JP4615422B2 - Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters - Google Patents

Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters Download PDF

Info

Publication number
JP4615422B2
JP4615422B2 JP2005328638A JP2005328638A JP4615422B2 JP 4615422 B2 JP4615422 B2 JP 4615422B2 JP 2005328638 A JP2005328638 A JP 2005328638A JP 2005328638 A JP2005328638 A JP 2005328638A JP 4615422 B2 JP4615422 B2 JP 4615422B2
Authority
JP
Japan
Prior art keywords
tube
heat transfer
refrigerant
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005328638A
Other languages
Japanese (ja)
Other versions
JP2006242553A5 (en
JP2006242553A (en
Inventor
弘太郎 釣
省治 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005328638A priority Critical patent/JP4615422B2/en
Publication of JP2006242553A publication Critical patent/JP2006242553A/en
Publication of JP2006242553A5 publication Critical patent/JP2006242553A5/ja
Application granted granted Critical
Publication of JP4615422B2 publication Critical patent/JP4615422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、熱交換器に使用される伝熱管、特に給湯水を管内に流通するヒートポンプ給湯器用熱交換器に使用される伝熱管に関するものである。   The present invention relates to a heat transfer tube used in a heat exchanger, and more particularly to a heat transfer tube used in a heat exchanger for a heat pump water heater that distributes hot water in the tube.

地球環境保全の観点から二酸化炭素排出量を削減するために各種の伝熱機器の開発が行われている。温水を製造するための給湯器は都市ガスや油系燃料による加熱で製造することが多かったが、電力駆動による圧縮機で冷媒を循環して熱サイクルを形成することによって温水を製造するヒートポンプ給湯器の高性能化が進んでいる。ヒートポンプ給湯器では冷媒にフロンではなく二酸化炭素を使用することが多くなっており、脱フロンにも寄与している。   Various heat transfer devices have been developed to reduce carbon dioxide emissions from the viewpoint of global environmental conservation. Hot water heaters for producing hot water were often manufactured by heating with city gas or oil-based fuel, but heat pump water heaters for producing hot water by forming a heat cycle by circulating refrigerant in a compressor driven by electric power The performance of the vessel is increasing. In heat pump water heaters, carbon dioxide is often used instead of chlorofluorocarbon as a refrigerant, which contributes to chlorofluorocarbon removal.

このようなヒートポンプ給湯器は、一般的に次に記載するようなシステムで形成されている。すなわち、圧縮機で高温高圧にされた冷媒は、ガスクーラーと呼ばれる熱交換器に送られ、水道水と熱交換することにより給湯に用いる温水を製造する。ガスクーラーで低温化された冷媒は、膨張弁で低圧化されて、室外に設置される蒸発器で外気により気化されて再び圧縮機で高温高圧化される。   Such a heat pump water heater is generally formed by a system as described below. That is, the high-temperature and high-pressure refrigerant in the compressor is sent to a heat exchanger called a gas cooler, and hot water used for hot water supply is produced by exchanging heat with tap water. The refrigerant whose temperature has been reduced by the gas cooler is reduced in pressure by the expansion valve, is vaporized by the outside air in the evaporator installed outside the room, and is again increased in temperature and pressure by the compressor.

流体の熱伝達率を向上させるための管の内壁面のフィンを付加してガスクーラーの性能を向上した例がある(例えば特許文献1)。
特開2003−156291号公報
There is an example of improving the performance of a gas cooler by adding fins on the inner wall surface of a pipe for improving the heat transfer coefficient of fluid (for example, Patent Document 1).
JP 2003-156291 A

しかしながら、特許文献1記載の熱交換器では、水道水が高温化されるので、その水道水内に含まれるカルシウムやシリカが析出(一般的にスケールと呼ぶ)して管内壁面に付着しやすくなり、管につまりが生じやすくなるという問題が生じる。特に、管内面にフィンを付加すると、隣り合うフィンの間にその析出物が堆積して経時的にフィン付加による熱伝達率向上の効果が劣化する。   However, in the heat exchanger described in Patent Document 1, since the tap water is heated, calcium and silica contained in the tap water are precipitated (generally referred to as scale) and easily adhere to the inner wall surface of the pipe. The problem is that clogging is likely to occur in the tube. In particular, when fins are added to the inner surface of the pipe, the deposits are accumulated between adjacent fins, and the effect of improving the heat transfer coefficient due to the addition of fins deteriorates over time.

このような問題に鑑み、本発明はなされたもので、長期間の使用過程においてスケール堆積が生じにくいことにより、良好な熱交換特性を維持できる伝熱管を提供するものである。   In view of such a problem, the present invention has been made, and provides a heat transfer tube capable of maintaining good heat exchange characteristics because scale deposition hardly occurs during a long-term use process.

本発明に係る熱交換器の第1の態様は、管の内面からの高さhが前記管の内径dに対して0.0d〜0.1dであり、前記管の軸方向に形成された0.5〜1.8mmの距離aを有する溝によってそれぞれ挟まれた、複数の螺旋状のフィンを備え、管の内面に形成されるフィンと、前記フィンと隣り合うフィンとの間に形成される溝との接続部Frの曲率半径αが0.03〜0.5mmである、水道水が流れる伝熱管と、冷媒用の管とを備えた熱交換器であって、前記冷媒用の管と前記伝熱管とが密着接合されており、前記冷媒用の管が前記伝熱管で挟まれた構造を有することを特徴とする、熱交換器である。 A first aspect of the heat exchanger according to the present invention is 0.0 1 d~0.1 3 d is a height h from the inner face of the tube against the inner diameter d of the tube, the axial direction of the tube A plurality of spiral fins sandwiched between grooves a having a distance a of 0.5 to 1.8 mm formed on the fin, the fin formed on the inner surface of the tube, and the fin adjacent to the fin, A heat exchanger provided with a heat transfer pipe through which tap water flows , and a pipe for refrigerant, the curvature radius α of the connecting part Fr with the groove formed between the pipes is 0.03 to 0.5 mm , The heat exchanger is characterized in that the refrigerant tube and the heat transfer tube are in close contact with each other, and the refrigerant tube is sandwiched between the heat transfer tubes.

本発明に係る熱交換器の第2の態様は、管の内面からの高さhが前記管の内径dに対して0.01d〜0.13dであり、前記管の軸方向に形成された0.5〜1.8mmの距離aを有する溝によってそれぞれ挟まれた、複数の螺旋状のフィンを備え、管の内面に形成されるフィンと、前記フィンと隣り合うフィンとの間に形成される溝との接続部Frが、少なくとももう一段の面を形成する、水道水が流れる伝熱管と、冷媒用の管とを備えた熱交換器であって、前記冷媒用の管と前記伝熱管とが密着接合されており、前記冷媒用の管が前記伝熱管で挟まれた構造を有することを特徴とする、熱交換器である。 In the second aspect of the heat exchanger according to the present invention, the height h from the inner surface of the tube is 0.01d to 0.13d with respect to the inner diameter d of the tube, and is formed in the axial direction of the tube. A plurality of spiral fins sandwiched between grooves a having a distance a of 0.5 to 1.8 mm, each of which is formed between a fin formed on the inner surface of the tube and a fin adjacent to the fin. A heat exchanger comprising a heat transfer pipe through which tap water flows and a refrigerant pipe, at which the connecting portion Fr to the groove forms at least another surface, the refrigerant pipe and the heat transfer pipe Is a heat exchanger, wherein the refrigerant pipe is sandwiched between the heat transfer pipes.

本発明に係る熱交換器の第3の態様は、前記冷媒用の管が2本又は3本であり、前記伝熱管、前記冷媒用の管、及びこれらの接合部で囲まれた範囲に隙間部が形成され、該隙間部により冷媒又は水の漏洩を検知出来るようにした熱交換器である。 In a third aspect of the heat exchanger according to the present invention, the refrigerant pipe has two or three pipes, and a gap is provided in a range surrounded by the heat transfer pipe, the refrigerant pipe, and a joint portion thereof. This is a heat exchanger in which a portion is formed and leakage of refrigerant or water can be detected by the gap.

本発明に係る熱交換器の第4の態様は、前記冷媒用の管と、前記伝熱管とが並列に渦巻くように形成されていることにより、前記冷媒用の管が前記伝熱管で挟まれた構造を有する熱交換器である。 According to a fourth aspect of the heat exchanger of the present invention, the refrigerant tube and the heat transfer tube are formed so as to spiral in parallel, whereby the refrigerant tube is sandwiched between the heat transfer tubes. It is a heat exchanger having a structure.

本発明に係るヒートポンプ給湯器の第1の態様は、上述した熱交換器と、当該熱交換器から流出する冷媒を減圧する膨張弁と、膨張弁で減圧された前記冷媒を蒸発させる蒸発器と、前記冷媒を圧縮する圧縮機とを備える一次冷媒回路と、前記熱交換器に水を導出する循環ポンプと、前記熱交換器で加熱された水を貯蔵する給湯タンクとを備えるヒートポンプ給湯器である。 A first aspect of the heat pump water heater according to the present invention includes the above-described heat exchanger, an expansion valve that depressurizes the refrigerant flowing out of the heat exchanger, and an evaporator that evaporates the refrigerant depressurized by the expansion valve. A heat pump water heater comprising: a primary refrigerant circuit comprising a compressor for compressing the refrigerant; a circulation pump for leading water to the heat exchanger; and a hot water tank for storing water heated by the heat exchanger. is there.

本発明による熱交換器によれば、ヒートポンプ等に用いられる伝熱管について、長期間の使用過程においてスケール堆積が生じにくいため、良好な熱交換特性を維持できる伝熱管を提供することができる。   The heat exchanger according to the present invention can provide a heat transfer tube that can maintain good heat exchange characteristics because scale deposition is unlikely to occur during a long-term use process for a heat transfer tube used in a heat pump or the like.

以下、本発明の実施形態について、図1から図9を参照して、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 9.

図1は、本発明に係る伝熱管を示す一実施例の模式図である。図1(a)は、伝熱管の平面図である。図1(b)は、伝熱管の矢視xの縦断面図である。図1(c)は、伝熱管の矢視yの横断面図である。図1(d)は伝熱管の矢視zの斜め断面図である。   FIG. 1 is a schematic view of an embodiment showing a heat transfer tube according to the present invention. Fig.1 (a) is a top view of a heat exchanger tube. FIG.1 (b) is a longitudinal cross-sectional view of arrow x of a heat exchanger tube. FIG.1 (c) is a cross-sectional view of the heat exchanger tube of the arrow y. FIG.1 (d) is a diagonal sectional view of the heat exchanger tube of the arrow z.

本発明の伝熱管において、図1(c)に示すフィン2の高さ(または溝の深さ)hを管内径dに対して0.005d〜0.19dとする。高さhが0.005dより小さいと螺旋状のフィンまたは溝による伝熱性能が劣るためである。逆に、高さhが0.19dよりも大きくなっても伝熱性能の向上は飽和するばかりでなく、管内のフィンとフィンとの間に形成される面溝部へのスケールの堆積が生じやすくなってしまうためである。好ましくは0.01d〜0.13dである。   In the heat transfer tube of the present invention, the height (or groove depth) h of the fin 2 shown in FIG. 1C is 0.005d to 0.19d with respect to the tube inner diameter d. This is because if the height h is smaller than 0.005d, the heat transfer performance by the spiral fins or grooves is inferior. Conversely, even if the height h is greater than 0.19d, not only the improvement in heat transfer performance is saturated, but also scale deposition tends to occur in the surface groove formed between the fins in the pipe. This is because it becomes. Preferably it is 0.01d-0.13d.

本発明の伝熱管において、図1(b)に示す管の軸方向に隣り合う溝の距離aを0.4mm以上とする。距離aが0.4mm未満であると管内の面溝部へのスケールの堆積が生じやすくなってしまうためである。好ましくは距離aが0.5〜1.8mmである。 In the heat transfer tube of the present invention, the distance a between adjacent grooves in the axial direction of the tube shown in FIG. This is because if the distance a is less than 0.4 mm, scale is likely to be deposited on the surface groove in the pipe. The distance a is preferably 0.5 to 1.8 mm.

さらに、本発明の伝熱管のフィンの特性について図面を参照しながら詳細に説明する。なお、図1に示される伝熱管の各部と同様の構成には同一符号を付し、その説明を省略する。   Further, the characteristics of the fins of the heat transfer tube of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the structure similar to each part of the heat exchanger tube shown by FIG. 1, and the description is abbreviate | omitted.

図2は、フィンの形状の1つの態様を模式的に示す断面図である。なお、ここでは、図2に示すように、管の内面に形成されるフィン2と接続部Frが曲面である場合を曲面接合と分類する。曲面接合で管の内面に形成されるフィン2と、その隣り合うフィン2によって、その間に形成される溝との接続部Frの曲率半径αを0.03〜0.5mmとする。曲率半径αが0.03mm未満であると、曲面接合の接続部Frにスケールの堆積が生じやすくなってしまう。逆に、曲率半径αが0.5mmを越えると不必要に材料を必要とし、単位長さ管重量の増加という問題が生じる。好ましくは、曲率半径αが0.03〜0.4mmである。   FIG. 2 is a cross-sectional view schematically showing one aspect of the shape of the fin. Here, as shown in FIG. 2, the case where the fins 2 and the connecting portions Fr formed on the inner surface of the pipe are curved surfaces is classified as curved surface bonding. The curvature radius α of the connecting portion Fr between the fin 2 formed on the inner surface of the pipe by curved surface bonding and the adjacent fin 2 and the groove formed therebetween is set to 0.03 to 0.5 mm. If the radius of curvature α is less than 0.03 mm, scales are likely to be deposited at the connecting portion Fr of the curved surface joint. On the other hand, if the curvature radius α exceeds 0.5 mm, a material is unnecessarily required, resulting in an increase in unit length pipe weight. Preferably, the curvature radius α is 0.03 to 0.4 mm.

図3は、フィンの形状の他の態様を模式的に示す断面図である。また、ここでは、本発明の伝熱管において曲面接合の代替として、図3に示すように、管の内面のフィン2と管の接続部Frにおいてもう一段の面(テーパー)が形成されているものを面取接合と分類する。すなわち、フィン2と管の内面とは多角形の一部をなすよう形成される。この面取接合によりフィン2と溝部との境にスケールの堆積が生じにくくなる。なお、図3に示すbは、面取接合の面の高さを示し、cは、面取接合の面の幅を示す。   FIG. 3 is a cross-sectional view schematically showing another aspect of the shape of the fin. Further, here, as an alternative to curved surface joining in the heat transfer tube of the present invention, as shown in FIG. 3, another surface (taper) is formed at the fin 2 on the inner surface of the tube and the connecting portion Fr of the tube. Are classified as chamfered joints. That is, the fin 2 and the inner surface of the tube are formed so as to form a part of a polygon. This chamfering makes it difficult for scale to be deposited at the boundary between the fin 2 and the groove. In addition, b shown in FIG. 3 shows the height of the surface of chamfering joining, and c shows the width | variety of the surface of chamfering joining.

本発明の伝熱管の材質は、熱伝導性を有するものであれば良いが、好ましくは熱伝導性に優れる金属が良い。より好ましくは銅または銅合金である。   The material of the heat transfer tube of the present invention is not particularly limited as long as it has thermal conductivity, but a metal having excellent thermal conductivity is preferable. More preferably, it is copper or a copper alloy.

また、本発明の伝熱管は熱交換器に用いられ、特に、二酸化炭素を冷媒とし、水道水と熱交換するヒートポンプ給湯器に用いられる。   The heat transfer tube of the present invention is used in a heat exchanger, and in particular, in a heat pump water heater that uses carbon dioxide as a refrigerant and exchanges heat with tap water.

(実施例1)
以下に、実施例を用いて本発明に係る熱交換器を詳細に説明する。
図4は、伝熱管の特性とその特性に基づく評価結果を示す表である。伝熱管の材質はリン脱酸銅を使用し、外径Dを9.52mm、内径dを7.92mm、管の長さを2.5m、管の肉厚tを0.8mmとした。その状態で、溝数、フィンの高さh、溝の距離a、接続部Frの曲率α、ねじれ角θを種々の条件で変化させ、伝熱管の評価を行った。
Example 1
Below, the heat exchanger concerning the present invention is explained in detail using an example.
FIG. 4 is a table showing the characteristics of the heat transfer tubes and the evaluation results based on the characteristics. Phosphorous deoxidized copper was used as the material for the heat transfer tube, the outer diameter D was 9.52 mm, the inner diameter d was 7.92 mm, the tube length was 2.5 m, and the tube thickness t was 0.8 mm. In this state, the number of grooves, fin height h, groove distance a, curvature α of connecting portion Fr, and torsion angle θ were changed under various conditions, and the heat transfer tubes were evaluated.

また、図5は、本発明に係る伝熱管の伝熱性能の評価方法を示す模式図である。図5に示すように、2重管式熱交換器により伝熱管1の伝熱性能を評価した。2重管式伝熱管の内管には、本発明例および比較例の伝熱管1を使用し、水温30度の低温水を流量2リットル/分で、図5に示す矢印3の方向に流した。外管4にはステンレス製の外径16mm、肉厚1mmの管を使用し、水温60度の高温水を流量3リットル/分で、図5に示す矢印5の方向に流した。   FIG. 5 is a schematic diagram showing a method for evaluating the heat transfer performance of the heat transfer tube according to the present invention. As shown in FIG. 5, the heat transfer performance of the heat transfer tube 1 was evaluated using a double tube heat exchanger. As the inner pipe of the double pipe type heat transfer pipe, the heat transfer pipe 1 of the present invention example and the comparative example is used, and low-temperature water with a water temperature of 30 degrees is flowed in the direction of arrow 3 shown in FIG. did. As the outer tube 4, a stainless steel tube having an outer diameter of 16 mm and a wall thickness of 1 mm was used, and high-temperature water having a water temperature of 60 degrees was flowed at a flow rate of 3 liters / minute in the direction of arrow 5 shown in FIG.

まず、伝熱性能の評価を調べるために、図4に示す実験条件の下で水の交換熱量Q1の測定を行った。なお、スケール直前の交換熱量Q1は、本発明例および比較例の伝熱管1と同じ外径を有し、管内面にフィンまたは溝が無い平滑管の交換熱量Q1を100とし(比較例7)、比較例7との比で本発明例1〜19及び比較例1〜6の交換熱量Q1を示した。   First, in order to examine the evaluation of the heat transfer performance, the exchange heat quantity Q1 of water was measured under the experimental conditions shown in FIG. The exchange heat quantity Q1 immediately before the scale has the same outer diameter as that of the heat transfer pipe 1 of the present invention and the comparative example, and the exchange heat quantity Q1 of a smooth tube having no fins or grooves on the inner surface of the pipe is 100 (Comparative Example 7). In comparison with Comparative Example 7, the exchange heat quantities Q1 of Invention Examples 1 to 19 and Comparative Examples 1 to 6 were shown.

次に、伝熱管1の内面へのスケール付着による伝熱性能の影響について検討するため、以下に示すスケール付着加速試験を行なった。   Next, in order to examine the influence of the heat transfer performance due to the scale adhesion to the inner surface of the heat transfer tube 1, the scale adhesion acceleration test shown below was performed.

本発明例および比較例の伝熱管1の内部に、カルシウム硬度が200mg/リットル、およびイオン状シリカが100mg/リットルになるように塩化カルシウムおよびメタケイ酸ナトリウムを添加して80℃に加熱した水道水を、流量2リットル/分で270日間通水した。なお、試験水は15日ごとに新しい液に交替した。   Tap water heated to 80 ° C. by adding calcium chloride and sodium metasilicate so that the calcium hardness is 200 mg / liter and the ionic silica is 100 mg / liter inside the heat transfer tube 1 of the present invention example and the comparative example. Was passed for 270 days at a flow rate of 2 liters / minute. The test water was replaced with a new solution every 15 days.

さらに前記実施例1と同じ方法で、通水開始より90日、180日、270日で、本発明例および比較例の伝熱管1の交換熱量を測定し、スケール付着前後による交換熱量の劣化を評価した。通水開始より90日、180日、270日のそれぞれの交換熱量をQ2、Q3、Q4とした。また、試験終了後(270日後)に、伝熱管1を切断して管内面のスケールの堆積状態を目視で確認した。ほとんど堆積していないものを○、やや堆積が見られるものを△、堆積が著しいものを×とした。伝熱管1の形状と評価結果を図4に示す。   Further, in the same manner as in Example 1, the exchange heat amount of the heat transfer tubes 1 of the present invention example and the comparative example is measured at 90 days, 180 days, and 270 days from the start of water flow, and the deterioration of the exchange heat amount due to before and after the scale adheres. evaluated. The exchange heat amounts on the 90th, 180th, and 270th from the start of water flow were defined as Q2, Q3, and Q4. Further, after the test was completed (after 270 days), the heat transfer tube 1 was cut and the state of scale accumulation on the inner surface of the tube was visually confirmed. The case where there was almost no accumulation was marked as ◯, the case where slight accumulation was observed was marked as Δ, and the case where accumulation was significant was marked as x. The shape and evaluation result of the heat transfer tube 1 are shown in FIG.

図4から明らかなように、本願発明の伝熱管1はスケール堆積がしにくく、それにより交換熱量の劣化がほとんど無いため、良好な熱交換特性を維持している。それに対し、比較例1はh/dが0.005よりも小さいので伝熱性能が本発明例より劣った。また、比較例2は管の内面のフィン2と管の接続部Frにテーパーや曲面が形成されない接合(直接接合)なのでスケールが付着してしまい伝熱性能の低下が大きかった。比較例3と4はh/dが0.19よりも大きいのでスケールが付着してしまい伝熱性能の低下が大きかった。比較例5および6は溝の距離aが0.4mmよりも小さいため、スケールが付着してしまい伝熱性能の低下が大きかった。比較例7は平滑管なので交換熱量が本発明例より劣った。   As can be seen from FIG. 4, the heat transfer tube 1 of the present invention is less likely to deposit on the scale, so that there is almost no deterioration in the amount of exchange heat, so that good heat exchange characteristics are maintained. On the other hand, since the h / d was smaller than 0.005 in the comparative example 1, the heat transfer performance was inferior to the example of the present invention. Moreover, since the comparative example 2 was joining (direct joining) by which the taper and the curved surface were not formed in the fin 2 of the inner surface of a pipe, and the connection part Fr of a pipe, the scale adhered and the fall of heat transfer performance was large. In Comparative Examples 3 and 4, since h / d was larger than 0.19, the scale adhered and the heat transfer performance was greatly reduced. In Comparative Examples 5 and 6, since the groove distance a was smaller than 0.4 mm, the scale adhered and the heat transfer performance was greatly reduced. Since Comparative Example 7 was a smooth tube, the amount of exchange heat was inferior to that of the present invention.

(実施例2)
次に、実施例1と同様、図5に示す評価方法を用いて、外径Dが12.7mm、内径dが11.1mm、肉厚tが0.8mmである伝熱管1を評価した。その他の条件は実施例1と同様である。伝熱管の形状と評価結果を図6に示す。
(Example 2)
Next, as in Example 1, the heat transfer tube 1 having an outer diameter D of 12.7 mm, an inner diameter d of 11.1 mm, and a wall thickness t of 0.8 mm was evaluated using the evaluation method shown in FIG. Other conditions are the same as in the first embodiment. The shape of the heat transfer tube and the evaluation results are shown in FIG.

図6は、第2実施例の伝熱管の特性とその特性に基づく評価結果を示す表である。図6から明らかなように、本願発明の伝熱管1はスケール堆積がしにくく、それにより交換熱量の劣化がほとんど無いため、良好な熱交換特性を維持している。それに対し、比較例8はh/dが0.005より小さいので本発明よりも伝熱性能が悪かった。比較例9はh/dが0.19より大きいので、スケールが付着してしまい伝熱性能が低下してしまった。比較例10は平滑管なので交換熱量が本発明例より低い。   FIG. 6 is a table showing the characteristics of the heat transfer tube of the second embodiment and the evaluation results based on the characteristics. As is apparent from FIG. 6, the heat transfer tube 1 of the present invention is less likely to be scale-deposited, so that there is almost no deterioration of the exchange heat quantity, so that good heat exchange characteristics are maintained. On the other hand, Comparative Example 8 had a heat transfer performance worse than that of the present invention because h / d was smaller than 0.005. In Comparative Example 9, since h / d was larger than 0.19, the scale adhered and the heat transfer performance deteriorated. Since Comparative Example 10 is a smooth tube, the amount of exchange heat is lower than that of the present invention.

(実施例3)
さらに、実施例1で取り上げた、外径Dが9.52mm、肉厚tが0.8mmの本発明例15の伝熱管と、平滑管である図4に示す比較例7について、入口の水温10℃、水流量6〜9リットル/分(流速約2〜3m/sec)の範囲で、図5に示す評価方法を用いて交換熱量を測定した。その結果を図7に示す。
(Example 3)
Furthermore, the water temperature at the inlet of the heat transfer tube of the present invention example 15 having an outer diameter D of 9.52 mm and a wall thickness t of 0.8 mm and the comparative example 7 shown in FIG. The amount of exchange heat was measured using the evaluation method shown in FIG. 5 at a temperature of 10 ° C. and a water flow rate of 6 to 9 liters / minute (flow rate of about 2 to 3 m / sec). The result is shown in FIG.

図7は、第3実施例の伝熱管の特性とその特性に基づく評価結果を示す表である。図7より分かるように、本発明なる伝熱管は水流量が多くなっても高い伝熱性能を得ることができる。このことは、本発明なる伝熱管が、給湯器だけに限らず、各種の高温媒体を冷却するための伝熱管として使用しても効果を得るものであることを示している。   FIG. 7 is a table showing the characteristics of the heat transfer tube of the third embodiment and the evaluation results based on the characteristics. As can be seen from FIG. 7, the heat transfer tube of the present invention can obtain high heat transfer performance even when the water flow rate is increased. This indicates that the heat transfer tube according to the present invention is not limited to only a water heater, but can be used effectively as a heat transfer tube for cooling various high-temperature media.

(実施例4)
図8は、本発明の伝熱管を備える熱交換器の一例を示す平面図である。図8に示すように、本発明に係る熱交換器13は、二酸化炭素などの冷媒が流れる管6を、水が流れる伝熱管1で挟む構造をしており、かつ、両者を接合材により接合して密着することによって、管6から放熱される熱が大気へ放出されることなしに、伝熱管1に伝わり、効率良く伝熱管1と熱交換を行うものである。
Example 4
FIG. 8 is a plan view showing an example of a heat exchanger provided with the heat transfer tube of the present invention. As shown in FIG. 8, the heat exchanger 13 according to the present invention has a structure in which a pipe 6 through which a refrigerant such as carbon dioxide flows is sandwiched between heat transfer pipes 1 through which water flows, and both are bonded by a bonding material. Thus, the heat radiated from the tube 6 is transferred to the heat transfer tube 1 without being released to the atmosphere, and heat exchange with the heat transfer tube 1 is performed efficiently.

冷媒は図8に示す矢印9に沿って管2に流入する一方で、水は図8に示す矢印10に沿って伝熱管1を流出する。したがって、管の内部を流れる冷媒と水は、対向流れとなるように構成されている。   While the refrigerant flows into the pipe 2 along the arrow 9 shown in FIG. 8, the water flows out of the heat transfer pipe 1 along the arrow 10 shown in FIG. Therefore, the refrigerant and water flowing inside the pipe are configured to face each other.

さらに、本発明の熱交換器について、図8に示すa−a断面図を用いて詳細に説明すると、伝熱管1と管6及び接合部7で囲まれた範囲が隙間部8として形成されるために、腐食により伝熱管1や管6の管壁に孔があいた場合にも、他の管への腐食が進行する前に、隙間部8へ冷媒あるいは水が流れ出して、その漏洩を検知することができる。   Further, the heat exchanger of the present invention will be described in detail with reference to the aa cross-sectional view shown in FIG. 8. A range surrounded by the heat transfer tube 1, the tube 6, and the joint portion 7 is formed as the gap portion 8. Therefore, even when there is a hole in the tube wall of the heat transfer tube 1 or the tube 6 due to corrosion, the refrigerant or water flows out to the gap portion 8 and the leakage is detected before the corrosion to other tubes proceeds. be able to.

伝熱管1と管6の接触面積を増やし、かつ、漏洩検知用の隙間を確保するためには管6の本数は2本または3本とすることが望ましく、これより多いと漏洩検知用の隙間を確保しようとすると、伝熱管1と管6の接触面積が少なくなり伝熱特性が低下する。これらの構成をとることによって、熱交換器の高性能化が図られ、また、熱交換器自体を小型化することができる。   In order to increase the contact area between the heat transfer tube 1 and the tube 6 and to secure a gap for leakage detection, it is desirable that the number of the tubes 6 be two or three. If it is going to ensure, the contact area of the heat exchanger tube 1 and the tube 6 will decrease, and a heat transfer characteristic will fall. By adopting these configurations, high performance of the heat exchanger can be achieved, and the heat exchanger itself can be miniaturized.

(実施例5)
本発明なる伝熱管を、ヒートポンプ給湯器に使用する例について述べる。
図9は、ヒートポンプ給湯器のシステムフロー図である。本実施例のヒートポンプ給湯器は、室外ユニット11と給湯タンク20とから構成される。
(Example 5)
An example in which the heat transfer tube of the present invention is used in a heat pump water heater will be described.
FIG. 9 is a system flow diagram of the heat pump water heater. The heat pump water heater according to the present embodiment includes an outdoor unit 11 and a hot water tank 20.

室外ユニット11は、圧縮機12、ガスクーラーと呼ばれる熱交換器13、膨張弁14及び蒸発器15を備え、それらが順次に冷媒配管16によって接続された一次冷媒回路により構成されている。この冷媒回路には、冷媒として臨界温度の低い二酸化炭素が使用されている。一方、熱交換器13、循環ポンプ18、給湯タンク20を備え、それらが順次に配管19によって接続された回路を二次冷媒回路とする。したがって、熱交換器13には、冷媒配管16と配管19とが接続される。 The outdoor unit 11 includes a compressor 12, a heat exchanger 13 called a gas cooler, an expansion valve 14, and an evaporator 15, and is configured by a primary refrigerant circuit in which these are sequentially connected by a refrigerant pipe 16. In this refrigerant circuit, carbon dioxide having a low critical temperature is used as a refrigerant. On the other hand, a circuit including a heat exchanger 13, a circulation pump 18, and a hot water supply tank 20 and sequentially connected by a pipe 19 is referred to as a secondary refrigerant circuit. Therefore, the refrigerant pipe 16 and the pipe 19 are connected to the heat exchanger 13.

圧縮機12は、蒸発器15で蒸発された冷媒を、図示しないアキュムレータを介して吸引し、臨界圧力以上まで圧縮作用を行う。なお、アキュムレータは設けなくともよい。熱交換器13は、圧縮機12から吐出された冷媒としての二酸化炭素と水との間で熱交換を行う。なお、通常運転時では、冷媒は圧縮機12で臨界圧力以上に加圧されるので、熱交換器13での放熱によっても凝縮することはなく、ガス状態となっている。 The compressor 12 sucks the refrigerant evaporated by the evaporator 15 through an accumulator (not shown) and performs a compression action to a critical pressure or higher. An accumulator may not be provided. The heat exchanger 13 exchanges heat between carbon dioxide and water as refrigerant discharged from the compressor 12. During normal operation, the refrigerant is pressurized to a critical pressure or higher by the compressor 12, so that it is not condensed even by heat radiation from the heat exchanger 13, and is in a gas state.

膨張弁14は、熱交換器13から流出する冷媒を弁の開き度合いに応じて減圧し、図示しない制御装置によって制御される。蒸発器15は、膨張弁14で減圧された冷媒を蒸発させる。この冷媒のために大気中からの熱を吸熱するするために、ファン17が備えられている。これらの部材を使用して、二酸化炭素冷媒は、図9に示す矢印にしたがって冷媒配管16内を流れる。 The expansion valve 14 depressurizes the refrigerant flowing out of the heat exchanger 13 according to the degree of opening of the valve, and is controlled by a control device (not shown). The evaporator 15 evaporates the refrigerant decompressed by the expansion valve 14. A fan 17 is provided to absorb heat from the atmosphere for the refrigerant. Using these members, the carbon dioxide refrigerant flows in the refrigerant pipe 16 in accordance with the arrows shown in FIG.

また、二次冷媒回路において、循環ポンプ18は、外部から給湯タンク20を介して流入する水を熱交換器13に導出する。さらに、熱交換器13によって約90℃程度まで加熱された温水を給湯タンク20に導出する。したがって、この循環ポンプ18によって、水が二次冷媒回路内を矢印に示すように循環する。なお、循環ポンプ18は、図示しない制御装置によって循環量を制御する。 In the secondary refrigerant circuit, the circulation pump 18 leads water that flows from the outside through the hot water tank 20 to the heat exchanger 13. Further, the hot water heated to about 90 ° C. by the heat exchanger 13 is led out to the hot water tank 20. Accordingly, the circulation pump 18 circulates water in the secondary refrigerant circuit as indicated by an arrow. The circulation pump 18 controls the circulation amount by a control device (not shown).

上述したように、一次冷媒回路に二酸化炭素冷媒を使用することで、二次冷媒回路側において、外部から流入する水道水を高温水にし、その高温水が給湯タンク20に貯められて、必要な時に給湯される。 As described above, by using carbon dioxide refrigerant in the primary refrigerant circuit, tap water flowing from the outside is made hot water on the secondary refrigerant circuit side, and the hot water is stored in the hot water supply tank 20 to be necessary. Sometimes hot water is supplied.

さらに、本発明は、上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で種々変形して実施することが可能である。   Furthermore, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

本発明により、ヒートポンプ等に用いられる伝熱管について、長期間の使用過程においてスケール堆積が生じにくいため、良好な熱交換特性を維持できる伝熱管を提供することができ、産業上の利用可能性が高い。   According to the present invention, the heat transfer tube used in a heat pump or the like is less likely to cause scale deposition in a long-term use process, and therefore, it is possible to provide a heat transfer tube that can maintain good heat exchange characteristics, and has industrial applicability. high.

図1は、本発明に係る伝熱管を示す一実施例の模式図である。FIG. 1 is a schematic view of an embodiment showing a heat transfer tube according to the present invention. 図2は、フィンの形状の1つの態様を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing one aspect of the shape of the fin. 図3は、フィンの形状の他の態様を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing another aspect of the shape of the fin. 図4は、第1実施例の伝熱管の特性とその特性に基づく評価結果を示す表である。FIG. 4 is a table showing the characteristics of the heat transfer tube of the first embodiment and the evaluation results based on the characteristics. 図5は、本発明に係る伝熱管の伝熱性能の評価方法の模式図である。FIG. 5 is a schematic diagram of a method for evaluating the heat transfer performance of a heat transfer tube according to the present invention. 図6は、第2実施例の伝熱管の特性とその特性に基づく評価結果を示す表である。FIG. 6 is a table showing the characteristics of the heat transfer tube of the second embodiment and the evaluation results based on the characteristics. 図7は、伝熱管の特性とその特性に基づく評価結果を示す表である。FIG. 7 is a table showing characteristics of heat transfer tubes and evaluation results based on the characteristics. 図8は、本発明の伝熱管を備える熱交換器の一例を示す平面図である。FIG. 8 is a plan view showing an example of a heat exchanger provided with the heat transfer tube of the present invention. 図9は、ヒートポンプ給湯器のシステムフロー図である。FIG. 9 is a system flow diagram of the heat pump water heater.

符号の説明Explanation of symbols

1 伝熱管
2 フィン
3 低温水
4 外管
5 高温水
6 管
7 接合部
8 隙間部
9 冷媒
10 水
11 室外ユニット
12 圧縮機
13 熱交換器
14 膨張弁
15 蒸発器
16 冷媒配管
17 ファン
18 循環ポンプ
19 配管
20 給湯タンク
D 外径
d 内径
t 肉厚
α 曲率半径
Fr 接続部
h フィンの高さ
a 溝の距離
b 面の高さ
c 面の幅
θ ねじれ角
DESCRIPTION OF SYMBOLS 1 Heat transfer pipe 2 Fin 3 Low temperature water 4 Outer pipe 5 High temperature water 6 Pipe 7 Joint part 8 Crevice part 9 Refrigerant 10 Water 11 Outdoor unit 12 Compressor 13 Heat exchanger 14 Expansion valve 15 Evaporator 16 Refrigerant pipe 17 Fan 18 Circulation pump 19 Piping 20 Hot water tank D Outer diameter d Inner diameter t Wall thickness α Curvature radius Fr Connection part h Fin height a Groove distance b Surface height c Surface width θ Twist angle

Claims (5)

管の内面からの高さhが前記管の内径dに対して0.0d〜0.1dであり、前記管の軸方向に形成された0.5〜1.8mmの距離aを有する溝によってそれぞれ挟まれた、複数の螺旋状のフィンを備え、管の内面に形成されるフィンと、前記フィンと隣り合うフィンとの間に形成される溝との接続部Frの曲率半径αが0.03〜0.5mmである、水道水が流れる伝熱管と、冷媒用の管とを備えた熱交換器であって、
前記冷媒用の管と前記伝熱管とが密着接合されており、
前記冷媒用の管が前記伝熱管で挟まれた構造を有することを特徴とする、熱交換器。
Height h from the inner face of the tube is 0.0 1 d~0.1 3 d against the inner diameter d of the tube, the distance 0.5 to 1.8 mm which is formed in the axial direction of the tube a curvature of a connecting portion Fr between a fin formed on the inner surface of the tube and a groove formed between the fin adjacent to the fin , each having a plurality of helical fins sandwiched by grooves having a A heat exchanger having a heat transfer pipe through which tap water flows , and a pipe for refrigerant , with a radius α of 0.03 to 0.5 mm ,
The refrigerant tube and the heat transfer tube are tightly joined,
The heat exchanger has a structure in which the refrigerant tube is sandwiched between the heat transfer tubes.
管の内面からの高さhが前記管の内径dに対して0.0d〜0.1dであり、前記管の軸方向に形成された0.5〜1.8mmの距離aを有する溝によってそれぞれ挟まれた、複数の螺旋状のフィンを備え、管の内面に形成されるフィンと、前記フィンと隣り合うフィンとの間に形成される溝との接続部Frが、少なくとももう一段の面を形成する、水道水が流れる伝熱管と、冷媒用の管とを備えた熱交換器であって、
前記冷媒用の管と前記伝熱管とが密着接合されており、
前記冷媒用の管が前記伝熱管で挟まれた構造を有することを特徴とする、熱交換器。
Height h from the inner face of the tube is 0.0 1 d~0.1 3 d against the inner diameter d of the tube, the distance 0.5 to 1.8 mm which is formed in the axial direction of the tube a connecting portion Fr comprising a plurality of spiral fins sandwiched between grooves having a, a fin formed on the inner surface of the tube, and a groove formed between the fin and the adjacent fin; A heat exchanger comprising a heat transfer pipe through which tap water flows , and a pipe for refrigerant , forming at least one more surface ,
The refrigerant tube and the heat transfer tube are tightly joined,
The heat exchanger has a structure in which the refrigerant tube is sandwiched between the heat transfer tubes.
前記冷媒用の管が2本又は3本であり、
前記伝熱管、前記冷媒用の管、及びこれらの接合部で囲まれた範囲に隙間部が形成され、該隙間部により冷媒又は水の漏洩を検知出来るようにしたことを特徴とする、請求項1又は2記載の熱交換器。
There are two or three tubes for the refrigerant,
A gap portion is formed in a range surrounded by the heat transfer tube, the refrigerant tube, and a joint portion thereof, and leakage of the refrigerant or water can be detected by the gap portion. The heat exchanger according to 1 or 2 .
前記冷媒用の管と、前記伝熱管とが並列に渦巻くように形成されていることにより、前記冷媒用の管が前記伝熱管で挟まれた構造を有する、請求項1〜3いずれかに記載の熱交換器。 A tube for the coolant, by said heat transfer tube is formed as swirling in parallel, with a tube for the coolant is sandwiched by the heat transfer tube structure, according to any claim from 1 to 3 Heat exchanger. 請求項1〜何れかに記載の熱交換器と、当該熱交換器から流出する冷媒を減圧する膨張弁と、膨張弁で減圧された前記冷媒を蒸発させる蒸発器と、前記冷媒を圧縮する圧縮機とを備える一次冷媒回路と、
前記熱交換器に水を導出する循環ポンプと、前記熱交換器で加熱された水を貯蔵する給湯タンクとを備えるヒートポンプ給湯器。
The heat exchanger according to any one of claims 1 to 4, an expansion valve that depressurizes the refrigerant flowing out from the heat exchanger, an evaporator that evaporates the refrigerant depressurized by the expansion valve, and the refrigerant A primary refrigerant circuit comprising a compressor;
A heat pump water heater comprising: a circulation pump for leading water to the heat exchanger; and a hot water tank for storing water heated by the heat exchanger.
JP2005328638A 2005-02-03 2005-11-14 Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters Active JP4615422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328638A JP4615422B2 (en) 2005-02-03 2005-11-14 Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005027133 2005-02-03
JP2005328638A JP4615422B2 (en) 2005-02-03 2005-11-14 Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters

Publications (3)

Publication Number Publication Date
JP2006242553A JP2006242553A (en) 2006-09-14
JP2006242553A5 JP2006242553A5 (en) 2008-03-21
JP4615422B2 true JP4615422B2 (en) 2011-01-19

Family

ID=37049143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328638A Active JP4615422B2 (en) 2005-02-03 2005-11-14 Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters

Country Status (1)

Country Link
JP (1) JP4615422B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958150B2 (en) * 2006-11-02 2012-06-20 住友軽金属工業株式会社 Water heat exchanger for water heater
JP4728993B2 (en) * 2007-03-28 2011-07-20 古河電気工業株式会社 Aluminum inner grooved tube
JP2008249163A (en) * 2007-03-29 2008-10-16 Daikin Ind Ltd Heat exchanger for supplying hot water
JP4823990B2 (en) * 2007-09-13 2011-11-24 古河電気工業株式会社 Heat transfer tube
JP2015045482A (en) 2013-08-29 2015-03-12 株式会社コベルコ マテリアル銅管 Heat transfer pipe for in-pipe single phase flow
JP6223298B2 (en) * 2014-07-31 2017-11-01 株式会社コベルコ マテリアル銅管 Heat transfer tube for single-phase flow in tube

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042676A (en) * 2001-07-24 2003-02-13 Japan Steel Works Ltd:The Heating tube with inner grooves for liquid medium and heat exchanger using heating tube
JP2003156291A (en) * 2001-11-19 2003-05-30 Daikin Ind Ltd Heat exchanger
JP2003166794A (en) * 2001-11-30 2003-06-13 Furukawa Electric Co Ltd:The Internally threaded tube
JP2003247746A (en) * 2002-02-25 2003-09-05 Sanyo Electric Co Ltd Heat pump type hot water supply device
JP2003287383A (en) * 2002-03-27 2003-10-10 Kobe Steel Ltd Inside surface groove pipe
JP2005009833A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Double pipe type heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042676A (en) * 2001-07-24 2003-02-13 Japan Steel Works Ltd:The Heating tube with inner grooves for liquid medium and heat exchanger using heating tube
JP2003156291A (en) * 2001-11-19 2003-05-30 Daikin Ind Ltd Heat exchanger
JP2003166794A (en) * 2001-11-30 2003-06-13 Furukawa Electric Co Ltd:The Internally threaded tube
JP2003247746A (en) * 2002-02-25 2003-09-05 Sanyo Electric Co Ltd Heat pump type hot water supply device
JP2003287383A (en) * 2002-03-27 2003-10-10 Kobe Steel Ltd Inside surface groove pipe
JP2005009833A (en) * 2003-06-20 2005-01-13 Hitachi Cable Ltd Double pipe type heat exchanger

Also Published As

Publication number Publication date
JP2006242553A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2009121758A (en) Heat exchanger and cryogenic system
JP6074648B2 (en) Tube member assembly and heat exchanger of refrigeration cycle apparatus
JP2007271122A (en) Heat exchanger
JP2006322661A (en) Heat transfer tube for heat dissipation, and radiator
JP2005133999A (en) Heat pump type hot-water supplier
JP2009250562A (en) Heat exchanger
JP4572662B2 (en) Heat exchanger
JP2003028582A (en) Heat exchanger
JP2004286438A (en) Heat exchanger
JP2005069620A (en) Heat exchanger
JP2005201625A (en) Heat exchanger and its manufacturing method
JPH064221Y2 (en) Heat exchanger
CN111556950A (en) Heat exchanger for refrigerator
JP2007271238A (en) Heat exchanger
JP2010112663A (en) Heat exchanger
JP4713562B2 (en) Heat exchanger and heat pump water heater using the same
JP3966260B2 (en) Heat pump water heater
JP2006234355A (en) Heat exchanger
JP2005003209A (en) Heat exchanger and heat pump water heater using the heat exchanger
JP5073074B2 (en) Heat exchanger and heat pump water heater using the same
JP3922088B2 (en) Heat exchanger
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP2004144343A (en) Heat exchanger
JP2007032943A (en) Composite heat exchanger tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100805

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20100805

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R151 Written notification of patent or utility model registration

Ref document number: 4615422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250