性能を確保することが難しい。
In the double-pipe heat exchanger described in Patent Document 1, since the inner tube made of a multi-leaf tube does not have a leakage prevention function, there is a risk of leakage of fluid flowing in the inner tube. It is desirable to have a certain inner pipe. Therefore, when the double structure leak detection tube described in Patent Document 2 is formed into a double multi-leaf tube, and a triple tube heat exchanger composed of the double multi-leaf tube and an outer tube is manufactured, Since there are air layers in the multiple leak detection grooves in the tube wall of the double pipe heat exchanger, it is difficult to ensure high heat exchange performance.

また、内管として多葉管を採用した2重管式熱交換器の場合、谷部や山部の曲率半径が小さいため応力集中が生じやすく、耐久性や、剛性・強度を高めにくいこと等の問題がある。   Also, in the case of a double-pipe heat exchanger that employs a multi-leaf tube as the inner tube, stress concentration is likely to occur due to the small curvature radius of the valleys and peaks, making it difficult to increase durability, rigidity and strength, etc. There is a problem.

本発明の目的は、内管と漏洩検知管とを周方向に山部と谷部を繰り返す2重多葉管に構成しながら高い熱交換性能と高い強度と耐久性を確保できる3重管式熱交換器の製造方法を提供することである。   The object of the present invention is a triple tube type that can ensure high heat exchange performance, high strength and durability while constituting the inner tube and the leak detection tube into a double multi-leaf tube that repeats a crest and a trough in the circumferential direction. It is to provide a method for manufacturing a heat exchanger.

請求項1の3重管式熱交換器の製造方法は、管壁が周方向に山部と谷部が繰り返す波形形状をなす多葉管からなる内管と、この内管と略同形状の多葉管からなり且つ内管に外嵌させて内管の外周面近傍部に配置された漏洩検知管と、前記内管と漏洩検知管とが内部に収納される外管とを備え、前記内管の内部を流れる流体と、前記漏洩検知管と外管との間の隙間に流れる流体との間で熱交換を行うように構成される3重管式熱交換器の製造方法において、前記内管と前記漏洩検知管からなる2重多葉管を、内径が前記2重多葉管の外径とほぼ同径の内径を有する外管としての円形断面の外管素材管に挿入し、この2重多葉管が挿入された外管素材管を縮径率が84%以下となるように縮径加工することによって外管の内周面と2重多葉管の山部とを密着させることを特徴としている。   The method for manufacturing a triple-pipe heat exchanger according to claim 1 includes: an inner tube formed of a multi-leaf tube having a corrugated shape in which a tube wall repeats a crest and a trough in the circumferential direction; A leak detection pipe made of a multi-leaf pipe and externally fitted to the inner pipe and disposed in the vicinity of the outer peripheral surface of the inner pipe; and an outer pipe in which the inner pipe and the leak detection pipe are housed, In the method of manufacturing a triple pipe heat exchanger configured to perform heat exchange between a fluid flowing inside an inner tube and a fluid flowing in a gap between the leak detection tube and the outer tube, Inserting a double multi-leaf tube consisting of an inner tube and the leakage detection tube into an outer tube material tube having a circular cross section as an outer tube having an inner diameter that is substantially the same as the outer diameter of the double multi-leaf tube, By reducing the diameter of the outer tube material tube in which the double multi-leaf tube is inserted so that the diameter reduction rate is 84% or less, the inner peripheral surface of the outer tube and the mountain of the double multi-leaf tube It is characterized by adhering the and.

請求項2の3重管式熱交換器の製造方法は、請求項1の発明において、前記2重多葉管が挿入された外管素材管を縮径加工する際に、2重多葉管の周方向に隣接する谷部同士を接触させることを特徴としている。   A method for manufacturing a triple-pipe heat exchanger according to a second aspect is the invention according to the first aspect, wherein when the outer pipe material pipe into which the double multi-leaf pipe is inserted is reduced in diameter, a double multi-leaf pipe is used. It is characterized by contacting the valleys adjacent to each other in the circumferential direction.

請求項1の発明によれば、内管と漏洩検知管からなる2重多葉管を、内径が2重多葉管の外径とほぼ同径の内径を有する外管としての円形断面の外管素材管に挿入し、この2重多葉管が挿入された外管素材管を縮径率が84%以下となるように縮径加工することによって外管の内周面と2重多葉管の山部とを密着させるため、外管と2重多葉管の山部との密着性が高まるため、3重管式熱交換器の剛性・強度、耐久性を高めることができる。
しかも、2重多葉管を外管素材管に挿入する際に、2重多葉管と外管素材管との間に所定の隙間を確保できるため、2重多葉管を外管素材管に円滑に挿入することができる。
According to the first aspect of the present invention, a double multi-leaf tube composed of an inner tube and a leak detection tube is formed on the outer side of a circular cross section as an outer tube having an inner diameter that is substantially the same as the outer diameter of the double multi-leaf tube. Inserting into the tube material tube, and reducing the diameter of the outer tube material tube into which the double multi-leaf tube is inserted so that the diameter reduction rate is 84% or less, and the inner peripheral surface of the outer tube and the double multi-leaf Since the ridges of the tube are brought into close contact with each other, the adhesion between the outer tube and the ridges of the double multi-leaf tube is increased, so that the rigidity, strength, and durability of the triple tube heat exchanger can be increased.
Moreover, when the double multi-leaf tube is inserted into the outer tube material tube, a predetermined gap can be secured between the double multi-leaf tube and the outer tube material tube. Can be inserted smoothly.

請求項2の発明によれば、前記2重多葉管が挿入された外管素材管を縮径加工する際に、2重多葉管の周方向に隣接する谷部同士を接触させるため、3重管式熱交換器の中心側部分における剛性・強度を高めることができ、流体から伝播する振動によって内管の谷部が振動しにくくなる。   According to the invention of claim 2, in order to reduce the diameter of the outer tube material tube into which the double multi-leaf tube is inserted, in order to bring the valleys adjacent in the circumferential direction of the double multi-leaf tube into contact with each other, The rigidity and strength at the center side portion of the triple pipe heat exchanger can be increased, and the valley portion of the inner pipe is less likely to vibrate due to vibration propagating from the fluid.

本発明の実施例に係る3重管式熱交換器の断面図である。It is sectional drawing of the triple tube | pipe type heat exchanger which concerns on the Example of this invention. 大径管とそれに挿入した小径管の断面図である。It is sectional drawing of a large diameter pipe and a small diameter pipe inserted in it. 2重多葉管の断面図である。It is sectional drawing of a double multileaf tube. 2重多葉管の部分斜視図である。It is a fragmentary perspective view of a double multileaf tube. (a)は外管とそれに挿入した2重多葉管の断面図であり、(b)は縮径加工後の3重管式熱交換器の断面図である。(A) is sectional drawing of an outer tube | pipe and the double multileaf tube inserted in it, (b) is sectional drawing of the triple tube | pipe type heat exchanger after diameter reduction processing. 3重管式熱交換器の部分斜視図である。It is a fragmentary perspective view of a triple pipe type heat exchanger.

以下、本発明を実施するための形態について実施例に基づいて説明する。   Hereinafter, modes for carrying out the present invention will be described based on examples.

本発明に係る3重管式熱交換器 の製造方法について説明する前に、最初に3重管式熱交換器の構造について説明する。   Before explaining the manufacturing method of the triple pipe heat exchanger according to the present invention, the structure of the triple pipe heat exchanger will be explained first.

図1に示すように、この3重管式熱交換器1は、内管2と漏洩検知管3と外管4とを備えている。内管2は、管壁が周方向に山部2bと谷部2aが繰り返す波形形状をなす多葉管に構成されている。漏洩検知管3は、内管2とほぼ同形状の多葉管からなり、内管2に外嵌させて内管2の外周面近傍部に配置され、内管2と漏洩検知管3とで2重多葉管7が形成されている。外管4の内部に内管2と漏洩検知管3とからなる2重多葉管7が収納されている。   As shown in FIG. 1, the triple tube heat exchanger 1 includes an inner tube 2, a leak detection tube 3, and an outer tube 4. The inner tube 2 is configured as a multi-leaf tube having a corrugated shape in which the tube wall repeats a crest 2b and a trough 2a in the circumferential direction. The leak detection tube 3 is a multi-leaf tube having substantially the same shape as the inner tube 2. The leak detection tube 3 is arranged in the vicinity of the outer peripheral surface of the inner tube 2 by being externally fitted to the inner tube 2. A double multi-leaf tube 7 is formed. A double multi-leaf tube 7 including an inner tube 2 and a leak detection tube 3 is accommodated in the outer tube 4.

この2重多葉管7は、図4に示すように、所定のリード角をもって螺旋状に捩じった形状に構成されている。前記所定のリード角は、軸心方向に例えば300〜500mm移行する毎に1回転するような角度である。但し、上記の捩じりは省略してもよい。   As shown in FIG. 4, the double multi-leaf tube 7 is configured in a spirally twisted shape with a predetermined lead angle. The predetermined lead angle is an angle that makes one rotation for every 300 to 500 mm in the axial direction, for example. However, the above twisting may be omitted.

内管2の内部には、4つの谷部2aで囲まれた流体通路5aと4つの山部2b内側の流体通路5bとからなる内側流体通路5が形成され、漏洩検知管3と外管4との間には4つのほぼ三角形断面の流体通路6aからなる外側流体通路6が形成され、内管2の内部(内側流体通路5)を流れる流体(例えば、ヒートポンプ用冷媒)と、漏洩検知管3と外管4との間の隙間6a(外側流体通路6)を流れる流体(例えば、給湯用湯水)との間で熱交換可能に構成してある。   Inside the inner pipe 2, an inner fluid passage 5 is formed which is composed of a fluid passage 5 a surrounded by four valleys 2 a and four fluid passages 5 b inside the crest 2 b, and a leak detection pipe 3 and an outer pipe 4 are formed. The outer fluid passage 6 including four fluid passages 6a having a substantially triangular section is formed between the fluid (for example, heat pump refrigerant) flowing inside the inner tube 2 (inner fluid passage 5), and the leak detection tube. 3 is configured to be able to exchange heat with a fluid (for example, hot water for hot water supply) flowing through a gap 6a (outer fluid passage 6) between the outer pipe 4 and the outer pipe 4.

内管2は、4つの谷部2aと4つの山部2bとを有し、谷部2aは円弧的な形状であり、山部2bは円弧の両端部に湾曲部を付けた形状である。4つの谷部2aは、中心部の断面略正方形の流体通路5aの回りに周方向に90°間隔に配置され、各谷部2aの先端近傍部は周方向に隣接する谷部2aと接触している。   The inner pipe 2 has four valleys 2a and four peaks 2b, the valley 2a has an arc shape, and the peaks 2b have a shape with curved portions at both ends of the arc. The four valley portions 2a are arranged at 90 ° intervals in the circumferential direction around the fluid passage 5a having a substantially square cross section at the center, and the vicinity of the tip of each valley portion 2a is in contact with the valley portion 2a adjacent in the circumferential direction. ing.

漏洩検知管3は、4つの谷部3aと4つの山部3bとを有し、谷部3aは円弧的な形状であり、山部3bは円弧の両端部に湾曲部を付けた形状である。各谷部3aは対応する内管2の谷部2aの外面の近傍部に位置し、内管2の各谷部2aとそれに対応する漏洩検知管3の谷部3aの間に三日月形の流体が流通し得る隙間8が形成されている。   The leak detection tube 3 has four valleys 3a and four peaks 3b, the valleys 3a have an arc shape, and the peaks 3b have a shape with curved portions at both ends of the arc. . Each trough 3a is located in the vicinity of the outer surface of the trough 2a of the corresponding inner pipe 2, and a crescent-shaped fluid is provided between each trough 2a of the inner pipe 2 and the corresponding trough 3a of the leak detection pipe 3. A gap 8 through which can be circulated is formed.

内管2は、山部2bと谷部2aとを接続する直線管壁2cを有し、漏洩検知管3は、山部3bと谷部3aとを接続する直線管壁3cを有し、内管2の直線管壁2cと、それに対向する漏洩検知管3の直線管壁3cとが面接触状に密着している。そのため、内管2と漏洩検知管3間の熱交換性能が高く、内側流体通路5内を流れる流体と、外側流体通路6内を流れる流体との間の熱交換性能が高くなる。尚、山部2bとそれに連なる1対の直線管壁2cは、開角が約45°の扇形に近い形状である。このことは、漏洩検知管3についても同様である。   The inner pipe 2 has a straight pipe wall 2c that connects the peak 2b and the valley 2a, and the leak detection pipe 3 has a straight pipe wall 3c that connects the peak 3b and the valley 3a, The straight tube wall 2c of the tube 2 and the straight tube wall 3c of the leak detection tube 3 opposed thereto are in close contact with each other in a surface contact state. Therefore, the heat exchange performance between the inner pipe 2 and the leak detection pipe 3 is high, and the heat exchange performance between the fluid flowing in the inner fluid passage 5 and the fluid flowing in the outer fluid passage 6 is improved. The peak portion 2b and the pair of straight tube walls 2c connected to the peak portion 2b have a shape close to a fan shape with an opening angle of about 45 °. The same applies to the leak detection tube 3.

内管2の山部2bの大部分は漏洩検知管3の山部3bの内面に面接触状に密着すると共に、漏洩検知管3の山部3bの大部分が外管4の内面に面接触状に密着している。そのため、内側流体通路5内を流れる流体と外側流体通路6内を流れる流体との間の熱交換性能が高くなる。
また、内管3の各山部2bの両側部において、内管2と漏洩検知管3との間に小さな三日月形の隙間9が形成されている。尚、3重管式熱交換器1は、通常は複数巻き螺旋状に巻回したコイル形状の熱交換器として使用に供される。
Most of the crest 2b of the inner tube 2 is in close contact with the inner surface of the crest 3b of the leak detection tube 3, and most of the crest 3b of the leak detection tube 3 is in surface contact with the inner surface of the outer tube 4. It is closely attached to the shape. Therefore, the heat exchange performance between the fluid flowing in the inner fluid passage 5 and the fluid flowing in the outer fluid passage 6 is improved.
Further, a small crescent-shaped gap 9 is formed between the inner tube 2 and the leak detection tube 3 on both sides of each peak portion 2 b of the inner tube 3. The triple-pipe heat exchanger 1 is usually used as a coil-shaped heat exchanger wound in a plurality of spirals.

次に、3重管式熱交換器1の製造方法について、図2〜図6に基づいて説明する。
図2に示すように、内管2の素材管として円形断面の金属製の小径管2Aを予め準備し、漏洩検知管3の素材管として小径管2Aより大径の円形断面の金属製の大径管3Aを予め準備し、外管4の素材管として円形断面の金属製の外管素材管4Aを予め準備する。
Next, a method for manufacturing the triple-pipe heat exchanger 1 will be described with reference to FIGS.
As shown in FIG. 2, a metal small-diameter pipe 2A having a circular cross section is prepared in advance as a material pipe for the inner pipe 2, and a large metal cross-section having a larger diameter than the small-diameter pipe 2A is prepared as a material pipe for the leak detection pipe 3. A diameter tube 3A is prepared in advance, and a metal outer tube material tube 4A having a circular cross section is prepared in advance as a material tube of the outer tube 4.

小径管2Aは、リン脱酸銅製の水道用銅管又はこれと同等品(例えば、外径18.0mm、管壁厚さ0.6mm、長さ6m)である。大径管3Aは、リン脱酸銅製の水道用銅管又はこれと同等品(例えば、外径20.7mm、管壁厚さ0.6mm、長さ6m)である。外管素材管4Aは、リン脱酸銅製の水道用銅管又はこれと同等品(例えば、外径19.05mm、管壁厚さ0.7mm、長さ6m)である。   The small-diameter pipe 2A is a copper pipe for water supply made of phosphorous deoxidized copper or an equivalent product (for example, an outer diameter of 18.0 mm, a pipe wall thickness of 0.6 mm, and a length of 6 m). The large-diameter pipe 3A is a copper pipe for water supply made of phosphorous deoxidized copper or an equivalent product (for example, an outer diameter of 20.7 mm, a pipe wall thickness of 0.6 mm, and a length of 6 m). The outer pipe material pipe 4A is a copper pipe for water supply made of phosphorous deoxidized copper or an equivalent product (for example, an outer diameter of 19.05 mm, a pipe wall thickness of 0.7 mm, and a length of 6 m).

内管2と漏洩検知管3とからなる2重構造の多葉管7(以下、2重多葉管という)を製作する際には、内管2の素材管を漏洩検知管3の素材管に挿入した2重管(図2参照)を加工することで2重多葉管7にする(図3、図4参照)。この2重多葉管7では、内管2の各谷部2aとそれに隣接する谷部2aの間に隙間がある。   When manufacturing a double-walled multileaf tube 7 (hereinafter referred to as a double-leaflet tube) composed of the inner tube 2 and the leak detection tube 3, the material tube of the inner tube 2 is used as the material tube of the leak detection tube 3. The double tube (see FIG. 2) inserted into the tube is processed into a double multi-leaf tube 7 (see FIGS. 3 and 4). In this double multi-leaf tube 7, there is a gap between each valley 2a of the inner tube 2 and the valley 2a adjacent thereto.

次に、図5(a)に示すように、2重多葉管7を外管4としての円形断面の金属製の外管素材管4Aに挿入する。この挿入状態で、2重多葉管7の外周と外管素材管4Aの内周面との間には所定の隙間7aがある。但し、2重多葉管7には捩じりが付加されていて直線性が低下しているため、2重多葉管7と外管4とが全長に亙って同心状になるとは限らない。   Next, as shown in FIG. 5A, the double multi-leaf tube 7 is inserted into a metal outer tube material tube 4 </ b> A having a circular cross section as the outer tube 4. In this inserted state, there is a predetermined gap 7a between the outer periphery of the double multi-leaf tube 7 and the inner peripheral surface of the outer tube material tube 4A. However, since the torsion is added to the double multi-leaf tube 7 and the linearity is lowered, the double multi-leaf tube 7 and the outer tube 4 are not always concentric over the entire length. Absent.

次に、図5(b)に示すように、2重多葉管7が挿入された外管素材管4Aを縮径加工することによって外管素材管4Aの内周面と2重多葉管7の山部とを密着させると共に、 内管2の各谷部2aとそれに隣接する谷部2aとを密着させる。こうして、図1、図6に示すような3重管式熱交換器1を製造することができる。   Next, as shown in FIG. 5 (b), by reducing the diameter of the outer tube material tube 4A in which the double multi-leaf tube 7 is inserted, the inner peripheral surface of the outer tube material tube 4A and the double multi-leaf tube 7 is closely attached to each other, and each valley 2a of the inner pipe 2 is closely attached to the valley 2a adjacent thereto. Thus, a triple pipe heat exchanger 1 as shown in FIGS. 1 and 6 can be manufactured.

この縮径加工においては、外管素材管4Aの縮径率が84%以下となるよう縮径加工することによって外管4の内周面と2重多葉管7の山部3bとを密着させる。この外管素材管4Aの縮径加工の際に、2重多葉管7も僅かに縮径加工することより、2重多葉管7の周方向に隣接する谷部3a同士を接触させる。この場合、2重多葉管7の外径が前記のように例えば16.0mmである場合、2重多葉管7の縮径率は90%となる。   In this diameter reduction processing, the inner peripheral surface of the outer tube 4 and the crest portion 3b of the double multi-leaf tube 7 are brought into close contact with each other by reducing the diameter of the outer tube material tube 4A to 84% or less. Let When the outer tube material tube 4A is reduced in diameter, the double multi-leaf tube 7 is slightly reduced in diameter so that the valley portions 3a adjacent to each other in the circumferential direction of the double multi-leaf tube 7 are brought into contact with each other. In this case, when the outer diameter of the double multi-leaf tube 7 is, for example, 16.0 mm as described above, the diameter reduction rate of the double multi-leaf tube 7 is 90%.

但し、このように、外管素材管4Aを縮径させる際に、上記のように2重多葉管7を縮径させることが望ましいが、外管素材管4Aの縮径率が84%以下となるよう縮径加工した状態で、外管4の内周面と2重多葉管7の山部3bとが密着するならば、必ずしも、2重多葉管7を縮径させる必要はない。   However, it is desirable to reduce the diameter of the double multi-leaf tube 7 as described above when reducing the diameter of the outer tube material tube 4A as described above, but the diameter reduction rate of the outer tube material tube 4A is 84% or less. If the inner peripheral surface of the outer tube 4 and the peak portion 3b of the double multi-leaf tube 7 are in close contact with each other in a state of being reduced in diameter, it is not always necessary to reduce the diameter of the double multi-leaf tube 7. .

以上説明した3重管式熱交換器1の製造方法の作用、効果について説明する。
2重多葉管7を外管素材管4Aに所定の隙間7aを空けて挿入し、その2重多葉管7が挿入された外管素材管4Aを縮径加工することによって外管4の内周面と2重多葉管7の山部3bとを密着させるため、2重多葉管7の山部3bが外管4の内周面に密着した構造の3重管式熱交換器1であって、2重多葉管7と外管4との間の熱交換性能に優れる3重管式熱交換器1を製作することができる。
The effect | action and effect of the manufacturing method of the triple tube | pipe type heat exchanger 1 demonstrated above are demonstrated.
The double multi-leaf tube 7 is inserted into the outer tube material tube 4A with a predetermined gap 7a, and the outer tube material tube 4A into which the double multi-leaf tube 7 has been inserted is reduced in diameter, whereby the outer tube 4 A triple pipe heat exchanger having a structure in which the peak 3b of the double multi-leaf tube 7 is in close contact with the inner peripheral surface of the outer tube 4 in order to bring the inner peripheral surface into close contact with the peak 3b of the double multi-leaf tube 7. 1 and the triple tube heat exchanger 1 having excellent heat exchange performance between the double multi-leaf tube 7 and the outer tube 4 can be manufactured.

表1には、前記外管素材管4Aと同じ又は同様の素材管に2重多葉管7を挿入した状態で種々の縮径率で縮径加工した3重管式熱交換器の耐久性についての試験結果を示す。
この試験では、2重多葉管7内の冷媒に使用条件に応じた高圧と低圧とを所定時間毎(例えば、2秒毎)に繰り返し作用させ、破損が生じるまでの回数(耐久回数)を計測した。その結果、縮径率が99.7%では86000回で破損が生じ、縮径率が94.5%では230000回で破損が生じた。これに対して、縮径率が84%では310000回まで破損が生じず、耐久性能が向上していることが確認された。
Table 1 shows the durability of a triple-tube heat exchanger that has been reduced in diameter at various reduction ratios with the double multi-leaf tube 7 inserted into the same or similar material tube as the outer tube material tube 4A. The test result about is shown.
In this test, a high pressure and a low pressure corresponding to usage conditions are repeatedly applied to the refrigerant in the double multi-leaf tube 7 every predetermined time (for example, every 2 seconds), and the number of times until the breakage (the number of durability) is determined. Measured. As a result, when the diameter reduction ratio was 99.7%, damage occurred at 86,000 times, and when the diameter reduction ratio was 94.5%, damage occurred at 230000 times. On the other hand, it was confirmed that when the diameter reduction ratio was 84%, no damage occurred until 310,000 times, and the durability performance was improved.

本願の3重管式熱交換器1の製造方法では、外管素材管4Aを縮径加工する際の縮径率を84%以下にするため、3重管式熱交換器1の剛性・強度が増し、耐久性を大幅に向上させることができる。
しかも、外管素材管4Aを縮径加工する際に、2重多葉管7も僅かに縮径加工し、2重多葉管7の周方向に隣接する谷部3a同士を接触させるため、3重管式熱交換器1の中心側部分における剛性・強度を高めることができ、流体から伝播する振動によって内管2の谷部2aが振動しにくくなる。
In the manufacturing method of the triple pipe heat exchanger 1 of the present application, the rigidity / strength of the triple pipe heat exchanger 1 is set so that the diameter reduction rate when the diameter of the outer pipe material pipe 4A is reduced is 84% or less. As a result, durability can be greatly improved.
Moreover, when the outer tube material tube 4A is reduced in diameter, the double multi-leaf tube 7 is slightly reduced in diameter so that the valleys 3a adjacent to each other in the circumferential direction of the double multi-leaf tube 7 are brought into contact with each other. The rigidity and strength at the center side portion of the triple-pipe heat exchanger 1 can be increased, and the valley portion 2a of the inner tube 2 is less likely to vibrate due to vibration propagating from the fluid.

仮に、前記の縮径加工を施さない場合には、2重多葉管7の外周面が外管4の内面に密着せず、相対移動が自由の状態になるため、流体の振動や圧力変動によって2重多葉管7が動きやすく、谷部2a,3aや山部2b,3bに応力集中が生じて剛性・強度や耐久性が低くなる。しかも、2重多葉管7の隣接する谷部3a同士間には隙間があるため、変形しやすく、破損しやすい構造になる。   If the diameter reduction process is not performed, the outer peripheral surface of the double multi-leaf tube 7 is not in close contact with the inner surface of the outer tube 4, and the relative movement becomes free. Thus, the double multi-leaf tube 7 is easy to move, stress concentration occurs in the valleys 2a and 3a and the peaks 2b and 3b, and rigidity, strength, and durability are lowered. Moreover, since there is a gap between the adjacent valley portions 3a of the double multi-leaf tube 7, the structure is easily deformed and easily damaged.

しかも、2重多葉管7は捩じりが付加されていて直線性が低下しているため、約6mの長さの2重多葉管7を約6mの長さの外管素材管4Aに挿入するのが容易ではない。
そこで、上記のように縮径率を84%以下に設定することで、2重多葉管7を外管素材管4Aに挿入する際に、それらの間に所定の隙間7aを確保することができるため、円滑に挿入することができる。縮径率が84% より大きい(例えば、85〜99%)場合には、3重管式熱交換器1の強度や耐久性をあまり向上できないばかりでなく、上記の所定の隙間7aが微小の隙間になるため、2重多葉管7を外管素材管4Aに挿入するのが困難になる。
Moreover, since the double multi-leaf tube 7 is twisted and its linearity is lowered, the double multi-leaf tube 7 having a length of about 6 m is replaced with an outer tube material tube 4A having a length of about 6 m. Not easy to insert into.
Therefore, by setting the reduction ratio to 84% or less as described above, when the double multi-leaf tube 7 is inserted into the outer tube material tube 4A, a predetermined gap 7a can be secured between them. Therefore, it can be inserted smoothly. When the diameter reduction ratio is larger than 84% (for example, 85 to 99%), not only the strength and durability of the triple pipe heat exchanger 1 cannot be improved much, but the predetermined gap 7a is very small. Due to the gap, it becomes difficult to insert the double multi-leaf tube 7 into the outer tube material tube 4A.

それぞれ円形断面の小径管2Aと大径管3Aとから上記のように伝熱性(熱交換性能)に優れ且つ漏洩検知用隙間8,9も備えた2重多葉管7を製作し、この2重多葉管7と外管素材管4Aを用いて、熱交換性能に優れる3重管式熱交換器1を製作するため、熱交換性能に優れる3重管式熱交換器1を簡単に安価に製作することができる。   A double multi-leaf tube 7 having excellent heat transfer (heat exchange performance) and also having leakage detection gaps 8 and 9 as described above is manufactured from a small diameter tube 2A and a large diameter tube 3A each having a circular cross section. Using the multi-leaf tube 7 and the outer tube material tube 4A, the triple-pipe heat exchanger 1 with excellent heat exchange performance is manufactured easily. Can be produced.

次に、前記実施例を部分的に変更する例について説明する。
1)内管2と漏洩検知管3からなる2重多葉管7における、谷部2a,3aの数と山部2b,3bの数は、4に限らず、3又は5以上でもよい。
Next, an example in which the above embodiment is partially changed will be described.
1) The number of valleys 2a and 3a and the number of peaks 2b and 3b in the double multi-leaf tube 7 including the inner tube 2 and the leakage detection tube 3 are not limited to four, and may be three or five or more.

2)内管2と漏洩検知管3と外管4の素材管の金属材料は、リン脱酸銅に限るものではなく、その他の種々の銅材料でもよく、銅以外の金属(例えば、アルミニウムやその合金、真鍮、マグネシウム合金、チタンなど)であってもよい。内管2と漏洩検知管3と外管4を同種の金属材料の素材管から製作するとは限らず、異なる種類の金属材料の素材管から製作してもよい。また、内管2の管壁の厚さと漏洩検知管3の管壁の厚さは同じでもよく、異なっていてもよい。   2) The metal material of the material tube of the inner tube 2, the leak detection tube 3 and the outer tube 4 is not limited to phosphorous deoxidized copper, but may be other various copper materials, and may be a metal other than copper (for example, aluminum or The alloy, brass, magnesium alloy, titanium, etc.) may be used. The inner tube 2, the leak detection tube 3, and the outer tube 4 are not necessarily manufactured from a material tube of the same kind of metal material, but may be manufactured from a material tube of a different kind of metal material. Moreover, the thickness of the tube wall of the inner tube 2 and the thickness of the tube wall of the leak detection tube 3 may be the same or different.

3)3重管式熱交換器1の断面の外形輪郭の形状を、円形以外の形状(例えば、楕円形、長円形など)に構成することも可能である。
4)小径管2A、大径管3A、外管素材管4Aの外径や管壁厚さや長さ、3重管式熱交換器1の外径は、前記実施例に記載のものに限定されるものではなく、種々の外径に設定することができる。
3) The shape of the outer contour of the cross section of the triple-pipe heat exchanger 1 can be configured to have a shape other than a circle (for example, an ellipse or an oval).
4) The outer diameter, tube wall thickness and length of the small-diameter pipe 2A, large-diameter pipe 3A, and outer pipe material pipe 4A are limited to those described in the above embodiment. It can be set to various outer diameters.

5)その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施することができる。   5) In addition, those skilled in the art can implement the present invention in a form in which various modifications are added without departing from the spirit of the present invention.

2種類の流体間の熱交換に供する3重管式熱交換器の製造方法であって、種々の産業分野で利用可能な3重管式熱交換器の製造方法が開示されている。   A method for manufacturing a triple-pipe heat exchanger for heat exchange between two kinds of fluids, which is usable in various industrial fields, is disclosed.

1 3重管式熱交換器
2A 小径管
2 内管
2a 谷部
2b 山部
2c 直線部
3A 大径管
3 漏洩検知管
3a 谷部
3b 山部
3c 直線部
4A 外管素材管
4 外管
5 内側流体通路
6 外側流体通路
7 2重多葉管
8,9 隙間
DESCRIPTION OF SYMBOLS 1 Triple pipe type heat exchanger 2A Small diameter pipe 2 Inner pipe 2a Valley part 2b Mountain part 2c Straight line part 3A Large diameter pipe 3 Leakage detection pipe 3a Valley part 3b Mountain part 3c Straight line part 4A Outer pipe material pipe 4 Outer pipe 5 Inside Fluid passage 6 Outer fluid passage 7 Double multi-leaf tube 8, 9 Clearance

Claims (2)

管壁が周方向に山部と谷部が繰り返す波形形状をなす多葉管からなる内管と、この内管と略同形状の多葉管からなり且つ内管に外嵌させて内管の外周面近傍部に配置された漏洩検知管と、前記内管と漏洩検知管とが内部に収納される外管とを備え、前記内管の内部を流れる流体と、前記漏洩検知管と外管との間の隙間に流れる流体との間で熱交換を行うように構成される3重管式熱交換器の製造方法において、
前記内管と前記漏洩検知管からなる2重多葉管を、内径が前記2重多葉管の外径とほぼ同径の内径を有する外管としての円形断面の外管素材管に挿入し、この2重多葉管が挿入された外管素材管を縮径率が84%以下となるように縮径加工することによって外管の内周面と2重多葉管の山部とを密着させることを特徴とする3重管式熱交換器の製造方法。
An inner tube consisting of a multi-leaf tube having a corrugated shape in which the crest and trough are repeated in the circumferential direction in the circumferential direction, and a multi-leaf tube having substantially the same shape as this inner tube, and is fitted to the inner tube to be fitted to the inner tube. A leakage detection tube disposed in the vicinity of the outer peripheral surface; an outer tube in which the inner tube and the leakage detection tube are housed; a fluid flowing inside the inner tube; and the leakage detection tube and the outer tube A method of manufacturing a triple pipe heat exchanger configured to exchange heat with a fluid flowing in a gap between
A double multi-leaf tube comprising the inner tube and the leak detection tube is inserted into an outer tube material tube having a circular cross section as an outer tube having an inner diameter that is substantially the same as the outer diameter of the double multi-leaf tube. The outer tube material tube into which the double multi-leaf tube is inserted is reduced in diameter so that the reduction ratio is 84% or less, whereby the inner peripheral surface of the outer tube and the mountain portion of the double multi-leaf tube are formed. A method for producing a triple-pipe heat exchanger, wherein the heat exchanger is closely attached.
前記2重多葉管が挿入された外管素材管を縮径加工する際に、2重多葉管の周方向に隣接する谷部同士を接触させることを特徴とする請求項1に記載の3重管式熱交換器の製造方法。   The trough portions adjacent to each other in the circumferential direction of the double multi-leaf tube are brought into contact with each other when the outer tube material tube into which the double multi-leaf tube is inserted is reduced in diameter. A manufacturing method of a triple tube heat exchanger.
JP2013153551A 2013-07-24 2013-07-24 Manufacturing method of triple tube heat exchanger Active JP6211330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013153551A JP6211330B2 (en) 2013-07-24 2013-07-24 Manufacturing method of triple tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013153551A JP6211330B2 (en) 2013-07-24 2013-07-24 Manufacturing method of triple tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2015025577A true JP2015025577A (en) 2015-02-05
JP6211330B2 JP6211330B2 (en) 2017-10-11

Family

ID=52490372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013153551A Active JP6211330B2 (en) 2013-07-24 2013-07-24 Manufacturing method of triple tube heat exchanger

Country Status (1)

Country Link
JP (1) JP6211330B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089682A (en) * 2016-11-30 2018-06-14 三菱アルミニウム株式会社 Pipe type heat exchanger, its manufacturing method, and heat exchanger
JP2018089681A (en) * 2016-11-30 2018-06-14 三菱アルミニウム株式会社 Pipe type heat exchanger and manufacturing method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372374A (en) * 1980-01-15 1983-02-08 Ateliers Des Charmilles S.A. Vented heat transfer tube assembly
JP2000102820A (en) * 1998-09-28 2000-04-11 Nishiyama Seisakusho:Kk Manufacture of specially shaped pipe having wall, cross section of which is incurvated in convexo-concave shape around central axis
JP2002013882A (en) * 2000-06-30 2002-01-18 Matsushita Refrig Co Ltd Double pipe heat exchanger and refrigerating cycle device using it
JP2006078062A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006250417A (en) * 2005-03-10 2006-09-21 Sanyo Electric Co Ltd Heat pump water heater
JP2007093034A (en) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd Triple tube heat exchanger
JP3933083B2 (en) * 2003-04-07 2007-06-20 日立電線株式会社 Manufacturing method of leak detection tube
JP2008116096A (en) * 2006-11-02 2008-05-22 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2008232449A (en) * 2007-03-16 2008-10-02 Sumitomo Light Metal Ind Ltd Double tube type heat exchanger and its manufacturing method
JP2009243715A (en) * 2008-03-28 2009-10-22 Kobelco & Materials Copper Tube Inc Leakage detecting tube and heat exchanger
JP2012189312A (en) * 2011-02-22 2012-10-04 Fuji Electric Retail Systems Co Ltd Heat exchanger
JP2013053804A (en) * 2011-09-03 2013-03-21 Nishiyama Seisakusho Co Ltd Structure of triple pipe, and heat exchanger
JP2013127321A (en) * 2011-12-16 2013-06-27 Kobelco & Materials Copper Tube Inc Heat transfer tube having leakage detection function, and outer tube used for the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372374A (en) * 1980-01-15 1983-02-08 Ateliers Des Charmilles S.A. Vented heat transfer tube assembly
JP2000102820A (en) * 1998-09-28 2000-04-11 Nishiyama Seisakusho:Kk Manufacture of specially shaped pipe having wall, cross section of which is incurvated in convexo-concave shape around central axis
JP2002013882A (en) * 2000-06-30 2002-01-18 Matsushita Refrig Co Ltd Double pipe heat exchanger and refrigerating cycle device using it
JP3933083B2 (en) * 2003-04-07 2007-06-20 日立電線株式会社 Manufacturing method of leak detection tube
JP2006078062A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006250417A (en) * 2005-03-10 2006-09-21 Sanyo Electric Co Ltd Heat pump water heater
JP2007093034A (en) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd Triple tube heat exchanger
JP2008116096A (en) * 2006-11-02 2008-05-22 Sumitomo Light Metal Ind Ltd Water heat exchanger for water heater
JP2008232449A (en) * 2007-03-16 2008-10-02 Sumitomo Light Metal Ind Ltd Double tube type heat exchanger and its manufacturing method
JP2009243715A (en) * 2008-03-28 2009-10-22 Kobelco & Materials Copper Tube Inc Leakage detecting tube and heat exchanger
JP2012189312A (en) * 2011-02-22 2012-10-04 Fuji Electric Retail Systems Co Ltd Heat exchanger
JP2013053804A (en) * 2011-09-03 2013-03-21 Nishiyama Seisakusho Co Ltd Structure of triple pipe, and heat exchanger
JP2013127321A (en) * 2011-12-16 2013-06-27 Kobelco & Materials Copper Tube Inc Heat transfer tube having leakage detection function, and outer tube used for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089682A (en) * 2016-11-30 2018-06-14 三菱アルミニウム株式会社 Pipe type heat exchanger, its manufacturing method, and heat exchanger
JP2018089681A (en) * 2016-11-30 2018-06-14 三菱アルミニウム株式会社 Pipe type heat exchanger and manufacturing method thereof

Also Published As

Publication number Publication date
JP6211330B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
JP6032585B2 (en) Triple tube structure and heat exchanger
JP6211313B2 (en) Triple tube heat exchanger
JP6211330B2 (en) Manufacturing method of triple tube heat exchanger
JP2013124854A (en) Joint structure of double pipe
JP5157617B2 (en) Heat exchanger
JP2005030619A (en) Double tube, and double tube type heat exchanger using it
JP5404589B2 (en) Twisted tube heat exchanger
JP2013113525A (en) Double tube
JP4947162B2 (en) Heat exchanger
JP2012057856A (en) Heat transfer tube for heat exchanging device, and heat exchanging device using the heat transfer tube
JP5289088B2 (en) Heat exchanger and heat transfer tube
WO2012017777A1 (en) Double pipe for heat exchanger
JP2008107013A (en) Heat transfer tube having leakage detecting mechanism and heat exchanger using the same
JP2012007771A (en) Heat exchanger
JP2010112565A (en) Heat exchanger
JP2003515085A (en) Improved tubing for heat exchange
JP2015010758A (en) Triple-tube type heat exchanger
JP2012007773A (en) Heat exchanger
JP5431210B2 (en) Heat transfer tube and heat exchanger
JP2010210137A (en) Heat exchanger
JP2009241145A (en) Method of manufacturing double pipe having bent part and double pipe having bent part
JP2008175450A (en) Heat exchanger
JP5531810B2 (en) Heat exchanger
JP2004093057A (en) Heat exchanger and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170913

R150 Certificate of patent or registration of utility model

Ref document number: 6211330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250