JP2004093057A - Heat exchanger and its manufacturing method - Google Patents

Heat exchanger and its manufacturing method Download PDF

Info

Publication number
JP2004093057A
JP2004093057A JP2002257338A JP2002257338A JP2004093057A JP 2004093057 A JP2004093057 A JP 2004093057A JP 2002257338 A JP2002257338 A JP 2002257338A JP 2002257338 A JP2002257338 A JP 2002257338A JP 2004093057 A JP2004093057 A JP 2004093057A
Authority
JP
Japan
Prior art keywords
core tube
heat exchanger
manufacturing
water passage
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002257338A
Other languages
Japanese (ja)
Other versions
JP4206712B2 (en
Inventor
Yutaka Shibata
柴田 豊
Yoshitaka Yamamoto
山本 善貴
Haruo Nakada
中田 春男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002257338A priority Critical patent/JP4206712B2/en
Publication of JP2004093057A publication Critical patent/JP2004093057A/en
Application granted granted Critical
Publication of JP4206712B2 publication Critical patent/JP4206712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce manufacturing cost of a heat exchanger for a hot water feeder requiring no blazing or no soldering of an outer pipe. <P>SOLUTION: The heat exchanger is provided with a core pipe 1 forming a water passage 2; the outer pipes 3A, 3B wound on an outer periphery of the core pipe 1 and forming cooling medium passages 4A, 4B having a smaller passage cross section than a passage cross section of the water passage 2. The core pipe 1 is enlarged after winding the outer pipes 3A, 3B. Thereby, the outer pipes 3A, 3B are integrally wound on the outer peripheral surface of the core pipe 1 with a predetermined or more of tightening force. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本願発明は、水と冷媒とを熱交換させる給湯機用熱交換器などの熱交換器およびその製造方法に関するものである。
【0002】
【従来の技術】
従来から良く知られている、例えばヒートポンプ式給湯機等の給湯機用熱交換器に用いられる熱交換器としては、例えば実開昭51−105158号公報中に開示されているような、水が流通する内管と冷媒が流通する外管との二重管からなり、これを長円形の渦巻形状に巻成して1つの熱交換器ユニットとし、これを多数の段数重ね合わせて相互に接続することにより熱交換器本体を構成した二重管式熱交換器がある。
【0003】
このような二重管式熱交換器の場合、水が流通する内管に腐食によって孔が空くと、水と冷媒とが混ざりあってしまうため、当該水の漏洩を検知して、給湯装置の運転を停止する必要があった。そこで、その対応として、上記内管の外側に内管から漏洩した水を導く漏洩検知溝を有する漏洩検知管を設け、上記水の漏洩をいち早く検知するようにしていた。したがって、同構成では、、実質的に熱交換器が、内管、漏洩検知管および外管の三重管により構成されることになる。したがって、同構成の場合、長円形の渦巻形状への曲げ加工が困難で、部品点数も多いために、製造工程が複雑化するとともに、コストの増大を免れがたい、という問題があった。
【0004】
そこで、上記のような給湯機用の熱交換器として、さらに例えば図6に示すように、内部に水通路2を形成する長い芯管1の外周に、内部に冷媒通路4A,4Bを形成する上記芯管1よりも外径(通路径)の小さい第1,第2の2本の外管3A,3Bを所定のピッチで螺旋状に巻き付けてロウ付け又はハンダ付けし、これを長円形の渦巻形状に巻成することによって1つの熱交換器ユニット10a,10a・・・とし、該熱交換器ユニット10a,10a・・・を、例えば図7および図8に示すように複数の段数重ね合わせ、その後、上記芯管1および外管3A,3Bの各内端部同士を、連絡管7および11A,11Bによって接続し、ロー付け等を施すことにより一体形状とし、上記芯管1側を水通路2とするとともに、上記第1,第2の外管3A,3B側を冷媒通路4A,4Bとした熱交換器10が提案されている(例えば特願2001−20915号参照)。
【0005】
このような熱交換器10の構成によれば、水通路2を形成する芯管1側に孔が空いても、上記外管3A,3B側に孔が空かない限り、冷媒通路4A,4B側に水が侵入する恐れはないし、また上記第1,第2の外管3A,3Bの間の芯管1外周面における水の漏出状態から容易に水の漏洩を検知できるから、上述のような漏洩検知管も不要になる。
【0006】
【発明が解決しようとする課題】
ところが、上記のような構成のものの場合、その熱交換器ユニット10a,10a・・・製造の際に、外管3A,3Bを芯管1にロウ付けまたはハンダ付けするための設備が必要であり、また、熱交換器のセッティング、温度・時間の管理などが容易ではないために、製品のコストダウンが困難であった。
【0007】
本願発明は、このような課題を解決するためになされたもので、芯管への外管巻き付け加工の後、ロウ付けやハンダ付けを行う代わりに、何らかの方法で芯管を拡管することにより、確実に芯管と外管を密着させるようにすることにより、上述の課題を解決した給湯機用熱交換器等の熱交換器およびその製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本願発明は、上記の課題を解決するために、次のような課題解決手段を備えて構成されている。
【0009】
(1) 請求項1の発明
この発明の熱交換器は、水通路2を形成する芯管1と、該芯管1の外周囲に巻成して設けられ、上記水通路2の通路断面積よりも小さな通路断面積を有する冷媒通路4A,4Bを形成する外管3A,3Bとを備えてなる熱交換器であって、上記芯管1が上記外管3A,3Bを巻成した後に拡管されることにより、上記外管3A,3Bが、上記芯管1の外周面に所定値以上の締付け力を伴って一体に巻成されていることを特徴としている。
【0010】
したがって、このような構成によれば、従来のような芯管1に対する外管3A,3Bのロウ付けまたはハンダ付け、それらのための設備が不要となり、また作業も単純なため、製品の製造コストが大幅に低減される。
【0011】
(2) 請求項2の発明
この発明の熱交換器は、上記請求項1の発明の構成において、芯管1の外周面の外管3A,3Bとの当接面は、外管3A,3Bの外周面形状に対応して凹面状に変形していることを特徴としている。
【0012】
したがって、該構成では、芯管1の外管3A,3Bとの接触面積が拡大され、伝熱性能も向上する。
【0013】
(3) 請求項3の発明
この発明の熱交換器の製造方法は、水通路2を形成する芯管1と、該芯管1の外周囲に巻成して設けられ、上記水通路2の通路断面積よりも小さな通路断面積を有する冷媒通路4A,4Bを形成する外管3A,3Bとを備えてなる熱交換器の製造方法であって、上記芯管1の外周に上記外管3A,3Bを巻成した後、上記芯管1を拡管することにより、上記外管3A,3Bが、上記芯管1の外周面に所定値以上の締付け力を伴って一体に巻成されるようにしたことを特徴としている。
【0014】
したがって、このような製造方法によれば、従来のような芯管1に対する外管3A,3Bのロウ付けまたはハンダ付け、それらのための設備が不要となり、また作業も単純なため、製品の製造コストが大幅に低減される。
【0015】
(4) 請求項4の発明
この発明の熱交換器の製造方法は、上記請求項3の発明の構成において、芯管1の拡管は、高圧の液体ポンプ6を使用し、密封した芯管1内の水通路2に所定値以上の高圧力で液体を供給することにより、行うようにしたことを特徴としている。
【0016】
このように、外管3A,3Bを巻成した芯管1内の水通路2部分に、液体(水など)を封入し、所定値以上の高い圧力をかけることによって芯管1の拡管を行うようにすると、それ自体で十分な芯管1と外管3A,3Bの密着度、伝熱面積を確保することができるので、ロウ付けハンダ付けは不要となり、しかも同拡管は高圧の液体ポンプ6があれば実現できるので、設備が大幅に簡略化できる。
【0017】
しかも、該方法の場合、上記芯管1の曲げ加工は、上記拡管加工の前でも後の何れでもよく、その時の作業上の都合によって任意に選択することができる。
【0018】
(5) 請求項5の発明
この発明の熱交換器の製造方法は、上記請求項3の発明の構成において、芯管1の拡管は、芯管1内の水通路2の径よりも大きい外径のダイス5を使用し、該ダイス5を上記芯管1内の水通路2に圧挿することにより、行うようにしたことを特徴としている。
【0019】
したがって、このような製造方法の場合、上記ダイス5の大きさの選定により任意に拡管率を選ぶことができ、芯管1と外管3A,3Bを確実に密着させることができる。
【0020】
【発明の効果】
以上の結果、本願発明によると、前述した従来の課題を確実に解決した低コスト・高性能の、給湯機用に適した熱交換器を提供することができるようになる。
【0021】
【発明の実施の形態】
以下、添付の図面を参照して、本願発明の幾つかの実施の形態について詳細に説明する。
【0022】
(実施の形態1)
先ず図1〜図3には、例えば給湯機用熱交換器を構成するに適した本願発明の実施の形態1に係る熱交換器の構成および同熱交換器を製造する製造方法が示されている。図1は、上述した図7、図8の熱交換器10の内の1つの熱交換器ユニット10aの構成を、また図2は、同熱交換器ユニット10aの製造途中における要部の構成を、さらに図3は、同熱交換器ユニット10aの製造完了後の構成を、それぞれ示している。
【0023】
これらの図中、先ず符号1は、その内側に、断面円形の水通路2を形成する円管構造の芯管である。該芯管1は、所定の長さと所定の直径を有して構成されている。
【0024】
一方、符号3A,3Bは、各々その内側に、断面円形の冷媒通路4A,4Bを形成する円管構造の第1,第2の2本の外管である。該第1,第2の外管3A,3Bは、例えば図2に示されるように、上記芯管1の外周面上に相互に等しい所定の間隔を置いて長手方向に沿って平行に所定の巻き角を有して螺旋状に巻成され、その後の後述する拡管作用により、最終的に製造が完了した状態では、例えば図3に示されるように、上記芯管1の外周面上に芯管1に対して所定値以上の大きな締付力(バインディング力)を保ち、かつ上記拡管時の拡管力によって同外周面上に形成される凹部面1c,1c・・・を介して圧接する状態で、上記芯管1と一体化されるようになっている。そして、製造完了後、これら第1第2の2本の外管3A,3B内の各冷媒通路4A,4Bには、例えば二酸化炭素冷媒所定値以上の冷媒が流されるようになっている。
【0025】
該構成の熱交換器ユニット10aは、例えば次のようにして製造される。
【0026】
(1) 第1の製造工程
先ず芯管1の外周面に第1,第2の外管3A,3Bを螺旋状に巻成する。この状態では、芯管1の外周面と第1,第2の外管3A,3Bとの間には、例えば図2に拡大して示すように、スプリングバックによる若干の隙間も見られ、芯管1と第1,第2の外管3A,3Bとの圧接力および密着度が必ずしも十分ではない。
【0027】
(2) 第2の製造工程
次に、同第1,第2の外管3A,3Bを巻成した図2の状態の芯管1を、例えば図3のような長円形の渦巻形状に曲げ加工を施し、その内端1b側開口部を必要に応じて空気抜きを行えるキャップ等所望のシール部材5によりシールして、芯管1内の水通路2部分を密封する。
【0028】
(3) 第3の製造工程
次に、同内端1b側をシールした渦巻形状の芯管1の外端1aの開口部に対して、図1に示すように、高圧の拡管用液体ポンプ6の液体吐出管6aを接続する。
【0029】
(4) 第4の製造工程
次に同図3のように高圧の拡管用液体ポンプ6を接続した状態において、当該高圧の拡管用液体ポンプ6を駆動し、先ず上記芯管1内の水通路2に内部空気を抜きながら水等の液体を充満させた後、上記シール部材5を確実に耐圧性の高いシール状態に維持し、当該水通路2の液圧を所定値以上に増大させ、芯管1の外端1aから内端1bまでの全体を、例えば図3のように、全く均一に半径方向外方に拡管し、その外径を所定寸法増大させる。
【0030】
この結果、同図3から明らかなように、第1,第2の外管3A,3Bは、相対的に芯管1の外周面に対して所定値以上の締付力(バインディング力)を有して食い込むようになり(スプリングバックの吸収)、その断面が若干楕円形状に変形するとともに、同食い込み力によって生じた芯管1外周面上の凹面部1c,1c・・・を介して広い接触面積で圧接密着するようになり(面接触)、ロウ付けやハンダ付けが不要となるレベルまで、両者間の伝熱性能が向上する。
【0031】
この場合、上記外管3A,3Bの食い込み力を大きくし、上記凹面部1c,1c・・・の変形量(深さ)を大きくすると、芯管1の内周面に螺旋溝を形成することができ、乱流効果を生成させることもできる。
【0032】
なお、上記の場合、上記芯管1の曲げ加工は、拡管加工の前でもよく、その時の作業上の都合によって任意に選択すればよい。
【0033】
このように、外管3A,3Bを巻成した芯管1内の水通路2部分に液体(水など)を封入し、所定値以上の高い圧力をかけることによって芯管1の拡管を行うようにすると、それ自体で十分な芯管1と外管3A,3Bの密着度、伝熱面積を確保することができるので、従来のようなロウ付けやハンダ付けは不要となり、しかも同拡管は高圧の液体ポンプ6があれば簡単に実現できるので、設備が大幅に簡略化できる。
【0034】
そして、最終的にアッセンブリされる熱交換器10自体が、例えば前述の図7および図8のように、複数の熱交換器ユニット10a,10a・・・から構成されるような場合、「芯管曲げ」、「拡管」、「各ユニットの接続(ロウ付けなど)」など各々の作業順序を任意に選定することにより、それぞれ異なった作業特性を得るようにすることができる。今、その例を以下に示す。
【0035】
▲1▼ 芯管1を曲げ加工する前に拡管する・・・均一な拡管状態が得られる。
【0036】
▲2▼ 拡管の前に芯管1の曲げ加工を行う・・・芯管1の曲げ加工が容易になる。
【0037】
▲3▼ 芯管1の曲げ加工と拡管の前に各ユニットを接続する・・・拡管作業が一回で済む。
【0038】
▲4▼ 芯管1の曲げ加工と拡管の後に各ユニットを接続する・・・芯管1の径または肉厚の異なるユニットがある場合でも、それぞれのユニットごとに拡管圧力を変更することで、容易に対応できる。
【0039】
また、上記のように液圧を使用して拡管するようにした場合、芯管1の外管3A,3Bとの接触面が凹面部1c,1c・・・に凹むと同時に、それら外管3A,3Bとの間の空間部では壁面が隆起し、より接触面積が拡大されるとともに、螺旋管形成効果が高くなる。
【0040】
(実施の形態2)
次に図4および図5は、本願発明の実施の形態2に係る熱交換器の要部の構成および製造方法を示している。
【0041】
この実施の形態では、先ず図4のように芯管1の外周に第1,第2の外管3A,3Bを巻成し、その後、当該芯管1が直管の状態において、当該芯管1の内部に、図4から図5に示すようにして、先端に玉子形の拡管部5aを有する拡管用ダイス5を通し、その後端5b側から押して圧挿することによって、芯管1の拡管を行うようにし、当該拡管の後に、芯管1の曲げ加工を行って上述のものと同様の熱交換器ユニット10aに仕上げるようにしたことを特徴としている。
【0042】
したがって、このような製造方法の場合、上記拡管用ダイス5の拡管部5aの大きさ(外径寸法)の選定により任意に拡管率を選ぶことができ、芯管1と外管3A,3Bを確実に密着させることができる。
【0043】
そして、もちろん、この実施の形態においても、最終的に形成される熱交換器ユニット10a,10bそのものの構成は、上述した実施の形態1のものと同様であり、同様の作用効果を有している。すなわち、最終的に製造が完了した状態では、上記外管3A,3Bは、上記芯管1の外周面上に芯管1に対して所定値以上の大きな締付力(バインディング力)を保ち、かつ上記拡管時の拡管力によって同外周面上に形成される凹部面1c,1c・・・を介して広い接触面積を有して圧接する状態で、上記芯管1と一体化されたものとなる。
【0044】
(変形例)
なお、この実施の形態2のような拡管用ダイス5による拡管を行う場合、当該拡管用ダイス5は、例えば上述のようなマンドレル方式の場合のみに限られるものではなく、例えば図示のような玉子形の拡管部5a,5a・・・を複数個チェーン状につなぎ、これを芯管1内の一端側から他端側に挿通し、他端側から引き抜くようにすることもできる。
【0045】
このようにすると、マンドレル方式の場合に比べて、芯管1の形状変化に対して、フレキシビリティーを発揮させることができ、加工が容易になる。
【図面の簡単な説明】
【図1】本願発明の実施の形態1に係る給湯用熱交換器の構成および製造方法を示す全体図である。
【図2】同熱交換器の要部の構成および製造方法における製造工程の作用を示す第1の状態の拡大図である。
【図3】同熱交換器の要部の構成および製造方法における製造工程の作用を示す第2の状態の拡大図である。
【図4】本願発明の実施の形態2に係る給湯用熱交換器の要部の構成およびその製造方法における第1の製造工程を示す断面図である。
【図5】同製造方法における第2の製造工程を示す断面図である。
【図6】従来一般の給湯用熱交換器の要部の構成を示す図である。
【図7】同給湯用熱交換器本体のアッセンブリ形態の一例を示す平面図である。
【図8】同側面図である。
【符号の説明】
1は芯管、2は水通路、3Aは第1の外管、3Bは第2の外管、4Aは第1の冷媒通路、4Bは第2の冷媒通路、5は拡管用ダイス、6は拡管用高圧液体ポンプである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger such as a heat exchanger for a water heater for exchanging heat between water and a refrigerant, and a method for manufacturing the same.
[0002]
[Prior art]
As a well-known heat exchanger used for a heat exchanger for a water heater such as a heat pump water heater, for example, water as disclosed in Japanese Utility Model Laid-Open Publication No. 51-105158 is used. It consists of a double pipe with an inner pipe that circulates and an outer pipe that circulates refrigerant. This is wound into an elliptical spiral shape to form one heat exchanger unit, which is superposed on many stages and connected to each other. There is a double-pipe heat exchanger in which a heat exchanger main body is formed by doing so.
[0003]
In the case of such a double-pipe heat exchanger, if a hole is opened in the inner pipe through which water circulates due to corrosion, water and the refrigerant are mixed with each other. Operation had to be stopped. Therefore, as a countermeasure, a leak detecting tube having a leak detecting groove for guiding water leaked from the inner tube is provided outside the inner tube so as to detect the leak of the water as soon as possible. Therefore, in this configuration, the heat exchanger is substantially constituted by the triple pipe of the inner pipe, the leak detection pipe, and the outer pipe. Therefore, in the case of the same configuration, there is a problem that it is difficult to bend into an elliptical spiral shape and the number of parts is large, so that the manufacturing process is complicated and an increase in cost is unavoidable.
[0004]
Therefore, as a heat exchanger for a water heater as described above, for example, as shown in FIG. 6, refrigerant passages 4A and 4B are formed inside the long core tube 1 forming the water passage 2 inside. The first and second two outer tubes 3A and 3B having smaller outer diameters (passage diameters) than the core tube 1 are spirally wound at a predetermined pitch and brazed or soldered to form an oval. Are wound into a spiral shape to form one heat exchanger unit 10a, 10a..., And the heat exchanger units 10a, 10a. Thereafter, the inner ends of the core tube 1 and the outer tubes 3A and 3B are connected to each other by connecting tubes 7 and 11A and 11B, and are brazed or the like to form an integral shape. Passage 2 and the first and second Tube 3A, the refrigerant passages 4A and 3B side, the heat exchanger 10 which is the 4B has been proposed (see, for example, Japanese Patent Application No. 2001-20915).
[0005]
According to such a configuration of the heat exchanger 10, even if a hole is formed in the core tube 1 forming the water passage 2, unless the hole is formed in the outer tubes 3A and 3B, the refrigerant passages 4A and 4B are formed. There is no danger of water infiltrating into the outer tube 3A, and water leakage can be easily detected from the state of water leakage on the outer peripheral surface of the core tube 1 between the first and second outer tubes 3A and 3B. There is no need for a leak detection tube.
[0006]
[Problems to be solved by the invention]
However, in the case of the above-described configuration, equipment for brazing or soldering the outer tubes 3A, 3B to the core tube 1 at the time of manufacturing the heat exchanger units 10a, 10a. In addition, it is difficult to set the heat exchanger and manage the temperature and time, so that it is difficult to reduce the cost of the product.
[0007]
The present invention has been made to solve such a problem, after winding the outer tube around the core tube, instead of brazing or soldering, by expanding the core tube in some way, An object of the present invention is to provide a heat exchanger such as a heat exchanger for a water heater, and a method for manufacturing the same, in which the core pipe and the outer pipe are securely brought into close contact with each other to solve the above-mentioned problems.
[0008]
[Means for Solving the Problems]
The present invention is configured to include the following problem solving means in order to solve the above problems.
[0009]
(1) The heat exchanger according to the present invention is provided with a core tube 1 forming a water passage 2 and wound around the outer periphery of the core tube 1. A heat exchanger comprising outer tubes (3A, 3B) forming refrigerant passages (4A, 4B) having a smaller passage cross-sectional area, wherein the core tube (1) expands after winding the outer tubes (3A, 3B). Accordingly, the outer tubes 3A and 3B are integrally wound around the outer peripheral surface of the core tube 1 with a tightening force of a predetermined value or more.
[0010]
Therefore, according to such a configuration, there is no need for brazing or soldering the outer tubes 3A and 3B to the core tube 1 as in the related art, and equipment for them is not required, and the operation is simple, so that the manufacturing cost of the product is reduced. Is greatly reduced.
[0011]
(2) The heat exchanger according to the second aspect of the present invention is the heat exchanger according to the first aspect of the present invention, wherein the outer tube 3A, 3B has a contact surface with the outer tube 3A, 3B on the outer peripheral surface of the core tube 1. Is deformed in a concave shape corresponding to the outer peripheral surface shape of (1).
[0012]
Therefore, in this configuration, the contact area of the core tube 1 with the outer tubes 3A and 3B is increased, and the heat transfer performance is also improved.
[0013]
(3) The method of manufacturing a heat exchanger according to the third aspect of the present invention, wherein the core pipe 1 forming the water passage 2 and the outer periphery of the core pipe 1 are wound and provided. A method of manufacturing a heat exchanger, comprising outer tubes (3A, 3B) forming refrigerant passages (4A, 4B) having a passage sectional area smaller than the passage sectional area, wherein the outer tube (3A) is provided on the outer periphery of the core tube (1). , 3B, the core tube 1 is expanded so that the outer tubes 3A, 3B are integrally wound on the outer peripheral surface of the core tube 1 with a predetermined or more tightening force. It is characterized by having.
[0014]
Therefore, according to such a manufacturing method, it is not necessary to braze or solder the outer tubes 3A and 3B to the core tube 1 as in the related art, and equipment for these is not required. Cost is greatly reduced.
[0015]
(4) The invention according to claim 4 In the method for manufacturing a heat exchanger according to the invention, in the construction of the invention according to claim 3, the expansion of the core tube 1 is performed by using a high-pressure liquid pump 6 to seal the core tube 1. By supplying the liquid to the internal water passage 2 at a high pressure equal to or higher than a predetermined value, the operation is performed.
[0016]
As described above, the liquid (water or the like) is sealed in the water passage 2 in the core tube 1 around which the outer tubes 3A and 3B are wound, and the core tube 1 is expanded by applying a high pressure equal to or higher than a predetermined value. By doing so, sufficient adhesion and heat transfer area between the core tube 1 and the outer tubes 3A and 3B can be ensured by themselves, so that soldering is not required, and the expansion is performed by the high-pressure liquid pump 6. Can be realized if there is, so the equipment can be greatly simplified.
[0017]
In addition, in the case of this method, the bending of the core tube 1 may be performed before or after the expanding process, and can be arbitrarily selected depending on the working convenience at that time.
[0018]
(5) Invention of claim 5 In the method of manufacturing a heat exchanger according to the invention, the expansion of the core pipe 1 is larger than the diameter of the water passage 2 in the core pipe 1 in the structure of the invention of claim 3. The method is characterized in that a die 5 having a diameter is used and the die 5 is pressed into the water passage 2 in the core tube 1.
[0019]
Therefore, in the case of such a manufacturing method, the expansion ratio can be arbitrarily selected by selecting the size of the die 5, and the core tube 1 and the outer tubes 3A and 3B can be securely brought into close contact with each other.
[0020]
【The invention's effect】
As a result, according to the present invention, it is possible to provide a low-cost and high-performance heat exchanger suitable for a water heater that reliably solves the above-described conventional problems.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0022]
(Embodiment 1)
First, FIGS. 1 to 3 show a configuration of a heat exchanger according to Embodiment 1 of the present invention suitable for forming, for example, a heat exchanger for a water heater, and a manufacturing method for manufacturing the same. I have. FIG. 1 shows a configuration of one heat exchanger unit 10a of the heat exchangers 10 of FIGS. 7 and 8 described above, and FIG. 2 shows a configuration of a main part of the heat exchanger unit 10a in the course of manufacturing. FIG. 3 shows the configuration of the heat exchanger unit 10a after the production is completed.
[0023]
In these figures, reference numeral 1 denotes a core pipe having a circular pipe structure in which a water passage 2 having a circular cross section is formed. The core tube 1 has a predetermined length and a predetermined diameter.
[0024]
On the other hand, reference numerals 3A and 3B denote first and second outer pipes having a circular pipe structure in which refrigerant passages 4A and 4B having a circular cross section are formed, respectively. As shown in FIG. 2, for example, the first and second outer tubes 3A and 3B are spaced apart from each other at predetermined intervals on the outer peripheral surface of the core tube 1 by a predetermined distance in parallel along the longitudinal direction. In a state where the coil is spirally wound with a winding angle and is finally manufactured by a later-described expanding operation, a core is formed on the outer peripheral surface of the core tube 1 as shown in FIG. A state in which a large tightening force (binding force) of a predetermined value or more is maintained against the pipe 1 and the pipe 1 is pressed against the pipe 1 via the concave surfaces 1c, 1c,. Thus, the core tube 1 is integrated. After the completion of the production, a refrigerant having a predetermined value or more, for example, a carbon dioxide refrigerant flows through each of the refrigerant passages 4A and 4B in the first and second outer tubes 3A and 3B.
[0025]
The heat exchanger unit 10a having this configuration is manufactured, for example, as follows.
[0026]
(1) First Manufacturing Step First, first and second outer tubes 3A and 3B are spirally wound around the outer peripheral surface of the core tube 1. In this state, between the outer peripheral surface of the core tube 1 and the first and second outer tubes 3A and 3B, for example, as shown in an enlarged view in FIG. The pressure contact force and the degree of adhesion between the tube 1 and the first and second outer tubes 3A, 3B are not always sufficient.
[0027]
(2) Second Manufacturing Step Next, the core tube 1 in the state of FIG. 2 wound with the first and second outer tubes 3A and 3B is bent into, for example, an oblong spiral shape as shown in FIG. Processing is performed, and the opening at the inner end 1b side is sealed with a desired sealing member 5 such as a cap capable of venting air as necessary, so that the water passage 2 in the core tube 1 is sealed.
[0028]
(3) Third Manufacturing Step Next, as shown in FIG. 1, a high-pressure liquid pump 6 for expanding the pipe is formed on the opening of the outer end 1a of the spiral core tube 1 whose inner end 1b is sealed. Liquid discharge pipe 6a is connected.
[0029]
(4) Fourth Manufacturing Step Next, in a state where the high-pressure pipe expansion liquid pump 6 is connected as shown in FIG. 3, the high-pressure pipe expansion liquid pump 6 is driven, and first, a water passage in the core pipe 1 is formed. 2 is filled with a liquid such as water while evacuating the internal air. After that, the sealing member 5 is reliably maintained in a sealing state having high pressure resistance, the hydraulic pressure in the water passage 2 is increased to a predetermined value or more, The entire pipe 1 from the outer end 1a to the inner end 1b is expanded radially outward uniformly, as shown in FIG. 3, for example, and its outer diameter is increased by a predetermined dimension.
[0030]
As a result, as is apparent from FIG. 3, the first and second outer tubes 3A and 3B have a tightening force (binding force) relatively higher than a predetermined value with respect to the outer peripheral surface of the core tube 1. (Absorption of spring back), the cross section of which is slightly deformed into an elliptical shape, and a wide contact is made via concave portions 1c, 1c,... The area becomes in pressure contact with the area (surface contact), and the heat transfer performance between the two is improved to a level at which brazing or soldering becomes unnecessary.
[0031]
In this case, when the biting force of the outer tubes 3A, 3B is increased and the amount of deformation (depth) of the concave portions 1c, 1c,... Is increased, a spiral groove is formed on the inner peripheral surface of the core tube 1. And a turbulence effect can be generated.
[0032]
In the above case, the bending process of the core tube 1 may be performed before the expanding process, or may be arbitrarily selected depending on the working convenience at that time.
[0033]
As described above, the liquid (water or the like) is sealed in the water passage 2 in the core tube 1 in which the outer tubes 3A and 3B are wound, and the core tube 1 is expanded by applying a high pressure equal to or higher than a predetermined value. By doing so, sufficient adhesion and heat transfer area between the core tube 1 and the outer tubes 3A and 3B can be ensured by themselves, so that brazing or soldering as in the conventional case is unnecessary, and the expansion is performed at a high pressure. Since the liquid pump 6 can be easily realized, the equipment can be greatly simplified.
[0034]
When the heat exchanger 10 to be finally assembled is composed of a plurality of heat exchanger units 10a, 10a,... As shown in FIGS. By arbitrarily selecting the order of each operation such as “bending”, “expansion”, and “connection of each unit (such as brazing)”, different operation characteristics can be obtained. Now, an example is shown below.
[0035]
{Circle around (1)} Expanding the core tube 1 before bending it ... A uniform expansion state is obtained.
[0036]
{Circle around (2)} Bending the core tube 1 before expanding the tube. Bending of the core tube 1 becomes easy.
[0037]
{Circle around (3)} Connecting each unit before bending the core tube 1 and expanding the tube ... Only one expansion operation is required.
[0038]
{Circle around (4)} Connecting each unit after bending and expanding the core tube 1. Even if there are units with different diameters or wall thicknesses of the core tube 1, by changing the expansion pressure for each unit, Can be easily handled.
[0039]
When the tube is expanded using the hydraulic pressure as described above, the contact surface of the core tube 1 with the outer tubes 3A, 3B is recessed into the concave portions 1c, 1c,. , 3B, the wall surface rises, the contact area is further increased, and the spiral tube forming effect is enhanced.
[0040]
(Embodiment 2)
Next, FIGS. 4 and 5 show a configuration and a manufacturing method of a main part of a heat exchanger according to Embodiment 2 of the present invention.
[0041]
In this embodiment, first, first and second outer tubes 3A and 3B are wound around the outer periphery of the core tube 1 as shown in FIG. As shown in FIG. 4 and FIG. 5, a pipe-expanding dice 5 having an egg-shaped pipe-expanding portion 5a at its tip is passed through the inside of the tube 1 and pushed from the rear end 5b side to press-fit the core tube 1 so as to expand the core tube 1. After the expansion, the core tube 1 is bent to finish the same heat exchanger unit 10a as described above.
[0042]
Therefore, in the case of such a manufacturing method, the expansion ratio can be arbitrarily selected by selecting the size (outer diameter size) of the expanded portion 5a of the expanding die 5 and the core tube 1 and the outer tubes 3A and 3B can be formed. It can be surely adhered.
[0043]
And, of course, also in this embodiment, the configuration of the finally formed heat exchanger units 10a and 10b is the same as that of the above-described first embodiment, and has the same operation and effect. I have. That is, in a state where the manufacture is finally completed, the outer tubes 3A and 3B maintain a large fastening force (binding force) on the outer peripheral surface of the core tube 1 with respect to the core tube 1 by a predetermined value or more. . And the core tube 1 integrated with the core tube 1 in a state of being in pressure contact with a large contact area via the concave surfaces 1c formed on the outer peripheral surface by the expanding force at the time of expanding the tube. Become.
[0044]
(Modification)
In the case where the expansion is performed by the expansion die 5 as in the second embodiment, the expansion die 5 is not limited to, for example, only the mandrel method described above. .. May be connected in a chain form from one end to the other end in the core tube 1 and pulled out from the other end.
[0045]
By doing so, flexibility can be exhibited with respect to a change in the shape of the core tube 1 as compared with the case of the mandrel method, and processing becomes easier.
[Brief description of the drawings]
FIG. 1 is an overall view showing a configuration and a manufacturing method of a hot water supply heat exchanger according to Embodiment 1 of the present invention.
FIG. 2 is an enlarged view of a first state showing a configuration of a main part of the heat exchanger and an operation of a manufacturing process in a manufacturing method.
FIG. 3 is an enlarged view of a second state showing a configuration of a main part of the heat exchanger and an operation of a manufacturing process in a manufacturing method.
FIG. 4 is a cross-sectional view illustrating a configuration of a main part of a heat exchanger for hot water supply according to Embodiment 2 of the present invention and a first manufacturing process in a manufacturing method thereof.
FIG. 5 is a cross-sectional view showing a second manufacturing step in the manufacturing method.
FIG. 6 is a diagram showing a configuration of a main part of a conventional general hot water supply heat exchanger.
FIG. 7 is a plan view showing an example of an assembly form of the hot water supply heat exchanger body.
FIG. 8 is a side view of the same.
[Explanation of symbols]
1 is a core tube, 2 is a water passage, 3A is a first outer tube, 3B is a second outer tube, 4A is a first refrigerant passage, 4B is a second refrigerant passage, 5 is a die for expanding, 6 is This is a high-pressure liquid pump for pipe expansion.

Claims (5)

水通路(2)を形成する芯管(1)と、該芯管(1)の外周囲に巻成して設けられ、上記水通路(2)の通路断面積よりも小さな通路断面積を有する冷媒通路(4A),(4B)を形成する外管(3A),(3B)とを備えてなる熱交換器であって、上記芯管(1)が上記外管(3A),(3B)を巻成した後に拡管されることにより、上記外管(3A),(3B)が、上記芯管(1)の外周面に所定値以上の締付け力を伴って一体に巻成されていることを特徴とする熱交換器。A core tube (1) forming a water passage (2), and wound around the outer periphery of the core tube (1) and provided with a passage cross-sectional area smaller than the passage cross-sectional area of the water passage (2). A heat exchanger comprising outer tubes (3A) and (3B) forming refrigerant passages (4A) and (4B), wherein the core tube (1) is formed of the outer tubes (3A) and (3B). The outer pipes (3A) and (3B) are integrally wound on the outer peripheral surface of the core pipe (1) with a tightening force of a predetermined value or more by being expanded after winding. A heat exchanger. 芯管(1)の外周面の外管(3A),(3B)との当接面は、外管(3A),(3B)の外周面形状に対応して凹面状に変形していることを特徴とする請求項1記載の熱交換器。The contact surface of the outer peripheral surface of the core tube (1) with the outer tubes (3A) and (3B) is deformed into a concave shape corresponding to the outer peripheral surface shape of the outer tubes (3A) and (3B). The heat exchanger according to claim 1, wherein: 水通路(2)を形成する芯管(1)と、該芯管(1)の外周囲に巻成して設けられ、上記水通路(2)の通路断面積よりも小さな通路断面積を有する冷媒通路(4A),(4B)を形成する外管(3A),(3B)とを備えてなる熱交換器の製造方法であって、上記芯管(1)の外周に上記外管(3A),(3B)を巻成した後、上記芯管(1)を拡管することにより、上記外管(3A),(3B)が、上記芯管(1)の外周面に所定値以上の締付け力を伴って一体に巻成されるようにしたことを特徴とする熱交換器の製造方法。A core tube (1) forming a water passage (2), and wound around the outer periphery of the core tube (1) and provided with a passage cross-sectional area smaller than the passage cross-sectional area of the water passage (2). A method of manufacturing a heat exchanger comprising outer tubes (3A) and (3B) forming refrigerant passages (4A) and (4B), wherein the outer tube (3A) is provided on the outer periphery of the core tube (1). ) And (3B) are wound, and then the core tube (1) is expanded so that the outer tubes (3A) and (3B) are fastened to the outer peripheral surface of the core tube (1) by a predetermined value or more. A method for manufacturing a heat exchanger, wherein the heat exchanger is integrally wound with force. 芯管(1)の拡管は、高圧の液体ポンプ(6)を使用し、密封した芯管(1)内の水通路(2)に所定値以上の高圧力で液体を供給することにより、行うようにしたことを特徴とする熱交換器の製造方法。Expansion of the core pipe (1) is performed by using a high-pressure liquid pump (6) and supplying a liquid at a high pressure equal to or higher than a predetermined value to a water passage (2) in the sealed core pipe (1). A method for manufacturing a heat exchanger. 芯管(1)の拡管は、芯管(1)内の水通路(2)の径よりも大きい外径のダイス5を使用し、該ダイス5を上記芯管(1)内の水通路(2)に圧挿することにより、行うようにしたことを特徴とする熱交換器の製造方法。For expanding the core tube (1), a die 5 having an outer diameter larger than the diameter of the water passage (2) in the core tube (1) is used, and the die 5 is connected to the water passage ( 2) A method for manufacturing a heat exchanger, wherein the method is performed by press-fitting.
JP2002257338A 2002-09-03 2002-09-03 Heat exchanger and manufacturing method thereof Expired - Fee Related JP4206712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002257338A JP4206712B2 (en) 2002-09-03 2002-09-03 Heat exchanger and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257338A JP4206712B2 (en) 2002-09-03 2002-09-03 Heat exchanger and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004093057A true JP2004093057A (en) 2004-03-25
JP4206712B2 JP4206712B2 (en) 2009-01-14

Family

ID=32062256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257338A Expired - Fee Related JP4206712B2 (en) 2002-09-03 2002-09-03 Heat exchanger and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4206712B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284009A (en) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp Method of manufacturing twisted tube-type heat exchanger
JP2007326141A (en) * 2006-06-09 2007-12-20 Mitsubishi Electric Corp Method of manufacturing spiral multistage type heat exchanger and spiral multistage type heat exchanger
JP2009047394A (en) * 2007-08-22 2009-03-05 Mitsubishi Electric Corp Manufacturing method of twisted tube-type heat exchanger
JP2010159935A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Method for manufacturing twisted pipe type heat exchanger, and outdoor unit
JP2019129085A (en) * 2018-01-25 2019-08-01 新熱工業株式会社 Heating element, fluid heater, and heating element manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284009A (en) * 2005-03-31 2006-10-19 Mitsubishi Electric Corp Method of manufacturing twisted tube-type heat exchanger
JP2007326141A (en) * 2006-06-09 2007-12-20 Mitsubishi Electric Corp Method of manufacturing spiral multistage type heat exchanger and spiral multistage type heat exchanger
JP4699945B2 (en) * 2006-06-09 2011-06-15 三菱電機株式会社 Manufacturing method of spiral multistage heat exchanger and spiral multistage heat exchanger
JP2009047394A (en) * 2007-08-22 2009-03-05 Mitsubishi Electric Corp Manufacturing method of twisted tube-type heat exchanger
JP2010159935A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Method for manufacturing twisted pipe type heat exchanger, and outdoor unit
JP2019129085A (en) * 2018-01-25 2019-08-01 新熱工業株式会社 Heating element, fluid heater, and heating element manufacturing method

Also Published As

Publication number Publication date
JP4206712B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
US7921558B2 (en) Non-cylindrical refrigerant conduit and method of making same
CN100520269C (en) Double-tube heat exchanger and method of producing the same
JP6029686B2 (en) Double tube heat exchanger and refrigeration cycle equipment
JP2003148889A (en) Heat exchanger and its manufacturing method
JP5094771B2 (en) Manufacturing method of heat exchanger and air conditioner using the heat exchanger
JP2003329376A (en) Double tube type heat exchanger
JP2012097920A (en) Heat exchanger
JP2009138909A (en) Pipe joint device
JP2004190922A (en) Heat exchanger
JP4206712B2 (en) Heat exchanger and manufacturing method thereof
JP4440574B2 (en) Double tube heat exchanger and manufacturing method thereof
JP5709733B2 (en) Double pipe
JP5404589B2 (en) Twisted tube heat exchanger
JP2008107013A (en) Heat transfer tube having leakage detecting mechanism and heat exchanger using the same
JP2006162245A (en) High pressure header and heat exchanger and method of making the same
JP2007177848A (en) Piping
JP2003156291A (en) Heat exchanger
JP6211330B2 (en) Manufacturing method of triple tube heat exchanger
JP2005321122A (en) Tubular type heat exchanger
KR100558819B1 (en) A return-bend connecting method of a heat exchanger
KR20110101399A (en) Dual tube and manufacturing method for heat exchange of air conditioner
JPH10197186A (en) Heat exchanger
JP2002364989A (en) Method for manufacturing heat exchanger
JP2004239486A (en) Heat exchanger and its manufacturing method
JP4216422B2 (en) Heat exchanger and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees