JP3922088B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP3922088B2
JP3922088B2 JP2002139605A JP2002139605A JP3922088B2 JP 3922088 B2 JP3922088 B2 JP 3922088B2 JP 2002139605 A JP2002139605 A JP 2002139605A JP 2002139605 A JP2002139605 A JP 2002139605A JP 3922088 B2 JP3922088 B2 JP 3922088B2
Authority
JP
Japan
Prior art keywords
flow path
heat exchanger
plate
channel
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002139605A
Other languages
Japanese (ja)
Other versions
JP2003336990A (en
Inventor
松本  聡
竹司 渡辺
啓次郎 國本
龍太 近藤
敏 今林
浩二 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002139605A priority Critical patent/JP3922088B2/en
Publication of JP2003336990A publication Critical patent/JP2003336990A/en
Application granted granted Critical
Publication of JP3922088B2 publication Critical patent/JP3922088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction

Description

【0001】
【発明の属する技術分野】
本発明は熱交換器に関し、特に、ヒートポンプを用いて温水を生成する給湯機や冷温水を生成する冷暖房機などに利用される冷媒対水の熱交換器のような、異種媒体間の熱移動を行う熱交換器に関する。
【0002】
【従来の技術】
従来、この種の熱交換器としては、実公昭62−5587号公報に開示されているような熱交換器が提案されている。その構成について、図5を参照しながら説明する。
【0003】
熱交換器50は、例えば、冷媒の凝縮熱を利用して給湯水の加熱を行ういわゆるヒートポンプ給湯機に利用されるものであり、高温高圧の冷媒が流れる第1の伝熱管51と、低温低圧の水が流れる第2の伝熱管52とを備え、第1および第2の伝熱管51および52をそれぞれ偏平化して密着させ、螺旋状に巻回した構成となっている。このとき、第1の伝熱管51を流れる高温の冷媒は、その上下に位置する第2の伝熱管52を流れる低温の水と熱交換を行い、この水を加熱することになる。
【0004】
なお、従来例では、伝熱管として肉厚が薄く比較的強度の小さい管体を使用することにより偏平化を容易にするとともに、この偏平化により管同士が密着する面積すなわち伝熱面積の拡大を図ることにより、熱交換性能を向上させている。
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、次のような課題がある。例えば、熱交換器50を、動作圧力が非常に高い、例えば二酸化炭素冷媒と水との熱交換器として利用する場合、高圧冷媒の流れる第1の伝熱管51内部に加わる圧力が非常に高くなるため、管体をあらかじめ機械的に偏平化する従来のような構成では、変形に供しやすく、十分な耐圧性を確保することが困難となる。
【0006】
また、熱交換器50は、図5に示すように、第1の伝熱管51および第2の伝熱管52を密着させて螺旋状に巻回した構成であり、円筒形状となる熱交換器50の内側にデッドスペースが形成されるため、伝熱面積に比して熱交換器の占有体積が大きくなり、装置内部に収納するスペースが多く必要となるという課題があった。
【0007】
本発明は、前記従来の課題を解決するもので、耐圧性に優れ、コンパクトな熱交換器を提供するものである。
【0008】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の熱交換器は、隔壁となるプレートの異なる面に高温高圧の二酸化炭素の流路である第1および前記二酸化炭素によって加熱される水の流路である第2の流路を配し、第1の流路は第1の流路プレートを板厚方向に抜いた貫通孔で形成し、第2の流路は第2の流路プレートと隔壁プレートとの間に形成し、前記隔壁プレートが板厚方向に対して複数枚のプレートで構成されるとともに、前記第2の流路の流路高さをその高温側流路で低温側流路よりも高く形成したものである。
【0009】
これによって、プレートに貫通孔を設けるだけの簡単な方法で、耐圧性に優れた微細な流路を構成することが容易になる。さらに、このような流路を面状に配置することで、平坦で広い伝熱面を形成し、薄型の熱交換器を構成することが可能となる。よって、耐圧性に優れ、コンパクトな熱交換器を提供できる。また、給湯水を加熱する場合、特に出口近傍の高温側流路内においてスケールが発生しやすいが、この部分の流路高さを高くすることでスケール析出による流路の閉塞が緩和され、熱交換器の長寿命化が図られ、信頼性の向上を実現できる。また、第1の流路または第2の流路の一部を形成する隔壁プレートに万一亀裂等の異常が生じた場合も、複数枚の隔壁プレートの存在により、各々の流路から漏洩した流体が、他の流路内に混入することを防止できるため、熱交換器の信頼性の向上を実現できる。
【0010】
【発明の実施の形態】
請求項1に記載の発明は、隔壁となるプレートの異なる面に高温高圧の二酸化炭素の流路である第1の流路と前記二酸化炭素によって加熱される水の流路である第2の流路とを配してなり、前記第1の流路は第1の流路プレートを板厚方向に抜いた貫通孔で形成し、前記第2の流路は第2の流路プレートと前記隔壁プレートとの間に形成し、前記隔壁プレートが板厚方向に対して複数枚のプレートで構成されるとともに、前記第2の流路の流路高さをその高温側流路で低温側流路よりも高く形成したものであり、プレートに貫通孔を設けるだけの簡単な方法で、耐圧性に優れた微細な流路を構成することが容易になる。さらに、このような流路を面状に配置することで、平坦な伝熱面を形成し、薄型の熱交換器を構成することが可能となる。よって、耐圧性に優れ、コンパクトな熱交換器を提供できる。また、給湯水を加熱する場合、特に出口近傍の高温側流路内においてスケールが発生しやすいが、この部分の流路高さを高くすることでスケール析出による流路の閉塞が緩和され、熱交換器の長寿命化が図られ、信頼性の向上を実現できる。また、第1の流路または第2の流路の一部を形成する隔壁プレートに万一亀裂等の異常が生じた場合も、複数枚の隔壁プレートの存在により、各々の流路から漏洩した流体が、他の流路内に混入することを防止できるため、熱交換器の信頼性の向上を実現できる。
【0011】
請求項2に記載の発明は、請求項1の構成に対して、特に第1の流路を複数かつ略平行に構成するものであり、耐圧性に優れた微細な流路を複数かつ略平行に並列配置することで、平坦でより広い伝熱面を形成することが可能となる。よって、耐圧性に優れ、コンパクトで熱交換性能に優れた熱交換器を提供できる。
【0012】
請求項3に記載の発明は、請求項2の構成に対して、特に隔壁プレート内に複数の第1の流路と連通する分配流路を設けたものであり、簡単な構成で容易に複数の流路に流体を分配することができ、熱交換器の薄型化を実現できる。
【0013】
請求項4に記載の発明は、請求項3の構成に対して、特に分配流路が略軸対称形状を有するものであり、複数の第1の流路に対して均一に流体を分配することができ、有効な伝熱面積が十分確保され、熱交換器の高性能化を実現できる。
【0014】
請求項5に記載の発明は、請求項3または4の構成に対して、特に分配流路の等価直径が、第1の流路の等価直径よりも大きいものであり、分配流路における流体の圧力損失を、第1の流路における圧力損失より小さくすることにより、複数の第1の流路に対してより均一に流体を分配することができ、熱交換器のさらなる高性能化を実現できる。
【0015】
請求項6に記載の発明は、請求項1〜5の構成に対して、特に第2の流路の流路幅を第1の流路の流路幅よりも大きく形成したものであり、流路の微細化により第1の流路の耐圧性向上を図る一方で、第2の流路の流路幅を特に小さくすることなく、第2の流路内での流体の圧力損失を小さく抑えることができる。よって、第1の流路の耐圧性を保持したまま、第2の流路側の圧力損失を低減することが可能となる。
【0016】
請求項7に記載の発明は、請求項1〜6の構成に対して、特に第1の流路と第2の流路とをこれらの長手方向の略全体にわたって隔壁プレートを介して対向する位置に形成するものであり、各流路を流れる流体が熱交換性能に優れた対向流の形態で熱交換を行うことができるため、熱交換器のさらなる高性能化とコンパクト化を実現できる。
【0017】
請求項8に記載の発明は、請求項1〜7の構成に対して、特に第1の流路が第1の流路プレート内で屈曲部を有するものである。同一のプレート面内で流路を折り返すことにより、直線状の流路だけではなく、矩形状や渦巻き状等の任意形状の流路を構成することができるため、流路長の長い流路に対しても、熱交換器の縦方向あるいは横方向の長さを十分に小さくでき、熱交換器のより一層のコンパクト化を実現できる。
【0018】
請求項9に記載の発明は、請求項1〜8の構成に対して、特に第1の流路を挟んで両方の面上に、隔壁プレートを介して複数の第2の流路を設けてなるものであり、第1の流路の上下両面で第2の流路との熱交換が可能となり、格段に広い伝熱面積を確保することができる。よって、耐圧性に優れ、さらに熱交換性能が高く、コンパクトな熱交換器を提供できる。
【0019】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0020】
(実施例1)
図1は本発明の実施例1の熱交換器10の断面図、図2は熱交換器10の構成図である。
【0021】
図1において、熱交換器10は、隔壁となるプレート3上下の異なる面に第1の流路2と第2の流路6とを配してなり、第1の流路2は第1の流路プレート1を板厚方向に抜いた貫通孔で形成し、第2の流路6は第2の流路プレート5と隔壁プレート3との間に形成したものである。具体的には、第1の流路2は、例えばプレス機による打ち抜き加工やエッチング加工等により、平板状の第1の流路プレート1に貫通孔を形成し、上下両面から隔壁プレート3およびエンドプレート4で挟んでできる空間で構成されている。一方、第2の流路6は、例えばプレス機による絞り加工等により、第2の流路プレート5に溝を形成し、隔壁プレート3と第2の流路プレート5とを重ねてできる空間で構成されている。
【0022】
なお、第1の流路2は、図2に示すように、複数かつ略平行に構成され、第2の流路6に対して、隔壁プレート3を介して長手方向の略全体にわたって対向する位置にある。すなわち、第1の流路2を図中点線矢印方向に流れる流体Aと、第2の流路6を図中実線矢印方向に流れる流体Bとが対向流となるような構成を有している。
【0023】
さらに、隔壁プレート3内には、第1の流路プレート1と重ねたときに、第1の流路2の各流路と連通する分配流路13aおよび13bが設けられている。この分配流路13aおよび13bは、図2のように略軸対称形状を有しており、第1の流路2を流れる流体Aの流線方向に対して左右対称となっている。
【0024】
また、この分配流路13aおよび13bの等価直径は、第1の流路2の各流路の等価直径よりも大きく構成されている。これは、各流路の高さと幅を適宜設定することにより、容易に設定可能である。また、図1に示すように、第2の流路6の流路幅W2は、第1の流路2の流路幅W1よりも大きくなっている。
【0025】
各流路の入出口部の構成としては、例えば、第1の流路2に対しては、分配流路13aおよび13bと連通するように、第2の流路プレート5に貫通孔11aおよび11bを設け、これらに配管(図示せず)を植立させている。また、第2の流路6に対しては、同様に第2の流路6と連通するように、第2の流路プレート5に貫通孔12aおよび12bを設け、これらに配管(図示せず)を植立させている。
【0026】
ここで、熱交換器10を構成するプレートの材質としては、熱伝導性および成形性の良い金属、例えば銅やアルミニウム、ステンレス等が挙げられる。また、熱交換器10の製造方法としては、ロウ付けや拡散溶接による一体化接合が挙げられる。
【0027】
以上のように構成された熱交換器10について、以下その作用を説明する。
【0028】
第1の流路2に高圧流体、第2の流路6に低圧流体をそれぞれ流通させる。熱交換器10を、例えば、冷媒の凝縮熱等を利用して給湯水の加熱を行ういわゆるヒートポンプ給湯機に利用するものとすると、高圧流体は二酸化炭素等の冷媒であり、低圧流体は給湯水となる。このとき、高温高圧の冷媒は、第1の流路2を流れる間に、隔壁プレート3を介して、第2の流路6を流れる低温低圧の水と熱交換を行うことになる。
【0029】
ここで、本実施例によれば、平板状の第1の流路プレート1に貫通孔を設け、これを第1の流路2として利用するだけの簡単な方法で、耐圧性に優れた微細な流路を構成することが容易になる。さらに、このような第1の流路2を、図2のように、複数かつ略平行に並列配置することで、平坦で広い伝熱面を形成することが可能となり、薄型でコンパクトな熱交換器を提供できる。
【0030】
また、隔壁プレート3内に複数の第1の流路2と連通する分配流路13aおよび13bを設け、これらを略軸対称形状とし、さらに、これらの等価直径を第1の流路2の等価直径よりも大きくして、分配流路13aおよび13bと第1の流路2における流動抵抗に差をつけることで、複数の第1の流路2に対して均一に流体を分配することができ、伝熱面全体にわたって有効な伝熱面積を確保することができる。
【0031】
さらに、第2の流路6の流路幅を、第1の流路2の流路幅よりも大きく構成してやれば、流路の微細化により第1の流路2の耐圧性向上を図る一方で、第2の流路6の流路幅を特に小さくすることなく、第2の流路6内での流体の圧力損失を小さく抑えることができる。これは、第2の流路6に水等の流体を搬送するためのポンプ動力等を低く抑制できることを意味し、第1の流路2の耐圧性を保持したまま、第2の流路6側の圧力損失を低減することが可能となる。
【0032】
また、第1の流路2と第2の流路6とが、これらの長手方向の略全体にわたって隔壁プレート3を介して対向する位置に形成され、各流路を流れる流体が、並行流や直交流に比べて熱交換性能に優れた対向流の形態で熱交換を行うことができるため、熱交換器のさらなる高性能化が図られる。したがって、耐圧性に優れ、熱交換性能が高く、コンパクトな熱交換器を提供できる。
【0033】
(実施例2)
図3は本発明の実施例2の熱交換器20の構成図である。本発明の実施例2は、図2に示した熱交換器10と略同一の構成を有する。本実施例が実施例1と異なるのは、第1の流路22が、第1の流路プレート21の面内で、略U字形状の屈曲部28を有する点である。隔壁プレート23を介して、この第1の流路22と対向する位置には、第2の流路26が、溝を形成した第2の流路プレート25と隔壁プレート23との間の空間として形成され、こちらも略U字形状の屈曲部29を有する。分配流路33aおよび33b、貫通孔31a、31b、32aおよび32bについては、実施例1と同様の機能を有するので、ここでは説明を省略する。
【0034】
第1の流路22に略U字形状だけでなく曲線状やL字形状等の屈曲部28を設けることにより、第1の流路プレート21上に直線状の流路だけではなく、矩形状や渦巻き状等の任意の形状の流路を構成することができる。これは、必要な伝熱面積に応じて流路長を極めて長くとる必要のある流路に対して、熱交換器20の縦方向あるいは横方向の長さを十分に小さくできることを意味する。
したがって、上記した構成により、熱交換器のより一層のコンパクト化を実現できる。
【0035】
(実施例3)
図4は本発明の実施例3の熱交換器30の断面図である。図4において、熱交換器30
は、実施例1と同様に、隔壁となるプレート3a上下の異なる面に第1の流路2と第2の流路6aとを配してなり、第1の流路2は第1の流路プレート1を板厚方向に抜いた貫通孔で形成し、第2の流路6aは第2の流路プレート5aと隔壁プレート3aとの間に形成したものである。本実施例は、さらに、第1の流路2の下面に、隔壁プレート3bを介して、第2の流路プレート5bで形成される第2の流路6bを設けた構成となっている。
【0036】
以上のように構成された熱交換器について、以下その作用を説明する。
【0037】
例えば、実施例1で説明したように、第1の流路2に高温高圧の流体、第2の流路6aおよび6bに低温低圧の流体がそれぞれ流れるとする。このとき、高温高圧流体は、第1の流路2を流れる間に、隔壁プレート3aおよび3bを介して、上下に位置する第2の流路6aおよび6bを流れる低温低圧流体と熱交換を行うことになる。
【0038】
ここで、本実施例によれば、第1の流路の上下両面で第2の流路との熱交換が可能となり、格段に広い伝熱面積を確保することができる。また、第2の流路6aおよび6bに低温側の流体を流通させてやれば、熱交換器をとりまく大気等との温度差が小さくなり、熱交換器の断熱性も向上する。したがって、耐圧性に優れ、さらに熱交換性能が高く、コンパクトな熱交換器を提供できる。
【0039】
(実施例4)
図5は本発明の実施例4の熱交換器40の断面図である。本発明の実施例4は、図1に示した熱交換器20と略同一の構成を有する。本実施例が実施例1と異なるのは、隔壁となるプレート3が板厚方向に対して複数枚のプレート3aおよび3bで構成されるとともに、第2の流路6の流路高さをその高温側流路6dで低温側流路6cよりも高く形成した点である。ここで、流路高さが途中で異なる第2の流路6の作製は、絞り加工等の方法を用いて、第2の流路プレート5に対して部分的に深さの異なる溝を形成することにより、容易に行うことができる。
【0040】
以上のように構成された熱交換器40について、以下その作用を説明する。
【0041】
第1の流路2には、図中点線矢印で示す方向に、流体Aとして、高温高圧の冷媒、例えば、ヒートポンプ装置等に用いられる二酸化炭素、炭化水素、フロンなどが流れ、第2の流路6には、図中実線矢印で示す方向に、流体Bとして、低温低圧の給湯水が流れるとする。このとき、高温高圧の冷媒は、第1の流路2を流れる間に、隔壁板3aおよび3bを介して、第2の流路6を流れる低温低圧流体と熱交換を行うことになる。低温低圧の給湯水は、第2の流路6の出口側(高温側流路6d)において、最も高温となる。
【0042】
例えば、高温高圧の冷媒が流れる第1の流路2の一部を形成する隔壁プレート3bが、腐食等により経時的に劣化・侵食され、その内面に亀裂等の異常が生じ、高圧冷媒が第1の流路2から外部に漏洩するような場合も、隔壁プレート3aの存在により第2の流路6への流入を防止できるため、低温低圧の水に高温高圧の冷媒が混入することはない。同様に、低温低圧の水が流れる第2の流路6の一部を形成する隔壁プレート3aに亀裂等の異常が生じ、低圧の水が第2の流路6から外部に漏洩するような場合も、隔壁プレート3bが存在するため、高温高圧の冷媒が低温低圧の水が流れる第2の流路6に流入することはない。このとき、隔壁プレート3aおよび3bの間に、これらのプレートの外周面と連通する微小な溝を形成しておけば、漏洩した流体を外部に排出できる。さらに、流体に応じたセンサを設置すれば、流体の漏洩を検出し、装置の異常を検出することもできる。
【0043】
よって、各流路の間を二重隔壁構造とすることにより、異なる流体(例えば、冷媒と水)の混合が防止されるため、例えば、ヒートポンプ装置の冷媒および冷凍機油が給湯水に混入する危険性を低減し、熱交換器の信頼性の向上を実現できる。
【0044】
また、冷媒で水(特に水道水)を加熱する冷媒対水熱交換器の場合、一般に、カルシウムやマグネシウム等の硬度成分を多く含んだ水を長期間高温に加熱すると、最も高温となる水側流路の出口部近傍においてスケールが発生する可能性がある。このようなスケールが水側流路の内周に付着すると、水の流動抵抗となって圧力損失が増大し、熱交換器としての性能を低減させる。ここで、本実施例では、第2の流路6の高温側流路6dの流路高さを、その低温側流路6cの流路高さよりも大きく構成しているため、万一水側流路内にスケールが生成し付着した場合も、水の流動抵抗の増加を緩和することができる。
【0045】
したがって、例えば、給湯水の加熱時に特に高温部で発生しやすい、スケール析出による流路の閉塞が緩和され、熱交換器の長寿命化が図られ、信頼性の向上を実現できる。
【0046】
【発明の効果】
以上のように、請求項1から11に記載の発明によれば、隔壁となるプレートの異なる面に第1および第2の流路を配し、第1の流路は第1の流路プレートを板厚方向に抜いた貫通孔で形成し、第2の流路は第2の流路プレートと隔壁プレートとの間に形成したものであり、プレートに貫通孔を設けるだけの簡単な方法で、耐圧性に優れた微細な流路を構成することが容易になり、さらに、このような流路を面状に配置することで、平坦で広い伝熱面を形成し、薄型の熱交換器を構成することが可能となる。よって、耐圧性に優れ、コンパクトな熱交換器を提供できる。
【図面の簡単な説明】
【図1】 本発明の実施例1の同熱交換器の断面図
【図2】 同熱交換器の構成を示す斜視図
【図3】 本発明の実施例2の熱交換器の構成を示す分解斜視図
【図4】 本発明の実施例3の熱交換器の断面図
【図5】 本発明の実施例4の熱交換器の断面図
【図6】 従来の熱交換器の断面図
【符号の説明】
1 第1の流路プレート
2、22 第1の流路
3 隔壁プレート
5 第2の流路プレート
6、6a、6b、26 第2の流路
6c 低温側流路
6d 高温側流路
13a、13b 分配流路
28 屈曲部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger, and in particular, heat transfer between dissimilar media, such as a refrigerant-to-water heat exchanger used in a water heater that generates hot water using a heat pump or an air conditioner that generates cold / hot water. It is related with the heat exchanger which performs.
[0002]
[Prior art]
Conventionally, as this type of heat exchanger, a heat exchanger as disclosed in Japanese Utility Model Publication No. 62-5587 has been proposed. The configuration will be described with reference to FIG.
[0003]
The heat exchanger 50 is used, for example, in a so-called heat pump water heater that heats hot water using the heat of condensation of the refrigerant, and includes a first heat transfer pipe 51 through which a high-temperature and high-pressure refrigerant flows, a low-temperature and low-pressure The second heat transfer tube 52 through which the water flows is provided, and the first and second heat transfer tubes 51 and 52 are flattened and brought into close contact with each other, and are wound spirally. At this time, the high-temperature refrigerant flowing through the first heat transfer tube 51 exchanges heat with the low-temperature water flowing through the second heat transfer tube 52 positioned above and below, and heats this water.
[0004]
In the prior art, flattening is facilitated by using a thin and relatively thin tube as the heat transfer tube, and the flattening increases the area where the tubes adhere to each other, that is, the heat transfer area. As a result, the heat exchange performance is improved.
[0005]
[Problems to be solved by the invention]
However, the conventional configuration has the following problems. For example, when the heat exchanger 50 is used as a heat exchanger having a very high operating pressure, for example, a carbon dioxide refrigerant and water, the pressure applied to the inside of the first heat transfer pipe 51 through which the high-pressure refrigerant flows becomes very high. For this reason, the conventional configuration in which the tube is mechanically flattened in advance is easily subjected to deformation and it is difficult to ensure sufficient pressure resistance.
[0006]
Further, as shown in FIG. 5, the heat exchanger 50 has a configuration in which the first heat transfer tube 51 and the second heat transfer tube 52 are brought into close contact with each other and wound in a spiral shape, and the heat exchanger 50 having a cylindrical shape. Since a dead space is formed inside the heat exchanger, the occupied volume of the heat exchanger is larger than the heat transfer area, and there is a problem that a large amount of space is required in the apparatus.
[0007]
The present invention solves the above-mentioned conventional problems, and provides a compact heat exchanger with excellent pressure resistance.
[0008]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the heat exchanger according to the present invention includes a first channel that is a channel for high-temperature and high-pressure carbon dioxide on a different surface of a plate serving as a partition wall, and a channel for water heated by the carbon dioxide. second flow path disposed at the first flow passage is formed by through holes disconnect the first flow path plate in the thickness direction, the second flow path and the second flow path plate and the partition wall The partition plate is formed of a plurality of plates with respect to the plate thickness direction, and the flow path height of the second flow path is the low temperature side flow path by the high temperature side flow path. Higher than that .
[0009]
This makes it easy to configure a fine flow path with excellent pressure resistance by a simple method of simply providing a through hole in the plate. Furthermore, by arranging such flow paths in a planar shape, a flat and wide heat transfer surface can be formed, and a thin heat exchanger can be configured. Therefore, a compact heat exchanger with excellent pressure resistance can be provided. In addition, when heating hot water, scale is likely to occur especially in the high-temperature side flow path near the outlet. However, increasing the flow path height at this part alleviates blockage of the flow path due to scale deposition, The life of the exchanger can be extended and reliability can be improved. In addition, even if an abnormality such as a crack occurs in the partition plate that forms part of the first channel or the second channel, leakage occurred from each channel due to the presence of a plurality of partition plates. Since the fluid can be prevented from being mixed into other flow paths, the reliability of the heat exchanger can be improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, there is provided a first flow path that is a flow path of high-temperature and high-pressure carbon dioxide and a second flow path that is a flow path of water heated by the carbon dioxide on different surfaces of a plate serving as a partition wall. A first flow path is formed by a through hole formed by extracting a first flow path plate in a plate thickness direction, and the second flow path is a second flow path plate and the partition wall. The partition plate is formed of a plurality of plates with respect to the plate thickness direction, and the flow path height of the second flow path is the low temperature side flow path by the high temperature side flow path. is obtained by higher than the, a simple method of merely providing a through hole in the plate, it becomes easy to configure the fine flow path with excellent pressure resistance. Furthermore, it is possible to form a flat heat transfer surface and arrange a thin heat exchanger by arranging such flow paths in a planar shape. Therefore, a compact heat exchanger with excellent pressure resistance can be provided. In addition, when heating hot water, scale is likely to occur especially in the high-temperature side flow path near the outlet. However, increasing the flow path height at this part alleviates blockage of the flow path due to scale deposition, The life of the exchanger can be extended and reliability can be improved. In addition, even if an abnormality such as a crack occurs in the partition plate that forms part of the first channel or the second channel, leakage occurred from each channel due to the presence of a plurality of partition plates. Since the fluid can be prevented from being mixed into other flow paths, the reliability of the heat exchanger can be improved.
[0011]
According to the second aspect of the present invention, in particular, the plurality of first flow paths are configured substantially parallel to the configuration of the first aspect, and a plurality of fine flow paths excellent in pressure resistance are provided approximately in parallel. By arranging them in parallel, a flat and wider heat transfer surface can be formed. Therefore, a heat exchanger excellent in pressure resistance, compact and excellent in heat exchange performance can be provided.
[0012]
The invention according to claim 3 is the same as the structure of claim 2 except that a partition channel that communicates with the plurality of first channels is provided in the partition plate. The fluid can be distributed to the flow paths, and the heat exchanger can be thinned.
[0013]
The invention according to claim 4 is characterized in that, with respect to the configuration of claim 3, the distribution channel has a substantially axisymmetric shape, and the fluid is uniformly distributed to the plurality of first channels. It is possible to secure a sufficient effective heat transfer area and realize high performance of the heat exchanger.
[0014]
According to the fifth aspect of the invention, the equivalent diameter of the distribution channel is particularly larger than the equivalent diameter of the first channel compared to the configuration of the third or fourth aspect. By making the pressure loss smaller than the pressure loss in the first flow path, the fluid can be more evenly distributed to the plurality of first flow paths, and further enhancement of the performance of the heat exchanger can be realized. .
[0015]
The invention according to claim 6 is the configuration in which the flow path width of the second flow path is formed to be larger than the flow path width of the first flow path. While the pressure resistance of the first flow path is improved by miniaturizing the path, the pressure loss of the fluid in the second flow path is kept small without particularly reducing the flow path width of the second flow path. be able to. Therefore, it is possible to reduce the pressure loss on the second channel side while maintaining the pressure resistance of the first channel.
[0016]
The invention according to claim 7 is a position where the first flow path and the second flow path are opposed to each other through the partition plate over substantially the entire length in the longitudinal direction with respect to the configurations of the first to sixth aspects. Since the fluid flowing through each flow path can perform heat exchange in the form of a counter flow excellent in heat exchange performance, further improvement in performance and compactness of the heat exchanger can be realized.
[0017]
The invention according to claim 8 is the configuration in which the first flow path has a bent portion in the first flow path plate, in contrast to the configurations of the first to seventh aspects. By folding the flow path within the same plate surface, not only a straight flow path but also a flow path of an arbitrary shape such as a rectangular shape or a spiral shape can be configured. In contrast, the length of the heat exchanger in the vertical direction or the horizontal direction can be made sufficiently small, and the heat exchanger can be made more compact.
[0018]
The invention according to claim 9 is the configuration according to claims 1 to 8, in which a plurality of second flow paths are provided on both surfaces with the first flow path interposed therebetween via a partition wall plate. Thus, heat exchange with the second flow path is possible on both the upper and lower surfaces of the first flow path, and a much larger heat transfer area can be secured. Therefore, it is possible to provide a compact heat exchanger with excellent pressure resistance and high heat exchange performance .
[0019]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0020]
Example 1
FIG. 1 is a cross-sectional view of a heat exchanger 10 according to a first embodiment of the present invention, and FIG. 2 is a configuration diagram of the heat exchanger 10.
[0021]
In FIG. 1, the heat exchanger 10 includes a first flow path 2 and a second flow path 6 arranged on different surfaces above and below the plate 3 serving as a partition wall. The flow path plate 1 is formed by a through hole extracted in the plate thickness direction, and the second flow path 6 is formed between the second flow path plate 5 and the partition plate 3. Specifically, the first flow path 2 is formed by forming a through hole in the flat plate-shaped first flow path plate 1 by, for example, punching or etching using a press, and the partition plate 3 and the end from both the upper and lower surfaces. It is composed of a space formed between the plates 4. On the other hand, the second flow path 6 is a space formed by forming a groove in the second flow path plate 5 by, for example, drawing using a press machine, and overlapping the partition plate 3 and the second flow path plate 5. It is configured.
[0022]
As shown in FIG. 2, the first flow path 2 is configured to be plural and substantially parallel, and is opposed to the second flow path 6 over substantially the entire longitudinal direction via the partition plate 3. It is in. That is, the fluid A that flows in the first arrow 2 in the direction of the dotted arrow in the figure and the fluid B that flows in the second arrow 6 in the direction of the solid arrow in the figure are opposed to each other. .
[0023]
Further, in the partition plate 3, distribution channels 13 a and 13 b are provided that communicate with the respective channels of the first channel 2 when overlapped with the first channel plate 1. The distribution flow paths 13a and 13b have a substantially axisymmetric shape as shown in FIG. 2, and are symmetrical with respect to the streamline direction of the fluid A flowing through the first flow path 2.
[0024]
In addition, the equivalent diameters of the distribution flow paths 13 a and 13 b are configured to be larger than the equivalent diameter of each flow path of the first flow path 2. This can be easily set by appropriately setting the height and width of each flow path. Further, as shown in FIG. 1, the flow path width W <b> 2 of the second flow path 6 is larger than the flow path width W <b> 1 of the first flow path 2.
[0025]
As the configuration of the inlet / outlet portion of each flow path, for example, the first flow path 2 has through holes 11a and 11b in the second flow path plate 5 so as to communicate with the distribution flow paths 13a and 13b. And pipes (not shown) are planted on them. Similarly, the second flow path 6 is provided with through holes 12a and 12b in the second flow path plate 5 so as to communicate with the second flow path 6, and pipes (not shown) are provided. ).
[0026]
Here, examples of the material of the plate constituting the heat exchanger 10 include metals having good thermal conductivity and formability, such as copper, aluminum, and stainless steel. Moreover, as a manufacturing method of the heat exchanger 10, the integrated joining by brazing or diffusion welding is mentioned.
[0027]
The effect | action is demonstrated below about the heat exchanger 10 comprised as mentioned above.
[0028]
A high-pressure fluid is circulated through the first channel 2 and a low-pressure fluid is circulated through the second channel 6. When the heat exchanger 10 is used in a so-called heat pump water heater that heats hot water using, for example, the heat of condensation of the refrigerant, the high pressure fluid is a refrigerant such as carbon dioxide, and the low pressure fluid is hot water. It becomes. At this time, the high-temperature and high-pressure refrigerant exchanges heat with the low-temperature and low-pressure water flowing through the second flow path 6 via the partition plate 3 while flowing through the first flow path 2.
[0029]
Here, according to this embodiment, the flat plate-like first flow path plate 1 is provided with a through hole, and this is used as the first flow path 2. It is easy to configure a simple flow path. Furthermore, by arranging a plurality of such first flow paths 2 in parallel in parallel as shown in FIG. 2, it is possible to form a flat and wide heat transfer surface, and a thin and compact heat exchange. Can be provided.
[0030]
Further, distribution channels 13 a and 13 b communicating with the plurality of first channels 2 are provided in the partition plate 3, which are substantially axisymmetric, and their equivalent diameters are equivalent to those of the first channels 2. By making it larger than the diameter and making a difference in flow resistance between the distribution flow paths 13 a and 13 b and the first flow path 2, it is possible to uniformly distribute the fluid to the plurality of first flow paths 2. An effective heat transfer area can be ensured over the entire heat transfer surface.
[0031]
Furthermore, if the channel width of the second channel 6 is configured to be larger than the channel width of the first channel 2, the pressure resistance of the first channel 2 can be improved by miniaturizing the channel. Thus, the pressure loss of the fluid in the second flow path 6 can be suppressed to a low level without particularly reducing the flow path width of the second flow path 6. This means that pump power for conveying a fluid such as water to the second flow path 6 can be suppressed low, and the second flow path 6 is maintained while maintaining the pressure resistance of the first flow path 2. The pressure loss on the side can be reduced.
[0032]
Further, the first flow path 2 and the second flow path 6 are formed at positions facing each other across the partition plate 3 over substantially the entire length direction thereof, and the fluid flowing through each flow path is a parallel flow or Since heat exchange can be performed in the form of a counter flow superior in heat exchange performance compared to the cross flow, further improvement in performance of the heat exchanger can be achieved. Therefore, it is possible to provide a compact heat exchanger with excellent pressure resistance and high heat exchange performance.
[0033]
(Example 2)
FIG. 3 is a configuration diagram of the heat exchanger 20 according to the second embodiment of the present invention. The second embodiment of the present invention has substantially the same configuration as the heat exchanger 10 shown in FIG. The present embodiment is different from the first embodiment in that the first flow path 22 has a substantially U-shaped bent portion 28 in the plane of the first flow path plate 21. At a position facing the first flow path 22 through the partition plate 23, the second flow path 26 is a space between the second flow path plate 25 and the partition plate 23 in which grooves are formed. Formed and also has a substantially U-shaped bend 29. Since the distribution channels 33a and 33b and the through holes 31a, 31b, 32a and 32b have the same functions as those in the first embodiment, the description thereof is omitted here.
[0034]
By providing the first flow path 22 with a bent portion 28 of not only a substantially U shape but also a curved shape or an L shape, not only a straight flow path but also a rectangular shape on the first flow path plate 21. A channel having an arbitrary shape such as a spiral shape can be formed. This means that the length in the vertical or horizontal direction of the heat exchanger 20 can be made sufficiently small with respect to the flow path that needs to have a very long flow path according to the required heat transfer area.
Therefore, the above-described configuration can realize further downsizing of the heat exchanger.
[0035]
(Example 3)
FIG. 4 is a cross-sectional view of the heat exchanger 30 according to the third embodiment of the present invention. In FIG. 4, the heat exchanger 30
As in the first embodiment, the first flow path 2 and the second flow path 6a are arranged on different surfaces above and below the plate 3a serving as the partition wall, and the first flow path 2 is the first flow path. The path plate 1 is formed by a through hole extracted in the plate thickness direction, and the second flow path 6a is formed between the second flow path plate 5a and the partition plate 3a. In this embodiment, the second channel 6b formed by the second channel plate 5b is further provided on the lower surface of the first channel 2 via the partition plate 3b.
[0036]
The effect | action is demonstrated below about the heat exchanger comprised as mentioned above.
[0037]
For example, as described in the first embodiment, it is assumed that a high-temperature and high-pressure fluid flows in the first flow path 2 and a low-temperature and low-pressure fluid flows in the second flow paths 6a and 6b, respectively. At this time, the high-temperature and high-pressure fluid exchanges heat with the low-temperature and low-pressure fluid flowing through the second flow paths 6 a and 6 b located above and below through the partition plates 3 a and 3 b while flowing through the first flow path 2. It will be.
[0038]
Here, according to the present embodiment, heat exchange with the second flow path is possible on both the upper and lower surfaces of the first flow path, and a much wider heat transfer area can be secured. Moreover, if the low temperature side fluid is circulated through the second flow paths 6a and 6b, the temperature difference with the atmosphere surrounding the heat exchanger is reduced, and the heat insulation of the heat exchanger is improved. Accordingly, it is possible to provide a compact heat exchanger that is excellent in pressure resistance and further has high heat exchange performance.
[0039]
Example 4
FIG. 5 is a cross-sectional view of the heat exchanger 40 according to the fourth embodiment of the present invention. The fourth embodiment of the present invention has substantially the same configuration as the heat exchanger 20 shown in FIG. This embodiment is different from the first embodiment in that the plate 3 serving as a partition is composed of a plurality of plates 3a and 3b in the thickness direction, and the height of the second flow path 6 is set to The high temperature side channel 6d is formed higher than the low temperature side channel 6c. Here, the production of the second flow path 6 having different flow path heights is performed by forming grooves having partially different depths with respect to the second flow path plate 5 using a method such as drawing. This can be done easily.
[0040]
About the heat exchanger 40 comprised as mentioned above, the effect | action is demonstrated below.
[0041]
In the first flow path 2, a high-temperature and high-pressure refrigerant, such as carbon dioxide, hydrocarbons, or chlorofluorocarbon used in a heat pump device, flows as the fluid A in the direction indicated by the dotted arrow in the figure. It is assumed that low-temperature and low-pressure hot water flows as the fluid B in the path 6 in the direction indicated by the solid line arrow in the figure. At this time, the high-temperature and high-pressure refrigerant exchanges heat with the low-temperature and low-pressure fluid flowing through the second flow path 6 via the partition plates 3 a and 3 b while flowing through the first flow path 2. The low-temperature and low-pressure hot-water supply has the highest temperature on the outlet side (high-temperature side flow path 6d) of the second flow path 6.
[0042]
For example, the partition plate 3b that forms a part of the first flow path 2 through which the high-temperature and high-pressure refrigerant flows is deteriorated and eroded over time due to corrosion or the like, and abnormalities such as cracks occur on the inner surface, and the high-pressure refrigerant is Even in the case of leaking to the outside from one flow path 2, since the flow into the second flow path 6 can be prevented by the presence of the partition plate 3 a, the high-temperature and high-pressure refrigerant is not mixed into the low-temperature and low-pressure water. . Similarly, when an abnormality such as a crack occurs in the partition plate 3a that forms a part of the second flow path 6 through which the low-temperature and low-pressure water flows, the low-pressure water leaks from the second flow path 6 to the outside. However, since the partition plate 3b exists, the high-temperature and high-pressure refrigerant does not flow into the second flow path 6 through which the low-temperature and low-pressure water flows. At this time, if a minute groove communicating with the outer peripheral surface of these plates is formed between the partition plates 3a and 3b, the leaked fluid can be discharged to the outside. Furthermore, if a sensor corresponding to the fluid is installed, the fluid leakage can be detected and the abnormality of the apparatus can be detected.
[0043]
Therefore, by using a double partition structure between the flow paths, mixing of different fluids (for example, refrigerant and water) is prevented. For example, there is a danger that the refrigerant of the heat pump device and the refrigerating machine oil are mixed into the hot water supply water. The reliability of the heat exchanger can be improved.
[0044]
In addition, in the case of a refrigerant-to-water heat exchanger that heats water (especially tap water) with a refrigerant, generally the water side that becomes the highest temperature when water containing a large amount of hardness components such as calcium and magnesium is heated to a high temperature for a long time. Scale may occur near the outlet of the flow path. When such a scale adheres to the inner periphery of the water-side flow path, it becomes water flow resistance and pressure loss increases, and the performance as a heat exchanger is reduced. Here, in the present embodiment, the flow path height of the high temperature side flow path 6d of the second flow path 6 is configured to be larger than the flow path height of the low temperature side flow path 6c. Even when a scale is generated and adhered in the flow path, the increase in water flow resistance can be mitigated.
[0045]
Therefore, for example, the blockage of the flow path due to scale deposition, which is likely to occur particularly during heating of hot water, is alleviated, the life of the heat exchanger is extended, and reliability can be improved.
[0046]
【The invention's effect】
As described above, according to the first to eleventh aspects, the first and second flow paths are arranged on different surfaces of the plate serving as the partition wall, and the first flow path is the first flow path plate. Is formed with a through hole extracted in the plate thickness direction, and the second flow path is formed between the second flow path plate and the partition plate, and a simple method of simply providing a through hole in the plate It is easy to configure a fine flow path with excellent pressure resistance, and by arranging such a flow path in a plane, a flat and wide heat transfer surface is formed, and a thin heat exchanger Can be configured. Therefore, a compact heat exchanger with excellent pressure resistance can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of the heat exchanger according to the first embodiment of the present invention. FIG. 2 is a perspective view illustrating the configuration of the heat exchanger. FIG. 3 illustrates the configuration of the heat exchanger according to the second embodiment of the present invention. FIG. 4 is a sectional view of a heat exchanger according to a third embodiment of the present invention. FIG. 5 is a sectional view of a heat exchanger according to a fourth embodiment of the present invention. FIG. 6 is a sectional view of a conventional heat exchanger. Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st flow path plate 2, 22 1st flow path 3 Partition wall plate 5 2nd flow path plate 6, 6a, 6b, 26 2nd flow path 6c Low temperature side flow path 6d High temperature side flow path 13a, 13b Distribution channel 28 Bent part

Claims (9)

隔壁となる隔壁プレートの異なる面に高温高圧の二酸化炭素の流路である第1の流路と前記二酸化炭素によって加熱される水の流路である第2の流路とを配してなり、前記第1の流路は第1の流路プレートを板厚方向に抜いた貫通孔で形成し、前記第2の流路は第2の流路プレートと前記隔壁プレートとの間に形成し、前記隔壁プレートが板厚方向に対して複数枚のプレートで構成されるとともに、前記第2の流路の流路高さをその高温側流路で低温側流路よりも高く形成した熱交換器。Disposing a first flow path that is a flow path of high-temperature and high-pressure carbon dioxide and a second flow path that is a flow path of water heated by the carbon dioxide on different surfaces of a partition plate that becomes a partition wall, The first flow path is formed by a through hole formed by removing the first flow path plate in the plate thickness direction, and the second flow path is formed between the second flow path plate and the partition plate , The heat exchanger in which the partition plate is composed of a plurality of plates in the plate thickness direction, and the flow path height of the second flow path is higher in the high temperature side flow path than in the low temperature side flow path . . 第1の流路は複数かつ略平行に構成される請求項1記載の熱交換器。  The heat exchanger according to claim 1, wherein a plurality of the first flow paths are configured substantially in parallel. 隔壁プレート内に複数の第1の流路と連通する分配流路を設けた請求項2記載の熱交換器。  The heat exchanger according to claim 2, wherein a distribution channel communicating with the plurality of first channels is provided in the partition plate. 分配流路が略軸対称形状を有する請求項3記載の熱交換器。  The heat exchanger according to claim 3, wherein the distribution channel has a substantially axisymmetric shape. 分配流路の等価直径を第1の流路の等価直径よりも大きく形成した請求項3または4記載の熱交換器  The heat exchanger according to claim 3 or 4, wherein an equivalent diameter of the distribution channel is formed larger than an equivalent diameter of the first channel. 第2の流路の流路幅を第1の流路の流路幅よりも大きく形成した請求項1〜5のいずれか1項に記載の熱交換器。  The heat exchanger according to any one of claims 1 to 5, wherein the channel width of the second channel is formed larger than the channel width of the first channel. 第1の流路と第2の流路とをこれらの長手方向の略全体にわたって、かつ隔壁プレートを介して対向する位置に形成し、各流路を流れる流体を対向流とした請求項1〜6のいずれか1項に記載の熱交換器。  The first flow path and the second flow path are formed over substantially the entire length of the first flow path and at positions facing each other through the partition plate, and the fluid flowing through each flow path is used as a counter flow. The heat exchanger according to any one of 6. 第1の流路が第1の流路プレート内で屈曲部を有する請求項1〜7のいずれか1項に記載の熱交換器。  The heat exchanger according to any one of claims 1 to 7, wherein the first flow path has a bent portion in the first flow path plate. 第1の流路を挟んで両方の面上に、隔壁プレートを介して複数の第2の流路を設けてなる請求項1〜8のいずれか1項に記載の熱交換器。  The heat exchanger according to any one of claims 1 to 8, wherein a plurality of second flow paths are provided on both surfaces across the first flow path via a partition plate.
JP2002139605A 2002-05-15 2002-05-15 Heat exchanger Expired - Fee Related JP3922088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002139605A JP3922088B2 (en) 2002-05-15 2002-05-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002139605A JP3922088B2 (en) 2002-05-15 2002-05-15 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2003336990A JP2003336990A (en) 2003-11-28
JP3922088B2 true JP3922088B2 (en) 2007-05-30

Family

ID=29700704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002139605A Expired - Fee Related JP3922088B2 (en) 2002-05-15 2002-05-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3922088B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE536618C2 (en) 2010-10-22 2014-04-01 Alfa Laval Corp Ab Heat exchanger plate and plate heat exchanger
US9863710B2 (en) 2012-05-11 2018-01-09 Mitsubishi Electric Corporation Laminated total heat exchange element
JP6215539B2 (en) * 2013-02-06 2017-10-18 株式会社神戸製鋼所 Heat exchanger
JP2015031420A (en) * 2013-07-31 2015-02-16 株式会社神戸製鋼所 Hydrogen gas cooling method and hydrogen gas cooling system
JP6047181B2 (en) * 2015-01-16 2016-12-21 大阪瓦斯株式会社 Solid oxide fuel cell system

Also Published As

Publication number Publication date
JP2003336990A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
JP6641544B1 (en) Plate heat exchanger and heat pump device provided with the same
JP6594598B1 (en) Plate type heat exchanger, heat pump device provided with plate type heat exchanger, and heat pump type heating hot water supply system provided with heat pump device
CN111819415B (en) Plate heat exchanger, heat pump device provided with same, and heat pump type cooling/heating/water heating system provided with heat pump device
EP2395308B1 (en) Heat exchanger
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
JP2002228370A (en) Heat exchanger
JP2009121758A (en) Heat exchanger and cryogenic system
JP2011021757A (en) Heat exchanger and heat pump system
JP3922088B2 (en) Heat exchanger
JP5661205B2 (en) Laminated heat exchanger, heat pump system equipped with the same, and manufacturing method of laminated heat exchanger
JP4572662B2 (en) Heat exchanger
JP2005069620A (en) Heat exchanger
JP2010112663A (en) Heat exchanger
JP3932877B2 (en) Heat exchanger
JP2006317094A (en) Heat exchanger
JP3906814B2 (en) tube
JP2005024109A (en) Heat exchanger
JP2008298311A (en) Gas cooler for hot water supply system
JP5257102B2 (en) Heat exchanger and refrigeration air conditioner
JP2019095096A (en) Plate type heat exchanger and heat pump type hot water system having the same
JP2005147567A (en) Double pipe type heat exchanger
JP2004340455A (en) Heat exchanger
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP3948265B2 (en) Heat exchanger
JP5496369B2 (en) Laminated heat exchanger and heat pump system equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees