JP2004093037A - Double-pipe heat exchanger - Google Patents

Double-pipe heat exchanger Download PDF

Info

Publication number
JP2004093037A
JP2004093037A JP2002256182A JP2002256182A JP2004093037A JP 2004093037 A JP2004093037 A JP 2004093037A JP 2002256182 A JP2002256182 A JP 2002256182A JP 2002256182 A JP2002256182 A JP 2002256182A JP 2004093037 A JP2004093037 A JP 2004093037A
Authority
JP
Japan
Prior art keywords
diameter pipe
pipe
water
small
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002256182A
Other languages
Japanese (ja)
Inventor
Tatsuya Kikuyama
菊山 辰也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Radiator Co Ltd
Original Assignee
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Radiator Co Ltd filed Critical Toyo Radiator Co Ltd
Priority to JP2002256182A priority Critical patent/JP2004093037A/en
Publication of JP2004093037A publication Critical patent/JP2004093037A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger hardly generating clogging caused by water scale in a water flow passage, concerning a double-pipe heat exchanger wherein a coolant flows in a small diameter pipe and water flows in a large diameter pipe, such as a water heater using high-temperature and high-pressure CO<SB>2</SB>gas as the coolant. <P>SOLUTION: The small diameter pipe (1) and the large diameter pipe (2) are arranged coaxially through a gap on a straight line part of an axis, and the axis of the small diameter pipe (1) is bent meanderingly. In this heat exchanger wherein a heating fluid (3) flows in the small diameter pipe (1) and water (4) to be heated flows in the large diameter pipe (2), a passage sectional area of the water (4) between the small diameter pipe (1) and the large diameter pipe (2) is formed larger on the downstream side where the water (4) flows than on the upstream side. The passage sectional area of the water between the small diameter pipe and the large diameter pipe is formed larger on the downstream side where the water flows than on the upstream side. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートホンプ式給湯器や空調器等に使用される冷媒と水との熱交換を行う二重管型熱交換器において、水側流路中に水スケールによる管詰まりが生じるのを防止するものに関する。
【0002】
【従来の技術】
図11は、加熱用流体3としてCO2 ガスを用いた冷凍サイクルの給湯用熱交換器13である。即ち、吸熱器17と圧縮器16と放熱器と膨張弁18との間をCO2 ガスが流通する。そして放熱器を給湯用熱交換器13とし、CO2 ガスパイプ15に高温高圧の冷媒が流通し、水パイプ14に水4が供給され、両者の間に熱交換を行うものである。
このような給湯用熱交換器(放熱器)13で二重管型のものは、特開昭60−248996号の熱交換器が知られている。この熱交換器は冷媒が流通する小径管を蛇行状に形成し、その小径管の直線部外周に大径の水パイプを被嵌すると共に、各水パイプ間を連結したものである。
【0003】
【発明が解決しようとする課題】
従来の二重管型給湯用熱交換器(放熱器)13は、水パイプの下流側において水スケールが付着し、次第に目詰まりを起こす欠点があった。これを防ぐには、水パイプ全体の直径をより大きくすることが考えられる。ところが、水パイプ全体の直径をより大きくし、その内部に流通する冷媒パイプの直径を同一とすれば、両者間の熱交換性能が低下するという別の問題が生じる。
そこで本発明は熱交換性能を維持しつつ、内部に水スケールが生じ難い二重管型熱交換器を提供することを課題とする。
【0004】
【課題を解決するための手段】
請求項1に記載の本発明は、軸線の直線部で、小径管(1) と大径管(2) とが隙間を介して同軸に配置され、小径管(1) の軸線が蛇行状に曲折され、
小径管(1) に加熱用流体(3) が流通すると共に、大径管(2) に被加熱用の水(4) が流通する熱交換器において、
小径管(1) と大径管(2) との間の水(4) の流路断面積は、前記水(4) の流通する下流側が上流側より大に形成されたことを特徴とする二重管型熱交換器である。
【0005】
請求項2に記載の本発明は、請求項1において、
前記小径管(1) の軸線の直線部で、小径管(1) の外周に中間径管(5) が密着して被嵌され、その中間径管(5) の外周に、その中間径管(5) の両端を除いて、前記大径管(2) が隙間を介して被嵌され、
その大径管(2) の両端と中間径管(5) の外周とが液密に閉塞された二重管型熱交換器である。
【0006】
請求項3に記載の本発明は、請求項1または請求項2において、
前記大径管(2) と、小径管(1) との隙間にインナーフィン(6) が介装された二重管型熱交換器である。
請求項4に記載の本発明は、請求項1または請求項2において、
前記大径管(2) の外周に、互いに離間して多数の攪拌用の小凹部(7) が内面側に曲折形成された二重管型熱交換器である。
【0007】
【発明の実施の形態】
次に、図面に基づいて本発明の実施の形態につき説明する。
図1は本発明の二重管型熱交換器の第1の実施の形態を示し、図2は図1のII−II矢視断面略図である。
この二重管型熱交換器は、一例として給湯器として用いるものである。
この熱交換器は蛇行状に曲折された小径管1と、小径管1の直線部に隙間を開けて同軸に被嵌された大径管2とを有する。大径管2の両端部は閉塞され、小径管1の外周に液密に固定されている。小径管1は、この例ではU字状に曲げたパイプと直線状のパイプとそれらの端部間を連結する短い連結用U字管12とを有する。
【0008】
次に、大径管2は夫々互いに水連結管8によって連結され、最も下流側に位置する大径管2のみの内直径が、他の大径管2の内直径よりも大に形成されている。そして最も上流側の大径管2に入口パイプ9が連通され、最も下流側の大径管2に出口パイプ10か連通されている。そして上流側の入口パイプ9から水4が流入し、水連結管8を介して下流側の大径管2と小径管1との隙間を長手方向に流通し、最下流の大径管2の出口パイプ10から外部に導かれる。
【0009】
また、小径管1には水4の流通する最下流側から高温高圧のCO2 ガス等からなる加熱用流体3が流入し、水4の流通する最も上流側からそれが流出する。そして加熱用流体3と水4との間に熱交換が行われる。このとき水4は上流側から下流側に流通するに従って次第に高温になり、最下流の大径管2では一例として80℃程度に加熱される。
すると、最下流側の大径管2では水酸化カルシウム等の溶解度が低下し、それが析出して大径管2内部に付着し易くなる。しかしながら、最下流側の大径管2の直径は、それ以外の部分の直径よりも大に形成されているから、それらは内部を円滑に流通し目詰まりを起こすことが少ない。さらに大径管2の内直径自体が大に形成されているから、多少の水スケールの付着が内面に存在しても、目詰まりを起こすことがない。
【0010】
次に、図3及び図4は本発明の他の実施の形態を示し、この例が図1のそれと異なる点は、小径管1の直線部に中間径管5が密着して被嵌され、その中間径管5の外周に大径管2が被嵌されたものである。即ち、小径管1の直線部において内面に多数の溝11を有する中間径管5が被嵌され、その状態で小径管1の内面側を拡開することにより、小径管1の外周と中間径管5の内周とを密着固定する。次に、中間径管5の長さよりも短い大径管2を中間径管5の外周に被嵌し、大径管2の両端部と中間径管5の外周との間を閉塞したものである。
このように中間径管5を介して大径管2を被嵌することにより、仮に小径管1に亀裂等が生じても、水4に加熱用流体3が混入するおそれを防止できる。
【0011】
次に、図5及び図6は本発明の第3の実施の形態であり、図5はその一部破断説明図、図6は図5のVI−VI矢視断面略図である。
この例が図3及び図4のそれと異なる点は、中間径管5と大径管2との間にインナーフィン6を介装したことである。このようにすることにより、水4側の伝熱面積を増大させ、熱交換を促進する効果がある。
次に、図7は本発明の第4の実施の形態を示し、この例が図5のそれと異なる点は、中間径管5が存在しないことである。
【0012】
次に、図8は本発明の第5の実施の形態を示し、この例は図1の例において、大径管2の外周に互いに離間し多数の小凹部7をその内面に曲折し、その小凹部7の先端と小径管1とを接触または近接させたものである。このようにすることにより、水4を大径管2の内部で攪拌し熱交換を促進し得る。また、小凹部7により小径管1を大径管2の中心に位置することができ、両者の軸線を一致させて各部の熱交換性能のバラツキを無くし、全体として熱交換性能を向上できる。
【0013】
次に、図9及び図10は本発明のさらに他の実施の形態を示し、この例が図8のそれと異なる点は、大径管2と小径管1との間に中間径管5を介装したことである。
なお、本発明は前記した給湯器以外に空調用の凝縮器として用いることもできる。この場合は、高温高圧の冷媒を水によって凝縮する部分に用いられる。
【0014】
【発明の作用・効果】
本発明の二重管型熱交換器は、大径管2に被加熱用の水4が流通する熱交換器において、小径管1と大径管2との間の水4の流路断面積は、水4の流通する下流側が上流側のそれより大に形成されているものである。そのため、水の温度上昇と共に溶解度が減少する水酸化カルシウム等の物質が内面に析出し易い下流側において、水の流路断面積を大きくしたので、水スケールの付着による管詰まりを防止できる。
しかも水4の上流側の大径管2の流路断面積は小に形成されているから、その水4と加熱用流体3との熱交換が促進される。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す二重管型熱交換器の一部破断説明図。
【図2】図1のII−II矢視断面略図。
【図3】同第2の実施の形態を示す二重管型熱交換器の一部破断説明図。
【図4】図3のIV−IV矢視断面略図。
【図5】本発明の第3の実施の形態を示す二重管型熱交換器の一部破断説明図。
【図6】図5のVI−VI矢視断面略図。
【図7】本発明の第4の実施の形態を示す二重管型熱交換器の一部破断説明図。
【図8】本発明の第5の実施の形態を示す二重管型熱交換器の要部破断説明図。
【図9】本発明の第6の実施の形態を示す二重管型熱交換器の要部破断説明図。
【図10】図9のX−X矢視断面略図。
【図11】給湯用熱交換器としてCO2 ガスを用いた冷凍サイクルの説明図。
【符号の説明】
1 小径管
2 大径管
3 加熱用流体
4 水
5 中間径管
6 インナーフィン
7 小凹部
8 水連結管
9 入口パイプ
10 出口パイプ
11  溝
12  連結用U字管
13  給湯用熱交換器(放熱器)
14  水パイプ
15  CO2 ガスパイプ
16  圧縮器
17  吸熱器
18  膨張弁
19  ファン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention, in a double-pipe heat exchanger that exchanges heat between water and a refrigerant used in a heat pump water heater or an air conditioner, prevents pipe clogging due to water scale in a water-side flow path. About what you do.
[0002]
[Prior art]
FIG. 11 is a hot-water supply heat exchanger 13 of a refrigeration cycle using CO 2 gas as the heating fluid 3. That is, CO 2 gas flows between the heat absorber 17, the compressor 16, the radiator, and the expansion valve 18. The heat radiator is a heat exchanger 13 for hot water supply, a high-temperature and high-pressure refrigerant flows through the CO 2 gas pipe 15, and water 4 is supplied to the water pipe 14, thereby performing heat exchange between the two.
As such a heat exchanger (heat radiator) 13 for hot water supply, a double-pipe type heat exchanger is known from Japanese Patent Application Laid-Open No. 60-248996. In this heat exchanger, a small-diameter pipe through which a refrigerant flows is formed in a meandering shape, and a large-diameter water pipe is fitted around the outer periphery of a straight portion of the small-diameter pipe, and the respective water pipes are connected.
[0003]
[Problems to be solved by the invention]
The conventional double-pipe hot water supply heat exchanger (radiator) 13 has a drawback that water scale adheres downstream of the water pipe and gradually causes clogging. To prevent this, it is conceivable to increase the diameter of the entire water pipe. However, if the diameter of the entire water pipe is made larger and the diameter of the refrigerant pipe flowing inside the water pipe is made the same, another problem arises in that the heat exchange performance between the two is reduced.
Therefore, an object of the present invention is to provide a double-pipe heat exchanger in which water scale hardly occurs inside while maintaining heat exchange performance.
[0004]
[Means for Solving the Problems]
According to the first aspect of the present invention, the small-diameter pipe (1) and the large-diameter pipe (2) are arranged coaxially with a gap therebetween in a linear portion of the axis, and the axis of the small-diameter pipe (1) is meandering. Bent,
In the heat exchanger in which the heating fluid (3) flows through the small-diameter pipe (1) and the water (4) to be heated flows through the large-diameter pipe (2),
The flow path cross-sectional area of the water (4) between the small-diameter pipe (1) and the large-diameter pipe (2) is characterized in that the downstream side where the water (4) flows is formed larger than the upstream side. It is a double tube heat exchanger.
[0005]
The present invention described in claim 2 is based on claim 1,
An intermediate-diameter pipe (5) is closely fitted on the outer periphery of the small-diameter pipe (1) at the linear portion of the axis of the small-diameter pipe (1), and the intermediate-diameter pipe (5) is fitted on the outer circumference of the intermediate-diameter pipe (5). Except for both ends of (5), the large-diameter pipe (2) is fitted through a gap,
This is a double-pipe heat exchanger in which both ends of the large-diameter pipe (2) and the outer periphery of the intermediate-diameter pipe (5) are closed in a liquid-tight manner.
[0006]
According to a third aspect of the present invention, in the first or second aspect,
This is a double-pipe heat exchanger in which an inner fin (6) is interposed in a gap between the large-diameter pipe (2) and the small-diameter pipe (1).
The present invention described in claim 4 is based on claim 1 or claim 2,
A double-pipe heat exchanger in which a large number of small recesses (7) for stirring are formed on the inner surface of the large-diameter pipe (2) so as to be spaced apart from each other.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of a double-pipe heat exchanger of the present invention, and FIG. 2 is a schematic sectional view taken along the line II-II of FIG.
The double-pipe heat exchanger is used as a water heater, for example.
This heat exchanger has a small-diameter tube 1 bent in a meandering shape, and a large-diameter tube 2 coaxially fitted with a gap in a linear portion of the small-diameter tube 1. Both ends of the large-diameter pipe 2 are closed, and are fixed to the outer periphery of the small-diameter pipe 1 in a liquid-tight manner. In this example, the small-diameter pipe 1 includes a pipe bent in a U-shape, a straight pipe, and a short connecting U-shaped pipe 12 connecting between the ends thereof.
[0008]
Next, the large-diameter pipes 2 are connected to each other by a water connecting pipe 8, and the inner diameter of only the large-diameter pipe 2 located at the most downstream side is formed to be larger than the inner diameter of the other large-diameter pipes 2. I have. An inlet pipe 9 communicates with the most upstream large diameter pipe 2, and an outlet pipe 10 communicates with the most downstream large diameter pipe 2. Then, water 4 flows in from the upstream inlet pipe 9, flows in the gap between the large-diameter pipe 2 and the small-diameter pipe 1 on the downstream side through the water connection pipe 8 in the longitudinal direction, and flows into the downstream most large-diameter pipe 2. It is led to the outside from the outlet pipe 10.
[0009]
The heating fluid 3 made of high-temperature and high-pressure CO 2 gas flows into the small-diameter pipe 1 from the most downstream side where the water 4 flows, and flows out from the most upstream side where the water 4 flows. Then, heat exchange is performed between the heating fluid 3 and the water 4. At this time, the temperature of the water 4 gradually increases as the water 4 flows from the upstream side to the downstream side, and is heated to about 80 ° C. in the most downstream large-diameter pipe 2 as an example.
Then, the solubility of calcium hydroxide or the like in the large-diameter tube 2 on the most downstream side is reduced, and it is likely to precipitate and adhere to the inside of the large-diameter tube 2. However, since the diameter of the large-diameter pipe 2 on the most downstream side is formed larger than the diameter of the other parts, they flow smoothly inside and rarely cause clogging. Further, since the inner diameter of the large-diameter tube 2 is formed to be large, even if some water scale adheres to the inner surface, clogging does not occur.
[0010]
Next, FIGS. 3 and 4 show another embodiment of the present invention. This example is different from that of FIG. 1 in that the intermediate diameter pipe 5 is closely fitted to the straight portion of the small diameter pipe 1 and fitted. The large diameter pipe 2 is fitted on the outer periphery of the intermediate diameter pipe 5. That is, the intermediate diameter pipe 5 having a large number of grooves 11 is fitted on the inner surface in the straight portion of the small diameter pipe 1, and the inner surface of the small diameter pipe 1 is expanded in this state, so that the outer circumference and the intermediate diameter of the small diameter pipe 1 are expanded. The inner circumference of the tube 5 is tightly fixed. Next, the large-diameter pipe 2 shorter than the length of the intermediate-diameter pipe 5 is fitted on the outer circumference of the intermediate-diameter pipe 5, and the space between both ends of the large-diameter pipe 2 and the outer circumference of the intermediate-diameter pipe 5 is closed. is there.
By fitting the large-diameter pipe 2 through the intermediate-diameter pipe 5 in this manner, even if the small-diameter pipe 1 is cracked, the possibility that the heating fluid 3 is mixed into the water 4 can be prevented.
[0011]
Next, FIGS. 5 and 6 show a third embodiment of the present invention. FIG. 5 is a partially cutaway explanatory view, and FIG. 6 is a schematic sectional view taken along the line VI-VI of FIG.
This example differs from those of FIGS. 3 and 4 in that an inner fin 6 is interposed between the intermediate diameter pipe 5 and the large diameter pipe 2. This has the effect of increasing the heat transfer area on the water 4 side and promoting heat exchange.
Next, FIG. 7 shows a fourth embodiment of the present invention. This example differs from that of FIG. 5 in that the intermediate diameter tube 5 is not present.
[0012]
Next, FIG. 8 shows a fifth embodiment of the present invention. This example is different from the example of FIG. 1 in that a large number of small concave portions 7 are separated from each other on the outer periphery of the large-diameter tube 2 and bent into the inner surface thereof. The tip of the small concave portion 7 is brought into contact with or close to the small diameter tube 1. By doing so, the water 4 can be stirred inside the large-diameter tube 2 to promote heat exchange. In addition, the small-diameter tube 7 can position the small-diameter tube 1 at the center of the large-diameter tube 2 so that the axes of the small-diameter tube 1 are aligned with each other, thereby eliminating the variation in the heat exchange performance of each part and improving the heat exchange performance as a whole.
[0013]
Next, FIGS. 9 and 10 show still another embodiment of the present invention. This embodiment is different from that of FIG. 8 in that an intermediate diameter pipe 5 is provided between a large diameter pipe 2 and a small diameter pipe 1. It was wearing.
The present invention can be used as a condenser for air conditioning other than the above-described water heater. In this case, it is used in a portion where the high-temperature and high-pressure refrigerant is condensed by water.
[0014]
[Action and Effect of the Invention]
The double-pipe heat exchanger of the present invention is a heat exchanger in which water 4 to be heated flows through the large-diameter pipe 2, and the flow cross-sectional area of the water 4 between the small-diameter pipe 1 and the large-diameter pipe 2. Is formed such that the downstream side through which the water 4 flows is larger than that on the upstream side. Therefore, the flow path cross-sectional area of the water is increased on the downstream side where a substance such as calcium hydroxide, whose solubility decreases as the temperature of the water increases, tends to precipitate on the inner surface.
Moreover, since the cross-sectional area of the large-diameter pipe 2 on the upstream side of the water 4 is formed small, heat exchange between the water 4 and the heating fluid 3 is promoted.
[Brief description of the drawings]
FIG. 1 is a partially cutaway explanatory view of a double-pipe heat exchanger according to a first embodiment of the present invention.
FIG. 2 is a schematic sectional view taken along the line II-II of FIG.
FIG. 3 is a partially broken explanatory view of the double-pipe heat exchanger according to the second embodiment.
FIG. 4 is a schematic cross-sectional view taken along the line IV-IV in FIG. 3;
FIG. 5 is a partially cutaway explanatory view of a double-pipe heat exchanger according to a third embodiment of the present invention.
6 is a schematic sectional view taken along the line VI-VI in FIG. 5;
FIG. 7 is a partially cutaway explanatory view of a double-pipe heat exchanger showing a fourth embodiment of the present invention.
FIG. 8 is a fragmentary explanatory diagram of a main part of a double-pipe heat exchanger showing a fifth embodiment of the present invention.
FIG. 9 is a fragmentary explanatory diagram of a main part of a double-pipe heat exchanger showing a sixth embodiment of the present invention.
FIG. 10 is a schematic sectional view taken along the line XX of FIG. 9;
FIG. 11 is an explanatory diagram of a refrigeration cycle using CO 2 gas as a heat exchanger for hot water supply.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Small-diameter pipe 2 Large-diameter pipe 3 Heating fluid 4 Water 5 Intermediate-diameter pipe 6 Inner fin 7 Small recess 8 Water connection pipe 9 Inlet pipe 10 Outlet pipe 11 Groove 12 Connection U-shaped pipe 13 Hot water supply heat exchanger (radiator )
14 Water pipe 15 CO 2 gas pipe 16 Compressor 17 Heat absorber 18 Expansion valve 19 Fan

Claims (4)

軸線の直線部で、小径管(1) と大径管(2) とが隙間を介して同軸に配置され、小径管(1) の軸線が蛇行状に曲折され、
小径管(1) に加熱用流体(3) が流通すると共に、大径管(2) に被加熱用の水(4) が流通する熱交換器において、
小径管(1) と大径管(2) との間の水(4) の流路断面積は、前記水(4) の流通する下流側が上流側より大に形成されたことを特徴とする二重管型熱交換器。
The small-diameter pipe (1) and the large-diameter pipe (2) are arranged coaxially through a gap in the straight line portion of the axis, and the axis of the small-diameter pipe (1) is bent in a meandering manner.
In the heat exchanger in which the heating fluid (3) flows through the small-diameter pipe (1) and the water (4) to be heated flows through the large-diameter pipe (2),
The flow path cross-sectional area of the water (4) between the small-diameter pipe (1) and the large-diameter pipe (2) is characterized in that the downstream side where the water (4) flows is formed larger than the upstream side. Double tube heat exchanger.
請求項1において、
前記小径管(1) の軸線の直線部で、小径管(1) の外周に中間径管(5) が密着して被嵌され、その中間径管(5) の外周に、その中間径管(5) の両端を除いて、前記大径管(2) が隙間を介して被嵌され、
その大径管(2) の両端と中間径管(5) の外周とが液密に閉塞された二重管型熱交換器。
In claim 1,
An intermediate-diameter pipe (5) is closely fitted on the outer periphery of the small-diameter pipe (1) at the linear portion of the axis of the small-diameter pipe (1), and the intermediate-diameter pipe (5) is fitted on the outer circumference of the intermediate-diameter pipe (5). Except for both ends of (5), the large-diameter pipe (2) is fitted through a gap,
A double-pipe heat exchanger in which both ends of the large-diameter pipe (2) and the outer periphery of the intermediate-diameter pipe (5) are closed in a liquid-tight manner.
請求項1または請求項2において、
前記大径管(2) と、小径管(1) との隙間にインナーフィン(6) が介装された二重管型熱交換器。
In claim 1 or claim 2,
A double-pipe heat exchanger in which an inner fin (6) is interposed in a gap between the large-diameter pipe (2) and the small-diameter pipe (1).
請求項1または請求項2において、
前記大径管(2) の外周に、互いに離間して多数の攪拌用の小凹部(7) が内面側に曲折形成された二重管型熱交換器。
In claim 1 or claim 2,
A double-pipe heat exchanger in which a large number of small recesses (7) for stirring are formed on the outer surface of the large-diameter pipe (2) so as to be spaced apart from each other.
JP2002256182A 2002-08-30 2002-08-30 Double-pipe heat exchanger Pending JP2004093037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256182A JP2004093037A (en) 2002-08-30 2002-08-30 Double-pipe heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256182A JP2004093037A (en) 2002-08-30 2002-08-30 Double-pipe heat exchanger

Publications (1)

Publication Number Publication Date
JP2004093037A true JP2004093037A (en) 2004-03-25

Family

ID=32061475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256182A Pending JP2004093037A (en) 2002-08-30 2002-08-30 Double-pipe heat exchanger

Country Status (1)

Country Link
JP (1) JP2004093037A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078002A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006145056A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006336988A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Heat exchanger apparatus and heat pump water heater using it
WO2007022777A1 (en) * 2005-08-25 2007-03-01 Knudsen Køling A/S A heat exchanger
CN100451527C (en) * 2007-06-19 2009-01-14 张伟 Double-drwn counter-current heat exchanger
JP2009008364A (en) * 2007-06-29 2009-01-15 Mitsubishi Electric Corp Heat pump water heater
WO2010052887A1 (en) * 2008-11-05 2010-05-14 サンデン株式会社 Heat exchanger and hot-water supply device using same
KR101159532B1 (en) 2010-05-26 2012-06-25 주식회사 일진이플러스 double typic heat exchanger
CN102759286A (en) * 2011-04-26 2012-10-31 上海数据港投资有限公司 Dual-tank cool storage type water-water exchanger
KR101218653B1 (en) * 2011-02-10 2013-01-04 신봉재 Freezing, Refrigerating and Cooling Device Using Antifreezing Solution
CN103363581A (en) * 2013-07-17 2013-10-23 枣庄福源印染机械有限公司 Three-channel turbulence self-cleaning internal-pressure-reducing pipeline water radiating and heat-exchanging device
KR101350349B1 (en) * 2013-09-25 2014-01-13 (주)보영테크 Double pipe of semiconductor manufacturing process
WO2014091558A1 (en) * 2012-12-11 2014-06-19 三菱電機株式会社 Double-pipe heat exchanger and refrigeration cycle device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078002A (en) * 2004-09-07 2006-03-23 Matsushita Electric Ind Co Ltd Heat exchanger
JP4552567B2 (en) * 2004-09-07 2010-09-29 パナソニック株式会社 Heat exchanger
JP4572662B2 (en) * 2004-11-16 2010-11-04 パナソニック株式会社 Heat exchanger
JP2006145056A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006336988A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Heat exchanger apparatus and heat pump water heater using it
WO2007022777A1 (en) * 2005-08-25 2007-03-01 Knudsen Køling A/S A heat exchanger
CN100451527C (en) * 2007-06-19 2009-01-14 张伟 Double-drwn counter-current heat exchanger
JP2009008364A (en) * 2007-06-29 2009-01-15 Mitsubishi Electric Corp Heat pump water heater
WO2010052887A1 (en) * 2008-11-05 2010-05-14 サンデン株式会社 Heat exchanger and hot-water supply device using same
KR101159532B1 (en) 2010-05-26 2012-06-25 주식회사 일진이플러스 double typic heat exchanger
KR101218653B1 (en) * 2011-02-10 2013-01-04 신봉재 Freezing, Refrigerating and Cooling Device Using Antifreezing Solution
CN102759286A (en) * 2011-04-26 2012-10-31 上海数据港投资有限公司 Dual-tank cool storage type water-water exchanger
WO2014091558A1 (en) * 2012-12-11 2014-06-19 三菱電機株式会社 Double-pipe heat exchanger and refrigeration cycle device
CN103363581A (en) * 2013-07-17 2013-10-23 枣庄福源印染机械有限公司 Three-channel turbulence self-cleaning internal-pressure-reducing pipeline water radiating and heat-exchanging device
KR101350349B1 (en) * 2013-09-25 2014-01-13 (주)보영테크 Double pipe of semiconductor manufacturing process

Similar Documents

Publication Publication Date Title
US6920917B2 (en) Double-pipe heat exchanger
JP2004093037A (en) Double-pipe heat exchanger
JP2002228370A (en) Heat exchanger
CN201242373Y (en) Composite casing tube double helix heat exchanger
JP4572662B2 (en) Heat exchanger
CN203489539U (en) Heat exchanger
JP2008096043A (en) Twisted tube type heat exchanger
JP7199842B2 (en) water heat exchanger, gas cooler
JP5513738B2 (en) Heat exchanger and heat pump water heater
CN207280261U (en) A kind of high-performance heat exchanger flow passage structure and air conditioner
JP2004340455A (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2007232338A (en) Double tube type heat exchanger
JP2006162165A (en) Heat exchanger
JP2005009832A (en) Double pipe type heat exchanger
JP2007218461A (en) Double tube type heat exchanger
JP2004360974A (en) Heat exchanging device and heat pump water heater
JP2022051011A (en) Heat exchanger and hot water supply machine including the same
JP2003240457A (en) Heat exchanger for hot-water supply
JP3762605B2 (en) Heat exchanger
KR100740698B1 (en) Header pipe for heat exchanger
CN218511546U (en) Heat exchanger, gas water heater and gas hanging stove
JP4552567B2 (en) Heat exchanger
JPH1068596A (en) Heat exchanger for water and aqueous solutions
JP7012204B2 (en) Heat exchanger and water heater equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050705

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070927

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325