JP6029686B2 - Double tube heat exchanger and refrigeration cycle equipment - Google Patents

Double tube heat exchanger and refrigeration cycle equipment Download PDF

Info

Publication number
JP6029686B2
JP6029686B2 JP2014551768A JP2014551768A JP6029686B2 JP 6029686 B2 JP6029686 B2 JP 6029686B2 JP 2014551768 A JP2014551768 A JP 2014551768A JP 2014551768 A JP2014551768 A JP 2014551768A JP 6029686 B2 JP6029686 B2 JP 6029686B2
Authority
JP
Japan
Prior art keywords
tube
heat transfer
transfer area
heat exchanger
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014551768A
Other languages
Japanese (ja)
Other versions
JPWO2014091558A1 (en
Inventor
悟 梁池
悟 梁池
加藤 央平
央平 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6029686B2 publication Critical patent/JP6029686B2/en
Publication of JPWO2014091558A1 publication Critical patent/JPWO2014091558A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/20Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/105Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being corrugated elements extending around the tubular elements

Description

本発明は、異なる管径を持つ円管を組み合わせて二つの流路を形成する二重管式熱交換器および二重管式熱交換器を使用した冷凍サイクル装置に関する。   The present invention relates to a double pipe heat exchanger that forms two flow paths by combining circular pipes having different pipe diameters and a refrigeration cycle apparatus using the double pipe heat exchanger.

二重管式熱交換器は、直径の大きな円管(以降、外管と記述)に、直径の小さな円管(以降、内管と記述)を挿入し、内管の内部を第一流路とし、内管の外側且つ外管の内側の部分を第二流路とし、第一流路内の第一流体と、第二流路内の第二流体との間で熱交換を行うものである。   A double-pipe heat exchanger has a circular pipe with a small diameter (hereinafter referred to as an inner pipe) inserted into a circular pipe with a large diameter (hereinafter referred to as an outer pipe), and the inside of the inner pipe as the first flow path. The portion outside the inner tube and inside the outer tube is the second flow path, and heat exchange is performed between the first fluid in the first flow path and the second fluid in the second flow path.

また、かかる二重管式熱交換器において、伝熱性能を高める工夫としては、例えば、特許文献1に開示された構成がある。すなわち、特許文献1には、円筒状の内管の外側と円筒状の外管の内側との間にある環状の第二流路内に、横断面が多葉状の伝熱面積拡大管を挿入し、伝熱面積の拡大効果により伝熱性能を向上させる方法が提案されている。   Moreover, in this double tube heat exchanger, as a device for improving the heat transfer performance, for example, there is a configuration disclosed in Patent Document 1. That is, in Patent Document 1, a heat transfer area expansion tube having a multi-leaf cross section is inserted into an annular second flow channel between the outside of the cylindrical inner tube and the inside of the cylindrical outer tube. And the method of improving heat-transfer performance by the expansion effect of a heat-transfer area is proposed.

特開2012−063067号公報JP 2012-063067 A

上述した特許文献1には、伝熱面積の拡大についての工夫が開示されているに過ぎない。ここで、本発明者らは、二相冷媒を熱交換させるにあたって好適に熱伝達を行うことに着目する。   Patent Document 1 described above merely discloses a device for expanding the heat transfer area. Here, the present inventors pay attention to performing heat transfer suitably in exchanging heat of the two-phase refrigerant.

本発明は、これに鑑みてなされたものであり、第二流路に二相流が流れる場合に、熱交換性能を高めることができる二重管式熱交換器等を提供することを目的とする。   This invention is made in view of this, and when a two-phase flow flows through a 2nd flow path, it aims at providing the double pipe type heat exchanger etc. which can improve heat exchange performance. To do.

上述した目的を達成するため、本発明の二重管式熱交換器は、外管と、前記外管の内側に挿入され、該外管との間で環状領域を形成すると共に、内側に第一流路を形成する内管と、径方向に関する凹凸を有し、前記外管の内側であって前記内管の外側に配置され、前記環状領域に第二流路を形成する伝熱面積拡大管とを備え、前記伝熱面積拡大管の内面のうち前記外管の内面に密着した該伝熱面積拡大管の部分の内面と、前記外管の内面のうち前記伝熱面積拡大管の外面と協働して前記第二流路を画定する部分とをそれぞれ、溝非形成範囲とし、該溝非形成範囲は、溝無し面であり、溝形成候補範囲が、前記伝熱面積拡大管の内面のうち前記内管の外面と協働して前記第二流路を画定する部分から前記溝非形成範囲を除いた部分と、前記伝熱面積拡大管の外面のうち前記外管の内面と協働して前記第二流路を画定する部分と、前記内管の外面のうち前記伝熱面積拡大管の内面と協働して前記第二流路を画定する部分とから成り、前記溝形成候補範囲の少なくとも一部又は全部には、流れ方向に沿って延びる溝が形成されている。   In order to achieve the above-mentioned object, the double-tube heat exchanger of the present invention is inserted into the outer tube and the inner side of the outer tube, forms an annular region between the outer tube and the inner side. An inner pipe that forms one flow path, and a heat transfer area expansion pipe that has irregularities in the radial direction, is arranged inside the outer pipe and outside the inner pipe, and forms a second flow path in the annular region An inner surface of the portion of the heat transfer area expansion tube that is in close contact with the inner surface of the outer tube of the inner surface of the heat transfer area expansion tube, and an outer surface of the heat transfer area expansion tube of the inner surface of the outer tube The portions defining the second flow path in cooperation with each other are defined as non-groove formation ranges, the non-groove formation ranges are non-groove surfaces, and the groove formation candidate ranges are the inner surfaces of the heat transfer area expansion tubes. A portion of the second pipe defining the second flow path in cooperation with the outer surface of the inner tube, and a portion excluding the groove non-forming range, and the heat transfer A part of the outer surface of the product expansion pipe that cooperates with the inner surface of the outer pipe to define the second flow path, and a part of the outer surface of the inner pipe that cooperates with the inner surface of the heat transfer area expansion pipe. A groove extending in the flow direction is formed in at least a part or all of the groove formation candidate range.

本発明によれば、第二流路に二相流が流れる場合に、熱交換性能を高めることができる。   According to the present invention, heat exchange performance can be enhanced when a two-phase flow flows in the second flow path.

本発明の実施の形態1に係る二重管式熱交換器の内部構造を管軸と直交する向きで示す図である。It is a figure which shows the internal structure of the double pipe | tube type heat exchanger which concerns on Embodiment 1 of this invention in the direction orthogonal to a pipe axis. 図1のII-II線による二重管式熱交換器の断面図である。It is sectional drawing of the double tube | pipe type heat exchanger by the II-II line | wire of FIG. 図2における第二流路を拡大して示す図である。It is a figure which expands and shows the 2nd flow path in FIG. 図3の部分に関し、説明のため外管、伝熱面積拡大管及び内管を相互に分離して示す図である。It is a figure which isolate | separates and shows an outer tube | pipe, a heat-transfer area expansion tube, and an inner tube | pipe for the part of FIG. 二重管式熱交換器を使用した冷凍サイクル装置の実施例1を示す図である。It is a figure which shows Example 1 of the refrigerating-cycle apparatus which uses a double tube type heat exchanger. 二重管式熱交換器を使用した冷凍サイクル装置の実施例2を示す図である。It is a figure which shows Example 2 of the refrigerating-cycle apparatus which uses a double tube type heat exchanger. 二重管式熱交換器を使用した冷凍サイクル装置の実施例3を示す図である。It is a figure which shows Example 3 of the refrigerating-cycle apparatus which uses a double tube type heat exchanger. 二重管式熱交換器を使用した冷凍サイクル装置の実施例4を示す図である。It is a figure which shows Example 4 of the refrigerating-cycle apparatus using a double tube type heat exchanger. 本実施の形態2に関する、図3と同態様の図である。It is a figure of the same aspect as FIG. 3 regarding this Embodiment 2. FIG. 本実施の形態3に関する、図3と同態様の図である。It is a figure of the same aspect as FIG. 3 regarding this Embodiment 3. FIG.

以下、本発明に係る実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。   Embodiments according to the present invention will be described below with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.

実施の形態1.
図1は、本発明の実施の形態1に係る二重管式熱交換器の内部構造を管軸と直交する向きで示す図であり、図2は、図1のII-II線による二重管式熱交換器の断面図である。なお、図の明瞭性を優先し、図1には、後述する伝熱面積拡大管の図示を省略している。二重管式熱交換器1は、相対的に直径の大きな円管である外管3の内側に、相対的に直径の小さな円管である内管5を同心的に挿入した二重管構造を有している。内管5の内側空間は、第一流路7として機能する。一方、内管5の外側であって外管3の内側である環状領域9には、伝熱面積拡大管11が収容されている。
Embodiment 1 FIG.
FIG. 1 is a view showing the internal structure of a double-pipe heat exchanger according to Embodiment 1 of the present invention in a direction orthogonal to the tube axis, and FIG. 2 is a double view taken along line II-II in FIG. It is sectional drawing of a tubular heat exchanger. In addition, priority is given to the clarity of the figure, and in FIG. The double tube heat exchanger 1 has a double tube structure in which an inner tube 5 that is a relatively small diameter circular tube is inserted concentrically inside an outer tube 3 that is a relatively large diameter circular tube. have. The inner space of the inner tube 5 functions as the first flow path 7. On the other hand, a heat transfer area expansion tube 11 is accommodated in an annular region 9 outside the inner tube 5 and inside the outer tube 3.

伝熱面積拡大管11は、径方向に関する相対的な凹凸としての複数の凸部13及び複数の凹部15を有している。複数の凸部13は、図2の横断面に示されるように、伝熱面積拡大管11における径方向外側に向け突出するように放射状に設けられている。また、複数の凸部13は、周方向にほぼ等間隔で配置されている。一方、複数の凹部15は、それぞれが、対応する一対の凸部13における周方向の間に位置している。これら凹部15もまた、周方向にほぼ等間隔で位置している。よって、伝熱面積拡大管11全体でみると、複数の凸部13と複数の凹部15とが周方向に交互に位置している。   The heat transfer area expansion tube 11 has a plurality of convex portions 13 and a plurality of concave portions 15 as relative irregularities in the radial direction. As shown in the cross section of FIG. 2, the plurality of convex portions 13 are provided radially so as to protrude outward in the radial direction of the heat transfer area expansion tube 11. Further, the plurality of convex portions 13 are arranged at substantially equal intervals in the circumferential direction. On the other hand, each of the plurality of recesses 15 is located between the circumferential directions of the corresponding pair of protrusions 13. These recesses 15 are also located at substantially equal intervals in the circumferential direction. Accordingly, when viewed as a whole of the heat transfer area expansion tube 11, the plurality of convex portions 13 and the plurality of concave portions 15 are alternately positioned in the circumferential direction.

本発明では、伝熱面積拡大管に関する図2の横断面においてみた凸部の凸形状及び凹部の凹形状は、様々な態様が考えられるが、一例として、本実施の形態1では次のとおりである。伝熱面積拡大管11は、複数の外側密着部17と、複数の内側密着部19と、複数の連続部21とを含んでいる。図2に示されるように、伝熱面積拡大管11の外側密着部17の外面17aと外管3の内面3bとは密着しており、特に本例では、外面17aと内面3bとが面接触している。すなわち、伝熱面積拡大管11の外側密着部17の外面17aは、外管3の内面3bとほぼ同一の湾曲を有している。同様に、伝熱面積拡大管11の内側密着部19の内面19bと内管5の外面5aとは密着しており、特に本例では、内面19bと外面5aとが面接触している。すなわち、伝熱面積拡大管11の内側密着部19の内面19bは、内管5の外面5aとほぼ同一の湾曲を有している。なお、この同一の湾曲状態は、外管3、内管5、伝熱面積拡大管11それぞれの単体状態で得られていてもよいし、二重管式熱交換器1の中心側あるいは半径方向外側から何らかの力の付与を伴う組み立てプロセスの終了した状態で得られていてもよい。   In the present invention, various forms of the convex shape of the convex portion and the concave shape of the concave portion seen in the cross section of FIG. 2 relating to the heat transfer area expansion tube can be considered, but as an example, the first embodiment is as follows. is there. The heat transfer area expansion tube 11 includes a plurality of outer contact portions 17, a plurality of inner contact portions 19, and a plurality of continuous portions 21. As shown in FIG. 2, the outer surface 17a of the outer contact portion 17 of the heat transfer area expansion tube 11 and the inner surface 3b of the outer tube 3 are in close contact, and in this example, the outer surface 17a and the inner surface 3b are in surface contact. doing. That is, the outer surface 17 a of the outer contact portion 17 of the heat transfer area expanding tube 11 has substantially the same curvature as the inner surface 3 b of the outer tube 3. Similarly, the inner surface 19b of the inner contact portion 19 of the heat transfer area expanding tube 11 and the outer surface 5a of the inner tube 5 are in close contact, and in particular, in this example, the inner surface 19b and the outer surface 5a are in surface contact. That is, the inner surface 19 b of the inner contact portion 19 of the heat transfer area expanding tube 11 has substantially the same curvature as the outer surface 5 a of the inner tube 5. The same curved state may be obtained in the single state of each of the outer tube 3, the inner tube 5, and the heat transfer area expansion tube 11, or the center side or the radial direction of the double tube heat exchanger 1. You may obtain in the state which the assembly process accompanied by provision of some force from the outer side was completed.

連続部21はそれぞれ、隣り合う外側密着部17と内側密着部19との間に位置している。本実施の形態では、複数の外側密着部17は周方向に等間隔で位置しており、複数の内側密着部19もまた周方向に等間隔で位置している。伝熱面積拡大管11全体を通してみると、周方向に、外側密着部17、連続部21、内側密着部19、連続部21の順の配置態様が繰り返されている。なお、凸部13及び凹部15は明確な境界を有するものではなく、凸部13は、外側密着部17と連続部21の半径方向外側寄りの部分とで構成され、凹部15は、内側密着部19と連続部21の半径方向内側寄りの部分とで構成されている。   Each of the continuous portions 21 is located between the adjacent outer close contact portion 17 and the inner close contact portion 19. In the present embodiment, the plurality of outer contact portions 17 are positioned at equal intervals in the circumferential direction, and the plurality of inner contact portions 19 are also positioned at equal intervals in the circumferential direction. When viewed through the entire heat transfer area expansion tube 11, the arrangement pattern of the outer contact portion 17, the continuous portion 21, the inner contact portion 19, and the continuous portion 21 is repeated in the circumferential direction. Note that the convex portion 13 and the concave portion 15 do not have a clear boundary, and the convex portion 13 is constituted by an outer contact portion 17 and a portion closer to the outer side in the radial direction of the continuous portion 21, and the concave portion 15 is an inner contact portion. 19 and a portion closer to the inside in the radial direction of the continuous portion 21.

前述した環状領域9のうち、凸部13の内側及び凹部15の外側は、第二流路23として機能する。すなわち、伝熱面積拡大管11により環状領域9内に第二流路23が画定される。   In the annular region 9 described above, the inside of the convex portion 13 and the outside of the concave portion 15 function as the second flow path 23. That is, the second flow path 23 is defined in the annular region 9 by the heat transfer area expanding tube 11.

より詳細には、第二流路23は、二つの態様の部分を含んでおり、第一の態様の部分は、外側密着部17の内面17bと、対応する一対の連続部21の内面21bと、内管5の外面5aとで画定されている。また、第二の態様の部分は、内側密着部19の外面19aと、対応する一対の連続部21の外面21aと、外管3の内面3bとで画定されている。第一の態様の部分と、第二の態様の部分とは、周方向に交互に並んでいる。   More specifically, the second flow path 23 includes two portions, and the first portion includes the inner surface 17b of the outer contact portion 17 and the corresponding inner surfaces 21b of the pair of continuous portions 21. And the outer surface 5a of the inner tube 5. Moreover, the part of a 2nd aspect is demarcated by the outer surface 19a of the inner side contact | adherence part 19, the outer surface 21a of a corresponding pair of continuous part 21, and the inner surface 3b of the outer tube | pipe 3. As shown in FIG. The parts of the first aspect and the parts of the second aspect are alternately arranged in the circumferential direction.

このような構成において、第一流路7内には第一流体が流通され、第二流路23には第二流体が流通される。第一流体と第二流体とは温度が異なり、内管5及び伝熱面積拡大管11の熱伝導を介して、第一流体と第二流体との間で熱交換が行われる。   In such a configuration, the first fluid is circulated in the first flow path 7, and the second fluid is circulated in the second flow path 23. The first fluid and the second fluid have different temperatures, and heat exchange is performed between the first fluid and the second fluid via the heat conduction of the inner tube 5 and the heat transfer area expansion tube 11.

一般に、交換熱量Q、伝熱面積A、熱伝達率K、第一流体及び第二流体の温度差dT、の間には、式(1)に示す関係がある。   In general, there is a relationship represented by the equation (1) among the exchange heat quantity Q, the heat transfer area A, the heat transfer coefficient K, and the temperature difference dT between the first fluid and the second fluid.

Figure 0006029686
Figure 0006029686

また、熱伝達率Kは、式(2)で表すことができる。   Moreover, the heat transfer coefficient K can be represented by Formula (2).

Figure 0006029686
Figure 0006029686

なお、各表記の意味は次のとおりである。α1:流体1の熱伝達率、d1:流路1の水力直径、α2:流体2の熱伝達率、d2:流路2の水力直径、λ:内管の熱伝導率、dio:内管の外径、doi:内管の内径、R:熱抵抗   The meaning of each notation is as follows. α1: heat transfer coefficient of fluid 1, d1: hydraulic diameter of flow path 1, α2: heat transfer coefficient of fluid 2, d2: hydraulic diameter of flow path 2, λ: thermal conductivity of inner pipe, dio: inner pipe Outer diameter, doi: inner diameter of inner tube, R: thermal resistance

上述した伝熱面積拡大管11は、内管5と接触することでフィンとして作用するため、伝熱面積を拡大することができ、第一流体及び第二流体の交換熱量を大きくすることができる。   Since the heat transfer area expansion tube 11 described above acts as a fin by contacting the inner tube 5, the heat transfer area can be expanded, and the exchange heat amount of the first fluid and the second fluid can be increased. .

ここで、第二流路23に気液二相流が流れる場合の冷媒の流動状態について、図3及び図4も参照しながら説明する。図3は、図2と同態様の図であり第二流路を拡大して示す図であり、図4は、図3の部分に関し、説明のため外管、伝熱面積拡大管及び内管を相互に分離して示す図である。ここで、一般に、二相流のうち、熱伝達率の高い液冷媒は管壁に密着し、熱伝達率の低いガス冷媒は管壁から離れた部位を流れる。つまり、図3に示す符号3b,5a,17b,19a,21a,21bで示す壁面に液冷媒が集中する。   Here, the flow state of the refrigerant when the gas-liquid two-phase flow flows in the second flow path 23 will be described with reference to FIGS. 3 and 4 as well. FIG. 3 is a view of the same mode as FIG. 2 and is an enlarged view of the second flow path, and FIG. 4 relates to the portion of FIG. It is a figure which isolate | separates and shows. Here, in general, in the two-phase flow, the liquid refrigerant having a high heat transfer coefficient is in close contact with the tube wall, and the gas refrigerant having a low heat transfer coefficient flows through a portion away from the tube wall. That is, the liquid refrigerant is concentrated on the wall surfaces indicated by reference numerals 3b, 5a, 17b, 19a, 21a, and 21b shown in FIG.

そこで、本発明では、次のような溝非形成範囲と溝形成候補範囲とを設定し、溝非形成範囲は溝なし面とし、溝形成候補範囲の少なくとも一部又は全部に、流れ方向に沿って延びる溝を形成している。本実施の形態1は、そのうちの、溝形成候補範囲の全部に溝を形成した場合の例である。   Therefore, in the present invention, the following groove non-formation range and groove formation candidate range are set, the groove non-formation range is a groove-free surface, and at least part or all of the groove formation candidate range is along the flow direction. A groove extending in the direction is formed. The first embodiment is an example in which grooves are formed in the entire groove formation candidate range.

溝非形成範囲と溝形成候補範囲との詳細について説明する。具体的には、伝熱面積拡大管11の内面のうちでも外管3の内面3bに密着した伝熱面積拡大管11の部分の内面(外側密着部17の内面17b)が溝非形成範囲である。さらに、外管3の内面3bのうち伝熱面積拡大管11の外面と協働して第二流路23を画定する部分も溝非形成範囲である。これら溝非形成範囲それぞれには、後述する溝25を形成しない。   Details of the groove non-forming range and the groove forming candidate range will be described. Specifically, the inner surface (the inner surface 17b of the outer contact portion 17) of the portion of the heat transfer area expanding tube 11 that is in close contact with the inner surface 3b of the outer tube 3 in the inner surface of the heat transfer area expanding tube 11 is within the groove non-forming range. is there. Furthermore, the part which demarcates the 2nd flow path 23 in cooperation with the outer surface of the heat-transfer area expansion tube 11 among the inner surfaces 3b of the outer tube 3 is also a groove | channel non-formation range. A groove 25 described later is not formed in each of these groove non-formation ranges.

また、溝形成候補範囲は、伝熱面積拡大管11の内面のうち内管5の外面5aと協働して第二流路23を画定する部分から前述の溝非形成範囲(外側密着部17の内面17b)を除いた部分(連続部21の内面21b)と、伝熱面積拡大管11の外面のうち外管3の内面3bと協働して第二流路23を画定する部分(連続部21の外面21a及び内側密着部19の外面19a)と、内管5の外面5aのうち伝熱面積拡大管11の内面と協働して第二流路23を画定する部分とから成る。   Further, the groove formation candidate range is from the portion defining the second flow path 23 in cooperation with the outer surface 5a of the inner tube 5 in the inner surface of the heat transfer area expanding tube 11 to the aforementioned groove non-forming range (outer contact portion 17). Of the heat transfer area expanding tube 11 and the portion defining the second flow path 23 in cooperation with the inner surface 3b of the outer tube 3 (continuous). The outer surface 21a of the portion 21 and the outer surface 19a of the inner contact portion 19) and the portion of the outer surface 5a of the inner tube 5 that defines the second flow path 23 in cooperation with the inner surface of the heat transfer area expansion tube 11.

本実施の形態1では、上記のように溝非形成範囲には溝を形成せず、且つ、溝形成候補範囲の全部に溝を形成しており、さらに具体的には次のとおりである。外側密着部17及び一対の連続部21と協働して第二流路23を画定する内管5の外面5aの部分と、伝熱面積拡大管11の内側密着部19の外面19aと、連続部21の外面21a及び内面21bとに溝25を形成する。また、外側密着部17の内面17bと、内側密着部19及び一対の連続部21と協働して第二流路23を画定する外管3の内面3bの部分とは、溝無し面としておく。なお、本発明として特に限定されるものではないが、本実施の形態1では、伝熱面積拡大管11の外側密着部17の外面17aと、その外面17aに密着する外管3の内面3bの部分とを、溝無し面とし、さらに、内側密着部19の内面19bと、その内面19bに密着する内管5の外面5aの部分とを、溝無し面としている。   In the first embodiment, as described above, no groove is formed in the non-groove formation range, and the groove is formed in the entire groove formation candidate range, and more specifically, as follows. A portion of the outer surface 5a of the inner tube 5 that defines the second flow path 23 in cooperation with the outer contact portion 17 and the pair of continuous portions 21, and an outer surface 19a of the inner contact portion 19 of the heat transfer area expanding tube 11 are continuous. Grooves 25 are formed in the outer surface 21 a and the inner surface 21 b of the part 21. Further, the inner surface 17b of the outer contact portion 17 and the inner surface 3b portion of the outer tube 3 that defines the second flow path 23 in cooperation with the inner contact portion 19 and the pair of continuous portions 21 are set as groove-free surfaces. . Although not particularly limited as the present invention, in the first embodiment, the outer surface 17a of the outer contact portion 17 of the heat transfer area expansion tube 11 and the inner surface 3b of the outer tube 3 that is in close contact with the outer surface 17a. The portion is a grooveless surface, and the inner surface 19b of the inner contact portion 19 and the outer surface 5a portion of the inner tube 5 that is in close contact with the inner surface 19b are grooveless surfaces.

溝25は、冷媒を流れ方向へ円滑に流すために、流れ方向に沿って延びる態様で形成する。なお、図3及び図4における溝は模式的に描いたものであり、また、図2では、図の明瞭性を優先し溝の図示を省略している。   The groove 25 is formed so as to extend along the flow direction in order to smoothly flow the refrigerant in the flow direction. Note that the grooves in FIGS. 3 and 4 are schematically drawn, and in FIG. 2, the illustration of the grooves is omitted for the sake of clarity of the drawings.

なお、伝熱面積拡大管11は、プレス成形や引き抜き加工で成形することが考えられるため、加工を簡便にするには、プレス成形時や引き抜き加工時に同時に溝25を成形する。また、伝熱面積拡大管11は、溝25が形成された伝熱面積拡大管11を、外管3と内管5との間の環状領域9に挿入し、外管3を縮管するか又は内管5を拡管するかによって、外管3及び内管5に支持される。   In addition, since it is possible to shape | mold the heat-transfer area expansion pipe | tube 11 by press molding or a drawing process, in order to simplify a process, the groove | channel 25 is shape | molded simultaneously at the time of a press molding or a drawing process. Further, the heat transfer area expansion tube 11 is configured such that the heat transfer area expansion tube 11 in which the groove 25 is formed is inserted into the annular region 9 between the outer tube 3 and the inner tube 5 to contract the outer tube 3. Or it is supported by the outer tube 3 and the inner tube 5 depending on whether the inner tube 5 is expanded.

あるいは、さらに確実に内管5及び外管3と伝熱面積拡大管11とを密着させる仕方として、それぞれの接触面をロウ付けして接合する態様も好適である。具体的には、伝熱面積拡大管11を外管3及び内管5に組み付けた後、接触面にロウ材を塗布し、炉中ロウ付けなどにより、ロウ材を溶融させて、接触面をロウ付けしてもよい。また、伝熱面積拡大管11を内管5及び外管3に組み付けた後にロウ材を塗布することが困難な場合は、伝熱面積拡大管11に予めロウ材を塗布したクラッド材を使用することでロウ付けしてもよいだろう。   Alternatively, a mode in which the inner pipe 5 and the outer pipe 3 and the heat transfer area expansion pipe 11 are brought into close contact with each other is preferably joined by brazing the respective contact surfaces. Specifically, after assembling the heat transfer area expanding tube 11 to the outer tube 3 and the inner tube 5, a brazing material is applied to the contact surface, the brazing material is melted by brazing in a furnace, etc. You may braze. In addition, when it is difficult to apply the brazing material after the heat transfer area expansion tube 11 is assembled to the inner tube 5 and the outer tube 3, a clad material in which the brazing material is previously applied to the heat transfer area expansion tube 11 is used. You can braze it.

以上のように構成された二重管式熱交換器1によれば次のような優れた利点が得られる。内管5の外面5aの所定部及び内側密着部19の外面19aは、第二流路23を画定する部分のうちでも第一流路7に極めて近い部分であり、伝熱面としての有効度が最も高い部分である。また、連続部21は、第二流路23の上述した第一の態様の部分と第二の態様の部分との間にあり、連続部21の内外面は、連続部21にフィンの効果を発揮させ第一の態様の部分と第二の態様の部分との間(第二流路23の内部関係)で、第二流体間での熱交換を行わせる際に有効な伝熱面である。よって、上記のように溝25が形成されていることで、第一流路7に近い内管5の外面5aの所定部及び内管5に密着した内側密着部19の外面19a、並びに、連続部21の内外面に、液冷媒を積極的に集めることができる。また、それと共に、第一流路7から遠く伝熱面として有効度の低い外管3の内面3bの所定部及び外側密着部17の内面17bは、溝無し面としておくことで、相対的に、外面5aの所定部や外面19aよりも液冷媒が集まりにくくし、その反作用的な効果として、外面5aの所定部、外面19a及び連続部21の内外面に液冷媒が集まることを補助している。すなわち、伝熱面として有効度の低い外管3の内面3bの所定部及び外側密着部17の内面17bにも熱伝達率の高い液冷媒が多く供給されてしまうことでその分、伝熱面として有効度の高い外面5aの所定部、外面19a及び連続部21の内外面への液冷媒の供給量が減少してしまうことを抑制している。このように本実施の形態によれば、第二流路に気液二相流が流れる場合にも、伝熱面を有効に活用することで、熱交換性能を高めることができる。   According to the double tube heat exchanger 1 configured as described above, the following excellent advantages can be obtained. The predetermined portion of the outer surface 5a of the inner tube 5 and the outer surface 19a of the inner contact portion 19 are portions that are extremely close to the first flow channel 7 among the portions that define the second flow channel 23, and have an effectiveness as a heat transfer surface. The highest part. Moreover, the continuous part 21 exists between the part of the 1st aspect mentioned above of the 2nd flow path 23, and the part of the 2nd aspect, and the inner and outer surfaces of the continuous part 21 give the effect of a fin to the continuous part 21. It is a heat transfer surface that is effective when heat exchange is performed between the second fluid between the portion of the first embodiment and the portion of the second embodiment (internal relationship of the second flow path 23). . Therefore, the groove 25 is formed as described above, so that the predetermined portion of the outer surface 5a of the inner tube 5 near the first flow path 7, the outer surface 19a of the inner contact portion 19 that is in close contact with the inner tube 5, and the continuous portion. The liquid refrigerant can be actively collected on the inner and outer surfaces of 21. In addition, the predetermined portion of the inner surface 3b of the outer tube 3 and the inner surface 17b of the outer contact portion 17 which are less effective as a heat transfer surface far from the first flow path 7 are relatively groove-less surfaces. The liquid refrigerant is less likely to collect than the predetermined portion of the outer surface 5a and the outer surface 19a, and as a reaction effect, it assists the liquid refrigerant to collect on the predetermined portion of the outer surface 5a, the outer surface 19a and the inner and outer surfaces of the continuous portion 21. . That is, a large amount of liquid refrigerant having a high heat transfer rate is supplied to the predetermined portion of the inner surface 3b of the outer tube 3 and the inner surface 17b of the outer contact portion 17 which are less effective as the heat transfer surface, and accordingly, the heat transfer surface is increased accordingly. As described above, the supply amount of the liquid refrigerant to the predetermined portion of the outer surface 5a having high effectiveness, the outer surface 19a, and the inner and outer surfaces of the continuous portion 21 is suppressed from decreasing. As described above, according to the present embodiment, even when a gas-liquid two-phase flow flows in the second flow path, the heat exchange performance can be enhanced by effectively utilizing the heat transfer surface.

さらに加えて、本実施の形態1では、伝熱面積拡大管11の外側密着部17の外面17aと、その外面17aに密着する外管3の内面3bの部分とが、溝無し面とされ、同様に、内側密着部19の内面19bと、その内面19bに密着する内管5の外面5aの部分とが、溝無し面とされていることで、内管5及び外管3と伝熱面積拡大管11との密着性を高く維持することができ、そればかりではなく、特に内管5と伝熱面積拡大管11との密着性が高いことにより伝熱面積拡大管11による熱伝導の効率を高くでき、伝熱面積拡大管11の存在を効率よく活用することができる。   In addition, in the first embodiment, the outer surface 17a of the outer contact portion 17 of the heat transfer area expanding tube 11 and the inner surface 3b portion of the outer tube 3 that is in close contact with the outer surface 17a are formed as groove-free surfaces. Likewise, the inner surface 19b of the inner contact portion 19 and the outer surface 5a portion of the inner tube 5 that is in close contact with the inner surface 19b are formed as non-grooved surfaces. The adhesiveness with the expansion tube 11 can be maintained high, and not only that, but the heat transfer efficiency by the heat transfer area expansion tube 11 is particularly high due to the high adhesion between the inner tube 5 and the heat transfer area expansion tube 11. And the presence of the heat transfer area expansion pipe 11 can be efficiently utilized.

次に、上述した二重管式熱交換器1を適用した冷凍サイクル装置の実施例について、図5〜図8を参照しながら説明する。   Next, an embodiment of a refrigeration cycle apparatus to which the above-described double tube heat exchanger 1 is applied will be described with reference to FIGS.

冷凍サイクル装置の実施例1として、図5に示された冷凍サイクル装置101は、圧縮機103、凝縮器105、膨張弁107、蒸発器109、上述した二重管式熱交換器1を、回路主要構成要素として有している。二重管式熱交換器1において、凝縮器105出口から(膨張弁107の入口に流入前)の高圧液の冷媒(第二流体)と、蒸発器109出口から(圧縮機103の入口に流入前)の低圧ガスの冷媒(第一流体)との間で熱交換を行う。このように二重管式熱交換器1を利用することで、凝縮器105の入口温度が上がるため暖房時の能力を向上させCOP(能力を入力で除した値)を向上せたり、圧縮機へ液冷媒が戻ることを防止させたりすることができる。   As a first embodiment of the refrigeration cycle apparatus, a refrigeration cycle apparatus 101 shown in FIG. 5 includes a compressor 103, a condenser 105, an expansion valve 107, an evaporator 109, and the double pipe heat exchanger 1 described above. It has as a main component. In the double-pipe heat exchanger 1, the refrigerant (second fluid) of the high-pressure liquid from the outlet of the condenser 105 (before flowing into the inlet of the expansion valve 107) and the refrigerant 109 (flowing into the inlet of the compressor 103) Heat exchange is performed with the refrigerant (first fluid) of the low-pressure gas of the previous). By using the double-pipe heat exchanger 1 in this way, the inlet temperature of the condenser 105 increases, so that the capacity during heating is improved and the COP (value obtained by dividing the capacity by the input) is improved. It is possible to prevent the liquid refrigerant from returning.

次に、冷凍サイクル装置の実施例2として、図6に示された冷凍サイクル装置201は、圧縮機103、凝縮器105、第一膨張弁207a、第二膨張弁207b、蒸発器109、上述した二重管式熱交換器1を、回路主要構成要素として有している。圧縮機103、凝縮器105、第一膨張弁207a及び蒸発器109が、実施例1の場合と同様に、基本的な冷凍サイクル回路を構成している。冷凍サイクル装置201には、さらにバイパス路211が設けられており、このバイパス路211は、第一接続点213aにおいて、凝縮器105の出口から第一膨張弁207aの入口までの間に接続され、第二接続点213bにおいて、蒸発器109の出口から圧縮機103の入口までの間に接続されている。第二膨張弁207bは、バイパス路211に設けられている。   Next, as Example 2 of the refrigeration cycle apparatus, the refrigeration cycle apparatus 201 illustrated in FIG. 6 includes the compressor 103, the condenser 105, the first expansion valve 207a, the second expansion valve 207b, the evaporator 109, and the above-described components. The double tube heat exchanger 1 is provided as a main circuit component. The compressor 103, the condenser 105, the first expansion valve 207a, and the evaporator 109 form a basic refrigeration cycle circuit as in the first embodiment. The refrigeration cycle apparatus 201 is further provided with a bypass path 211, which is connected between the outlet of the condenser 105 and the inlet of the first expansion valve 207a at the first connection point 213a. The second connection point 213b is connected between the outlet of the evaporator 109 and the inlet of the compressor 103. The second expansion valve 207b is provided in the bypass passage 211.

二重管式熱交換器1においては、凝縮器105出口から(第一接続点213aに至る前)の高圧液の冷媒(第一流体)と、バイパス路211の第二膨張弁207b出口からの中圧気液二相の冷媒(第二流体)との間で熱交換を行う。二重管式熱交換器1において熱交換した後の中圧ガスの冷媒が圧縮機103に吸入される。このように二重管式熱交換器を利用することで、第一膨張弁207aより下流の冷媒循環量を減少させることができるため、圧力損失を低減でき、COPを向上できる。   In the double-pipe heat exchanger 1, high-pressure liquid refrigerant (first fluid) from the outlet of the condenser 105 (before reaching the first connection point 213a) and from the outlet of the second expansion valve 207b of the bypass passage 211 Heat exchange is performed with a medium-pressure gas-liquid two-phase refrigerant (second fluid). The medium-pressure gas refrigerant after heat exchange in the double-tube heat exchanger 1 is sucked into the compressor 103. By using the double pipe heat exchanger in this way, the refrigerant circulation amount downstream from the first expansion valve 207a can be reduced, so that pressure loss can be reduced and COP can be improved.

次に、冷凍サイクル装置の実施例3として、図7に示された冷凍サイクル装置301は、圧縮機303、凝縮器105、第一膨張弁207a、第二膨張弁207b、蒸発器109、上述した二重管式熱交換器1を、回路主要構成要素として有している。圧縮機303、凝縮器105、第一膨張弁207a及び蒸発器109が、実施例1の場合と同様に、基本的な冷凍サイクル回路を構成している。   Next, as Example 3 of the refrigeration cycle apparatus, the refrigeration cycle apparatus 301 shown in FIG. 7 includes a compressor 303, a condenser 105, a first expansion valve 207a, a second expansion valve 207b, an evaporator 109, and the above-described components. The double tube heat exchanger 1 is provided as a main circuit component. The compressor 303, the condenser 105, the first expansion valve 207a, and the evaporator 109 constitute a basic refrigeration cycle circuit as in the first embodiment.

二重管式熱交換器1においては、凝縮器105出口から(第一接続点213aに至る前)の高圧液の冷媒(第一流体)と、バイパス路211の第二膨張弁207b出口からの中圧気液二相の冷媒(第二流体)との間で熱交換を行う。そして、二重管式熱交換器1において熱交換した後の中圧ガスの冷媒を、圧縮機303の圧縮部中間にバイパスさせる。このように二重管式熱交換器を利用することで、第一膨張弁207aより下流の冷媒循環量を減少させることができるとともに、圧縮工程を多段で行うことができるために、圧縮機の入力を低下させることができ、COPを向上できる。   In the double-pipe heat exchanger 1, high-pressure liquid refrigerant (first fluid) from the outlet of the condenser 105 (before reaching the first connection point 213a) and from the outlet of the second expansion valve 207b of the bypass passage 211 Heat exchange is performed with a medium-pressure gas-liquid two-phase refrigerant (second fluid). Then, the medium-pressure gas refrigerant after the heat exchange in the double-tube heat exchanger 1 is bypassed to the middle of the compressor section of the compressor 303. By using the double pipe heat exchanger in this way, the amount of refrigerant circulating downstream from the first expansion valve 207a can be reduced and the compression process can be performed in multiple stages. Input can be reduced and COP can be improved.

さらに、図8に示す冷凍サイクル装置401は、二重管式熱交換器1を、基本的な冷凍サイクル回路の凝縮器そのものとして用いたものである。冷凍サイクル装置401は、二重管式熱交換器1において、冷凍サイクル回路の通常の凝縮器の冷媒(第二流体)と、ポンプ415にて送水される水やブラインなどの流体(第一流体)とを熱交換させて、温水を供給するような装置の例である。   Furthermore, the refrigeration cycle apparatus 401 shown in FIG. 8 uses the double-pipe heat exchanger 1 as a condenser itself of a basic refrigeration cycle circuit. The refrigeration cycle apparatus 401 includes a refrigerant (second fluid) of a normal condenser of a refrigeration cycle circuit and a fluid (first fluid) such as water or brine fed by a pump 415 in the double-tube heat exchanger 1. Is an example of an apparatus that supplies hot water by exchanging heat.

実施の形態2.
次に、本発明の実施の形態2について説明する。図9は、本実施の形態2に関する、図3と同態様の図である。本実施の形態2は、以下に説明する部分を除いては、上述した実施の形態1と同様であり、また、図5〜図8の冷凍サイクル装置を構成して実施できることも同様である。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. FIG. 9 is a diagram of the same mode as FIG. The second embodiment is the same as the first embodiment described above except for the parts described below, and it is also the same that the refrigeration cycle apparatus of FIGS. 5 to 8 can be configured and implemented.

二重管式熱交換器51は、溝形成候補範囲の少なくとも一部に、流れ方向に沿って延びる溝25を形成した例である。すなわち、本実施の形態2では、溝形成候補範囲である、内管5の外面5aの上記所定部、内側密着部19の外面19a、及び、連続部21の内外面のうち、図9に示されるように連続部21の内外面だけに溝25を形成している。このような本実施の形態2においても、実施の形態1と同様、伝熱面として有効度の高い連続部21の内外面に液冷媒を効率よく集めることができ、第二流路に気液二相流が流れる場合にも、伝熱面を有効に活用することで、熱交換性能を高めることができる。   The double-pipe heat exchanger 51 is an example in which the groove 25 extending along the flow direction is formed in at least a part of the groove formation candidate range. That is, in the second embodiment, among the predetermined portion of the outer surface 5a of the inner tube 5, the outer surface 19a of the inner contact portion 19, and the inner and outer surfaces of the continuous portion 21, which are groove formation candidate ranges, are shown in FIG. As shown, the groove 25 is formed only on the inner and outer surfaces of the continuous portion 21. In the second embodiment as well, as in the first embodiment, the liquid refrigerant can be efficiently collected on the inner and outer surfaces of the continuous portion 21 having high effectiveness as the heat transfer surface, and the gas and liquid are collected in the second flow path. Even when a two-phase flow flows, the heat exchange performance can be improved by effectively utilizing the heat transfer surface.

実施の形態3.
次に、本発明の実施の形態3について説明する。図10は、本実施の形態3に関する、図3と同態様の図である。本実施の形態3は、以下に説明する部分を除いては、上述した実施の形態1と同様であり、また、図5〜図8の冷凍サイクル装置を構成して実施できることも同様である。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described. FIG. 10 is a diagram of the same mode as FIG. The third embodiment is the same as the above-described first embodiment except for the parts described below, and it is also the same that the refrigeration cycle apparatus of FIGS. 5 to 8 can be configured and implemented.

二重管式熱交換器61もまた、溝形成候補範囲の少なくとも一部に、流れ方向に沿って延びる溝25を形成した例である。本実施の形態3では、溝形成候補範囲である、内管5の外面5aの上記所定部、内側密着部19の外面19a、及び、連続部21の内外面のうち、図10に示されるように内管5の外面5aの上記所定部、及び、内側密着部19の外面19aだけに溝25を形成している。このような本実施の形態3においても、実施の形態1と同様、第二流路に気液二相流が流れる場合にも、伝熱面を有効に活用することで、熱交換性能を高めることができる。   The double tube heat exchanger 61 is also an example in which the groove 25 extending along the flow direction is formed in at least a part of the groove formation candidate range. In the third embodiment, as shown in FIG. 10, among the predetermined portion of the outer surface 5 a of the inner tube 5, the outer surface 19 a of the inner contact portion 19, and the inner and outer surfaces of the continuous portion 21, which are groove formation candidate ranges. Further, a groove 25 is formed only in the predetermined portion of the outer surface 5 a of the inner tube 5 and the outer surface 19 a of the inner contact portion 19. Also in this third embodiment, as in the first embodiment, even when a gas-liquid two-phase flow flows in the second flow path, the heat exchange surface is effectively utilized to enhance the heat exchange performance. be able to.

以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。   Although the contents of the present invention have been specifically described with reference to the preferred embodiments, various modifications can be made by those skilled in the art based on the basic technical idea and teachings of the present invention. It is self-explanatory.

例えば、上述した実施の形態1において、伝熱面積拡大管11の外側密着部17の外面17aにも溝25を形成するように改変することも可能である。このように改変することで、伝熱面積拡大管11の外面全体に対して一様な加工として溝25を設けることとなり、加工の一様性による製作の簡易化を図ることができる。また、そのように改変しても、外管3と密着する伝熱面積拡大管11の外側密着部17の外面17aは、伝熱面としての重要度は低く、伝熱面の活用の観点で本発明の有効性を何ら低めるものではない。すなわち、本発明における伝熱面の有効活用性を好適に維持したまま製作容易性を向上させることができる。   For example, in the first embodiment described above, it is possible to modify the outer surface 17a of the outer contact portion 17 of the heat transfer area expansion tube 11 so that the groove 25 is formed. By modifying in this way, the groove 25 is provided as a uniform process on the entire outer surface of the heat transfer area expansion tube 11, and the manufacturing can be simplified due to the uniformity of the process. Moreover, even if it modifies in that way, the outer surface 17a of the outer side contact | adherence part 17 of the heat-transfer area expansion tube 11 closely_contact | adhered with the outer tube | pipe 3 is low in importance as a heat-transfer surface, and is used from a viewpoint of utilization of a heat-transfer surface. It does not reduce the effectiveness of the present invention. That is, it is possible to improve the ease of manufacturing while suitably maintaining the effective utilization of the heat transfer surface in the present invention.

1,51,61 二重管式熱交換器、3 外管、5 内管、7 第一流路、9 環状領域、11 伝熱面積拡大管、23 第二流路、25 溝、101,201,301,401 冷凍サイクル装置。   1, 51, 61 Double tube heat exchanger, 3 outer tube, 5 inner tube, 7 first flow path, 9 annular region, 11 heat transfer area expansion tube, 23 second flow channel, 25 grooves, 101, 201, 301,401 Refrigeration cycle apparatus.

Claims (8)

外管と、
前記外管の内側に挿入され、該外管との間で環状領域を形成すると共に、内側に第一流路を形成する内管と、
径方向に関する凹凸を有し、前記外管の内側であって前記内管の外側に配置され、前記環状領域に第二流路を形成する伝熱面積拡大管とを備え、
前記伝熱面積拡大管の内面のうち前記外管の内面に密着した該伝熱面積拡大管の部分の内面と、前記外管の内面のうち前記伝熱面積拡大管の外面と協働して前記第二流路を画定する部分とがそれぞれ、溝無し面であり、
前記第二流路を形成する壁面のうち、前記伝熱面積拡大管の内面のうち前記内管の外面と協働して前記第二流路を画定する部分から前記溝無し面を除いた部分と、前記伝熱面積拡大管の外面のうち前記外管の内面と協働して前記第二流路を画定する部分と、前記内管の外面のうち前記伝熱面積拡大管の内面と協働して前記第二流路を画定する部分との、一部又は全部には、溝が形成される
二重管式熱交換器。
An outer tube,
An inner tube that is inserted inside the outer tube, forms an annular region with the outer tube, and forms a first flow path on the inner side;
It has unevenness in the radial direction, and is disposed inside the outer tube and outside the inner tube, and includes a heat transfer area expansion tube that forms a second flow path in the annular region,
In cooperation with the inner surface of the heat transfer area expansion tube portion of the inner surface of the heat transfer area expansion tube that is in close contact with the inner surface of the outer tube, and the outer surface of the heat transfer area expansion tube of the inner surface of the outer tube Each of the portions defining the second flow path is a groove-free surface,
Chi sac wall to form said second passage, from the outer surface in cooperation with the portion defining said second flow path in the inner tube of the inner surface of the front Kiden'netsu area larger tube except for the ungrooved surface A portion defining the second flow path in cooperation with the inner surface of the outer tube of the outer surface of the heat transfer area expanding tube, and the inner surface of the heat transfer area expanding tube of the outer surface of the inner tube and the portion defining the second passage cooperate to part or all of the double-pipe heat exchanger in which the groove is formed.
前記溝は、流れ方向に沿って延びる、
請求項1の二重管式熱交換器。
The groove extends along a flow direction;
The double-tube heat exchanger according to claim 1.
前記外管の内面のうち前記伝熱面積拡大管の外面に密着される部分と、前記伝熱面積拡大管の外面のうち前記外管の内面に密着される部分と、前記内管の外面のうち前記伝熱面積拡大管の内面に密着される部分と、前記伝熱面積拡大管の内面のうち前記内管の外面に密着される部分とはそれぞれ、溝無し面である、
請求項1または2の二重管式熱交換器。
Of the inner surface of the outer tube, a portion that is in close contact with the outer surface of the heat transfer area expansion tube, a portion of the outer surface of the heat transfer area expansion tube that is in close contact with the inner surface of the outer tube, and an outer surface of the inner tube Of these, the portion that is in close contact with the inner surface of the heat transfer area expanding tube and the portion of the inner surface of the heat transfer area expanding tube that is in close contact with the outer surface of the inner tube are non-grooved surfaces,
The double-tube heat exchanger according to claim 1 or 2.
前記伝熱面積拡大管に前記溝を形成した後、該伝熱面積拡大管を前記外管と前記内管との間の前記環状領域に挿入し、前記外管を縮管するか又は前記内管を拡管することによって、該伝熱面積拡大管は、該外管及び該内管に支持される、
請求項1〜3の何れか一項の二重管式熱交換器。
After the groove is formed in the heat transfer area expansion tube, the heat transfer area expansion tube is inserted into the annular region between the outer tube and the inner tube, and the outer tube is contracted or the inner tube is expanded. By expanding the tube, the heat transfer area expansion tube is supported by the outer tube and the inner tube.
The double-pipe heat exchanger according to any one of claims 1 to 3.
前記内管及び前記外管と、前記伝熱面積拡大管とは、ロウ付けされている、
請求項1〜4の何れか一項の二重管式熱交換器。
The inner tube and the outer tube, and the heat transfer area expansion tube are brazed,
The double-pipe heat exchanger according to any one of claims 1 to 4.
前記伝熱面積拡大管は、ロウ材を表面に被覆したクラッド材である、
請求項5の二重管式熱交換器。
The heat transfer area expansion tube is a clad material whose surface is coated with a brazing material,
The double-tube heat exchanger according to claim 5.
請求項1〜6の何れか一項の二重管式熱交換器を備え、
前記二重管式熱交換器において冷媒同士で熱交換が行われる、
冷凍サイクル装置。
The double pipe heat exchanger according to any one of claims 1 to 6,
In the double tube heat exchanger, heat exchange is performed between the refrigerants,
Refrigeration cycle equipment.
請求項1〜6の何れか一項の二重管式熱交換器を備え、
前記二重管式熱交換器において、冷媒と、水またはブラインとの間で熱交換が行われる、
冷凍サイクル装置。
The double pipe heat exchanger according to any one of claims 1 to 6,
In the double tube heat exchanger, heat exchange is performed between the refrigerant and water or brine.
Refrigeration cycle equipment.
JP2014551768A 2012-12-11 2012-12-11 Double tube heat exchanger and refrigeration cycle equipment Active JP6029686B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082080 WO2014091558A1 (en) 2012-12-11 2012-12-11 Double-pipe heat exchanger and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP6029686B2 true JP6029686B2 (en) 2016-11-24
JPWO2014091558A1 JPWO2014091558A1 (en) 2017-01-05

Family

ID=50933884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014551768A Active JP6029686B2 (en) 2012-12-11 2012-12-11 Double tube heat exchanger and refrigeration cycle equipment

Country Status (4)

Country Link
US (1) US20150323263A1 (en)
JP (1) JP6029686B2 (en)
CN (1) CN105008839B (en)
WO (1) WO2014091558A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11629800B2 (en) 2020-08-21 2023-04-18 Yutaka Giken Co., Ltd. Double pipe and method for manufacturing same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160001389A (en) * 2014-06-27 2016-01-06 삼성전자주식회사 Refrigerator and method for controlling the same
JP6657613B2 (en) * 2015-06-18 2020-03-04 ダイキン工業株式会社 Air conditioner
WO2017159542A1 (en) * 2016-03-14 2017-09-21 カルソニックカンセイ株式会社 Double pipe
US10302017B2 (en) 2016-04-12 2019-05-28 United Technologies Corporation Light weight component with acoustic attenuation and method of making
US10724131B2 (en) 2016-04-12 2020-07-28 United Technologies Corporation Light weight component and method of making
US10399117B2 (en) 2016-04-12 2019-09-03 United Technologies Corporation Method of making light weight component with internal metallic foam and polymer reinforcement
US10619949B2 (en) * 2016-04-12 2020-04-14 United Technologies Corporation Light weight housing for internal component with integrated thermal management features and method of making
US10335850B2 (en) 2016-04-12 2019-07-02 United Technologies Corporation Light weight housing for internal component and method of making
US10323325B2 (en) 2016-04-12 2019-06-18 United Technologies Corporation Light weight housing for internal component and method of making
US20170356692A1 (en) * 2016-06-08 2017-12-14 Savannah River Nuclear Solutions, Llc Finned Heat Exchanger
CN106965549A (en) * 2017-01-18 2017-07-21 徐志强 Ultrahigh speed hot-rolling
CN108204750A (en) * 2018-02-11 2018-06-26 佛山科学技术学院 A kind of concave surface heat exchanger tube double pipe heat exchanger that interlocks
EP3731610B1 (en) * 2019-04-23 2023-11-15 ABB Schweiz AG Heat exchanging arrangement and subsea electronic system
DE102019207830A1 (en) * 2019-05-28 2020-12-03 Mahle International Gmbh Manufacturing method for manufacturing a heat exchanger arrangement and heat exchanger arrangement for cooling and / or heating a heat exchanger fluid
JP7055826B2 (en) * 2020-02-07 2022-04-18 中西商事株式会社 Double tube structure, support and method of forming double tube structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190765U (en) * 1987-05-21 1988-12-08
JP2000002492A (en) * 1998-06-17 2000-01-07 Zexel Corp Heat exchanger
JP2006207936A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008188599A (en) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd Method of manufacturing heat exchanger
JP2011043289A (en) * 2009-08-21 2011-03-03 Daikin Industries Ltd Heat exchanger and refrigerating device including the same
JP2012189312A (en) * 2011-02-22 2012-10-04 Fuji Electric Retail Systems Co Ltd Heat exchanger

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831247A (en) * 1971-11-22 1974-08-27 United Aircraft Prod Method of metallurgically bonding a internally finned heat exchange structure
JPH0482571U (en) * 1990-11-26 1992-07-17
CN2347133Y (en) * 1998-10-20 1999-11-03 无锡市灵通机械厂 High effective heat transfering tube with inner fins
NL1012676C2 (en) * 1999-07-22 2001-01-23 Spiro Research Bv Method for manufacturing a double-walled heat exchanger tube with leak detection and such a heat exchanger tube.
CN2537923Y (en) * 2002-04-28 2003-02-26 重庆市江北区兴海机电有限责任公司 Composite metal tube for water heater
EP1505360A4 (en) * 2002-05-10 2011-10-05 Usui Kokusai Sangyo Kk Heat transfer pipe and heat exchange incorporating such heat transfer pipe
JP2004093037A (en) * 2002-08-30 2004-03-25 Toyo Radiator Co Ltd Double-pipe heat exchanger
JP3811123B2 (en) * 2002-12-10 2006-08-16 松下電器産業株式会社 Double tube heat exchanger
CN2876678Y (en) * 2006-02-22 2007-03-07 苏权兴 Heat exchanger for heat pump water heater
JP2009162395A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger
CN201449184U (en) * 2009-04-23 2010-05-05 中山市高申节能电器有限公司 Condensed double pipe heat exchanger
CN201628427U (en) * 2009-09-07 2010-11-10 上海汽车空调配件有限公司 Composite pipe structure for air-conditioner pipeline
JP2011112331A (en) * 2009-11-30 2011-06-09 T Rad Co Ltd Heat exchanger for exhaust gas
CN102636052A (en) * 2012-05-11 2012-08-15 江苏亚太轻合金科技股份有限公司 High-efficiency heat exchange coaxial pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190765U (en) * 1987-05-21 1988-12-08
JP2000002492A (en) * 1998-06-17 2000-01-07 Zexel Corp Heat exchanger
JP2006207936A (en) * 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008188599A (en) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd Method of manufacturing heat exchanger
JP2011043289A (en) * 2009-08-21 2011-03-03 Daikin Industries Ltd Heat exchanger and refrigerating device including the same
JP2012189312A (en) * 2011-02-22 2012-10-04 Fuji Electric Retail Systems Co Ltd Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11629800B2 (en) 2020-08-21 2023-04-18 Yutaka Giken Co., Ltd. Double pipe and method for manufacturing same

Also Published As

Publication number Publication date
WO2014091558A1 (en) 2014-06-19
CN105008839A (en) 2015-10-28
US20150323263A1 (en) 2015-11-12
JPWO2014091558A1 (en) 2017-01-05
WO2014091558A9 (en) 2015-08-27
CN105008839B (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6029686B2 (en) Double tube heat exchanger and refrigeration cycle equipment
CN209910459U (en) Heat exchange double-layer sleeve
JP6997703B2 (en) Heat exchanger tubes for heat exchangers, heat exchangers, and how to assemble them
JP2009204166A (en) Double pipe heat exchanger
WO2011156700A2 (en) A micro-channel heat exchanger suitable for heat pump water heater and the manufacturing method
JP2009121758A (en) Heat exchanger and cryogenic system
JP2011021757A (en) Heat exchanger and heat pump system
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
KR20140106552A (en) Fin tube-type heat exchanger
JP2005133999A (en) Heat pump type hot-water supplier
JP5545160B2 (en) Heat exchanger
JP2014224670A (en) Double-pipe heat exchanger
CN205049038U (en) A heat exchange tube and heat exchanger for heat exchanger
JP2014169851A (en) Heat exchanger
CN101889187A (en) Heat exchanger and method of manufacturing the same
JP5063765B2 (en) Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner
AU2003286429B2 (en) Finned tube for heat exchangers, heat exchanger, apparatus for fabricating heat exchanger finned tube and process for fabricating heat exchanger finned tube
JP5656786B2 (en) Manufacturing method of different diameter twisted tube heat exchanger
JP2005024109A (en) Heat exchanger
JP2020531790A (en) Double tube for heat exchange
JP2014035169A (en) Intermediate heat exchanger
CN108626915A (en) The parallel-flow evaporator used on refrigerator/freezer
JP2013002657A (en) Supercooler and its heat conduction acceleration member, and method of manufacturing heat conduction acceleration member
JP5999628B2 (en) Heat exchanger and manufacturing method thereof
JPWO2021245788A5 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161018

R150 Certificate of patent or registration of utility model

Ref document number: 6029686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250