JP4552567B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4552567B2
JP4552567B2 JP2004259249A JP2004259249A JP4552567B2 JP 4552567 B2 JP4552567 B2 JP 4552567B2 JP 2004259249 A JP2004259249 A JP 2004259249A JP 2004259249 A JP2004259249 A JP 2004259249A JP 4552567 B2 JP4552567 B2 JP 4552567B2
Authority
JP
Japan
Prior art keywords
tube
water
pipe
hole
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004259249A
Other languages
Japanese (ja)
Other versions
JP2006078002A (en
Inventor
琢己 木田
朋子 ▲はま▼川
長生 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004259249A priority Critical patent/JP4552567B2/en
Publication of JP2006078002A publication Critical patent/JP2006078002A/en
Application granted granted Critical
Publication of JP4552567B2 publication Critical patent/JP4552567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は空調、冷凍、冷蔵、給湯等の機器、特にヒートポンプ式の給湯機などにおいて、水等の流体と冷媒等の2つの流体が熱交換するための熱交換器に関するものである。   The present invention relates to a heat exchanger for exchanging heat between a fluid such as water and two fluids such as a refrigerant in a device such as an air conditioner, a refrigerator, a refrigerator, and a hot water supply, particularly a heat pump type hot water heater.

従来、この種の熱交換器としては、冷媒が流通する一次側と、被加熱流体の水が流通する二次側とで熱交換する構成の熱交換器において、壁内を貫通する多数の冷媒流通孔を開設した円筒形の冷媒流通管をアルミ押出し加工等により形成し、通水管を冷媒流通管に挿通して拡管加工し、通水管の外周に冷媒流通管を接合した熱交換用二重管を形成したものがある(例えば、特許文献1参照)。   Conventionally, as this type of heat exchanger, in a heat exchanger configured to exchange heat between a primary side through which refrigerant flows and a secondary side through which water of the fluid to be heated flows, a large number of refrigerants penetrating through the wall A heat exchanger duplex in which a cylindrical refrigerant flow pipe with a flow hole is formed by aluminum extrusion, etc., the water pipe is inserted through the refrigerant flow pipe and expanded, and the refrigerant flow pipe is joined to the outer periphery of the water pipe There exists what formed the pipe | tube (for example, refer patent document 1).

図13から図14は、特許文献1に記載された従来の熱交換器を示すものである。図で示すように、熱交換器本体100は、水が流動する通水管101と、通水管101の外周側に直径の小さい冷媒流通孔102を多数配設した円筒型の冷媒流通管103で構成し、
通水管101は拡管加工により、冷媒流通管103に接合されている。
13 to 14 show a conventional heat exchanger described in Patent Document 1. FIG. As shown in the figure, the heat exchanger main body 100 includes a water flow pipe 101 through which water flows and a cylindrical refrigerant flow pipe 103 in which a large number of refrigerant flow holes 102 having a small diameter are arranged on the outer peripheral side of the water flow pipe 101. And
The water flow pipe 101 is joined to the refrigerant flow pipe 103 by pipe expansion processing.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

通水管101の内部を水が、円筒型の冷媒流通管103の多数の冷媒流通孔102を冷媒が、それぞれ対向流で流れ、通水管101と冷媒流通管103の接合部において熱交換する。   Water flows through the inside of the water flow pipe 101 and the refrigerant flows through the large number of refrigerant flow holes 102 of the cylindrical refrigerant flow pipe 103 in opposite directions, and heat is exchanged at the junction between the water flow pipe 101 and the refrigerant flow pipe 103.

ここで、冷媒流通管103の冷媒流通孔102の直径を小さいことで冷媒の熱伝達率を高くすることができ、さらに冷媒流通管103と通水管101の間で十分な接触面積を確保して高い熱交換効率を得る。
特開2002−213885号公報
Here, the heat transfer coefficient of the refrigerant can be increased by reducing the diameter of the refrigerant flow hole 102 of the refrigerant flow pipe 103, and a sufficient contact area is ensured between the refrigerant flow pipe 103 and the water flow pipe 101. High heat exchange efficiency is obtained.
JP 2002-213895 A

しかしながら、上記従来の構成では、冷媒流通管103の外側に熱が放出し、水熱交換器100の熱交換性能を向上させるためには、冷媒流通管103の外側を断熱材等の熱伝達を抑制する部材で覆う必要がある。そのため、水熱交換器単独では、簡単な構造で熱交換性能の向上ができ、製造の容易性、運搬の容易性、コスト低減等が図れても、断熱材などの周辺部材が必要不可欠となり給湯器等の製品に組み込む際には十分なコンパクト化、軽量化及び断熱材などの周辺部材削減が図れないという課題を有していた。   However, in the above-described conventional configuration, heat is released to the outside of the refrigerant circulation pipe 103, and in order to improve the heat exchange performance of the water heat exchanger 100, the outside of the refrigerant circulation pipe 103 is subjected to heat transfer such as a heat insulating material. It is necessary to cover with a suppressing member. Therefore, the water heat exchanger alone can improve the heat exchange performance with a simple structure, and even if it is easy to manufacture, easy to transport, and reduces costs, peripheral members such as heat insulating materials are indispensable. When incorporating into a product such as a container, there is a problem that it is not possible to achieve sufficient compactness, weight reduction, and reduction of peripheral members such as a heat insulating material.

また、水道水にカルシウム(Ca)等のミネラル成分が含まれているため、加熱して水の温度が上昇すると、カルシウムの溶解度が低下して水に溶けていたカルシウムが析出する。   Moreover, since mineral components, such as calcium (Ca), are contained in tap water, when it heats and the temperature of water rises, the solubility of calcium will fall and the calcium dissolved in water will precipitate.

そして、析出したカルシウムが通水管101の内壁に付着すると、通水管101が詰まってしまい、熱交換器が機能しなくなる。これに対して、カルシウムが析出する通水管101の高温側のみ管径および円筒型の冷媒流通管103の内径を大きく設定する必要があるが、冷媒流通管103の管径を部分的に可変することは、押し出し加工では困難である。   And when the precipitated calcium adheres to the inner wall of the water flow pipe 101, the water flow pipe 101 is clogged and the heat exchanger does not function. In contrast, it is necessary to set the pipe diameter and the inner diameter of the cylindrical refrigerant flow pipe 103 large only on the high temperature side of the water flow pipe 101 where calcium is deposited, but the pipe diameter of the refrigerant flow pipe 103 is partially varied. This is difficult with extrusion.

従って、付着(析出)するカルシウム量を見込んで通水管101の管径、および冷媒流通管103の内径を全体で大きく設定する必要があるが、水の流速が小さくなり、水と通水管101の熱伝達率が小さくなり、熱交換効率が低下するという課題を有していた。   Therefore, it is necessary to set the pipe diameter of the water flow pipe 101 and the inner diameter of the refrigerant flow pipe 103 to be large as a whole in anticipation of the amount of adhered (deposited) calcium. There was a problem that the heat transfer rate was reduced and the heat exchange efficiency was reduced.

本発明は、上記従来の課題を解決するもので、十分なコンパクト化、軽量化及び断熱材などの周辺部材削減が図れるとともに、高温側のみ水道水のカルシウム(Ca)等のミネラル成分の析出による熱交換器の機能停止を抑制し、かつ、水の流速低下による熱伝達率の低下を極力抑制した熱交換器を提供することを目的とする。   The present invention solves the above-described conventional problems, and can achieve sufficient compactness, weight reduction, and reduction of peripheral members such as heat insulating materials, and precipitation of mineral components such as calcium (Ca) of tap water only on the high temperature side. It aims at providing the heat exchanger which suppressed the function stop of a heat exchanger and suppressed the fall of the heat transfer rate by the flow velocity reduction of water as much as possible.

上記従来の課題を解決するために、本発明の熱交換器は、冷媒が流通する流路が複数本ある多穴管を放射状に複数個配設し、前記多穴管の周方向間に前記冷媒と対向して水が流通する異型管を複数個設置し、前記多穴管の外壁と前記異型管の外壁が互いに接し、前記異型管の流出側の流路断面積を前記異型管の流入側の流路断面積より拡大し、前記多穴管の冷媒流入側と接する異型管の外壁を凸状面とし、相対する前記多穴管の外壁との接触を少なくしている。 In order to solve the above-described conventional problems, the heat exchanger of the present invention is provided with a plurality of multi-hole pipes having a plurality of flow paths through which a refrigerant flows, and between the circumferential directions of the multi-hole pipes. A plurality of atypical pipes through which water flows facing the refrigerant are installed, the outer wall of the multi-hole pipe and the outer wall of the atypical pipe are in contact with each other, and the flow cross-sectional area on the outflow side of the atypical pipe is the inflow of the atypical pipe The outer wall of the atypical pipe that is in contact with the refrigerant inflow side of the multi-hole pipe is made a convex surface, and the contact with the outer wall of the multi-hole pipe facing the surface is reduced .

これによって、冷媒からの熱を多穴管のほぼ全体から多穴管に接する異型管内部を流れ
る水に伝熱することができ、冷媒の流路と水の流路の間で十分な接触面積を確保して高い熱交換効率を得て熱交換器に取り付ける断熱材も簡素にできると共に、水が流動する異型管の流出部の流路断面積のみを拡大することにより、多穴管の流路を冷媒が流動し水と熱交換して水が高温部となり、水(特に水道水)に含まれるカルシウムが析出し流出部の異型管の管壁に付着しても、水の流動を封止することがない。また、異型管の水の流入側の流路断面積は拡大しないため、水の流速を落とさず異型管との熱伝達率を低下させない。
As a result, heat from the refrigerant can be transferred from almost the entire multi-hole pipe to the water flowing inside the atypical pipe in contact with the multi-hole pipe, and a sufficient contact area between the refrigerant flow path and the water flow path The heat insulating material that is attached to the heat exchanger can be simplified by securing high heat exchange efficiency, and the flow of the multi-hole tube is increased by expanding only the cross-sectional area of the outflow part of the atypical tube through which water flows. Even if the refrigerant flows through the channel and exchanges heat with water, the water becomes a high-temperature part, and even if calcium contained in water (especially tap water) precipitates and adheres to the wall of the irregular pipe in the outflow part, the water flow is sealed. There is no stopping. In addition, since the channel cross-sectional area on the water inflow side of the irregular pipe is not enlarged, the flow rate of the water is not reduced and the heat transfer coefficient with the irregular pipe is not lowered.

また、多穴管の冷媒流入側と接する異型管の外壁を凸状面とし、相対する多穴管の外壁との接触を少なくすることにより、水が高温となる異型管の流出側の熱抵抗を増加させて異型管の流出側の熱交換性能を部分的に低下させカルシウムの付着を抑制し、異型管流出側の流路断面積の拡大を極力小さくして異型管の管壁にカルシウムが付着しても水の流動を封止することなく、熱交換機能を停止することを抑制することができる。Also, the outer wall of the atypical tube that contacts the refrigerant inflow side of the multi-hole tube has a convex surface, and by reducing the contact with the outer wall of the opposed multi-hole tube, the thermal resistance on the outflow side of the atypical tube where water becomes hot To reduce the heat exchange performance on the outflow side of the deformed pipe to partially suppress calcium adhesion, and to reduce the expansion of the cross-sectional area of the flow path on the outflow side of the deformed pipe as much as possible, Even if it adheres, it can suppress stopping a heat exchange function, without sealing the flow of water.

本発明の熱交換器は、水が流動する管に複雑な製造工程が必要な漏洩検知手段を設けず、簡易な構造で高い熱交換効率を実現でき、軽量化及び断熱材などの周辺部材削減が図れると共に、水が流動する異型管のみの流出側の流路断面積を変えて、管壁にカルシウムが析出し付着しても水の流動を封止することなく、熱交換機能を停止することを抑制することができ、さらに流入部の水の流速を落とさず内管との熱伝達率を低下させないので、熱交換器全体として熱伝達率の低下を極力抑制することができる。   The heat exchanger of the present invention does not have a leak detection means that requires a complicated manufacturing process in a pipe through which water flows, and can achieve high heat exchange efficiency with a simple structure, reducing weight and reducing peripheral members such as heat insulating materials. The flow exchange cross section on the outflow side of only the atypical pipe through which water flows can be changed, and the heat exchange function can be stopped without sealing the flow of water even if calcium deposits and adheres to the pipe wall. In addition, since the flow rate of water at the inflow portion is not decreased and the heat transfer coefficient with the inner pipe is not decreased, the heat exchanger as a whole can be suppressed from decreasing the heat transfer coefficient as much as possible.

請求項1に記載の発明は、冷媒が流通する流路が複数本ある多穴管を放射状に複数個配設し、前記多穴管の周方向間に前記冷媒と対向して水が流通する異型管を複数個設置し、前記多穴管の外壁と前記異型管の外壁が互いに接し、前記異型管の流出側の流路断面積を前記異型管の流入側の流路断面積より拡大し、前記多穴管の冷媒流入側と接する異型管の外壁を凸状面とし、相対する前記多穴管の外壁との接触を少なくしたことにより、簡易な構造で冷媒からの熱を多穴管のほぼ全体から多穴管に接する異型管内部を流れる水に伝熱することができ、冷媒の流路と水の流路の間で十分な接触面積を確保して高い熱交換効率を得て熱交換器に取り付ける断熱材も簡素にできると共に、水が流動する異型管の流出部の流路断面積のみを拡大することにより、水が高温となりカルシウムが析出しやすい流出側の異型管の管壁にカルシウムが付着しても水の流動を封止することなく、熱交換機能を停止することを抑制することができ、さらに異型管の流入部の水の流速を落とさず内管との熱伝達率を低下させないので、熱交換器全体として熱伝達率の低下を極力抑制することができる。 In the first aspect of the present invention, a plurality of multi-hole pipes having a plurality of flow paths through which a refrigerant flows are arranged radially, and water flows in a circumferential direction of the multi-hole pipe so as to face the refrigerant. A plurality of modified tubes are installed, the outer wall of the multi-hole tube and the outer wall of the modified tube are in contact with each other, and the flow passage cross-sectional area on the outflow side of the modified tube is larger than the flow passage cross-sectional area on the inflow side of the modified tube. The outer wall of the atypical tube that contacts the refrigerant inflow side of the multi-hole tube is formed into a convex surface, and the contact with the outer wall of the multi-hole tube facing the surface is reduced. Heat can be transferred from almost the whole to the water flowing inside the atypical tube that contacts the multi-hole tube, ensuring a sufficient contact area between the refrigerant flow path and the water flow path to obtain high heat exchange efficiency The heat insulating material attached to the heat exchanger can be simplified, and only the cross-sectional area of the outflow part of the atypical pipe through which water flows can be enlarged. By suppressing the heat exchange function without sealing the flow of water even if calcium adheres to the tube wall of the atypical tube on the outflow side where water becomes hot and calcium is likely to precipitate, Furthermore, since the heat flow rate with the inner pipe is not lowered without decreasing the flow rate of water in the inflow portion of the atypical pipe, it is possible to suppress the reduction of the heat transfer coefficient as much as possible as the entire heat exchanger.

また、多穴管の冷媒流入側と接する異型管の外壁を凸状面とし、相対する前記多穴管の外壁との接触を少なくすることにより、水が高温となる異型管の流出側の熱抵抗を増加させて異型管の流出側の熱交換性能を部分的に低下させカルシウムの付着を抑制し、異型管流出側の流路断面積の拡大を極力小さくして異型管の管壁にカルシウムが付着しても水の流動を封止することなく、熱交換機能を停止することを抑制することができる。 In addition, the outer wall of the irregular tube that contacts the refrigerant inflow side of the multi-hole tube has a convex surface, and the contact with the outer wall of the opposed multi-hole tube reduces the heat on the outflow side of the irregular tube where water becomes hot. Increase the resistance to partially reduce the heat exchange performance on the outflow side of the deformed pipe to suppress the adhesion of calcium, and reduce the expansion of the cross-sectional area of the flow path on the outflow side of the deformed pipe as much as possible to reduce the calcium on the tube wall of the deformed pipe Even if adhering, it can suppress stopping a heat exchange function, without sealing the flow of water.

請求項に記載の発明は、請求項1に記載の発明の冷媒を二酸化炭素とすることにより、ヒートポンプ給湯機用の水・冷媒熱交換器として使用することで高いヒートポンプ効率を得ることができる。 The invention according to claim 2 can obtain high heat pump efficiency when used as a water / refrigerant heat exchanger for a heat pump water heater by using carbon dioxide as the refrigerant of the invention according to claim 1. .

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

尚、この実施の形態によって、この発明が限定されるものではない。   The present invention is not limited to the embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器の管軸方向の正面図である。図2は、図1のA−A断面図である。図3は、図1のB−B断面図である。図4は同実施の形態の他の熱交換器の管群及び異型管の軸方向に垂直な断面図である。
(Embodiment 1)
FIG. 1 is a front view in the tube axis direction of the heat exchanger according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view taken along the line AA of FIG. 3 is a cross-sectional view taken along line BB in FIG. FIG. 4 is a cross-sectional view perpendicular to the axial direction of the tube group and the modified tube of another heat exchanger of the same embodiment.

図1から図3において、熱交換器1は、二酸化炭素が冷媒として流通する流路3を複数本1列に配列した多穴管2が、放射状に4個配設している。さらに多穴管2の周方向間に配置した異型管4があり、水が冷媒に対向して流通する。そして、多穴管2の外壁5と、異型管4の外壁6は熱的に直接伝導するように接している。多穴管2と異型管4は耐食性、熱伝導性の良い銅の引抜き加工品である。また、異型管4の流出側4aの流路断面積が、流入側4bの流路断面積より拡大している。   1 to 3, the heat exchanger 1 is provided with four radial multi-hole tubes 2 in which a plurality of flow paths 3 through which carbon dioxide flows as a refrigerant are arranged in a row. Furthermore, there is an atypical tube 4 disposed between the circumferential directions of the multi-hole tube 2, and water flows in opposition to the refrigerant. The outer wall 5 of the multi-hole tube 2 and the outer wall 6 of the modified tube 4 are in contact so as to conduct heat directly. The multi-hole tube 2 and the variant tube 4 are copper drawn products having good corrosion resistance and thermal conductivity. Further, the cross-sectional area of the outflow side 4a of the variant pipe 4 is larger than the cross-sectional area of the inflow side 4b.

また、図4において、二酸化炭素が冷媒として流通する管8を4本並列に並べた管群7があり、放射状に4個配設している。そして、管群8の管7の外壁7aと、異型管4の外壁6は熱的に直接伝導するように接している。管7は丸管で、耐食性、熱伝導性の良い銅の引抜き加工品である。   In FIG. 4, there is a tube group 7 in which four tubes 8 through which carbon dioxide flows as a refrigerant are arranged in parallel, and four tubes 8 are arranged radially. The outer wall 7a of the tube 7 of the tube group 8 and the outer wall 6 of the modified tube 4 are in contact with each other so as to conduct heat directly. The tube 7 is a round tube, which is a copper drawn product with good corrosion resistance and thermal conductivity.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

図1から図3において、多穴管2の複数の流路3の内部を二酸化炭素が、異型管4の内部を水が各々流体として対向して流れ、多穴管2の外壁5と、異型管4の外壁6を介して水と二酸化炭素が熱交換する。   1 to 3, carbon dioxide flows inside the plurality of flow paths 3 of the multi-hole tube 2 and water flows as fluids inside the variant tube 4, respectively. Water and carbon dioxide exchange heat through the outer wall 6 of the tube 4.

ここで、二酸化炭素からの熱を多穴管2のほぼ外壁5全体から多穴管に接する異型管4の管内を流れる水に伝熱することができて、熱交換性能を高くすることができる。熱交換器1に取り付ける断熱材(図示せず)も簡素にでき、ヒートポンプ給湯器等の製品に組み込む際には十分なコンパクト化、軽量化が図れる。   Here, the heat from the carbon dioxide can be transferred from substantially the entire outer wall 5 of the multi-hole tube 2 to the water flowing in the tube of the modified tube 4 in contact with the multi-hole tube, and the heat exchange performance can be improved. . A heat insulating material (not shown) attached to the heat exchanger 1 can also be simplified, and when incorporated in a product such as a heat pump water heater, sufficient compactness and weight reduction can be achieved.

さらに、水が流動する異型管4の流出側4aの流路断面積を流入側4bの流路断面積より拡大することにより,多穴管2の流路3を二酸化炭素が流動し異型管4の水と熱交換して水が高温となり、水(特に水道水)に含まれるカルシウムが析出し流出部4aの異型管4の管壁6に付着しても、水の流動を封止することがない。また、異型管4の水の流入側4bの流路断面積は拡大しないため、水の流速を落とさず異型管4との熱伝達率を低下させない。従って、熱交換器本体1全体として熱交換性能の低下を極力抑制することができる。   Furthermore, by expanding the cross-sectional area of the outflow side 4a of the variant pipe 4 through which water flows from the cross-sectional area of the inflow side 4b, carbon dioxide flows through the multi-hole pipe 2 and the irregular pipe 4 Even if water contained in water (especially tap water) precipitates and adheres to the tube wall 6 of the deformed tube 4 of the outflow part 4a, the water is sealed off by heat exchange with water. There is no. Further, since the cross-sectional area of the flow path 4b on the water inflow side 4b of the variant pipe 4 does not increase, the flow rate of water is not reduced and the heat transfer coefficient with the variant pipe 4 is not lowered. Accordingly, the heat exchanger main body 1 as a whole can be prevented from reducing the heat exchange performance as much as possible.

また、図4において、管群7の4本の管8の内部を二酸化炭素が、異型管4の内部を水が各々流体として対向して流れ、管8の外壁8aと、異型管4の外壁6を介して水と二酸化炭素が熱交換する。   In FIG. 4, carbon dioxide flows through the four tubes 8 of the tube group 7 and water flows through the modified tube 4 as fluids. The outer wall 8 a of the tube 8 and the outer wall of the modified tube 4 Water and carbon dioxide exchange heat through 6.

ここで、二酸化炭素からの熱を管群7の管8のほぼ全体から管群7に接する異型管4内部を流れる水に伝熱することができて、熱交換性能を高くすることができる。熱交換器1に取り付ける断熱材も簡素にでき、ヒートポンプ給湯器等の製品に組み込む際には十分なコンパクト化、軽量化が図れ、さらに、二酸化炭素が流通する流路を多穴管に比べ、量産が容易な丸管状にできる。   Here, heat from carbon dioxide can be transferred from almost the entire tube 8 of the tube group 7 to the water flowing inside the atypical tube 4 in contact with the tube group 7, and heat exchange performance can be improved. The heat insulating material attached to the heat exchanger 1 can also be simplified, and it can be made sufficiently compact and lightweight when incorporated in a product such as a heat pump water heater. Furthermore, the flow path through which carbon dioxide flows is compared to a multi-hole tube, It can be made into a round tube that is easy to mass-produce.

尚、本発明の実施の形態では、多穴管2、管8の管群7、及び水が流通する異型管4を直管状のものとしたが、湾曲状及びコイル状としても同様な効果を得られる。   In the embodiment of the present invention, the multi-hole tube 2, the tube group 7 of the tube 8, and the atypical tube 4 through which water circulates are straight tubes, but the same effect can be obtained when the shape is curved or coiled. can get.

尚、冷媒が流通する多穴管2、管8の管群7、及び水が流通する異型管4の材料は、通
常は銅製だが、真ちゅう、SUS、耐食性を持った鉄、アルミニウム合金等でも同様な効果を得られる。冷媒が流通する多穴管2、管8の管群7は、好ましくは熱伝導性の良い材料(例えば銅、アルミニウム)で作られ、異型管4は、好ましくは耐食性の良い材料(例えばステンレス)で作られたものがよい。
The material of the multi-hole pipe 2 through which the refrigerant flows, the tube group 7 of the pipe 8 and the modified pipe 4 through which water flows is usually made of copper, but the same applies to brass, SUS, iron with corrosion resistance, aluminum alloy, etc. Effects can be obtained. The tube group 7 of the multi-hole tube 2 and the tube 8 through which the refrigerant flows is preferably made of a material having good heat conductivity (for example, copper or aluminum), and the modified tube 4 is preferably a material having good corrosion resistance (for example, stainless steel). The one made with is good.

尚、本発明の実施の形態では、多穴管2、管8の内部を流通する冷媒を二酸化炭素としたが、これに限らず、R410A、R32等その他の高圧冷媒と水や、温度差を持つ同一流体間の熱交換に用いても同様な効果を得られる。   In the embodiment of the present invention, carbon dioxide is used as the refrigerant flowing through the multi-hole pipe 2 and the pipe 8. However, the present invention is not limited to this, and other high-pressure refrigerants such as R410A and R32, water, and a temperature difference. The same effect can be obtained even if it is used for heat exchange between the same fluids.

(実施の形態2)
図5は、本発明の実施の形態2における熱交換器の管軸方向の正面図である。図6は、図5のC−C断面図である。尚、上述の実施の形態と同一構成については、同一符号を付して詳細な説明を省略する。
(Embodiment 2)
FIG. 5 is a front view in the tube axis direction of the heat exchanger according to Embodiment 2 of the present invention. 6 is a cross-sectional view taken along the line CC of FIG. In addition, about the same structure as the above-mentioned embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図5から図6において、異型管9は、多穴管2の二酸化炭素が流入する側2aと接する外壁10を凸状面とし、さらに凸状の外壁10に合わせて異型管9の流出側9aの内壁11を多穴管2に接する側に凸状とすることで異型管9流出側9aの流路断面積を拡大している。   5 to 6, the modified pipe 9 has a convex surface on the outer wall 10 in contact with the carbon dioxide inflow side 2 a of the multi-hole tube 2, and the outflow side 9 a of the modified pipe 9 in accordance with the convex outer wall 10. By making the inner wall 11 convex to the side in contact with the multi-hole tube 2, the cross-sectional area of the outflow side 9a of the modified tube 9 is enlarged.

以上のように構成された熱交換器1について、以下その動作、作用を説明する。   About the heat exchanger 1 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

熱交換器1では、多穴管2の流路3を二酸化炭素が、異型管9の内部を水が各々流体として対向して流れ、多穴管2の外壁5と異型管9の外壁10を介して水と二酸化炭素が熱交換する。   In the heat exchanger 1, carbon dioxide flows through the flow path 3 of the multi-hole tube 2 and water flows inside the modified tube 9 as fluids, so that the outer wall 5 of the multi-hole tube 2 and the outer wall 10 of the modified tube 9 pass through each other. Through this, water and carbon dioxide exchange heat.

ここで、多穴管2の二酸化炭素の流入側2aと接する異型管9の外壁10を凸状面とし、相対する多穴管2の外壁5との接触を少なくすることにより、水が高温となる異型管9の流出側9aの熱抵抗を増加させて異型管9の流出側9aのみの熱交換性能を部分的に低下させカルシウムの付着を抑制でき、異型管9の流出側9aの流路断面積の拡大を極力小さくして異型管9の内壁11にカルシウムが付着しても水の流動を封止することなく、熱交換機能を停止することを抑制することができる。   Here, the outer wall 10 of the atypical tube 9 in contact with the carbon dioxide inflow side 2a of the multi-hole tube 2 is formed as a convex surface, and the contact with the outer wall 5 of the opposed multi-hole tube 2 is reduced, so that the water becomes hot. The heat resistance of only the outflow side 9a of the modified tube 9 can be partially reduced by increasing the heat resistance of the outflow side 9a of the modified tube 9 to suppress the adhesion of calcium, and the flow path of the outflow side 9a of the modified tube 9 Even if calcium adheres to the inner wall 11 of the modified tube 9 by minimizing the expansion of the cross-sectional area, it is possible to suppress the heat exchange function from being stopped without sealing the flow of water.

(実施の形態3)
図7は、本発明の実施の形態3における熱交換器の管軸方向の正面図である。図8は図7のA方向からの要部斜視図である。図9は図7のB方向からの要部斜視図である。尚、上述の実施の形態と同一構成については、同一符号を付して詳細な説明を省略する。
(Embodiment 3)
FIG. 7 is a front view in the tube axis direction of the heat exchanger according to Embodiment 3 of the present invention. FIG. 8 is a perspective view of a main part from the direction A in FIG. FIG. 9 is a perspective view of a main part from the direction B in FIG. In addition, about the same structure as the above-mentioned embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図7から図9において、二酸化炭素の流出する側2cの放射状に4個配設された多穴管2と、周方向の間に配置された4個の異型管4の流入側4cを、放射状の略中心を中心に捻っている。   In FIG. 7 to FIG. 9, four multi-hole pipes 2 arranged radially on the carbon dioxide outflow side 2c and four inflow pipes 4c arranged in the circumferential direction are arranged radially. It is twisted around the approximate center.

以上のように構成された熱交換器1について、以下その動作、作用を説明する。   About the heat exchanger 1 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

熱交換器1では、多穴管2の流路3を二酸化炭素が、異型管4の内部の水が各々流体として対向して流れ、多穴管2の外壁5と異型管4の外壁6を介して水と二酸化炭素が熱交換する。   In the heat exchanger 1, carbon dioxide flows through the flow path 3 of the multi-hole tube 2, and water inside the modified tube 4 flows as a fluid, respectively, so that the outer wall 5 of the multi-hole tube 2 and the outer wall 6 of the modified tube 4 pass through. Through this, water and carbon dioxide exchange heat.

ここで、多穴管2の二酸化炭素の流出側2cと異型管4の流入側4cを放射状略中心を中心に捻ることにより、多穴管2の流出側2cと異型管4の流入側4cを密着かつ拘束することができ、溶接、ロウ付け、はんだ付け、拘束材等が無くても多穴管2の二酸化炭素
の流出側2cと異型管4の水の流入側4cの熱交換性能を高くすることができ、熱交換器1全体として熱伝達率の低下を極力抑制することができる。
Here, the outflow side 2c of the multi-hole tube 2 and the inflow side 4c of the variant tube 4 are connected by twisting the outflow side 2c of the carbon dioxide tube 2 and the inflow side 4c of the variant tube 4 about the radial center. The heat exchange performance of the carbon dioxide outflow side 2c of the multi-hole tube 2 and the water inflow side 4c of the modified tube 4 is high even without welding, brazing, soldering, constraining material, etc. Therefore, the heat exchanger 1 as a whole can suppress the decrease in heat transfer coefficient as much as possible.

(実施の形態4)
図10は、本発明の実施の形態4における熱交換器の管軸方向の正面図である。図11は図10のC方向からの要部斜視図である。図12は図10のD方向からの要部斜視図である。尚、上述の実施の形態と同一構成については、同一符号を付して詳細な説明を省略する。
(Embodiment 4)
FIG. 10 is a front view in the tube axis direction of the heat exchanger according to Embodiment 4 of the present invention. FIG. 11 is a perspective view of a main part from the direction C in FIG. 12 is a perspective view of a main part from the direction D in FIG. In addition, about the same structure as the above-mentioned embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図10から図12において、放射状に4個配設された多穴管2と、多穴管2の周方向の間に配置された4個の異型管4を放射状の略中心を中心に捻り、多穴管2の二酸化炭素の流出側2dでは捻りのピッチが小さく、流入側2eでは捻りのピッチを大きくしている。   In FIGS. 10 to 12, four multi-hole pipes 2 arranged radially and four modified pipes 4 arranged in the circumferential direction of the multi-hole pipe 2 are twisted around a substantially radial center, The twist pitch is small on the carbon dioxide outflow side 2d of the multi-hole tube 2, and the twist pitch is large on the inflow side 2e.

以上のように構成された熱交換器1について、以下その動作、作用を説明する。   About the heat exchanger 1 comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

熱交換器1では、多穴管2の流路3を二酸化炭素が、異型管4の内部の水が各々流体として対向して流れ、多穴管2の外壁5と異型管4の外壁6を介して水と二酸化炭素が熱交換する。   In the heat exchanger 1, carbon dioxide flows through the flow path 3 of the multi-hole tube 2, and water inside the modified tube 4 flows as a fluid, respectively, so that the outer wall 5 of the multi-hole tube 2 and the outer wall 6 of the modified tube 4 pass through. Through this, water and carbon dioxide exchange heat.

ここで、多穴管2の二酸化炭素の流出側2dでは、捻りのピッチが小さいので多穴管2と異型管4の流入側4dの密着度が高く、かつ密着する多穴管2と異形管4の長さが放射状の略中心軸に対し長くなるので熱交換性能高くすることができ、多穴管2の二酸化炭素の流入側2eでは、多穴管2と異型管4の流出側4eの密着度が緩やかで拘束することができ、多穴管2と異型管4の接触による熱伝導を抑制して熱交換性能を部分的に低下させてカルシウムの付着を抑制できる。さらに、熱交換器1全体を溶接、ロウ付け、はんだ付け、拘束材等無しで拘束できる。   Here, since the twist pitch is small on the carbon dioxide outflow side 2d of the multi-hole tube 2, the close contact degree between the multi-hole tube 2 and the inflow side 4d of the irregular tube 4 is high, and the closely adhered multi-hole tube 2 and irregular tube Since the length of 4 is longer than the radial central axis, the heat exchange performance can be improved. On the carbon dioxide inflow side 2e of the multi-hole tube 2, the multi-hole tube 2 and the outflow side 4e of the modified tube 4 are connected to each other. The degree of adhesion is moderate and can be restrained, and heat conduction due to contact between the multi-hole tube 2 and the modified tube 4 can be suppressed, and the heat exchange performance can be partially reduced to suppress the adhesion of calcium. Furthermore, the entire heat exchanger 1 can be restrained without welding, brazing, soldering, restraining materials, or the like.

以上のように、本発明にかかる熱交換器は、熱源となる多穴管あるいは管群のほぼ全体から、多穴管あるいは管群に接する異型管内部を流れる流体に伝熱することができて、熱交換器に取り付ける断熱材も簡素にでき、製品に組み込む際には十分なコンパクト化、軽量化が可能となり、かつ高温側のみ水道水のカルシウム(Ca)等のミネラル成分の析出による熱交換器の機能停止を抑制し、かつ、水の流速低下による熱伝達率の低下を極力抑制することが可能となり、ヒートポンプ給湯器や家庭用、業務用の空気調和機との複合機機器、燃料電池を用いた給湯システムなどの用途にも適用できる。   As described above, the heat exchanger according to the present invention can transfer heat from almost the entire multi-hole tube or tube group serving as a heat source to the fluid flowing inside the multi-hole tube or the atypical tube in contact with the tube group. The heat insulating material attached to the heat exchanger can also be simplified, making it sufficiently compact and lightweight when incorporated into products, and heat exchange by precipitation of mineral components such as calcium (Ca) in tap water only on the high temperature side It is possible to suppress the shutdown of the heater and to suppress the reduction of the heat transfer coefficient due to the decrease of the water flow rate as much as possible, the heat pump water heater, the multifunction device equipment with household and commercial air conditioners, the fuel cell It can also be applied to uses such as a hot water supply system.

本発明の実施の形態1における熱交換器の管軸方向の正面図The front view of the pipe-axis direction of the heat exchanger in Embodiment 1 of this invention 図1のA−A断面図AA sectional view of FIG. 図1のB−B断面図BB sectional view of FIG. 同実施の形態の他の熱交換器の管群及び異型管の軸方向に垂直な断面図Sectional drawing perpendicular | vertical to the axial direction of the tube group of another heat exchanger of the same embodiment, and a deformed tube 本発明の実施の形態2における熱交換器の管軸方向の正面図The front view of the pipe-axis direction of the heat exchanger in Embodiment 2 of this invention 図5のC−C断面図CC sectional view of FIG. 本発明の実施の形態3における熱交換器の管軸方向の正面図Front view of tube direction of heat exchanger in embodiment 3 of the present invention 図7のA方向からの要部斜視図The principal part perspective view from the A direction of FIG. 図7のB方向からの要部斜視図7 is a perspective view of the main part from the direction B in FIG. 本発明の実施の形態4における熱交換器の管軸方向の正面図The front view of the pipe-axis direction of the heat exchanger in Embodiment 4 of this invention 図10のC方向からの要部斜視図The principal part perspective view from the C direction of FIG. 図10のD方向からの要部斜視図The principal part perspective view from the D direction of FIG. 従来の熱交換器の構造図Structure of conventional heat exchanger 従来の他の熱交換器の構造図Structure of another conventional heat exchanger

1 熱交換器
2 多穴管
2a、2e 二酸化炭素の流入側
2c、2d 二酸化炭素の流出側
3 流路
4、9 異型管
4a、4e、9a 流出側(異型管の)
4b、4c、4d、9b 流入側(異型管の)
5 外壁(多穴管2の)
6 外壁(異型管4の)
7 管群
8 管
10 凸状の外壁(異型管4の)
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Multi-hole pipe 2a, 2e Carbon dioxide inflow side 2c, 2d Carbon dioxide outflow side 3 Channel 4, 9 Atypical pipe 4a, 4e, 9a Outflow side (of atypical pipe)
4b, 4c, 4d, 9b Inflow side (atypical tube)
5 outer wall (of multi-hole tube 2)
6 Outer wall (Atypical pipe 4)
7 Tube group 8 Tube 10 Convex outer wall (of atypical tube 4)

Claims (2)

冷媒が流通する流路が複数本ある多穴管を放射状に複数個配設し、前記多穴管の周方向間に前記冷媒と対向して水が流通する異型管を複数個設置し、前記多穴管の外壁と前記異型管の外壁が互いに接し、前記異型管の流出側の流路断面積を前記異型管の流入側の流路断面積より拡大し、前記多穴管の冷媒流入側と接する異型管の外壁を凸状面とし、相対する前記多穴管の外壁との接触を少なくしたことを特徴とした熱交換器。 A plurality of multi-hole pipes having a plurality of flow paths through which the refrigerant flows are arranged radially, and a plurality of atypical pipes through which water flows in the circumferential direction of the multi-hole pipes are arranged opposite to the refrigerant, The outer wall of the multi-hole tube and the outer wall of the irregular tube are in contact with each other, the flow passage cross-sectional area on the outflow side of the irregular tube is expanded from the cross-sectional area on the inflow side of the irregular tube, and the refrigerant inflow side of the multi-hole tube The heat exchanger is characterized in that the outer wall of the atypical tube in contact with the surface is convex and the contact with the outer wall of the opposed multi-hole tube is reduced . 冷媒を二酸化炭素としたことを特徴とした請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the refrigerant is carbon dioxide.
JP2004259249A 2004-09-07 2004-09-07 Heat exchanger Expired - Fee Related JP4552567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259249A JP4552567B2 (en) 2004-09-07 2004-09-07 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259249A JP4552567B2 (en) 2004-09-07 2004-09-07 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2006078002A JP2006078002A (en) 2006-03-23
JP4552567B2 true JP4552567B2 (en) 2010-09-29

Family

ID=36157608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259249A Expired - Fee Related JP4552567B2 (en) 2004-09-07 2004-09-07 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4552567B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247180A (en) * 2012-08-10 2012-12-13 Hitachi Appliances Inc Heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188866U (en) * 1975-01-13 1976-07-16
JPS6386564U (en) * 1986-11-19 1988-06-06
JP2001280862A (en) * 2000-03-31 2001-10-10 Sanyo Electric Co Ltd Brine heat exchanger
JP2002323291A (en) * 2001-04-26 2002-11-08 Sanyo Electric Co Ltd Heat exchanger and heat pump type water heater
JP2003097898A (en) * 2001-07-16 2003-04-03 Daikin Ind Ltd Heat exchanger
JP2004093037A (en) * 2002-08-30 2004-03-25 Toyo Radiator Co Ltd Double-pipe heat exchanger
JP2004144430A (en) * 2002-10-25 2004-05-20 Denso Corp Heat exchange pipe and heat exchanger
JP2004218946A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188866U (en) * 1975-01-13 1976-07-16
JPS6386564U (en) * 1986-11-19 1988-06-06
JP2001280862A (en) * 2000-03-31 2001-10-10 Sanyo Electric Co Ltd Brine heat exchanger
JP2002323291A (en) * 2001-04-26 2002-11-08 Sanyo Electric Co Ltd Heat exchanger and heat pump type water heater
JP2003097898A (en) * 2001-07-16 2003-04-03 Daikin Ind Ltd Heat exchanger
JP2004093037A (en) * 2002-08-30 2004-03-25 Toyo Radiator Co Ltd Double-pipe heat exchanger
JP2004144430A (en) * 2002-10-25 2004-05-20 Denso Corp Heat exchange pipe and heat exchanger
JP2004218946A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump water heater using the same

Also Published As

Publication number Publication date
JP2006078002A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4736533B2 (en) Heat exchanger
JP2002228370A (en) Heat exchanger
JP4572662B2 (en) Heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2009216309A (en) Heat exchanger
JP2004286438A (en) Heat exchanger
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP7199842B2 (en) water heat exchanger, gas cooler
JP2005069620A (en) Heat exchanger
JP2006057998A (en) Heat exchanger
JP2006078062A (en) Heat exchanger
JP4552567B2 (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2006162165A (en) Heat exchanger
JP2010112663A (en) Heat exchanger
JP2008267631A (en) Heat exchanger
JP2008175450A (en) Heat exchanger
JP2007218461A (en) Double tube type heat exchanger
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
WO2012017777A1 (en) Double pipe for heat exchanger
JP2006234355A (en) Heat exchanger
JP2004340455A (en) Heat exchanger
JP2005009832A (en) Double pipe type heat exchanger
JP5533328B2 (en) Heat exchanger
JP2013164215A (en) Fin tube-type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees