JP2003336990A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2003336990A
JP2003336990A JP2002139605A JP2002139605A JP2003336990A JP 2003336990 A JP2003336990 A JP 2003336990A JP 2002139605 A JP2002139605 A JP 2002139605A JP 2002139605 A JP2002139605 A JP 2002139605A JP 2003336990 A JP2003336990 A JP 2003336990A
Authority
JP
Japan
Prior art keywords
flow path
heat exchanger
flow
plate
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002139605A
Other languages
Japanese (ja)
Other versions
JP3922088B2 (en
Inventor
Satoshi Matsumoto
松本  聡
Takeji Watanabe
竹司 渡辺
Keijiro Kunimoto
啓次郎 國本
Ryuta Kondo
龍太 近藤
Satoshi Imabayashi
敏 今林
Koji Oka
浩二 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002139605A priority Critical patent/JP3922088B2/en
Publication of JP2003336990A publication Critical patent/JP2003336990A/en
Application granted granted Critical
Publication of JP3922088B2 publication Critical patent/JP3922088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact heat exchanger having excellent pressure proofness. <P>SOLUTION: This heat exchanger 10 is formed by arranging first flow passages 2 and second flow passages 6 in different surfaces of a plate 3 working as a partition. Each first flow passage 2 is formed of a through-hole formed by punching a first flow passage plate 1 in the plate thickness direction, and the second flow passages 6 are formed between the second flow passage plate 5 and the partition plate 3. With this structure, fine flow passages having excellent pressure proof can be structured with a simple method using the through- holes provided in the flat plate as the first flow passages 2. Furthermore, a flat and wide heat transfer surface is formed by arranging these flow passages in a surface, and a thin heat exchanger can be structured. A compact heat exchanger having excellent pressure proofness is thereby provided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は熱交換器に関し、特
に、ヒートポンプを用いて温水を生成する給湯機や冷温
水を生成する冷暖房機などに利用される冷媒対水の熱交
換器のような、異種媒体間の熱移動を行う熱交換器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger, and more particularly, to a heat exchanger for refrigerant and water used in a water heater for generating hot water using a heat pump, a cooling / heating machine for generating cold / hot water, and the like. , A heat exchanger for transferring heat between different media.

【0002】[0002]

【従来の技術】従来、この種の熱交換器としては、実公
昭62−5587号公報に開示されているような熱交換
器が提案されている。その構成について、図5を参照し
ながら説明する。
2. Description of the Related Art Conventionally, as this type of heat exchanger, a heat exchanger as disclosed in Japanese Utility Model Publication No. 62-5587 has been proposed. The configuration will be described with reference to FIG.

【0003】熱交換器50は、例えば、冷媒の凝縮熱を
利用して給湯水の加熱を行ういわゆるヒートポンプ給湯
機に利用されるものであり、高温高圧の冷媒が流れる第
1の伝熱管51と、低温低圧の水が流れる第2の伝熱管
52とを備え、第1および第2の伝熱管51および52
をそれぞれ偏平化して密着させ、螺旋状に巻回した構成
となっている。このとき、第1の伝熱管51を流れる高
温の冷媒は、その上下に位置する第2の伝熱管52を流
れる低温の水と熱交換を行い、この水を加熱することに
なる。
The heat exchanger 50 is used, for example, in a so-called heat pump water heater that heats the hot water by using the heat of condensation of the refrigerant, and the first heat transfer tube 51 through which the high temperature and high pressure refrigerant flows. And a second heat transfer tube 52 through which low-temperature low-pressure water flows, and the first and second heat transfer tubes 51 and 52 are provided.
Each is flattened and closely adhered to each other, and is spirally wound. At this time, the high-temperature refrigerant flowing through the first heat transfer pipe 51 exchanges heat with the low-temperature water flowing through the second heat transfer pipes 52 located above and below the first heat transfer pipe 51 to heat the water.

【0004】なお、従来例では、伝熱管として肉厚が薄
く比較的強度の小さい管体を使用することにより偏平化
を容易にするとともに、この偏平化により管同士が密着
する面積すなわち伝熱面積の拡大を図ることにより、熱
交換性能を向上させている。
In the conventional example, the flatness is facilitated by using a thin tube body having a relatively small strength as the heat transfer tube, and the flattened area causes the tubes to adhere to each other, that is, the heat transfer area. The heat exchange performance is improved by enlarging.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来の構成では、次のような課題がある。例えば、熱交換
器50を、動作圧力が非常に高い、例えば二酸化炭素冷
媒と水との熱交換器として利用する場合、高圧冷媒の流
れる第1の伝熱管51内部に加わる圧力が非常に高くな
るため、管体をあらかじめ機械的に偏平化する従来のよ
うな構成では、変形に供しやすく、十分な耐圧性を確保
することが困難となる。
However, the above conventional structure has the following problems. For example, when the heat exchanger 50 is used as a heat exchanger having a very high operating pressure, for example, a carbon dioxide refrigerant and water, the pressure applied to the inside of the first heat transfer pipe 51 through which the high pressure refrigerant flows becomes very high. Therefore, in the conventional configuration in which the tubular body is mechanically flattened in advance, the tubular body is easily deformed and it is difficult to secure sufficient pressure resistance.

【0006】また、熱交換器50は、図5に示すよう
に、第1の伝熱管51および第2の伝熱管52を密着さ
せて螺旋状に巻回した構成であり、円筒形状となる熱交
換器50の内側にデッドスペースが形成されるため、伝
熱面積に比して熱交換器の占有体積が大きくなり、装置
内部に収納するスペースが多く必要となるという課題が
あった。
Further, as shown in FIG. 5, the heat exchanger 50 has a structure in which a first heat transfer tube 51 and a second heat transfer tube 52 are closely attached to each other and spirally wound to form a cylindrical heat. Since a dead space is formed inside the exchanger 50, the volume occupied by the heat exchanger is larger than the heat transfer area, and there is a problem that a large amount of space to store the heat is required inside the device.

【0007】本発明は、前記従来の課題を解決するもの
で、耐圧性に優れ、コンパクトな熱交換器を提供するも
のである。
The present invention solves the above-mentioned conventional problems and provides a compact heat exchanger having excellent pressure resistance.

【0008】[0008]

【課題を解決するための手段】前記従来の課題を解決す
るために、本発明の熱交換器は、隔壁となるプレートの
異なる面に第1および第2の流路を配し、第1の流路は
第1の流路プレートを板厚方向に抜いた貫通孔で形成
し、第2の流路は第2の流路プレートと隔壁プレートと
の間に形成したものである。
In order to solve the above-mentioned conventional problems, the heat exchanger according to the present invention has the first and second flow passages arranged on different surfaces of the plate serving as the partition wall, The flow path is formed by a through hole obtained by removing the first flow path plate in the plate thickness direction, and the second flow path is formed between the second flow path plate and the partition plate.

【0009】これによって、プレートに貫通孔を設ける
だけの簡単な方法で、耐圧性に優れた微細な流路を構成
することが容易になる。さらに、このような流路を面状
に配置することで、平坦で広い伝熱面を形成し、薄型の
熱交換器を構成することが可能となる。よって、耐圧性
に優れ、コンパクトな熱交換器を提供できる。
This makes it easy to form a fine flow path having excellent pressure resistance by a simple method of providing a through hole in the plate. Furthermore, by arranging such flow paths in a plane, it is possible to form a flat and wide heat transfer surface and configure a thin heat exchanger. Therefore, a compact heat exchanger having excellent pressure resistance can be provided.

【0010】[0010]

【発明の実施の形態】請求項1に記載の発明は、隔壁と
なるプレートの異なる面に第1の流路と第2の流路とを
配してなり、前記第1の流路は第1の流路プレートを板
厚方向に抜いた貫通孔で形成し、前記第2の流路は第2
の流路プレートと前記隔壁プレートとの間に形成したも
のであり、プレートに貫通孔を設けるだけの簡単な方法
で、耐圧性に優れた微細な流路を構成することが容易に
なる。さらに、このような流路を面状に配置すること
で、平坦な伝熱面を形成し、薄型の熱交換器を構成する
ことが可能となる。よって、耐圧性に優れ、コンパクト
な熱交換器を提供できる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 is characterized in that a first flow path and a second flow path are arranged on different surfaces of a plate serving as a partition wall, and the first flow path is a first flow path. The channel plate of 1 is formed by a through hole that is removed in the plate thickness direction, and the second channel is the second channel.
It is formed between the flow path plate and the partition plate, and it becomes easy to form a fine flow path excellent in pressure resistance by a simple method of providing a through hole in the plate. Furthermore, by arranging such a flow path in a plane, it becomes possible to form a flat heat transfer surface and configure a thin heat exchanger. Therefore, a compact heat exchanger having excellent pressure resistance can be provided.

【0011】請求項2に記載の発明は、請求項1の構成
に対して、特に第1の流路を複数かつ略平行に構成する
ものであり、耐圧性に優れた微細な流路を複数かつ略平
行に並列配置することで、平坦でより広い伝熱面を形成
することが可能となる。よって、耐圧性に優れ、コンパ
クトで熱交換性能に優れた熱交換器を提供できる。
According to a second aspect of the present invention, in addition to the configuration of the first aspect, in particular, a plurality of first flow paths are configured in parallel with each other, and a plurality of fine flow paths having excellent pressure resistance are provided. Moreover, by arranging them in parallel substantially in parallel, it is possible to form a flat and wider heat transfer surface. Therefore, it is possible to provide a heat exchanger having excellent pressure resistance, compact size, and excellent heat exchange performance.

【0012】請求項3に記載の発明は、請求項2の構成
に対して、特に隔壁プレート内に複数の第1の流路と連
通する分配流路を設けたものであり、簡単な構成で容易
に複数の流路に流体を分配することができ、熱交換器の
薄型化を実現できる。
According to a third aspect of the present invention, in addition to the configuration of the second aspect, a distribution flow passage communicating with a plurality of first flow passages is provided particularly in the partition plate, and has a simple configuration. The fluid can be easily distributed to the plurality of flow paths, and the heat exchanger can be made thin.

【0013】請求項4に記載の発明は、請求項3の構成
に対して、特に分配流路が略軸対称形状を有するもので
あり、複数の第1の流路に対して均一に流体を分配する
ことができ、有効な伝熱面積が十分確保され、熱交換器
の高性能化を実現できる。
According to a fourth aspect of the present invention, in contrast to the configuration of the third aspect, particularly, the distribution channel has a substantially axisymmetric shape, and the fluid is evenly distributed to the plurality of first channels. It can be distributed, an effective heat transfer area is sufficiently secured, and high performance of the heat exchanger can be realized.

【0014】請求項5に記載の発明は、請求項3または
4の構成に対して、特に分配流路の等価直径が、第1の
流路の等価直径よりも大きいものであり、分配流路にお
ける流体の圧力損失を、第1の流路における圧力損失よ
り小さくすることにより、複数の第1の流路に対してよ
り均一に流体を分配することができ、熱交換器のさらな
る高性能化を実現できる。
According to a fifth aspect of the present invention, in particular, the equivalent diameter of the distribution channel is larger than the equivalent diameter of the first channel. By making the pressure loss of the fluid in the first flow passage smaller than the pressure loss in the first flow passage, the fluid can be distributed more uniformly to the plurality of first flow passages, and the heat exchanger is further improved in performance. Can be realized.

【0015】請求項6に記載の発明は、請求項1〜5の
構成に対して、特に第2の流路の流路幅を第1の流路の
流路幅よりも大きく形成したものであり、流路の微細化
により第1の流路の耐圧性向上を図る一方で、第2の流
路の流路幅を特に小さくすることなく、第2の流路内で
の流体の圧力損失を小さく抑えることができる。よっ
て、第1の流路の耐圧性を保持したまま、第2の流路側
の圧力損失を低減することが可能となる。
According to a sixth aspect of the present invention, in addition to the configurations of the first to fifth aspects, the flow passage width of the second flow passage is formed to be larger than the flow passage width of the first flow passage. Yes, while the pressure resistance of the first flow path is improved by miniaturizing the flow path, the pressure loss of the fluid in the second flow path can be achieved without reducing the flow path width of the second flow path. Can be kept small. Therefore, it is possible to reduce the pressure loss on the second flow path side while maintaining the pressure resistance of the first flow path.

【0016】請求項7に記載の発明は、請求項1〜6の
構成に対して、特に第1の流路と第2の流路とをこれら
の長手方向の略全体にわたって隔壁プレートを介して対
向する位置に形成するものであり、各流路を流れる流体
が熱交換性能に優れた対向流の形態で熱交換を行うこと
ができるため、熱交換器のさらなる高性能化とコンパク
ト化を実現できる。
According to a seventh aspect of the present invention, in addition to the configurations of the first to sixth aspects, particularly, the first flow path and the second flow path are provided substantially all over the longitudinal direction thereof via the partition plate. Since they are formed at opposite positions, the fluid flowing through each flow path can perform heat exchange in the form of a counter flow with excellent heat exchange performance, thus achieving higher performance and compactness of the heat exchanger. it can.

【0017】請求項8に記載の発明は、請求項1〜7の
構成に対して、特に第1の流路が第1の流路プレート内
で屈曲部を有するものである。同一のプレート面内で流
路を折り返すことにより、直線状の流路だけではなく、
矩形状や渦巻き状等の任意形状の流路を構成することが
できるため、流路長の長い流路に対しても、熱交換器の
縦方向あるいは横方向の長さを十分に小さくでき、熱交
換器のより一層のコンパクト化を実現できる。
According to an eighth aspect of the present invention, in addition to the configurations of the first to seventh aspects, particularly, the first flow path has a bent portion in the first flow path plate. By folding the flow path in the same plate surface, not only a linear flow path,
Since it is possible to configure a flow path having an arbitrary shape such as a rectangular shape or a spiral shape, it is possible to sufficiently reduce the length of the heat exchanger in the vertical direction or the horizontal direction even for a flow path having a long flow path length. A more compact heat exchanger can be realized.

【0018】請求項9に記載の発明は、請求項1〜8の
構成に対して、特に第1の流路を挟んで両方の面上に、
隔壁プレートを介して複数の第2の流路を設けてなるも
のであり、第1の流路の上下両面で第2の流路との熱交
換が可能となり、格段に広い伝熱面積を確保することが
できる。よって、耐圧性に優れ、さらに熱交換性能が高
く、コンパクトな熱交換器を提供できる。
The invention described in claim 9 is, in addition to the constitutions of claims 1 to 8, particularly on both surfaces with the first flow path interposed therebetween.
Since a plurality of second flow paths are provided through the partition plate, heat can be exchanged with the second flow path on both upper and lower surfaces of the first flow path, and a remarkably wide heat transfer area is secured. can do. Therefore, it is possible to provide a compact heat exchanger having excellent pressure resistance, high heat exchange performance, and high heat exchange performance.

【0019】請求項10に記載の発明は、請求項1〜9
の構成に対して、特に隔壁となるプレートが板厚方向に
対して複数枚のプレートで構成されるものであり、第1
の流路または第2の流路の一部を形成する隔壁プレート
に万一亀裂等の異常が生じた場合も、複数枚の隔壁プレ
ートの存在により、各々の流路から漏洩した流体が、他
の流路内に混入することを防止できるため、熱交換器の
信頼性の向上を実現できる。
The invention according to a tenth aspect is the first to ninth aspects.
In particular, the plate serving as the partition wall is composed of a plurality of plates in the plate thickness direction.
Even if an abnormality such as a crack occurs in the partition plate forming part of the flow channel or the second flow channel, the presence of the plurality of partition plates causes the fluid leaking from each flow channel to Since it is possible to prevent the heat exchanger from being mixed into the flow path, it is possible to improve the reliability of the heat exchanger.

【0020】請求項11に記載の発明は、請求項1〜1
0の構成に対して、特に第2の流路の流路高さを、その
高温側流路で低温側流路よりも高く形成したものであ
る。例えば、給湯水等を加熱する場合、特に出口近傍の
高温側流路内においてスケールが発生しやすいが、この
部分の流路高さを高くすることでスケール析出による流
路の閉塞が緩和され、熱交換器の長寿命化が図られ、信
頼性の向上を実現できる。
The invention as defined in claim 11 is defined by claims 1 to 1.
In contrast to the configuration of 0, the flow passage height of the second flow passage is formed higher in the high temperature side passage than in the low temperature side passage. For example, when heating hot water or the like, scale is likely to occur particularly in the high temperature side passage near the outlet, but increasing the height of the passage at this portion alleviates clogging of the passage due to scale deposition, The life of the heat exchanger can be extended and the reliability can be improved.

【0021】[0021]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】(実施例1)図1は本発明の実施例1の熱
交換器10の断面図、図2は熱交換器10の構成図であ
る。
(Embodiment 1) FIG. 1 is a sectional view of a heat exchanger 10 of Embodiment 1 of the present invention, and FIG. 2 is a configuration diagram of the heat exchanger 10.

【0023】図1において、熱交換器10は、隔壁とな
るプレート3上下の異なる面に第1の流路2と第2の流
路6とを配してなり、第1の流路2は第1の流路プレー
ト1を板厚方向に抜いた貫通孔で形成し、第2の流路6
は第2の流路プレート5と隔壁プレート3との間に形成
したものである。具体的には、第1の流路2は、例えば
プレス機による打ち抜き加工やエッチング加工等によ
り、平板状の第1の流路プレート1に貫通孔を形成し、
上下両面から隔壁プレート3およびエンドプレート4で
挟んでできる空間で構成されている。一方、第2の流路
6は、例えばプレス機による絞り加工等により、第2の
流路プレート5に溝を形成し、隔壁プレート3と第2の
流路プレート5とを重ねてできる空間で構成されてい
る。
In FIG. 1, the heat exchanger 10 comprises a first flow path 2 and a second flow path 6 on different surfaces above and below the plate 3 serving as a partition wall. The first flow path plate 1 is formed by a through hole removed in the plate thickness direction, and the second flow path 6 is formed.
Is formed between the second flow path plate 5 and the partition plate 3. Specifically, the first flow path 2 is formed with a through hole in the flat plate-shaped first flow path plate 1 by, for example, punching or etching with a press machine,
The space is formed by sandwiching the partition plate 3 and the end plate 4 from both upper and lower sides. On the other hand, the second flow path 6 is a space formed by forming a groove in the second flow path plate 5 by, for example, drawing using a press machine and stacking the partition plate 3 and the second flow path plate 5 together. It is configured.

【0024】なお、第1の流路2は、図2に示すよう
に、複数かつ略平行に構成され、第2の流路6に対し
て、隔壁プレート3を介して長手方向の略全体にわたっ
て対向する位置にある。すなわち、第1の流路2を図中
点線矢印方向に流れる流体Aと、第2の流路6を図中実
線矢印方向に流れる流体Bとが対向流となるような構成
を有している。
As shown in FIG. 2, a plurality of first flow paths 2 are arranged substantially in parallel with each other, and the second flow paths 6 are provided over the entire wall in the longitudinal direction via the partition plate 3. It is in the opposite position. In other words, the fluid A flowing in the first flow path 2 in the direction of the dotted arrow in the drawing and the fluid B flowing in the second flow path 6 in the direction of the solid arrow in the drawing are in counterflow. .

【0025】さらに、隔壁プレート3内には、第1の流
路プレート1と重ねたときに、第1の流路2の各流路と
連通する分配流路13aおよび13bが設けられてい
る。この分配流路13aおよび13bは、図2のように
略軸対称形状を有しており、第1の流路2を流れる流体
Aの流線方向に対して左右対称となっている。
Further, inside the partition plate 3, there are provided distribution channels 13a and 13b which communicate with the respective channels of the first channel 2 when overlapped with the first channel plate 1. The distribution flow paths 13a and 13b have a substantially axisymmetric shape as shown in FIG. 2, and are symmetrical with respect to the streamline direction of the fluid A flowing through the first flow path 2.

【0026】また、この分配流路13aおよび13bの
等価直径は、第1の流路2の各流路の等価直径よりも大
きく構成されている。これは、各流路の高さと幅を適宜
設定することにより、容易に設定可能である。また、図
1に示すように、第2の流路6の流路幅W2は、第1の
流路2の流路幅W1よりも大きくなっている。
The equivalent diameters of the distribution channels 13a and 13b are larger than the equivalent diameters of the channels of the first channel 2. This can be easily set by appropriately setting the height and width of each flow path. Further, as shown in FIG. 1, the flow passage width W2 of the second flow passage 6 is larger than the flow passage width W1 of the first flow passage 2.

【0027】各流路の入出口部の構成としては、例え
ば、第1の流路2に対しては、分配流路13aおよび1
3bと連通するように、第2の流路プレート5に貫通孔
11aおよび11bを設け、これらに配管(図示せず)
を植立させている。また、第2の流路6に対しては、同
様に第2の流路6と連通するように、第2の流路プレー
ト5に貫通孔12aおよび12bを設け、これらに配管
(図示せず)を植立させている。
The configuration of the inlet / outlet portion of each flow path is, for example, for the first flow path 2, the distribution flow paths 13a and 13a.
The second flow path plate 5 is provided with through holes 11a and 11b so as to communicate with 3b, and piping (not shown) is provided in these holes.
Is being planted. Further, with respect to the second flow channel 6, through holes 12a and 12b are provided in the second flow channel plate 5 so as to communicate with the second flow channel 6, and pipes (not shown) are provided in these holes. ) Is planted.

【0028】ここで、熱交換器10を構成するプレート
の材質としては、熱伝導性および成形性の良い金属、例
えば銅やアルミニウム、ステンレス等が挙げられる。ま
た、熱交換器10の製造方法としては、ロウ付けや拡散
溶接による一体化接合が挙げられる。
Here, examples of the material of the plate constituting the heat exchanger 10 include metals having good thermal conductivity and formability, such as copper, aluminum, and stainless steel. In addition, as a method of manufacturing the heat exchanger 10, brazing or integral joining by diffusion welding may be used.

【0029】以上のように構成された熱交換器10につ
いて、以下その作用を説明する。
The operation of the heat exchanger 10 configured as described above will be described below.

【0030】第1の流路2に高圧流体、第2の流路6に
低圧流体をそれぞれ流通させる。熱交換器10を、例え
ば、冷媒の凝縮熱等を利用して給湯水の加熱を行ういわ
ゆるヒートポンプ給湯機に利用するものとすると、高圧
流体は二酸化炭素等の冷媒であり、低圧流体は給湯水と
なる。このとき、高温高圧の冷媒は、第1の流路2を流
れる間に、隔壁プレート3を介して、第2の流路6を流
れる低温低圧の水と熱交換を行うことになる。
A high-pressure fluid is circulated in the first channel 2 and a low-pressure fluid is circulated in the second channel 6. If the heat exchanger 10 is used for a so-called heat pump water heater that heats the hot water by using the heat of condensation of the refrigerant, the high-pressure fluid is a refrigerant such as carbon dioxide, and the low-pressure fluid is hot water. Becomes At this time, the high-temperature, high-pressure refrigerant exchanges heat with the low-temperature, low-pressure water flowing through the second flow path 6 via the partition plate 3 while flowing through the first flow path 2.

【0031】ここで、本実施例によれば、平板状の第1
の流路プレート1に貫通孔を設け、これを第1の流路2
として利用するだけの簡単な方法で、耐圧性に優れた微
細な流路を構成することが容易になる。さらに、このよ
うな第1の流路2を、図2のように、複数かつ略平行に
並列配置することで、平坦で広い伝熱面を形成すること
が可能となり、薄型でコンパクトな熱交換器を提供でき
る。
According to the present embodiment, the flat plate-shaped first
A through hole is provided in the channel plate 1 of the first channel 2
It becomes easy to construct a fine flow path having excellent pressure resistance by a simple method of using Further, by arranging a plurality of such first flow paths 2 in parallel as shown in FIG. 2, a flat and wide heat transfer surface can be formed, and a thin and compact heat exchange surface can be formed. Can be provided.

【0032】また、隔壁プレート3内に複数の第1の流
路2と連通する分配流路13aおよび13bを設け、こ
れらを略軸対称形状とし、さらに、これらの等価直径を
第1の流路2の等価直径よりも大きくして、分配流路1
3aおよび13bと第1の流路2における流動抵抗に差
をつけることで、複数の第1の流路2に対して均一に流
体を分配することができ、伝熱面全体にわたって有効な
伝熱面積を確保することができる。
Further, distribution channels 13a and 13b communicating with the plurality of first channels 2 are provided in the partition plate 3, and these are made to have an approximately axisymmetric shape, and further, their equivalent diameters are set to the first channels. The distribution channel 1 is made larger than the equivalent diameter of 2
By providing a difference in flow resistance between the first flow passage 2 and the flow passages 3a and 13b, it is possible to uniformly distribute the fluid to the plurality of first flow passages 2 and to effectively transfer heat over the entire heat transfer surface. The area can be secured.

【0033】さらに、第2の流路6の流路幅を、第1の
流路2の流路幅よりも大きく構成してやれば、流路の微
細化により第1の流路2の耐圧性向上を図る一方で、第
2の流路6の流路幅を特に小さくすることなく、第2の
流路6内での流体の圧力損失を小さく抑えることができ
る。これは、第2の流路6に水等の流体を搬送するため
のポンプ動力等を低く抑制できることを意味し、第1の
流路2の耐圧性を保持したまま、第2の流路6側の圧力
損失を低減することが可能となる。
Further, if the flow passage width of the second flow passage 6 is made larger than the flow passage width of the first flow passage 2, the pressure resistance of the first flow passage 2 is improved due to the miniaturization of the flow passage. On the other hand, it is possible to suppress the pressure loss of the fluid in the second flow channel 6 to a small level without particularly reducing the flow channel width of the second flow channel 6. This means that the pump power for transporting a fluid such as water to the second flow path 6 can be suppressed to a low level, and the second flow path 6 can be maintained while the pressure resistance of the first flow path 2 is maintained. It is possible to reduce the pressure loss on the side.

【0034】また、第1の流路2と第2の流路6とが、
これらの長手方向の略全体にわたって隔壁プレート3を
介して対向する位置に形成され、各流路を流れる流体
が、並行流や直交流に比べて熱交換性能に優れた対向流
の形態で熱交換を行うことができるため、熱交換器のさ
らなる高性能化が図られる。したがって、耐圧性に優
れ、熱交換性能が高く、コンパクトな熱交換器を提供で
きる。
Further, the first flow path 2 and the second flow path 6 are
The fluids that are formed at positions facing each other across the partition plate 3 over substantially the entire lengthwise direction and that flow in the respective flow paths are in the form of a counter flow that excels in heat exchange performance as compared with parallel flow and cross flow. Therefore, the heat exchanger can be further improved in performance. Therefore, a compact heat exchanger having excellent pressure resistance, high heat exchange performance, and the like can be provided.

【0035】(実施例2)図3は本発明の実施例2の熱
交換器20の構成図である。本発明の実施例2は、図2
に示した熱交換器10と略同一の構成を有する。本実施
例が実施例1と異なるのは、第1の流路22が、第1の
流路プレート21の面内で、略U字形状の屈曲部28を
有する点である。隔壁プレート23を介して、この第1
の流路22と対向する位置には、第2の流路26が、溝
を形成した第2の流路プレート25と隔壁プレート23
との間の空間として形成され、こちらも略U字形状の屈
曲部29を有する。分配流路33aおよび33b、貫通
孔31a、31b、32aおよび32bについては、実
施例1と同様の機能を有するので、ここでは説明を省略
する。
(Embodiment 2) FIG. 3 is a structural diagram of a heat exchanger 20 according to Embodiment 2 of the present invention. Embodiment 2 of the present invention is shown in FIG.
It has substantially the same structure as the heat exchanger 10 shown in FIG. The present embodiment is different from the first embodiment in that the first flow path 22 has a substantially U-shaped bent portion 28 within the surface of the first flow path plate 21. The first through the partition plate 23
The second flow path 26 is provided at a position facing the flow path 22 of the second flow path plate 25 and the partition plate 23 in which the groove is formed.
Is formed as a space between and, and also has a substantially U-shaped bent portion 29. The distribution channels 33a and 33b and the through holes 31a, 31b, 32a, and 32b have the same functions as those in the first embodiment, and thus the description thereof is omitted here.

【0036】第1の流路22に略U字形状だけでなく曲
線状やL字形状等の屈曲部28を設けることにより、第
1の流路プレート21上に直線状の流路だけではなく、
矩形状や渦巻き状等の任意の形状の流路を構成すること
ができる。これは、必要な伝熱面積に応じて流路長を極
めて長くとる必要のある流路に対して、熱交換器20の
縦方向あるいは横方向の長さを十分に小さくできること
を意味する。したがって、上記した構成により、熱交換
器のより一層のコンパクト化を実現できる。
By providing the first flow path 22 with a bent portion 28 having not only a substantially U shape but also a curved shape or an L shape, not only a linear flow path is formed on the first flow path plate 21. ,
It is possible to configure a flow path having an arbitrary shape such as a rectangular shape or a spiral shape. This means that the length of the heat exchanger 20 in the vertical direction or the horizontal direction can be made sufficiently small with respect to the flow path for which the flow path length needs to be extremely long according to the required heat transfer area. Therefore, with the above configuration, the heat exchanger can be made more compact.

【0037】(実施例3)図4は本発明の実施例3の熱
交換器30の断面図である。図4において、熱交換器3
0は、実施例1と同様に、隔壁となるプレート3a上下
の異なる面に第1の流路2と第2の流路6aとを配して
なり、第1の流路2は第1の流路プレート1を板厚方向
に抜いた貫通孔で形成し、第2の流路6aは第2の流路
プレート5aと隔壁プレート3aとの間に形成したもの
である。本実施例は、さらに、第1の流路2の下面に、
隔壁プレート3bを介して、第2の流路プレート5bで
形成される第2の流路6bを設けた構成となっている。
(Third Embodiment) FIG. 4 is a sectional view of a heat exchanger 30 according to a third embodiment of the present invention. In FIG. 4, the heat exchanger 3
In the same manner as in the first embodiment, 0 has the first flow path 2 and the second flow path 6a arranged on different surfaces above and below the plate 3a serving as the partition wall, and the first flow path 2 is the first flow path. The flow channel plate 1 is formed by a through hole that is removed in the plate thickness direction, and the second flow channel 6a is formed between the second flow channel plate 5a and the partition plate 3a. In the present embodiment, further, on the lower surface of the first channel 2,
The second flow path 6b formed by the second flow path plate 5b is provided via the partition plate 3b.

【0038】以上のように構成された熱交換器につい
て、以下その作用を説明する。
The operation of the heat exchanger configured as described above will be described below.

【0039】例えば、実施例1で説明したように、第1
の流路2に高温高圧の流体、第2の流路6aおよび6b
に低温低圧の流体がそれぞれ流れるとする。このとき、
高温高圧流体は、第1の流路2を流れる間に、隔壁プレ
ート3aおよび3bを介して、上下に位置する第2の流
路6aおよび6bを流れる低温低圧流体と熱交換を行う
ことになる。
For example, as described in the first embodiment, the first
Fluid of high temperature and high pressure in the flow passage 2 of the second flow passages 6a and 6b
It is assumed that the low-temperature and low-pressure fluids respectively flow into. At this time,
While flowing in the first flow path 2, the high-temperature high-pressure fluid exchanges heat with the low-temperature low-pressure fluid flowing in the upper and lower second flow paths 6a and 6b via the partition plates 3a and 3b. .

【0040】ここで、本実施例によれば、第1の流路の
上下両面で第2の流路との熱交換が可能となり、格段に
広い伝熱面積を確保することができる。また、第2の流
路6aおよび6bに低温側の流体を流通させてやれば、
熱交換器をとりまく大気等との温度差が小さくなり、熱
交換器の断熱性も向上する。したがって、耐圧性に優
れ、さらに熱交換性能が高く、コンパクトな熱交換器を
提供できる。
Here, according to the present embodiment, it is possible to exchange heat with the second flow path on both the upper and lower surfaces of the first flow path, and a remarkably wide heat transfer area can be secured. Further, if the low temperature side fluid is circulated in the second flow paths 6a and 6b,
The temperature difference from the atmosphere surrounding the heat exchanger is reduced, and the heat insulating property of the heat exchanger is also improved. Therefore, it is possible to provide a compact heat exchanger having excellent pressure resistance, high heat exchange performance and high heat exchange performance.

【0041】(実施例4)図5は本発明の実施例4の熱
交換器40の断面図である。本発明の実施例4は、図1
に示した熱交換器20と略同一の構成を有する。本実施
例が実施例1と異なるのは、隔壁となるプレート3が板
厚方向に対して複数枚のプレート3aおよび3bで構成
されるとともに、第2の流路6の流路高さをその高温側
流路6dで低温側流路6cよりも高く形成した点であ
る。ここで、流路高さが途中で異なる第2の流路6の作
製は、絞り加工等の方法を用いて、第2の流路プレート
5に対して部分的に深さの異なる溝を形成することによ
り、容易に行うことができる。
(Fourth Embodiment) FIG. 5 is a sectional view of a heat exchanger 40 according to a fourth embodiment of the present invention. Example 4 of the present invention is shown in FIG.
It has substantially the same configuration as the heat exchanger 20 shown in FIG. This embodiment is different from the first embodiment in that the plate 3 serving as a partition wall is composed of a plurality of plates 3a and 3b in the plate thickness direction and the flow path height of the second flow path 6 is The point is that the high temperature side channel 6d is formed higher than the low temperature side channel 6c. Here, in the production of the second flow paths 6 whose flow path heights are different on the way, grooves having different depths are partially formed in the second flow path plate 5 by using a method such as drawing. By doing so, it can be easily performed.

【0042】以上のように構成された熱交換器40につ
いて、以下その作用を説明する。
The operation of the heat exchanger 40 configured as described above will be described below.

【0043】第1の流路2には、図中点線矢印で示す方
向に、流体Aとして、高温高圧の冷媒、例えば、ヒート
ポンプ装置等に用いられる二酸化炭素、炭化水素、フロ
ンなどが流れ、第2の流路6には、図中実線矢印で示す
方向に、流体Bとして、低温低圧の給湯水が流れるとす
る。このとき、高温高圧の冷媒は、第1の流路2を流れ
る間に、隔壁板3aおよび3bを介して、第2の流路6
を流れる低温低圧流体と熱交換を行うことになる。低温
低圧の給湯水は、第2の流路6の出口側(高温側流路6
d)において、最も高温となる。
In the first flow path 2, a high-temperature and high-pressure refrigerant such as carbon dioxide, hydrocarbon, and chlorofluorocarbon used in a heat pump device flows as the fluid A in the direction indicated by the dotted arrow in the drawing. It is assumed that low-temperature low-pressure hot water as the fluid B flows through the second flow path 6 in the direction indicated by the solid arrow in the figure. At this time, the high-temperature and high-pressure refrigerant flows through the partition walls 3a and 3b while flowing through the first flow path 2 and the second flow path 6 is formed.
It will exchange heat with the low temperature low pressure fluid flowing through it. The low-temperature low-pressure hot water is supplied to the outlet side of the second flow path 6 (the high temperature-side flow path 6).
In d), it becomes the highest temperature.

【0044】例えば、高温高圧の冷媒が流れる第1の流
路2の一部を形成する隔壁プレート3bが、腐食等によ
り経時的に劣化・侵食され、その内面に亀裂等の異常が
生じ、高圧冷媒が第1の流路2から外部に漏洩するよう
な場合も、隔壁プレート3aの存在により第2の流路6
への流入を防止できるため、低温低圧の水に高温高圧の
冷媒が混入することはない。同様に、低温低圧の水が流
れる第2の流路6の一部を形成する隔壁プレート3aに
亀裂等の異常が生じ、低圧の水が第2の流路6から外部
に漏洩するような場合も、隔壁プレート3bが存在する
ため、高温高圧の冷媒が低温低圧の水が流れる第2の流
路6に流入することはない。このとき、隔壁プレート3
aおよび3bの間に、これらのプレートの外周面と連通
する微小な溝を形成しておけば、漏洩した流体を外部に
排出できる。さらに、流体に応じたセンサを設置すれ
ば、流体の漏洩を検出し、装置の異常を検出することも
できる。
For example, the partition plate 3b forming a part of the first flow path 2 through which the high-temperature and high-pressure refrigerant flows is deteriorated or eroded over time due to corrosion or the like, and an abnormality such as a crack occurs on the inner surface of the partition plate 3b. Even when the refrigerant leaks from the first flow path 2 to the outside, the presence of the partition plate 3a causes the second flow path 6 to flow.
Since it is possible to prevent the inflow into the low-temperature low-pressure water, the high-temperature high-pressure refrigerant does not mix. Similarly, in the case where an abnormality such as a crack occurs in the partition plate 3a forming a part of the second flow path 6 through which the low-temperature low-pressure water flows, and the low-pressure water leaks from the second flow path 6 to the outside. However, since the partition plate 3b exists, the high-temperature and high-pressure refrigerant does not flow into the second flow path 6 through which the low-temperature and low-pressure water flows. At this time, the partition plate 3
If a minute groove communicating with the outer peripheral surface of these plates is formed between a and 3b, the leaked fluid can be discharged to the outside. Further, if a sensor corresponding to the fluid is installed, it is possible to detect the leakage of the fluid and detect the abnormality of the device.

【0045】よって、各流路の間を二重隔壁構造とする
ことにより、異なる流体(例えば、冷媒と水)の混合が
防止されるため、例えば、ヒートポンプ装置の冷媒およ
び冷凍機油が給湯水に混入する危険性を低減し、熱交換
器の信頼性の向上を実現できる。
Therefore, by forming a double partition structure between the respective flow paths, mixing of different fluids (for example, refrigerant and water) is prevented, so that, for example, the refrigerant of the heat pump device and the refrigerating machine oil serve as hot water. The risk of mixing can be reduced and the reliability of the heat exchanger can be improved.

【0046】また、冷媒で水(特に水道水)を加熱する
冷媒対水熱交換器の場合、一般に、カルシウムやマグネ
シウム等の硬度成分を多く含んだ水を長期間高温に加熱
すると、最も高温となる水側流路の出口部近傍において
スケールが発生する可能性がある。このようなスケール
が水側流路の内周に付着すると、水の流動抵抗となって
圧力損失が増大し、熱交換器としての性能を低減させ
る。ここで、本実施例では、第2の流路6の高温側流路
6dの流路高さを、その低温側流路6cの流路高さより
も大きく構成しているため、万一水側流路内にスケール
が生成し付着した場合も、水の流動抵抗の増加を緩和す
ることができる。
In the case of a refrigerant-to-water heat exchanger that heats water (particularly tap water) with a refrigerant, generally, when water containing a large amount of hardness components such as calcium and magnesium is heated to a high temperature for a long period of time, it becomes the highest temperature. There is a possibility that scale is generated near the outlet of the water side flow path. If such a scale adheres to the inner circumference of the water-side flow path, it becomes a flow resistance of water and pressure loss increases, and the performance as a heat exchanger is reduced. Here, in this embodiment, since the flow path height of the high temperature side flow path 6d of the second flow path 6 is configured to be larger than the flow path height of the low temperature side flow path 6c, the water side should be provided. Even if scale is generated and adheres in the flow path, the increase in the flow resistance of water can be mitigated.

【0047】したがって、例えば、給湯水の加熱時に特
に高温部で発生しやすい、スケール析出による流路の閉
塞が緩和され、熱交換器の長寿命化が図られ、信頼性の
向上を実現できる。
Therefore, for example, the blockage of the flow path due to scale deposition, which tends to occur particularly in the high temperature portion during heating of the hot water supply, is alleviated, the life of the heat exchanger is extended, and the reliability is improved.

【0048】[0048]

【発明の効果】以上のように、請求項1から11に記載
の発明によれば、隔壁となるプレートの異なる面に第1
および第2の流路を配し、第1の流路は第1の流路プレ
ートを板厚方向に抜いた貫通孔で形成し、第2の流路は
第2の流路プレートと隔壁プレートとの間に形成したも
のであり、プレートに貫通孔を設けるだけの簡単な方法
で、耐圧性に優れた微細な流路を構成することが容易に
なり、さらに、このような流路を面状に配置すること
で、平坦で広い伝熱面を形成し、薄型の熱交換器を構成
することが可能となる。よって、耐圧性に優れ、コンパ
クトな熱交換器を提供できる。
As described above, according to the invention described in claims 1 to 11, the first plate is formed on the different surfaces of the plate as the partition walls.
And a second flow path are arranged, the first flow path is formed by a through hole obtained by removing the first flow path plate in the plate thickness direction, and the second flow path is formed by the second flow path plate and the partition plate. It is easy to form a fine flow path with excellent pressure resistance by a simple method of forming a through hole in the plate. By arranging the heat exchangers in a flat shape, a flat and wide heat transfer surface can be formed, and a thin heat exchanger can be configured. Therefore, a compact heat exchanger having excellent pressure resistance can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の同熱交換器の断面図FIG. 1 is a sectional view of the same heat exchanger according to a first embodiment of the present invention.

【図2】同熱交換器の構成を示す斜視図FIG. 2 is a perspective view showing the configuration of the heat exchanger.

【図3】本発明の実施例2の熱交換器の構成を示す分解
斜視図
FIG. 3 is an exploded perspective view showing a configuration of a heat exchanger according to a second embodiment of the present invention.

【図4】本発明の実施例3の熱交換器の断面図FIG. 4 is a sectional view of a heat exchanger according to a third embodiment of the present invention.

【図5】本発明の実施例4の熱交換器の断面図FIG. 5 is a sectional view of a heat exchanger according to a fourth embodiment of the present invention.

【図6】従来の熱交換器の断面図FIG. 6 is a cross-sectional view of a conventional heat exchanger.

【符号の説明】 1 第1の流路プレート 2、22 第1の流路 3 隔壁プレート 5 第2の流路プレート 6、6a、6b、26 第2の流路 6c 低温側流路 6d 高温側流路 13a、13b 分配流路 28 屈曲部[Explanation of symbols] 1 First channel plate 2, 22 First channel 3 partition plates 5 Second channel plate 6, 6a, 6b, 26 Second flow path 6c Low temperature side flow path 6d High temperature side flow path 13a, 13b distribution channel 28 Bend

───────────────────────────────────────────────────── フロントページの続き (72)発明者 國本 啓次郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 近藤 龍太 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 今林 敏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岡 浩二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L065 DA12 3L103 AA05 AA50 BB43 DD15 DD55   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Keijiro Kunimoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Ryuta Kondo             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Satoshi Imabayashi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Koji Oka             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 3L065 DA12                 3L103 AA05 AA50 BB43 DD15 DD55

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 隔壁となる隔壁プレートの異なる面に第
1の流路と第2の流路とを配してなり、前記第1の流路
は第1の流路プレートを板厚方向に抜いた貫通孔で形成
し、前記第2の流路は第2の流路プレートと前記隔壁プ
レートとの間に形成した熱交換器。
1. A first flow path and a second flow path are arranged on different surfaces of a partition plate serving as a partition, and the first flow path includes the first flow path plate in the plate thickness direction. A heat exchanger, which is formed by a removed through hole and in which the second flow path is formed between a second flow path plate and the partition plate.
【請求項2】 第1の流路は複数かつ略平行に構成され
る請求項1記載の熱交換器。
2. The heat exchanger according to claim 1, wherein a plurality of first flow paths are arranged in parallel.
【請求項3】 隔壁プレート内に複数の第1の流路と連
通する分配流路を設けた請求項2記載の熱交換器。
3. The heat exchanger according to claim 2, wherein the partition plate is provided with a distribution flow path communicating with the plurality of first flow paths.
【請求項4】 分配流路が略軸対称形状を有する請求項
3記載の熱交換器。
4. The heat exchanger according to claim 3, wherein the distribution channel has a substantially axisymmetric shape.
【請求項5】 分配流路の等価直径を第1の流路の等価
直径よりも大きく形成した請求項3または4記載の熱交
換器
5. The heat exchanger according to claim 3, wherein the distribution channel has an equivalent diameter larger than that of the first channel.
【請求項6】 第2の流路の流路幅を第1の流路の流路
幅よりも大きく形成した請求項1〜5のいずれか1項に
記載の熱交換器。
6. The heat exchanger according to claim 1, wherein the flow passage width of the second flow passage is formed larger than the flow passage width of the first flow passage.
【請求項7】 第1の流路と第2の流路とをこれらの長
手方向の略全体にわたって、かつ隔壁プレートを介して
対向する位置に形成し、各流路を流れる流体を対向流と
した請求項1〜6のいずれか1項に記載の熱交換器。
7. The first flow path and the second flow path are formed in substantially the entire lengthwise direction thereof and at positions facing each other through a partition plate, and the fluid flowing through each flow path is defined as a counter flow. The heat exchanger according to any one of claims 1 to 6.
【請求項8】 第1の流路が第1の流路プレート内で屈
曲部を有する請求項1〜7のいずれか1項に記載の熱交
換器。
8. The heat exchanger according to claim 1, wherein the first flow path has a bent portion in the first flow path plate.
【請求項9】 第1の流路を挟んで両方の面上に、隔壁
プレートを介して複数の第2の流路を設けてなる請求項
1〜8のいずれか1項に記載の熱交換器。
9. The heat exchange according to claim 1, wherein a plurality of second flow paths are provided on both surfaces of the first flow path with a partition plate interposed therebetween. vessel.
【請求項10】 隔壁となるプレートが板厚方向に対し
て複数枚のプレートで構成される請求項1〜9のいずれ
か1項に記載の熱交換器。
10. The heat exchanger according to claim 1, wherein the plate serving as the partition wall is composed of a plurality of plates in the plate thickness direction.
【請求項11】 第2の流路の流路高さをその高温側流
路で低温側流路よりも高く形成した請求項1〜10のい
ずれか1項に記載の熱交換器。
11. The heat exchanger according to claim 1, wherein the flow passage height of the second flow passage is formed higher in the high temperature side flow passage than in the low temperature side flow passage.
JP2002139605A 2002-05-15 2002-05-15 Heat exchanger Expired - Fee Related JP3922088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002139605A JP3922088B2 (en) 2002-05-15 2002-05-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002139605A JP3922088B2 (en) 2002-05-15 2002-05-15 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2003336990A true JP2003336990A (en) 2003-11-28
JP3922088B2 JP3922088B2 (en) 2007-05-30

Family

ID=29700704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002139605A Expired - Fee Related JP3922088B2 (en) 2002-05-15 2002-05-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3922088B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168772A1 (en) * 2012-05-11 2013-11-14 三菱電機株式会社 Stacked total heat exchange element and heat exchange ventilation device
JP2013541690A (en) * 2010-10-22 2013-11-14 アルファ・ラバル・コーポレイト・エービー Heat exchanger plate and plate heat exchanger
WO2014122890A1 (en) * 2013-02-06 2014-08-14 株式会社神戸製鋼所 Heat exchanger
WO2015016076A1 (en) * 2013-07-31 2015-02-05 株式会社神戸製鋼所 Hydrogen gas cooling method and hydrogen gas cooling system
JP2015111582A (en) * 2015-01-16 2015-06-18 大阪瓦斯株式会社 Solid oxide type fuel cell system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541690A (en) * 2010-10-22 2013-11-14 アルファ・ラバル・コーポレイト・エービー Heat exchanger plate and plate heat exchanger
US9739546B2 (en) 2010-10-22 2017-08-22 Alfa Laval Corporate Ab Heat exchanger plate and a plate heat exchanger with insulated sensor internal to heat exchange area
WO2013168772A1 (en) * 2012-05-11 2013-11-14 三菱電機株式会社 Stacked total heat exchange element and heat exchange ventilation device
JPWO2013168772A1 (en) * 2012-05-11 2016-01-07 三菱電機株式会社 Laminated total heat exchange element and heat exchange ventilator
US9863710B2 (en) 2012-05-11 2018-01-09 Mitsubishi Electric Corporation Laminated total heat exchange element
WO2014122890A1 (en) * 2013-02-06 2014-08-14 株式会社神戸製鋼所 Heat exchanger
JP2014152963A (en) * 2013-02-06 2014-08-25 Kobe Steel Ltd Heat exchanger
WO2015016076A1 (en) * 2013-07-31 2015-02-05 株式会社神戸製鋼所 Hydrogen gas cooling method and hydrogen gas cooling system
JP2015031420A (en) * 2013-07-31 2015-02-16 株式会社神戸製鋼所 Hydrogen gas cooling method and hydrogen gas cooling system
JP2015111582A (en) * 2015-01-16 2015-06-18 大阪瓦斯株式会社 Solid oxide type fuel cell system

Also Published As

Publication number Publication date
JP3922088B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP5394405B2 (en) Heat exchanger
CN111819415B (en) Plate heat exchanger, heat pump device provided with same, and heat pump type cooling/heating/water heating system provided with heat pump device
JP6594598B1 (en) Plate type heat exchanger, heat pump device provided with plate type heat exchanger, and heat pump type heating hot water supply system provided with heat pump device
EP2878909A1 (en) Plate-type heat exchanger and refrigeration cycle device comprising same
JP3597436B2 (en) Heat exchanger
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
CN102494547A (en) Miniature micro-channel plate-fin heat exchanger
JP5206830B2 (en) Heat exchanger
JPWO2018216245A1 (en) Plate heat exchanger and heat pump hot water supply system
JP2008144997A (en) Pressure-proof heat exchanger
JP5661205B2 (en) Laminated heat exchanger, heat pump system equipped with the same, and manufacturing method of laminated heat exchanger
JP2003336990A (en) Heat exchanger
JP2006317094A (en) Heat exchanger
JP3932877B2 (en) Heat exchanger
JP2005024109A (en) Heat exchanger
JP2005249325A (en) Heat exchanger and heat pump water heater using the same
JP2008170090A (en) Brazed plate for heat transfer, and heat exchanger using the same
JP2007271194A (en) Heat exchanger
JPWO2018193660A1 (en) Three-fluid heat exchanger
JP2004340455A (en) Heat exchanger
JP2005147567A (en) Double pipe type heat exchanger
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP2010117102A (en) Heat exchanger
JP3948265B2 (en) Heat exchanger
JP2007003014A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees