JP2007032943A - Composite heat exchanger tube - Google Patents

Composite heat exchanger tube Download PDF

Info

Publication number
JP2007032943A
JP2007032943A JP2005217865A JP2005217865A JP2007032943A JP 2007032943 A JP2007032943 A JP 2007032943A JP 2005217865 A JP2005217865 A JP 2005217865A JP 2005217865 A JP2005217865 A JP 2005217865A JP 2007032943 A JP2007032943 A JP 2007032943A
Authority
JP
Japan
Prior art keywords
tube
diameter
pipe
heat transfer
composite heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005217865A
Other languages
Japanese (ja)
Inventor
Chikara Saeki
主税 佐伯
Takashi Shirai
崇 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2005217865A priority Critical patent/JP2007032943A/en
Publication of JP2007032943A publication Critical patent/JP2007032943A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite heat exchanger tube capable of reducing a volume occupied by the composite heat exchanger tube while maintaining or improving heat transfer performance. <P>SOLUTION: The composite heat exchanger tube 1 comprises a large diameter tube 2, and a small diameter tube 3 having an outside diameter smaller than an inside diameter of the large diameter tube 2, and provided along a tube axis direction inside the large diameter tube, and an outer passage 7 formed between the large diameter tube 2 and the small diameter tube 3 is a passage of a first heating medium W, and an inside of the small diameter tube 3 is a passage of a second heating medium X. At least a part of a total length of the large diameter tube 2 includes a spiral shaped winding part 9. An even number of stages of the winding parts 9 are superimposed, and are wound so that the large diameter tube 2 on an outermost circumference 9d of the winding part 9 abuts on the large diameter tube 2 on an adjacent circumference 9c adjacent to the outermost circumference 9d. Furthermore, both tube end parts 2a, 2b of the large diameter tube 2 are formed on an innermost circumference 9a of the winding part 9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、冷蔵庫、冷凍庫、給湯器、床暖房等の熱交換器に用いる伝熱管に関するもので、より詳しくは、大径管と小径管とを流れる熱媒体の間で管壁を通して相互に熱交換する複合伝熱管に関する。   The present invention relates to a heat transfer tube used for a heat exchanger such as a refrigerator, a freezer, a water heater, and floor heating, and more specifically, a heat medium flowing between a large-diameter tube and a small-diameter tube through a tube wall. The present invention relates to a composite heat transfer tube that performs heat exchange.

一般に、熱交換器用の複合伝熱管の構成としては、大径管と、その大径管の内部に小径管を備える構成のものが知られている。そして、冷蔵庫、冷凍庫用熱交換器の複合伝熱管においては、大径管および小径管の内部に熱媒体としてのフロン、代替フロン等の冷媒が流され、大径管と小径管とを流れる冷媒間で熱交換が行なわれるものである。また、給湯器用ヒートポンプユニットの複合伝熱管においては、大径管の内部に水、小径管の内部に二酸化炭素あるいは代替フロン冷媒が流される。また、床暖房用熱交換器の複合伝熱管においては、大径管の内部に水、小径管の内部にフロンあるいは代替フロン等の冷媒が流されるものである。   In general, as a structure of a composite heat transfer tube for a heat exchanger, a structure having a large-diameter tube and a small-diameter tube inside the large-diameter tube is known. In the combined heat transfer tubes of the refrigerator and freezer heat exchanger, refrigerants such as chlorofluorocarbons and alternative chlorofluorocarbon as a heat medium are caused to flow inside the large-diameter tube and the small-diameter tube, and the refrigerant flows through the large-diameter tube and the small-diameter tube. Heat exchange takes place between them. Further, in the composite heat transfer tube of the heat pump unit for hot water heater, water is flown inside the large-diameter tube, and carbon dioxide or alternative chlorofluorocarbon refrigerant is flowed inside the small-diameter tube. Further, in the composite heat transfer tube of the heat exchanger for floor heating, water such as chlorofluorocarbon or alternative chlorofluorocarbon is caused to flow inside the large-diameter tube and to the inside of the small-diameter tube.

また、図10に示すように、伝熱性能を向上するため、大径管42は、その全長の少なくとも一部がらせん状の巻回部43に形成され、その巻回部43を複数段に重ねて、伝熱面積を増大させた複合伝熱管41が提案されている(例えば、特許文献1参照)。
一方、給湯器用ヒートポンプユニット等の小型化に伴い、それに使用される複合伝熱管41においても、伝熱性能を維持、または向上させながら、ヒートポンプユニット(熱交換器)に占める複合伝熱管41の容積を小さくすることが要望されている。
Further, as shown in FIG. 10, in order to improve the heat transfer performance, the large-diameter tube 42 is formed with a spiral winding portion 43 at least part of its entire length, and the winding portion 43 is formed in a plurality of stages. A composite heat transfer tube 41 with an increased heat transfer area has been proposed (see, for example, Patent Document 1).
On the other hand, the volume of the composite heat transfer tube 41 occupying the heat pump unit (heat exchanger) while maintaining or improving the heat transfer performance also in the composite heat transfer tube 41 used for the downsizing of the heat pump unit for the water heater, etc. There is a demand to reduce the size.

前記複合伝熱管41においては、その複合伝熱管41の占める容積を小さくするためには、巻回部43の段数を減少させる必要がある。しかしながら、巻回部43の段数の減少は、大径管42の全長が短くなることとなり、複合伝熱管41の伝熱性能の低下につながるため、複合伝熱管41の占める容積を小さくすることができなかった。そのため、図11(a)、(b)、(c)に示すように、大径管52は、その全長の少なくとも一部が渦巻状の巻回部53に形成され、その巻回部53を移行部56を介して複数段に重ねて、大径管52の全長を短くせずに、複合伝熱管51の占める容積を小さくした複合伝熱管51が検討されている。
特開2001−201275号公報(図2、図3)
In the composite heat transfer tube 41, in order to reduce the volume occupied by the composite heat transfer tube 41, it is necessary to reduce the number of stages of the winding portion 43. However, the reduction in the number of stages of the winding portion 43 shortens the overall length of the large-diameter tube 42 and leads to a decrease in the heat transfer performance of the composite heat transfer tube 41. Therefore, the volume occupied by the composite heat transfer tube 41 can be reduced. could not. Therefore, as shown in FIGS. 11A, 11 </ b> B, and 11 </ b> C, the large-diameter pipe 52 has at least a part of its entire length formed in a spiral winding portion 53. A composite heat transfer tube 51 in which the volume occupied by the composite heat transfer tube 51 is reduced without reducing the overall length of the large diameter tube 52 by overlapping a plurality of stages via the transition portion 56 has been studied.
JP 2001-201275 A (FIGS. 2 and 3)

しかしながら、複合伝熱管51をヒートポンプユニット(熱交換器)等に使用する際、複合伝熱管51は断熱ケース15内に収納して使用される。図11(a)の複合伝熱管51においては、大径管52の両管端部52a、52bが巻回部53の最外周に形成されているため、大径管52および小径管(図示せず)の内部に第1および2熱媒体を供給する配管(図示せず)等を両管端部52a、52bに接続するスペースが、断熱ケース15内で点線で示すようにデッドスペースDSとなり、そのスペース分だけ断熱ケース15が大きく、複合伝熱管51の容積自体も大きくなる。したがって、伝熱性能の維持しながら、ヒートポンプユニット(熱交換器)に占める複合伝熱管51の容積を十分小さくすることができないという問題があった。   However, when the composite heat transfer tube 51 is used in a heat pump unit (heat exchanger) or the like, the composite heat transfer tube 51 is housed in the heat insulating case 15 and used. In the composite heat transfer tube 51 of FIG. 11A, since both tube end portions 52a and 52b of the large-diameter tube 52 are formed on the outermost periphery of the winding portion 53, a large-diameter tube 52 and a small-diameter tube (not shown). The space connecting the pipes (not shown) for supplying the first and second heat medium into the pipe ends 52a and 52b becomes the dead space DS as shown by the dotted line in the heat insulating case 15, The heat insulating case 15 is larger by the space, and the volume of the composite heat transfer tube 51 is also increased. Accordingly, there is a problem that the volume of the composite heat transfer tube 51 occupying the heat pump unit (heat exchanger) cannot be sufficiently reduced while maintaining the heat transfer performance.

そこで、本発明は、このような問題を解決すべく創案されたもので、その目的は、伝熱性能を維持、または向上させながら、複合伝熱管の占める容積を小さくすることができる複合伝熱管を提供することにある。   Therefore, the present invention was devised to solve such problems, and its purpose is a composite heat transfer tube capable of reducing the volume occupied by the composite heat transfer tube while maintaining or improving the heat transfer performance. Is to provide.

前記課題を解決するために、請求項1に係る発明は、大径管と、前記大径管の内径より小さい外径を有し、当該大径管の内部で管軸方向に沿って設けられる小径管とを備え、前記大径管と前記小径管との間の外側流路を第1熱媒体の流路とし、前記小径管の内部を第2熱媒体の流路とする複合伝熱管であって、前記大径管は、その全長の少なくとも一部が渦巻状の巻回部に形成され、前記巻回部が偶数段に重ねられると共に、当該巻回部の最外周の前記大径管がその最外周に隣接する隣接周の当該大径管と当接するように巻回され、かつ、当該大径管の両管端部が当該巻回部の最内周に形成される複合伝熱管として構成したものである。   In order to solve the above-mentioned problem, the invention according to claim 1 has a large-diameter tube and an outer diameter smaller than the inner diameter of the large-diameter tube, and is provided along the tube axis direction inside the large-diameter tube. A composite heat transfer tube comprising a small-diameter pipe, wherein an outer flow path between the large-diameter pipe and the small-diameter pipe is a first heat medium flow path, and an inside of the small-diameter pipe is a second heat medium flow path. The large-diameter pipe has at least a part of its entire length formed in a spiral winding portion, the winding portions are stacked in an even number of stages, and the large-diameter tube on the outermost periphery of the winding portion. Is wound so as to be in contact with the large-diameter tube adjacent to the outermost periphery, and both end portions of the large-diameter tube are formed on the innermost periphery of the wound portion. It is constituted as follows.

前記構成によれば、渦巻状の巻回部が偶数段に重ねられると共に、巻回部の最外周の大径管がその最外周に隣接する隣接周の大径管と当接するように形成されることにより、同一体積内に収納可能な複合伝熱管の長さが長くなり、複合伝熱管としての伝熱面積が増大すると共に、断熱ケースに収納して複合伝熱管を熱交換器内に設置する際、断熱ケースの容積を小さくすることが可能となる。また、大径管の両管端部が巻回部の最内周に形成されることにより、熱媒体を供給する配管等との接続処理が巻回部の内側でなされることとなり、断熱ケースに複合伝熱管を収納する際、断熱ケース内に接続処理に要するデッドスペースが形成されない。   According to the above-described configuration, the spirally wound portions are stacked in even stages, and the outermost large-diameter tube of the wound portion is formed so as to abut on the adjacent peripheral large-diameter tube adjacent to the outermost periphery. This increases the length of the composite heat transfer tube that can be stored in the same volume, increases the heat transfer area of the composite heat transfer tube, and stores the composite heat transfer tube in the heat exchanger by storing it in a heat insulating case. In doing so, the volume of the heat insulating case can be reduced. In addition, since both pipe end portions of the large diameter pipe are formed on the innermost circumference of the winding portion, the connection process with the piping for supplying the heat medium is performed inside the winding portion, and the heat insulating case When the composite heat transfer tube is housed in the heat insulating case, a dead space required for connection processing is not formed in the heat insulating case.

また、請求項2に係る発明は、前記巻回部は、その各段の前記大径管が隣接段の当該大径管と当接すると共に、当該巻回部の各周の当該大径管が隣接周の当該大径管と当接するように形成される複合伝熱管として構成したものである。
前記構成によれば、断熱ケースに複合伝熱管を収納する際、大径管同士間に空間部が形成されず、その空間部によって断熱ケース内にデッドスペースが形成されることがない。
Further, in the invention according to claim 2, the winding portion has the large-diameter pipe at each stage abutting against the large-diameter pipe at the adjacent stage, and the large-diameter pipe at each circumference of the winding part. It is configured as a composite heat transfer tube formed so as to be in contact with the adjacent large-diameter tube.
According to the said structure, when accommodating a composite heat exchanger tube in a heat insulation case, a space part is not formed between large diameter pipes, but a dead space is not formed in a heat insulation case by the space part.

また、請求項3に係る発明は、前記巻回部は、その巻回形状が巻回軸に対して直交する平面において、直線路と湾曲路とを交互に有する小判形状である複合伝熱管として構成したものである。
前記構成によれば、巻回形状が小判形状であることにより、断熱ケースに収納して複合伝熱管を熱交換器内に設置する際、断熱ケースの容積を小さくすることが可能となる共に、熱交換器内での断熱ケースの位置ズレが発生しにくい。また、市販の曲げ加工機を使用して巻回部を形成する際、曲げ加工が容易となる。
Moreover, the invention which concerns on Claim 3 WHEREIN: As for the said winding part, in the plane which the winding shape orthogonally crosses with respect to a winding axis | shaft, it is a composite heat exchanger tube which is an oval shape which has a straight path and a curved path alternately. It is composed.
According to the above configuration, when the winding shape is an oval shape, when the composite heat transfer tube is housed in the heat insulating case and installed in the heat exchanger, the volume of the heat insulating case can be reduced, It is difficult for the heat insulation case to be displaced in the heat exchanger. Moreover, when forming a winding part using a commercially available bending machine, a bending process becomes easy.

また、請求項4に係る発明は、前記両管端部は、同一方向に向けて形成される複合伝熱管として構成したものである。
前記構成によれば、両管端部と熱媒体を供給する配管等との接続処理が容易となる。
According to a fourth aspect of the present invention, both the tube end portions are configured as a composite heat transfer tube formed in the same direction.
According to the said structure, the connection process of both pipe | tube edge part and piping etc. which supply a heat carrier becomes easy.

また、請求項5に係る発明は、前記小径管は、外管と、前記外管の内部に同軸に設けられ、前記外管の内径よりも小さい外径を有する内管とからなり、前記外管と前記内管との間に空間部が形成される二重管である複合伝熱管として構成したものである。   In the invention according to claim 5, the small-diameter pipe includes an outer pipe and an inner pipe that is coaxially provided inside the outer pipe and has an outer diameter smaller than the inner diameter of the outer pipe. This is configured as a composite heat transfer tube which is a double tube in which a space is formed between the tube and the inner tube.

前記構成によれば、小径管が、外管と内管の間に空間部が形成される二重管で構成されていることによって、内管に腐食等による破損が発生しても、内管と外側流路(第1熱媒体の流路)が連通状態になることがなく、第1熱媒体に第2熱媒体の異物(オイル等)が混入するおそれがなくなる。さらに、この二重管構造により、万が一内管の破損によって第2熱媒体が漏洩する状態になっても、外管により内管の急激な破損を最小限に留めることができ、このとき発生する外管と内管の間に形成された空間部からの漏洩を、伝熱管の両端2カ所において検知することによって破損状況を調べることができる。同様に、何らかの原因により第1熱媒体側の外管表面が腐食し、外管に腐食孔が形成された場合にも、外管と内管の間に形成された空間部からの漏洩を、伝熱管の両端2カ所において検知することによって破損状況を調べることができる。   According to the above configuration, even if the inner pipe is damaged due to corrosion or the like, the inner pipe is formed by the double pipe in which the space portion is formed between the outer pipe and the inner pipe. And the outer flow path (flow path of the first heat medium) are not in communication with each other, and there is no possibility that foreign matter (oil or the like) of the second heat medium is mixed into the first heat medium. Furthermore, with this double pipe structure, even if the second heat medium leaks due to the damage of the inner pipe, the outer pipe can minimize the sudden damage of the inner pipe, which occurs at this time. By detecting leakage from the space formed between the outer tube and the inner tube at two locations on both ends of the heat transfer tube, the damage state can be examined. Similarly, even when the outer tube surface on the first heat medium side corrodes for some reason and a corrosion hole is formed in the outer tube, leakage from the space formed between the outer tube and the inner tube, The damage status can be examined by detecting at the two ends of the heat transfer tube.

また、請求項6に係る発明は、前記第1熱媒体の流れる方向と、前記第2熱媒体の流れる方向とが対向する複合伝熱管として構成したものである。
前記構成によれば、第1熱媒体と第2熱媒体との間の伝熱効率が向上し、伝熱量が増大する。
The invention according to claim 6 is configured as a composite heat transfer tube in which the direction in which the first heat medium flows and the direction in which the second heat medium flows are opposed to each other.
According to the above configuration, the heat transfer efficiency between the first heat medium and the second heat medium is improved, and the amount of heat transfer is increased.

また、請求項7に係る発明は、前記第1熱媒体が水、前記第2熱媒体が冷媒である複合伝熱管として構成したものである。
前記構成によれば、第1熱媒体と第2熱媒体との間の伝熱効率が向上し、伝熱量が増大する。
The invention according to claim 7 is configured as a composite heat transfer tube in which the first heat medium is water and the second heat medium is a refrigerant.
According to the above configuration, the heat transfer efficiency between the first heat medium and the second heat medium is improved, and the amount of heat transfer is increased.

また、請求項8に係る発明は、前記大径管および前記小径管の少なくとも一方は、銅または銅合金からなる複合伝熱管として構成したものである。
前記構成によれば、第1熱媒体と第2熱媒体との間の伝熱効率が向上し、伝熱量が増大する。
According to an eighth aspect of the present invention, at least one of the large diameter tube and the small diameter tube is configured as a composite heat transfer tube made of copper or a copper alloy.
According to the above configuration, the heat transfer efficiency between the first heat medium and the second heat medium is improved, and the amount of heat transfer is increased.

本発明によれば、大径管に形成される巻回部が偶数段に重ねられ、巻回部の最外周の大径管がその最外周に隣接する隣接周の大径管と当接するように形成され、かつ、大径管の両管端部が巻回部の最内周に形成されることにより、伝熱性能を維持、または向上させながら、複合伝熱管の占める容積を小さくすることができる。なお、複合伝熱管の容積を小さくできるということは、言い換えれば、複合伝熱管を収納する断熱ケースの容積も小さくなり、断熱効率を向上することできる。そして、同一容積の断熱ケースに収納される複合伝熱管の全長が長くなり、伝熱性能が向上することとなる。また、巻回部の各段、各周の大径管同士が当接するように形成されることにより、より一層、複合伝熱管の容積を小さくすることができる。   According to the present invention, the winding portions formed in the large-diameter pipe are stacked in an even number of stages so that the outermost large-diameter tube of the winding portion comes into contact with the adjacent large-diameter pipe adjacent to the outermost periphery. In addition, both ends of the large-diameter pipe are formed on the innermost circumference of the winding part, thereby reducing the volume occupied by the composite heat transfer pipe while maintaining or improving the heat transfer performance. Can do. In addition, that the volume of the composite heat transfer tube can be reduced, in other words, the volume of the heat insulating case that houses the composite heat transfer tube can also be reduced, and the heat insulation efficiency can be improved. And the full length of the composite heat exchanger tube accommodated in the heat insulation case of the same volume will become long, and heat transfer performance will improve. Moreover, the volume of the composite heat transfer tube can be further reduced by forming the winding portions so that the large-diameter tubes at the respective stages and the circumferences come into contact with each other.

また、巻回部の巻回形状が小判形状であることにより、直方体形状の断熱ケースにおいて、複合伝熱管の占める容積がより一層小さくなると共に、熱交換器内での断熱ケース(複合伝熱管)の設置安定性が向上し、かつ、複合伝熱管の生産性が向上する。さらに、大径管の両管端部が巻回軸に対して同一方向に形成されたことにより、複合伝熱管の生産性がより一層向上する。   In addition, since the winding shape of the winding portion is an oval shape, the volume occupied by the composite heat transfer tube is further reduced in the heat insulation case of a rectangular parallelepiped shape, and the heat insulation case (composite heat transfer tube) in the heat exchanger This improves the installation stability and improves the productivity of composite heat transfer tubes. Furthermore, both pipe end parts of the large diameter pipe are formed in the same direction with respect to the winding axis, thereby further improving the productivity of the composite heat transfer pipe.

また、小径管を空間部が形成される二重管で構成することにより、第1熱媒体への第2熱媒体の漏洩が防止でき、また、その漏洩を検知できることにより、複合伝熱管の安全性が向上する。   In addition, by configuring the small-diameter tube with a double tube in which a space portion is formed, the leakage of the second heat medium to the first heat medium can be prevented, and the leakage can be detected, so that the safety of the composite heat transfer tube can be improved. Improves.

また、第1熱媒体および第2熱媒体の流れる方向を対向させること、第1熱媒体を水、第2熱媒体を冷媒とする、大径管および小径管の少なくとも一方を銅または銅合金で構成することにより、複合伝熱管の伝熱性能をより一層向上させることができる。   In addition, the flow direction of the first heat medium and the second heat medium is opposed to each other, at least one of the large diameter pipe and the small diameter pipe is made of copper or a copper alloy using water as the first heat medium and refrigerant as the second heat medium. By comprising, the heat-transfer performance of a composite heat exchanger tube can be improved further.

本発明に実施形態について、適宜図面を参照して詳細に説明する。図1は複合伝熱管の構成を示す平面図、図2(a)は図1のA−A線断面図、(b)はB−B線断面図で小径管の記載は省略したもの、(c)は大径管の拡大断面図、図3(a)は巻回部の他の形態を示す平面図、(b)は(a)のC−C線断面図で小径管の記載は省略したもの、図4(a)は巻回部の他の形態を示す平面図、(b)はユニットを並列に重ねた状態を示す模式図、(c)、(d)は直列に重ねた状態を示す模式図、図5(a)は複合伝熱管の他の実施形態の大径管の管軸直交断面図、(b)は(a)の小径管の拡大断面図、図6はバッフル材が配置された複合伝熱管の構成を示す一部破断斜視図、図7は束ね部材およびインナー材が配置された複合伝熱管の構成を示す一部破断斜視図、図8は凹凸部が形成された複合伝熱管を示し、(a)は一部破断側面図、(b)は(a)のD−D線断面図、図9は複合伝熱管を使用した給湯器の構成を模式的に示す説明図である。   Embodiments of the present invention will be described in detail with reference to the drawings as appropriate. FIG. 1 is a plan view showing the structure of a composite heat transfer tube, FIG. 2 (a) is a cross-sectional view taken along line AA in FIG. 1, (b) is a cross-sectional view taken along line BB in FIG. c) is an enlarged cross-sectional view of the large-diameter pipe, FIG. 3 (a) is a plan view showing another form of the winding portion, and (b) is a cross-sectional view taken along the line CC of FIG. 4 (a) is a plan view showing another form of the winding part, (b) is a schematic view showing a state in which the units are stacked in parallel, and (c) and (d) are in a state where they are stacked in series. FIG. 5A is a cross-sectional view orthogonal to the tube axis of a large-diameter tube of another embodiment of the composite heat transfer tube, FIG. 5B is an enlarged cross-sectional view of the small-diameter tube of FIG. FIG. 7 is a partially broken perspective view showing the configuration of the composite heat transfer tube in which the bundling member and the inner material are arranged, and FIG. Combined heat transfer tubes Indicates, (a) represents a partially broken side view, (b) is an explanatory view schematically showing D-D line cross-sectional view, FIG. 9 is a configuration of a water heater using the composite heat exchanger tube of (a).

本発明の複合伝熱管の第1の実施形態を図1、図2(a)、(b)、(c)に示す。図1、図2(a)、(b)、(c)に示すように、本発明の複合伝熱管1は、大径管2と、大径管2の内径より小さい外径を有し、大径管2の内部に設けられた小径管3とを備え、大径管2と小径管3との間の外側流路7を第1熱媒体Wの流路とし、小径管3の内部を第2熱媒体Xの流路とするもので、大径管2の全長の少なくとも一部が渦巻状の巻回部9に形成され、その巻回部9が偶数段に重ねられると共に、大径管2の両管端部2a、2bが巻回部9の最内周9aに形成されたものである。以下、各構成について説明する。   A first embodiment of the composite heat transfer tube of the present invention is shown in FIGS. 1, 2 (a), 2 (b), and (c). As shown in FIG. 1, FIG. 2 (a), (b), (c), the composite heat transfer tube 1 of the present invention has a large diameter tube 2 and an outer diameter smaller than the inner diameter of the large diameter tube 2, A small-diameter pipe 3 provided inside the large-diameter pipe 2, the outer flow path 7 between the large-diameter pipe 2 and the small-diameter pipe 3 is used as a flow path for the first heat medium W, and the inside of the small-diameter pipe 3 is As a flow path for the second heat medium X, at least a part of the entire length of the large-diameter pipe 2 is formed in a spiral winding portion 9, and the winding portion 9 is stacked in an even number of stages, Both tube end portions 2 a and 2 b of the tube 2 are formed on the innermost periphery 9 a of the winding portion 9. Each configuration will be described below.

(大径管)
図2(c)に示すように、大径管2は、後記する小径管3との間に外側流路7を形成し、外側流路7を第1熱媒体Wの流路としたものである。また、大径管2の内径は、後記する小径管3の外径より大きく、かつ、外側流路7に第1熱媒体Wを流すのに十分な内径、及び耐圧強度を持てばよく、一例として、外径は4〜30mm、肉厚は0.2〜2.5mm、長さは100mm以上が好ましい。また、大径管2の寸法は、後記する小径管3の寸法との関係、本発明の複合伝熱管1が組み込まれる熱交換器30(図9参照、図では給湯器)の寸法、熱容量、加工性を考慮して決められ、複合伝熱管1の伝熱性能、圧力損失の点から、管軸直交断面における1本の小径管3の流路断面積と、大径管2と小径管3との間の外側流路7の断面積との比(外側流路断面積/小径管流路断面積)が10〜50の範囲内を満足するように設定することがより好ましい。
(Large diameter pipe)
As shown in FIG. 2C, the large diameter pipe 2 is formed by forming an outer flow path 7 between the large diameter pipe 3 and a small diameter pipe 3 to be described later, and the outer flow path 7 is used as a flow path of the first heat medium W. is there. Further, the inner diameter of the large-diameter pipe 2 is larger than the outer diameter of the small-diameter pipe 3 to be described later, and the inner diameter and the pressure resistance sufficient to allow the first heat medium W to flow through the outer flow path 7 are only an example. The outer diameter is preferably 4 to 30 mm, the wall thickness is 0.2 to 2.5 mm, and the length is preferably 100 mm or more. The dimensions of the large diameter pipe 2 are related to the dimensions of the small diameter pipe 3 described later, the dimensions of the heat exchanger 30 (see FIG. 9, hot water heater in the figure) in which the composite heat transfer pipe 1 of the present invention is incorporated, From the viewpoint of heat transfer performance and pressure loss of the composite heat transfer tube 1, the cross-sectional area of the single small diameter tube 3 in the cross section orthogonal to the tube axis, the large diameter tube 2, and the small diameter tube 3 are determined. It is more preferable that the ratio (outer channel cross-sectional area / small-diameter pipe channel cross-sectional area) with the cross-sectional area of the outer channel 7 between the two is set to satisfy the range of 10-50.

大径管2の材質としては、(1)熱伝導性が優れ、大径管2および後記する小径管3の内部を流れる熱媒体間で効率良く熱交換できる、(2)複合伝熱管1が使用される種々の雰囲気で耐食性に優れる、(3)後記する渦巻状の巻回部9の形成、凹凸部19(図8参照)の形成、熱交換器(給湯器)30に組み込まれる際の曲げ加工などの塑性加工性に優れる(加工により割れ等が生じない機械的性質を備える)、(4)外側流路7に第1熱媒体Wを供給する配管等とのロウ付け性、はんだ付け性または接着剤による接着性に優れる、(5)複合伝熱管1が使用される圧力での耐圧性に優れる、などの特性を満足するものが好ましい。   The material of the large-diameter tube 2 is (1) excellent in thermal conductivity, and can efficiently exchange heat between the large-diameter tube 2 and a heat medium flowing inside the small-diameter tube 3 described later. (2) The composite heat transfer tube 1 is Excellent corrosion resistance in various atmospheres used. (3) Formation of spiral winding portion 9 described later, formation of uneven portion 19 (see FIG. 8), and incorporation into heat exchanger (hot water heater) 30 Excellent plastic workability such as bending (having mechanical properties that do not cause cracking or the like by processing), (4) brazing with a pipe for supplying the first heat medium W to the outer flow path 7, soldering It is preferable to satisfy the characteristics such as excellent properties or adhesiveness by an adhesive, and (5) excellent pressure resistance at the pressure at which the composite heat transfer tube 1 is used.

これらの(1)〜(5)の特性を満足する材質としては、エアコン、大型空調機器などの熱交換器用伝熱管として広く用いられている銅または銅合金が好ましく、JISH3300に規定する合金番号C1101の無酸素銅、合金番号C1201及びC1220のりん脱酸銅のいずれかがより好ましい。   As a material satisfying these characteristics (1) to (5), copper or a copper alloy widely used as a heat exchanger tube for a heat exchanger such as an air conditioner or a large air conditioner is preferable. Alloy number C1101 defined in JISH3300 More preferred are oxygen-free copper, and phosphorus-deoxidized copper having alloy numbers C1201 and C1220.

また、前記の材質のみに限定する必要はなく、特に熱伝導性と耐圧強度が必要な場合は、JISH3300に規定された銅または銅合金や、例えばFe、P、Ni、Co、Mn、Sn、Si、Mg、Ag、Al等の元素より選択する1種または2種以上を総計で数%以下Cuに含有させたJISH3300に規定されていない銅合金を用いることも可能である。   Moreover, it is not necessary to limit only to the said material, When especially heat conductivity and a pressure | voltage resistant strength are required, the copper or copper alloy prescribed | regulated to JISH3300, for example, Fe, P, Ni, Co, Mn, Sn, It is also possible to use a copper alloy not specified in JISH3300 in which one or two or more elements selected from elements such as Si, Mg, Ag, and Al are contained in Cu in a total of several percent or less.

さらに、特に耐食性と耐圧強度が必要な場合には、JISH3300に規定された合金番号C7060、C7100、C7150などのCu−Ni系合金やTiまたはTi合金、ステンレス鋼などを用いることも可能である。また、軽量化が求められる場合には、耐食性、強度、加工性などの特性を考慮して、アルミニウム、アルミニウム合金の中から所定の特性を有するものを選択することも可能である。   Further, when particularly corrosion resistance and pressure strength are required, Cu—Ni alloys such as alloy numbers C7060, C7100, and C7150 defined in JISH3300, Ti or Ti alloys, stainless steel, and the like can be used. When weight reduction is required, it is possible to select one having predetermined characteristics from aluminum and aluminum alloys in consideration of characteristics such as corrosion resistance, strength, and workability.

大径管2を構成する管は、押出し素管を圧延、抽伸して製作される継目無し管、あるいは所定幅の板条の幅方向の端面を溶接して製作される溶接管を用いてもよい。   The pipe constituting the large-diameter pipe 2 may be a seamless pipe produced by rolling and drawing an extruded element pipe, or a welded pipe produced by welding end faces in the width direction of a predetermined width of a strip. Good.

通常、大径管2としては管内面が平滑である平滑管が用いられることが多いが、外側流路7内の第1熱媒体Wを撹拌したい場合、旋回流を与えたい場合、あるいは管内の伝熱面積を増やしたい場合等には、管内面の少なくとも一部に管軸方向に平行な溝、あるいは、らせん状の溝(図示せず)が形成された内面溝付管を用いてもよい。また、大径管2内の溝付加工には、転造法、圧延法(転造ボールの代わりに圧延ロールを使用)、条(幅の狭い板状)に圧延ロールで溝付し、条を丸めて端を溶接するなどの方法によればよい。   In general, a smooth tube having a smooth tube inner surface is often used as the large-diameter tube 2. However, when the first heat medium W in the outer flow path 7 is desired to be stirred, a swirl flow is desired, or When it is desired to increase the heat transfer area, an internally grooved tube in which a groove parallel to the tube axis direction or a spiral groove (not shown) is formed on at least a part of the tube inner surface may be used. . For grooving in the large-diameter pipe 2, a rolling method, a rolling method (a rolling roll is used instead of a rolling ball), and a strip (a narrow plate shape) are grooved with a rolling roll. A method such as rounding and welding the ends may be used.

(小径管)
図2(c)に示すように、小径管3は、大径管2の内径より小さい外径を有し、大径管2の内部で管軸方向に沿って設けられている。そして、小径管3の内部を第2熱媒体Xの流路としたものである。また、小径管3は、3本〜6本の本数範囲に設けられることが好ましく、さらに、大径管2内の小径管3の配置としては、外側流路7を均等に分割する配置が好ましい。このように小径管3を配置することによって、小径管3からの外側流路7(大径管2)への熱伝達が向上し、第1熱媒体Wの圧力損失も低くなる。しかしながら、熱伝達が向上し、圧力損失も低ければ、図2(c)以外の配置でもよい。なお、小径管3を3本〜6本の本数範囲で設ける理由は、2本以下であると伝熱面積が十分でなく、7本以上であると小径管3による第1熱媒体Wの圧力損失が大きくなるためである。
(Small diameter pipe)
As shown in FIG. 2 (c), the small diameter tube 3 has an outer diameter smaller than the inner diameter of the large diameter tube 2, and is provided along the tube axis direction inside the large diameter tube 2. The inside of the small diameter tube 3 is used as a flow path for the second heat medium X. The small-diameter pipes 3 are preferably provided in the range of three to six. Further, as the arrangement of the small-diameter pipes 3 in the large-diameter pipe 2, an arrangement in which the outer flow path 7 is equally divided is preferable. . By arranging the small-diameter pipe 3 in this way, heat transfer from the small-diameter pipe 3 to the outer flow path 7 (large-diameter pipe 2) is improved, and the pressure loss of the first heat medium W is also reduced. However, if heat transfer is improved and the pressure loss is low, the arrangement other than that shown in FIG. The reason why the small diameter pipe 3 is provided in the range of 3 to 6 is that the heat transfer area is not sufficient when the number is 2 or less, and the pressure of the first heat medium W by the small diameter pipe 3 is 7 or more. This is because loss increases.

小径管3は、大径管2の内部に外側流路7を形成するように、大径管2の管軸方向に沿って設けられ、且つ、外側流路7に第1熱媒体Wが必要量流通することが可能な寸法に形成されている。一例として、外径は1〜8mm、肉厚は0.2〜5mm、長さは100mm以上が好ましい。また、小径管3の寸法は、前記したように、複合伝熱管1の伝熱性能、第1熱媒体Wおよび第2熱媒体Xの圧力損失の点から、管軸直交断面における1本の小径管3の流路断面積と、大径管2と小径管3との間の外側流路7の断面積との比(外側流路断面積/小径管流路断面積)が10〜50の範囲を満足するように設定することがより好ましい。   The small diameter pipe 3 is provided along the tube axis direction of the large diameter pipe 2 so as to form the outer flow path 7 inside the large diameter pipe 2, and the first heat medium W is required in the outer flow path 7. It is formed in a dimension that allows mass distribution. As an example, the outer diameter is preferably 1 to 8 mm, the wall thickness is 0.2 to 5 mm, and the length is preferably 100 mm or more. Further, as described above, the dimension of the small diameter tube 3 is one small diameter in the cross section perpendicular to the tube axis from the viewpoint of the heat transfer performance of the composite heat transfer tube 1 and the pressure loss of the first heat medium W and the second heat medium X. The ratio of the cross-sectional area of the tube 3 to the cross-sectional area of the outer channel 7 between the large-diameter tube 2 and the small-diameter tube 3 (outer channel cross-sectional area / small-diameter tube channel cross-sectional area) is 10 to 50 It is more preferable to set so as to satisfy the range.

小径管3の材質は、前記大径管2で選択されたものと同様な材質が適用され、大径管2と同じものまたは異なるものを適宜選択する。   The material of the small diameter pipe 3 is the same as that selected for the large diameter pipe 2, and the same or different material as the large diameter pipe 2 is appropriately selected.

小径管3を構成する管は、その内部に供給される第2熱媒体Xの内圧を高くして運転されることが多いため、管の外径に対する肉厚を大きくすることが多く、一般には、押出し素管を圧延、抽伸して製作される継目無し管を用いることが多い。管の肉厚は、熱交換器の運転圧力に基づいて計算される耐圧強度から決定すればよい。耐圧強度が要求値を満たせば、溶接管を用いてもよい。また、第2熱媒体Xを撹拌したい場合、旋回流を与えたい場合、あるいは管内の伝熱面積を増やしたい場合等には、前記大径管2と同様に内面溝付管を使用してもよい。   Since the pipes constituting the small-diameter pipe 3 are often operated by increasing the internal pressure of the second heat medium X supplied to the inside thereof, the wall thickness with respect to the outer diameter of the pipe is often increased. In many cases, a seamless tube produced by rolling and drawing an extruded element tube is used. The wall thickness of the tube may be determined from the pressure strength calculated based on the operating pressure of the heat exchanger. A welded pipe may be used as long as the pressure resistance satisfies the required value. Further, when it is desired to stir the second heat medium X, to provide a swirling flow, or to increase the heat transfer area in the pipe, an inner grooved pipe may be used in the same manner as the large diameter pipe 2. Good.

(熱媒体)
熱媒体としては水または冷媒が使用され、熱媒体同士の熱伝導効率が良好なことより、第1熱媒体Wを水、第2熱媒体Xを冷媒とすることが好ましい。冷媒としては、高圧冷媒がより好ましく、二酸化炭素、ハイドロフルオロカーボン(HFC)系冷媒等が挙げられ、複合伝熱管1が組み込まれる熱交換器の用途を考慮して、適宜選択される。特に、第2熱媒体Xは、環境面からは二酸化炭素が好ましく、さらに、熱効率が優れる点で、二酸化炭素を超臨界状態で使用することがより好ましい。
(Heat medium)
As the heat medium, water or a refrigerant is used, and it is preferable that the first heat medium W is water and the second heat medium X is a refrigerant because heat transfer efficiency between the heat mediums is good. As the refrigerant, a high-pressure refrigerant is more preferable, and examples thereof include carbon dioxide, hydrofluorocarbon (HFC) refrigerant, and the like, which are appropriately selected in consideration of the use of the heat exchanger in which the composite heat transfer tube 1 is incorporated. In particular, the second heat medium X is preferably carbon dioxide from the viewpoint of the environment, and more preferably, carbon dioxide is used in a supercritical state in terms of excellent thermal efficiency.

また、ヒートポンプ等の成績効率(COP)を考慮すると、第2熱媒体Xは、ハイドロフルオロカーボン(HFC)系冷媒が好ましい。ハイドロフルオロカーボン(HFC)系冷媒は、従来使用されていたクロロフルオロカーボン(CFC)系、ハイドロクロロフルオロカーボン(HCFC)系冷媒の塩素全部を水素に置換したもので、オゾンを破壊しない冷媒である。代表的なHFC系冷媒としては、R32とR125を混合した非共沸混合冷媒であるR410Aがある。さらに、HFC系冷媒もほぼ臨界状態で使用することがより好ましい。   In consideration of performance efficiency (COP) such as a heat pump, the second heat medium X is preferably a hydrofluorocarbon (HFC) refrigerant. The hydrofluorocarbon (HFC) refrigerant is a refrigerant that does not destroy ozone by substituting all the chlorine in the conventionally used chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerant with hydrogen. A typical HFC refrigerant is R410A which is a non-azeotropic refrigerant mixture in which R32 and R125 are mixed. Furthermore, it is more preferable to use the HFC refrigerant in an almost critical state.

さらに、第1熱媒体Wの流れる方向と第2熱媒体Xの流れる方向とが対向していることが好ましい。これにより、第2熱媒体Xからの第1熱媒体Wへの伝熱が効率よく行われる。しかしながら、十分な伝熱量が得られれば、第2熱媒体Xおよび第1熱媒体Wの流れる方向を同一方向としてもよい。   Furthermore, it is preferable that the direction in which the first heat medium W flows and the direction in which the second heat medium X flows are opposed to each other. Thereby, heat transfer from the second heat medium X to the first heat medium W is efficiently performed. However, the flow direction of the second heat medium X and the first heat medium W may be the same direction as long as a sufficient amount of heat transfer is obtained.

(巻回部)
図1に示すように、大径管2は、その全長の少なくとも1部が渦巻状の巻回部9に形成されている。巻回部9の巻きの最大外径OD、最小内径IDは、大径管2および小径管(図示せず)の外径、肉厚、結晶粒径、機械的性質(引張り強さ、耐力、伸び、ばね限界値など)等に依存するが、例えば大径管2の管外径を定数「n」としたとき、巻回部9の最大外径ODは「n」の40倍程度まで大きくすることが可能であり、さらに、最小内径IDは「n」の6倍程度まで小さくすることが可能である。なお、巻回部9の巻回方向は、巻回軸に対して右巻きおよび左巻きのどちらでもよい。
(Winding part)
As shown in FIG. 1, the large-diameter tube 2 has at least one part of its entire length formed in a spiral winding part 9. The maximum outer diameter OD and minimum inner diameter ID of the winding of the winding portion 9 are the outer diameter, thickness, crystal grain size, mechanical properties (tensile strength, proof stress, large diameter pipe 2 and small diameter pipe (not shown)). For example, when the outer diameter of the large diameter pipe 2 is a constant “n”, the maximum outer diameter OD of the winding portion 9 is large up to about 40 times “n”. Further, the minimum inner diameter ID can be reduced to about 6 times “n”. In addition, the winding direction of the winding part 9 may be either right-handed or left-handed with respect to the winding shaft.

図1、図2(a)、(b)に示すように、巻回部9は偶数段に重ねられ、巻回部9の巻き始め、巻き終わりである大径管2の両管端部2a、2bが巻回部9の最内周9aに形成されている。すなわち、1段目の巻回部9Aでは、大径管2が最内周9aから最外周9dに向かって巻回され、移行部12を介して、2段目の巻回部9Bでは、大径管2が最外周9dから最内周9aに向かって巻回される。このように両管端部2a、2bが最内周9aに形成されることにより、熱媒体を供給する配管等(図示せず)と両管端部2a、2bの接続処理が巻回部9の内側でなされることとなり、断熱ケース15に複合伝熱管1を収納する際、断熱ケース15内に接続処理に要するデッドスペースDS(図11(a)参照)が形成されない。それにより、断熱ケース15の容積を小さくすることが可能となる。また、両管端部2a、2bは、同一方向に向けて形成されることが好ましい。同一方向であることにより、両管端部2a、2bと配管等との接続処理が容易となり、複合伝熱管の生産性がより一層向上する。   As shown in FIGS. 1, 2 (a) and 2 (b), the winding portions 9 are stacked in an even number of stages, and both pipe end portions 2 a of the large-diameter pipe 2 that are the start and end of winding of the winding portion 9. 2b is formed in the innermost periphery 9a of the winding part 9. That is, in the first-stage winding portion 9A, the large-diameter pipe 2 is wound from the innermost periphery 9a toward the outermost periphery 9d, and through the transition portion 12, the second-stage winding portion 9B is large. The diameter pipe 2 is wound from the outermost periphery 9d toward the innermost periphery 9a. As described above, the pipe ends 2a and 2b are formed on the innermost circumference 9a, so that the connection of the pipes and the like (not shown) for supplying the heat medium and the pipe ends 2a and 2b is performed on the winding portion 9. Thus, when the composite heat transfer tube 1 is housed in the heat insulation case 15, the dead space DS (see FIG. 11A) required for the connection process is not formed in the heat insulation case 15. Thereby, the volume of the heat insulation case 15 can be reduced. Moreover, it is preferable that both pipe end parts 2a and 2b are formed toward the same direction. By being in the same direction, the connection processing between the pipe end portions 2a, 2b and the piping is facilitated, and the productivity of the composite heat transfer tube is further improved.

そして、巻回部9の段数が2段を超える4段、8段等の場合には、前記2段の巻回部9A、9Bを1ユニット14として、図4(b)に示すように並列に、または、図4(c)、(d)に示すように直列に重ねられる。なお、並列に重ねられた際には、複合伝熱管1の圧力損失を抑えることが可能となり、直列に重ねられた際には、複合伝熱管1の伝熱面積を増大させることが可能となる。この際、ユニット14間の接続は、各ユニット14の管端部2a、2bと配管(図示せず)等を直接(ロウ付け等)または接続管等(図示せず)を用いて接続してもよいし、大径管2の全長方向に各ユニット14(巻回部9A、9B)を連続して形成してもよい。   When the number of stages of the winding part 9 is more than two, such as four stages, eight stages, etc., the two-stage winding parts 9A and 9B are regarded as one unit 14 as shown in FIG. Or in series as shown in FIGS. 4 (c) and 4 (d). When stacked in parallel, the pressure loss of the composite heat transfer tube 1 can be suppressed, and when stacked in series, the heat transfer area of the composite heat transfer tube 1 can be increased. . At this time, the connections between the units 14 are made by connecting the pipe ends 2a, 2b of each unit 14 and piping (not shown) directly (brassing etc.) or using connecting pipes etc. (not shown). Alternatively, each unit 14 (winding portions 9A and 9B) may be formed continuously in the full length direction of the large-diameter pipe 2.

巻回部9は、その最外周9dの大径管2が、その最外周9dに隣接する隣接周9cの大径管2と当接するように形成される。このようにすると、巻回部9がコンパクト化し、複合伝熱管1の占める容積が小さくなる。なお、図3(a)、(b)に示すように、巻回部9の湾曲路11において、各周(9a、9b、9c、9d)の大径管2は、最外周9dとその最外周9dに隣接する隣接周9cのみが当接していれば、他の周(9a、9b、9c)の大径管2は、隣接する周の大径管2と当接せずに、隙間部13を形成していてもよい。この隙間部13を形成することにより、大径管2を曲げ加工して巻回部9を形成する際、湾曲路11の半径が同一となり、曲げ加工の作業性が向上する。   The winding portion 9 is formed such that the large diameter tube 2 of the outermost periphery 9d abuts the large diameter tube 2 of the adjacent periphery 9c adjacent to the outermost periphery 9d. If it does in this way, the winding part 9 will be compactized and the volume which the composite heat exchanger tube 1 occupies will become small. As shown in FIGS. 3A and 3B, in the curved path 11 of the winding portion 9, the large-diameter pipe 2 of each circumference (9a, 9b, 9c, 9d) has an outermost circumference 9d and its outermost circumference. If only the adjacent circumference 9c adjacent to the outer periphery 9d is in contact, the large diameter pipe 2 of the other circumference (9a, 9b, 9c) does not contact the adjacent large diameter pipe 2 and the gap portion 13 may be formed. By forming the gap 13, when the large-diameter pipe 2 is bent to form the wound portion 9, the radius of the curved path 11 becomes the same, and the workability of bending is improved.

また、巻回部9の各周(9a、9b、9c、9d)、各段(9A、9B)の大径管2が隣接する大径管2と当接することが好ましい。さらに、大径管2の管軸直交断面における外形形状を楕円あるいは扁平円形状(図示せず)にすることがより好ましく、大径管2の(左右径<上下径)とすると、巻回部9の最大外径ODを小さくすることが可能であり、(上下径<左右径)とすると、巻回部9の高さHを小さくすることが可能である。   Moreover, it is preferable that the large diameter pipe 2 of each circumference | surroundings (9a, 9b, 9c, 9d) and each step (9A, 9B) of the winding part 9 contact | abuts the adjacent large diameter pipe 2. FIG. Further, it is more preferable that the outer shape of the large-diameter pipe 2 in the cross section perpendicular to the axis of the pipe is an ellipse or a flat circle (not shown). 9 can be reduced. If (vertical diameter <right and left diameter), the height H of the winding portion 9 can be reduced.

巻回部9は、その巻回形状が巻回軸に対して直交する平面において、所定長の直線路10と所定半径の湾曲路11とを交互に有する小判形状が好ましい。このような小判形状の巻回形状により、複合伝熱管1を断熱ケース15に収納して熱交換器内に設置する際、断熱ケース15の容積を小さくすることが可能となる共に、熱交換器内での断熱ケース15の位置ズレが発生しにくく、設置安定性が向上する。また、市販の曲げ加工機を使用して巻回部9を形成する際、曲げ加工が容易となり、生産性が向上する。   The winding portion 9 preferably has an oval shape having alternately a straight path 10 having a predetermined length and a curved path 11 having a predetermined radius on a plane in which the winding shape is orthogonal to the winding axis. Such an oval winding shape enables the volume of the heat insulating case 15 to be reduced when the composite heat transfer tube 1 is housed in the heat insulating case 15 and installed in the heat exchanger. The positional deviation of the heat insulation case 15 is less likely to occur, and the installation stability is improved. Moreover, when forming the winding part 9 using a commercially available bending machine, a bending process becomes easy and productivity improves.

巻回部9の巻回形状は、図1(a)の湾曲路11が1/4円で形成された小判形状に限定されず、湾曲路11が1/2円で形成された小判形状であってもよい。また、図4(a)に示すように、巻回部9の巻回形状が円形状であってもよい。そして、円形状の巻回部9は、その最小内径ID、最大外径OD、段数、巻回部9の移行部12、大径管2同士の接触状態、大径管2の外形形状について、前記小判形状の巻回部9と同様である。   The winding shape of the winding portion 9 is not limited to the oval shape in which the curved path 11 in FIG. 1A is formed by a quarter circle, but is an oval shape in which the curved path 11 is formed by a half circle. There may be. Moreover, as shown to Fig.4 (a), the winding shape of the winding part 9 may be circular. And the circular winding part 9 is the minimum inner diameter ID, the maximum outer diameter OD, the number of steps, the transition part 12 of the winding part 9, the contact state between the large diameter pipes 2, and the outer shape of the large diameter pipe 2. The same as the oval winding part 9.

次に、本発明の複合伝熱管の第2の実施形態を図5(a)に示す。図5(a)に示すように、複合伝熱管1aは、前記第1の実施形態の複合伝熱管1の小径管3が外管4と内管5とからなり、外管4と内管5との間に空間部6が形成された二重管であると共に、内管5の内部を第2熱媒体Xの流路としたものである。ここで、第1の実施形態の複合伝熱管1と同一の構成には同一の符号を付し、説明を省略する。また、図示しないが、大径管2は、その全長の少なくとも一部が渦巻状の巻回部に形成されている。   Next, 2nd Embodiment of the composite heat exchanger tube of this invention is shown to Fig.5 (a). As shown in FIG. 5 (a), the composite heat transfer tube 1a includes a small diameter tube 3 of the composite heat transfer tube 1 of the first embodiment, which is composed of an outer tube 4 and an inner tube 5. And the inside of the inner pipe 5 is used as a flow path for the second heat medium X. Here, the same code | symbol is attached | subjected to the structure same as the composite heat exchanger tube 1 of 1st Embodiment, and description is abbreviate | omitted. Moreover, although not shown in figure, the large diameter pipe 2 is formed in the spiral winding part at least a part of the full length.

(外管)
外管4は、大径管2の内部に外側流路7を形成するように、大径管2の管軸方向に沿って設けられ、且つ、外側流路7に第1熱媒体Wが必要量流通することが可能な寸法に形成されている。一例として、外径は1〜8mm、肉厚は0.2〜5mm、長さは100mm以上が好ましい。また、外管4の寸法は、前記したように、複合伝熱管1の伝熱性能、第1熱媒体Wおよび第2熱媒体Xの圧力損失の点から、管軸直交断面における1本の小径管3(内管5)の流路断面積と、大径管2と小径管3との間の外側流路7の断面積との比(外側流路断面積/小径管(内管5)流路断面積)が10〜50の範囲を満足するように設定することがより好ましい。
(Outer pipe)
The outer tube 4 is provided along the tube axis direction of the large-diameter tube 2 so as to form the outer channel 7 inside the large-diameter tube 2, and the first heat medium W is required for the outer channel 7. It is formed in a dimension that allows mass distribution. As an example, the outer diameter is preferably 1 to 8 mm, the wall thickness is 0.2 to 5 mm, and the length is preferably 100 mm or more. Further, as described above, the dimension of the outer tube 4 is one small diameter in the cross section orthogonal to the tube axis from the viewpoint of the heat transfer performance of the composite heat transfer tube 1 and the pressure loss of the first heat medium W and the second heat medium X. Ratio of the cross-sectional area of the pipe 3 (inner pipe 5) and the cross-sectional area of the outer flow path 7 between the large-diameter pipe 2 and the small-diameter pipe 3 (outer-channel cross-sectional area / small-diameter pipe (inner pipe 5) More preferably, the flow path cross-sectional area is set to satisfy the range of 10-50.

外管4の材質は、前記大径管2で選択されたものと同様な材質が適用され、大径管2と同じものまたは異なるものを適宜選択する。   The same material as that selected for the large-diameter tube 2 is applied as the material of the outer tube 4, and the same or different material as that for the large-diameter tube 2 is appropriately selected.

外管4を構成する管は、その内部に設けられる内管5の内圧を高くして運転されることが多いため、管の外径に対する肉厚を大きくすることが多く、一般には、押出し素管を圧延、抽伸して製作される継目無し管を用いることが多い。管の肉厚は、熱交換器の運転圧力に基づいて計算される耐圧強度から決定すればよい。耐圧強度が要求値を満たせば、溶接管を用いてもよい。   Since the pipe constituting the outer pipe 4 is often operated by increasing the internal pressure of the inner pipe 5 provided therein, the wall thickness is often increased with respect to the outer diameter of the pipe. In many cases, a seamless tube produced by rolling and drawing a tube is used. The wall thickness of the tube may be determined from the pressure strength calculated based on the operating pressure of the heat exchanger. A welded pipe may be used as long as the pressure resistance satisfies the required value.

外管4は、後記する内管5との間に空間部6が形成されるように、前記大径管2で記載した管内面の少なくとも一部に管軸方向に平行な溝あるいはらせん状の溝(図示せず)が形成された内面溝付管を用いることが好ましい。しかしながら、内管5として管外表面に突起部が設けられた管を用いる場合には、外管4として、管内面が平滑である平滑管を用いてもよい。   The outer tube 4 has a groove or a spiral shape parallel to the tube axis direction on at least a part of the inner surface of the tube described in the large-diameter tube 2 so that a space 6 is formed between the outer tube 4 and the inner tube 5 described later. It is preferable to use an internally grooved tube in which a groove (not shown) is formed. However, when using a tube having a projection on the outer surface of the tube as the inner tube 5, a smooth tube having a smooth tube inner surface may be used as the outer tube 4.

(内管)
内管5は、外管4の内部に同軸に設けられ、外管4の内径よりも小さい外径を有し、外管4との間に空間部6を形成すると共に、その内部に第2熱媒体Xが必要量流通することが可能な寸法に形成されている。一例として、外径は1〜8mm、肉厚は0.2〜5mm、長さは100mm以上が好ましく、管軸直交断面における1本の小径管3の流路断面積と、大径管2と小径管3(内管5)との間の外側流路7の断面積との比(外側流路断面積/小径管(内管5)流路断面積)が10〜50の範囲を満足するように設定することがより好ましい。また、内管5の材質は、前記外管4と同じものまたは異なるものを適宜選択する。
(Inner pipe)
The inner tube 5 is coaxially provided inside the outer tube 4, has an outer diameter smaller than the inner diameter of the outer tube 4, forms a space 6 between the inner tube 5, and a second inside thereof. The heat medium X is formed in a size that allows a necessary amount to flow. As an example, the outer diameter is preferably 1 to 8 mm, the wall thickness is 0.2 to 5 mm, and the length is preferably 100 mm or more. The flow path cross-sectional area of one small diameter tube 3 in the tube axis orthogonal section, the large diameter tube 2 and The ratio of the cross-sectional area of the outer flow path 7 to the small-diameter pipe 3 (inner pipe 5) (outer-flow-path cross-sectional area / small-diameter pipe (inner pipe 5) flow-path cross-sectional area) satisfies the range of 10-50. It is more preferable to set so. The material of the inner tube 5 is appropriately selected from the same or different material from that of the outer tube 4.

内管5を構成する管は、断面積が小さいが、その内部を流れる第2熱媒体Xの流通量を多くしたい場合が多いので、内圧を高くして運転されることが多い。そのため、管の外径に対する肉厚を大きくすることが多く、一般には、押出し素管を圧延、抽伸して製作される継目無し管を用いることが多い。管の肉厚は、熱交換器の運転圧力に基づいて計算される耐圧強度から決定すればよい。耐圧強度が要求値を満たせば、溶接管を用いてもよい。なお、内管を流れる冷媒の圧力が高く、高温である場合、長時間の使用により内管または/及び外管がクリープ変形し、内管と外管との接触状態が悪くなり、冷媒(第2熱媒体X)から第1熱流体への熱伝達が阻害されることがある。その場合は、内管または/及び外管に耐クリープ性に優れる銅合金等の材質を用いることが望ましい。   The pipes constituting the inner pipe 5 have a small cross-sectional area, but since there are many cases where it is desired to increase the flow rate of the second heat medium X flowing through the inner pipe 5, the pipe is often operated with a high internal pressure. Therefore, the wall thickness is often increased with respect to the outer diameter of the pipe, and in general, a seamless pipe produced by rolling and drawing an extruded element pipe is often used. The wall thickness of the tube may be determined from the pressure strength calculated based on the operating pressure of the heat exchanger. A welded pipe may be used as long as the pressure resistance satisfies the required value. In addition, when the pressure of the refrigerant flowing through the inner pipe is high and the temperature is high, the inner pipe and / or the outer pipe are creep-deformed by long-term use, the contact state between the inner pipe and the outer pipe is deteriorated, and the refrigerant (first Heat transfer from the second heat medium X) to the first heat fluid may be hindered. In that case, it is desirable to use a material such as a copper alloy having excellent creep resistance for the inner tube and / or the outer tube.

通常、内管5としては管内面が平滑である平滑管が用いられることが多いが、管内の第2熱媒体Xを撹拌したい場合、旋回流を与えたい場合、あるいは管内の伝熱面積を増やしたい場合等には管内面の少なくとも一部に管軸方向に平行な溝あるいはらせん状の溝(図示せず)が形成された内面溝付管を用いてもよい。   In general, a smooth tube having a smooth inner surface is often used as the inner tube 5. However, when the second heat medium X in the tube is to be stirred, a swirl flow is desired, or the heat transfer area in the tube is increased. For example, an internally grooved tube in which a groove parallel to the tube axis direction or a spiral groove (not shown) is formed on at least a part of the tube inner surface may be used.

内管5は、前記したように、外管4(平滑管)との間に空間部6を形成するために、管外表面に突起部を設けた管を使用してもよい。   As described above, in order to form the space 6 between the inner tube 5 and the outer tube 4 (smooth tube), a tube provided with a protrusion on the outer surface of the tube may be used.

(空間部)
空間部6は、内管5が腐食等で破損した際に、外側流路7(第1熱媒体W)に異物(オイル等)が混入するのを防ぐ作用を有すると共に、内管5の内部を流れる第2熱媒体Xが流入するため、その流入した第2熱媒体X、例えば、二酸化炭素等の量を外部から測定することにより、内管5の破損(腐食等)状況を外部から検知させる作用を有する。そのため、空間部6の断面積は0.5〜3mm2が好ましい、0.5mm2未満であると空間部6に流入した第2熱媒体Xが外部にまで到達しにくく第2熱媒体Xが検知しにくくなる、また、3mm2を超えると内管5と外管4の接触面積が小さくなり第2熱媒体Xからの伝熱量が低下しやすい。
(Space part)
The space 6 has an effect of preventing foreign matters (oil, etc.) from entering the outer flow path 7 (first heat medium W) when the inner pipe 5 is damaged due to corrosion or the like. Since the second heat medium X flowing through the air flows in, the amount of the second heat medium X that has flowed in, for example, carbon dioxide, is measured from the outside to detect the damage (corrosion, etc.) of the inner pipe 5 from the outside. Have the effect of Therefore, the cross-sectional area of the space portion 6 is 0.5 to 3 mm 2 is preferred, the second heat medium X is a second heat medium X hardly reach the external flowing into the space 6 is less than 0.5 mm 2 It becomes difficult to detect, and if it exceeds 3 mm 2 , the contact area between the inner tube 5 and the outer tube 4 becomes small, and the amount of heat transfer from the second heat medium X tends to decrease.

空間部6は、例えば、外管4(内面溝付管)に内管5(内面溝付管または平滑管)を挿入して、空引きして外管4に内管5をかしめることによって作製する。しかしながら、異物混入防止、内管5の破損(腐食等)状況の検知作用を有する空間部6が作製できれば、前記作製方法に限定されない。   For example, the space 6 is formed by inserting the inner tube 5 (inner grooved tube or smooth tube) into the outer tube 4 (inner grooved tube) and emptying the inner tube 5 to the outer tube 4 by caulking. Make it. However, the manufacturing method is not limited to the above-described manufacturing method as long as the space portion 6 having an effect of preventing contamination and detecting the damage (corrosion or the like) of the inner tube 5 can be manufactured.

次に、本発明の複合伝熱管の第3の実施形態を図6、図7に示す。図6、図7に示すように、複合伝熱管1bは、前記第1または第2の実施形態の複合伝熱管1、1aの構成に、第1熱媒体Wの流れの一部に対して妨げとなる伝熱促進部材8をさらに備える。ここで、第1または第2の実施形態の複合伝熱管1、1aと同一の構成には同一の符号を付し、説明を省略する。また、図示しないが、大径管2に後記する凹凸部19(図8参照)を形成してもよい。   Next, 3rd Embodiment of the composite heat exchanger tube of this invention is shown in FIG. 6, FIG. As shown in FIGS. 6 and 7, the composite heat transfer tube 1 b obstructs a part of the flow of the first heat medium W in the configuration of the composite heat transfer tube 1, 1 a of the first or second embodiment. The heat transfer promotion member 8 which becomes becomes further provided. Here, the same code | symbol is attached | subjected to the structure same as the composite heat exchanger tube 1, 1a of 1st or 2nd embodiment, and description is abbreviate | omitted. Moreover, although not shown in figure, you may form the uneven | corrugated | grooved part 19 (refer FIG. 8) mentioned later to the large diameter pipe 2. FIG.

(伝熱促進部材)
伝熱促進部材8は、外側流路7の全長の少なくとも一部の領域Sに配置されている。伝熱促進部材8としては、以下に示すバッフル材8a、インナー材8b、束ね部材8c、束ね部材8cとバッフル材8aとが組み合わされたもの、または、束ね部材8cとインナー材8bが組み合わされたものが好ましい。このように伝熱促進部材8を配置することによって、第1熱媒体Wの流路長の増大および乱流発生による第1熱媒体Wの温度の均一化が進み、第2熱媒体Xからの第1熱媒体Wへの伝熱量がより一層増大すると共に、第1熱媒体Wの圧力損失も低くなる。また、伝熱促進部材8を配置する領域S(長さ)は、外側流路7を流れる第1熱媒体Wの圧力損失が大きくならない長さに設定し、かつ、領域Sでの内管を流れる第2熱媒体Xの温度を考慮して設定することが好ましい。しかしながら、伝熱促進部材8は、第1熱媒体Wの流れの一部に対して妨げとなり、第1熱媒体Wの流れに乱流を発生させると共に、第1熱媒体Wの圧力損失が大きくならないものであれば、バッフル材8a、インナー材8bまたは束ね部材8c等に限定されない。
(Heat transfer promotion member)
The heat transfer promoting member 8 is disposed in at least a partial region S of the entire length of the outer flow path 7. As the heat transfer promotion member 8, a baffle material 8a, an inner material 8b, a bundling member 8c, a combination of the bundling member 8c and the baffle material 8a shown below, or a bundling member 8c and an inner material 8b are combined. Those are preferred. By arranging the heat transfer promoting member 8 in this way, the flow path length of the first heat medium W is increased and the temperature of the first heat medium W is made uniform due to the generation of turbulent flow. The amount of heat transfer to the first heat medium W is further increased, and the pressure loss of the first heat medium W is also reduced. Further, the region S (length) in which the heat transfer promoting member 8 is arranged is set to a length that does not increase the pressure loss of the first heat medium W flowing through the outer flow path 7, and the inner pipe in the region S is It is preferable to set in consideration of the temperature of the flowing second heat medium X. However, the heat transfer promotion member 8 hinders a part of the flow of the first heat medium W, generates a turbulent flow in the flow of the first heat medium W, and has a large pressure loss of the first heat medium W. As long as it does not, it is not limited to the baffle material 8a, the inner material 8b, the bundling member 8c, or the like.

(バッフル材)
図6に示すように、バッフル材8aは、大径管2の管軸方向に直交する直交断面より小さな板状の妨害部17と、その表面に設けられた小径管3(図6においては2本)が挿通する挿通孔16、16とからなり、挿通孔16、16に小径管3を挿通して、大径管2の管軸方向に沿って外側流路7に複数配置される。また、バッフル材8aは第1熱媒体Wの流れによって移動しないように、バッフル材8aの妨害部17の少なくとも1部が、挿通孔16、16に挿通された小径管3の外表面に、接着剤、ロウ等で接合されている(図示せず)。
(Baffle material)
As shown in FIG. 6, the baffle material 8 a includes a plate-shaped blocking portion 17 smaller than an orthogonal cross section orthogonal to the tube axis direction of the large-diameter tube 2 and a small-diameter tube 3 (2 in FIG. 6) provided on the surface thereof. The small-diameter pipe 3 is inserted through the insertion holes 16 and 16 and is arranged in the outer flow path 7 along the tube axis direction of the large-diameter pipe 2. Further, in order to prevent the baffle material 8a from moving due to the flow of the first heat medium W, at least one part of the blocking portion 17 of the baffle material 8a is bonded to the outer surface of the small diameter tube 3 inserted through the insertion holes 16 and 16. It is joined with an agent, wax or the like (not shown).

バッフル材8aは、第1熱媒体W(例えば、水)によって腐食または第1熱媒体Wを汚染しないセラミック、銅、ステンレス等で作製され、その形状は、図6に示すように、欠損のある円形状であって、妨害部17の第1熱媒体Wの妨害に関与する板表面の面積が、外側流路7の管軸直交断面積に対して20〜80%であることが好ましい。20%未満であると第1熱媒体Wの妨害性が低くなりすぎて乱流の発生頻度が低くなりやすく、また、80%を超えると第1熱媒体Wの妨害性が高くなりすぎて第1熱媒体Wの圧力損失が大きくなりやすい。また、バッフル材8aは、図6においては、妨害部17の板表面が小径管3の管軸に対して直交する例を記載しているが、第1熱媒体Wの流れ方向に所定角度で前傾または後傾(図示せず)したものであってもよい。また、妨害部17は、1つ以上の貫通孔(図示せず)を形成して第1熱媒体Wの流れの抵抗を軽減する構成として構わない。   The baffle material 8a is made of ceramic, copper, stainless steel or the like that does not corrode or contaminate the first heat medium W by the first heat medium W (for example, water), and the shape thereof is defective as shown in FIG. It is circular and it is preferable that the area of the plate surface involved in obstruction of the first heat medium W of the obstruction part 17 is 20 to 80% with respect to the cross section of the outer flow path 7 perpendicular to the tube axis. If it is less than 20%, the disturbing property of the first heat medium W becomes too low and the frequency of occurrence of turbulence tends to be low, and if it exceeds 80%, the disturbing property of the first heat medium W becomes too high. 1 The pressure loss of the heat medium W tends to increase. Moreover, although the baffle material 8a has described the example in which the plate | board surface of the obstruction | occlusion part 17 orthogonally crosses with respect to the pipe axis of the small diameter pipe 3 in FIG. It may be tilted forward or backward (not shown). Further, the disturbing portion 17 may be configured to reduce the flow resistance of the first heat medium W by forming one or more through holes (not shown).

図6に示すように、大径管2の管軸方向に沿って複数配置されるバッフル材8a、8a・・・の配置は、その各妨害部17、17・・・によって妨害される外側流路7が、隣接するバッフル材8a同士で異なることが好ましい。これによって、第1熱媒体Wの流れを許容する部分が、バッフル材8a、8a・・・毎に異なることとなり、複数のバッフル材8a、8a・・・が配置された領域Sにおいて、第1熱媒体Wの流れが複雑になり(図6ではスパイラル状)、より一層、流路長が増大すると共に、乱流が発生しやすくなる。なお、乱流が発生し、第1熱媒体Wの圧力損失が大きくならなければ、図6以外のバッフル材の配置でもよい。   As shown in FIG. 6, the arrangement of a plurality of baffle members 8a, 8a,... Arranged along the tube axis direction of the large-diameter pipe 2 is an outer flow that is disturbed by the respective disturbing portions 17, 17. The path 7 is preferably different between adjacent baffle members 8a. Thereby, the part which accept | permits the flow of the 1st heat medium W will differ for every baffle material 8a, 8a ..., and it is 1st in the area | region S where several baffle material 8a, 8a ... was arrange | positioned. The flow of the heat medium W becomes complicated (spiral shape in FIG. 6), the flow path length is further increased, and turbulent flow is easily generated. If turbulent flow occurs and the pressure loss of the first heat medium W does not increase, a baffle material other than that shown in FIG. 6 may be used.

また、複数のバッフル材8a、8a・・・は、第2熱媒体Xが二酸化炭素であるとき、二酸化炭素の局所熱伝達率が極大となる温度範囲20〜80℃の許容範囲を満足する領域Sに対応する外側流路7に配置することが好ましい。そして、このような領域Sの設定は、あらかじめ、内管の全長にわたって測定した二酸化炭素の温度を使用して行う。そして、二酸化炭素の圧力は、通常8〜11MPaの範囲で利用されるが、複合伝熱管1aが組み込まれる熱交換器のシステムによって異なる。このように領域Sを設定することによって、第2熱媒体X(二酸化炭素)の熱伝達率が大きな領域にバッフル材8a、8a・・・が配置されることとなり、第2熱媒体X(二酸化炭素)から第1熱媒体W(水)への伝熱が効率よく行われ、第2熱媒体X(二酸化炭素)から第1熱媒体W(水)への伝熱量がより一層増大する。   In addition, when the second heat medium X is carbon dioxide, the plurality of baffle materials 8a, 8a,... Satisfy a permissible range of 20 to 80 ° C. in which the local heat transfer coefficient of carbon dioxide is maximized. It is preferable to arrange in the outer flow path 7 corresponding to S. And the setting of such area | region S is performed using the temperature of the carbon dioxide measured beforehand over the full length of the inner tube | pipe. And the pressure of a carbon dioxide is normally utilized in the range of 8-11 Mpa, However, It changes with systems of the heat exchanger in which the composite heat exchanger tube 1a is integrated. By setting the region S in this way, the baffle materials 8a, 8a,... Are arranged in a region where the heat transfer coefficient of the second heat medium X (carbon dioxide) is large, and the second heat medium X (dioxide dioxide). Heat transfer from carbon) to the first heat medium W (water) is efficiently performed, and the amount of heat transfer from the second heat medium X (carbon dioxide) to the first heat medium W (water) is further increased.

(インナー材)
図7(a)、(b)、(c)に示すように、インナー材8bは、大径管2の管軸方向に沿って延びる本体部18を備え、複数本の小径管3の間に介装されるもので、大径管2と同軸に配置される。また、インナー材8bは第1熱媒体Wの流れによって移動しないように、インナー材8bの少なくとも1部が、小径管3の外表面に、接着剤、ロウ等で接合されている(図示せず)。
(Inner material)
As shown in FIGS. 7A, 7B, and 7C, the inner member 8b includes a main body portion 18 that extends along the tube axis direction of the large-diameter tube 2, and is interposed between the plurality of small-diameter tubes 3. It is interposed and is arranged coaxially with the large diameter pipe 2. In addition, at least a part of the inner material 8b is joined to the outer surface of the small diameter tube 3 with an adhesive, brazing, or the like so that the inner material 8b does not move due to the flow of the first heat medium W (not shown). ).

インナー材8bは、第1熱媒体W(例えば、水)によって腐食または第1熱媒体Wを汚染しないセラミック、銅、ステンレス等で作製され、その形状は、図7(b)、(c)に示すように、棒状体または管状体が好ましく、圧力損失の低下を考慮すると、管状体がより好ましい。また、図示しないが、球状体(球状には楕円球を含む)であってもよい。そして、インナー材8bの管軸直交断面における断面積が、外側流路7の断面積に対して20〜80%に設計されることが好ましい。20%未満であると第1熱媒体Wの妨害性が低くなりすぎて乱流の発生頻度が低くなりやすく、また、80%を超えると第1熱媒体Wの妨害性が高くなりすぎて第1熱媒体Wの圧力損失が大きくなりやすい。   The inner material 8b is made of ceramic, copper, stainless steel or the like which does not corrode or contaminate the first heat medium W by the first heat medium W (for example, water), and the shape thereof is shown in FIGS. 7B and 7C. As shown, a rod-like body or a tubular body is preferable, and a tubular body is more preferable in consideration of a decrease in pressure loss. Moreover, although not shown in figure, a spherical body (a spherical shape includes an elliptical sphere) may be sufficient. And it is preferable that the cross-sectional area in the pipe axis orthogonal cross section of the inner material 8b is designed to be 20 to 80% with respect to the cross-sectional area of the outer flow path 7. If it is less than 20%, the disturbing property of the first heat medium W becomes too low and the frequency of occurrence of turbulence tends to be low, and if it exceeds 80%, the disturbing property of the first heat medium W becomes too high. 1 The pressure loss of the heat medium W tends to increase.

インナー材8bは、前記のバッフル材8aと同様に、実際の運転において第2熱媒体Xの局所熱伝達率が極大となる温度範囲20〜80℃の許容範囲を満足する領域Sに対応する外側流路7に配置されることが好ましい。なお、インナー材8bは、本体部18の管軸方向での長さが領域Sの全長にわたるものだけでなく、領域Sの全長より短いものでもよい。本体部18の長さが短いインナー材8bの場合には、領域Sにわたって、所定間隔で複数配置する。   Similar to the baffle material 8a, the inner material 8b is an outer side corresponding to a region S that satisfies an allowable range of a temperature range of 20 to 80 ° C. in which the local heat transfer coefficient of the second heat medium X is maximized in actual operation. It is preferable to arrange in the flow path 7. In addition, the inner material 8b may have a length in the tube axis direction of the main body 18 that is not limited to the entire length of the region S but may be shorter than the entire length of the region S. In the case of the inner member 8b having a short length of the main body portion 18, a plurality of regions are arranged over the region S at a predetermined interval.

(束ね部材)
図7(a)に示すように、束ね部材8cは、複数本の小径管3に内接して、複数本の小径管3を束ねるもので、大径管2の管軸方向に所定の距離S3で複数配置される。束ね部材8cは、第1熱媒体W(例えば、水)によって腐食または第1熱媒体Wを汚染しないセラミックス、銅、ステンレス等で作製され、その形態は、図7(a)に示すリングが好ましい。しかしながら、図示しないが、小径管3を束ねる機能を有すれば、リングの一部に欠損部を有するCリング、線材をリング状に巻回した形態であってもよい。また、小径管3の束ね状態は、図7(a)では小径管3同士が互いに接する強い束ね状態を示しているが、束ね部材8cが小径管3に内接していれば、小径管3の間にスペースが形成される弱い束ね状態であってもよい。さらに、束ね部材8cの距離S3は60〜600mmが好ましく、60mm未満では複合伝熱管1bの製造がしにくくなり、600mmを超えると第1熱媒体Wに乱流が発生しにくくなる。
(Bundled member)
As shown in FIG. 7 (a), the bundling member 8c is inscribed in the plurality of small diameter pipes 3 and bundles the plurality of small diameter pipes 3, and has a predetermined distance S3 in the tube axis direction of the large diameter pipe 2. It is arranged in plural. The bundling member 8c is made of ceramic, copper, stainless steel or the like that does not corrode or contaminate the first heat medium W by the first heat medium W (for example, water), and the form is preferably a ring shown in FIG. . However, although not shown, as long as it has a function of bundling the small-diameter pipes 3, a C-ring having a deficient portion in a part of the ring, or a form in which a wire is wound in a ring shape may be used. Further, the bundled state of the small diameter tubes 3 shows a strong bundled state in which the small diameter tubes 3 are in contact with each other in FIG. 7A, but if the bundle member 8 c is inscribed in the small diameter tube 3, It may be in a weakly bundled state in which a space is formed between them. Furthermore, the distance S3 of the bundling member 8c is preferably 60 to 600 mm. If the distance is less than 60 mm, it is difficult to manufacture the composite heat transfer tube 1b, and if it exceeds 600 mm, turbulent flow is unlikely to occur in the first heat medium W.

束ね部材8cは、前記のバッフル材8aまたはインナー材8bと同様に、実際の運転において第2熱媒体Xの局所熱伝達率が極大となる温度範囲20〜80℃の許容範囲を満足する領域Sに対応する外側流路7に配置されることが好ましい。   Like the baffle material 8a or the inner material 8b, the bundling member 8c is a region S that satisfies an allowable range of 20 to 80 ° C. in which the local heat transfer coefficient of the second heat medium X is maximized in actual operation. It is preferable to arrange in the outer flow path 7 corresponding to.

(束ね部材と、バッフル材またはインナー材との組み合わせ)
伝熱促進部材8は、前記した複数の束ね部材8cと、束ね部材8c間に設けられるバッフル材8a(図6参照)とで構成、または、複数の束ね部材8cと、束ね部材8c間に設けられ、複数本の小径管3の間に介装されるインナー材8bとで構成されてもよい。
(Combination of bundling member and baffle material or inner material)
The heat transfer promoting member 8 is configured by the plurality of bundling members 8c and the baffle material 8a (see FIG. 6) provided between the bundling members 8c, or provided between the plurality of bundling members 8c and the bundling members 8c. And an inner member 8b interposed between the plurality of small-diameter pipes 3.

図7(a)に示すように、伝熱促進部材8が束ね部材8cとインナー材8bとで構成される場合には、束ね部材8c−束ね部材8c間の距離S3を60〜600mm、インナー材8b−インナー材8b間の距離S4を60〜600mm、束ね部材8c−インナー材8b間の距離S5を30〜300mmとすることが好ましい。前記距離(S3、S4、S5)が、前記範囲を下回ると複合伝熱管1bが製造しにくくなり、前記範囲を超えると第1熱媒体Wに乱流が発生しにくくなる。また、インナー材8bの外径は小径管3の外径以下が好ましい。インナー材8bの外径が、小径管3の外径より大きいと、圧力損失が大きくなると共に、複数の小径管3の間にインナー材8bを配置しにくくなる。さらに、図7(b)、(c)に示すように、インナー材8bの長さS2は1〜50mmが好ましい。長さS2が1mm未満では、インナー材8bの強度が不足し複合伝熱管1bが製造しにくくなり、50mmmを超えると第1熱媒体Wに乱流が発生しにくくなる。   As shown in FIG. 7A, when the heat transfer promoting member 8 is composed of a bundling member 8c and an inner material 8b, the distance S3 between the bundling member 8c and the bundling member 8c is 60 to 600 mm, and the inner material The distance S4 between 8b and the inner material 8b is preferably 60 to 600 mm, and the distance S5 between the bundling member 8c and the inner material 8b is preferably 30 to 300 mm. When the distance (S3, S4, S5) is less than the range, it is difficult to manufacture the composite heat transfer tube 1b. When the distance (S3, S4, S5) is more than the range, turbulence is hardly generated in the first heat medium W. Further, the outer diameter of the inner material 8b is preferably equal to or smaller than the outer diameter of the small diameter tube 3. When the outer diameter of the inner material 8b is larger than the outer diameter of the small diameter tube 3, the pressure loss increases and it becomes difficult to dispose the inner material 8b between the plurality of small diameter tubes 3. Furthermore, as shown in FIGS. 7B and 7C, the length S2 of the inner member 8b is preferably 1 to 50 mm. If the length S2 is less than 1 mm, the strength of the inner material 8b is insufficient, making it difficult to manufacture the composite heat transfer tube 1b, and if it exceeds 50 mm, turbulence is unlikely to occur in the first heat medium W.

なお、前記のように、束ね部材8c間にインナー材8bを配置すると、束ね部材8cによる小径管3の束ねによって、複数配置された小径管3がすぼみ、インナー材8bが小径管3の間に固定される。また、小径管3の間へのインナー材8bの挿入によって、束ね部材8cに内接する複数の小径管3が拡張し、小径管3に束ね部材8cが固定される。そして、束ね部材8cおよびインナー材8bの小径管3への固定を強固なものとするために、インナー材8bは束ね部材8c間の中央付近に配置されることが好ましい。   As described above, when the inner member 8b is disposed between the bundling members 8c, the plurality of small-diameter tubes 3 are sunk by the bundling of the small-diameter tubes 3 by the bundling members 8c, and the inner member 8b is interposed between the small-diameter tubes 3. Fixed. Further, by inserting the inner material 8 b between the small diameter tubes 3, the plurality of small diameter tubes 3 inscribed in the bundle member 8 c are expanded, and the bundle members 8 c are fixed to the small diameter tube 3. And in order to strengthen fixation to the small diameter pipe | tube 3 of the bundle member 8c and the inner material 8b, it is preferable that the inner material 8b is arrange | positioned in the center vicinity between the bundle members 8c.

また、伝熱促進部材8が束ね部材8cとバッフル材8aとで構成される場合には、図示しないが、前記インナー材8bと同様とすることが好ましい。ここで、バッフル材8aは、束ね部材8c間の1〜50mmの領域内に所定枚数を配置することが好ましい。領域が1mm未満では、第1熱媒体Wに乱流が発生しにくくなり、領域が50mmmを超えると圧力損失が大きくなりやすい。   Further, when the heat transfer promoting member 8 is composed of the bundling member 8c and the baffle material 8a, it is preferable to be the same as the inner material 8b, although not shown. Here, it is preferable to arrange a predetermined number of baffle members 8a in a region of 1 to 50 mm between the bundling members 8c. If the area is less than 1 mm, turbulent flow is unlikely to occur in the first heat medium W, and if the area exceeds 50 mm, the pressure loss tends to increase.

次に、本発明の複合伝熱管の第4の実施形態を図8に示す。図8に示すように、複合伝熱管1cは、前記第1または第2の実施形態の複合伝熱管1の大径管2に、その全長の少なくとも一部の領域Sに凹凸部19を形成する。ここで、第1または第2の実施形態の複合伝熱管1、1aと同一の構成には同一の符号を付し、説明を省略する。また、図示しないが、外側流路7内に前記した伝熱促進部材8(図6、図7参照)を配置してもよい。   Next, FIG. 8 shows a fourth embodiment of the composite heat transfer tube of the present invention. As shown in FIG. 8, the composite heat transfer tube 1 c is formed with the concavo-convex portion 19 in the large-diameter tube 2 of the composite heat transfer tube 1 of the first or second embodiment in at least a partial region S of the entire length. . Here, the same code | symbol is attached | subjected to the structure same as the composite heat exchanger tube 1, 1a of 1st or 2nd embodiment, and description is abbreviate | omitted. Moreover, although not shown in figure, you may arrange | position the above-mentioned heat-transfer promotion member 8 (refer FIG. 6, FIG. 7) in the outer side flow path 7. FIG.

(凹凸部)
凹凸部19は、例えば、大径管2をコルゲート状に加工することによって、凸部の高さhを0.5〜2mm、凸部のピッチpを5〜20mmに形成することが好ましく、凸部(高さhおよびピッチp)が前記範囲未満であると、凹凸部19の成形加工がしにくく、凸部が前記範囲を超えると第1熱媒体Wの圧力損失が大きくなりやすい。また、凹凸部19は、前記の伝熱促進部材8と同様に、内管の内部を流れる第2熱媒体Xの温度が20〜80℃の許容範囲を満足する領域Sに対応する大径管2に形成することが好ましい。そして、凹凸部19の形態は、外側流路7内の第1熱媒体Wに乱流が発生すると共に、圧力損失が大きくならなければ、前記コルゲート状に限定されず、例えば、前記した管内面の少なくとも一部に管軸方向に平行な溝あるいはらせん状の溝が形成された内面溝付管でもよい。
(Uneven portion)
The concavo-convex portion 19 is preferably formed, for example, by processing the large-diameter tube 2 into a corrugated shape so that the height h of the convex portion is 0.5 to 2 mm and the pitch p of the convex portion is 5 to 20 mm. When the portion (height h and pitch p) is less than the above range, the uneven portion 19 is difficult to be formed, and when the convex portion exceeds the range, the pressure loss of the first heat medium W tends to increase. Moreover, the uneven | corrugated | grooved part 19 is the large diameter pipe corresponding to the area | region S where the temperature of the 2nd heat medium X which flows through the inside of an inner pipe satisfies the tolerance | permissible_range of 20-80 degreeC similarly to the said heat transfer promotion member 8. 2 is preferable. And the form of the uneven | corrugated | grooved part 19 is not limited to the said corrugated shape, if a turbulent flow generate | occur | produces in the 1st heat medium W in the outer side flow path 7, and a pressure loss does not become large, For example, said pipe inner surface An internally grooved tube in which a groove parallel to the tube axis direction or a spiral groove is formed in at least a part of the tube.

次に、本発明の複合伝熱管の1つを給湯器用ヒートポンプに使用した例を説明する。図9はヒートポンプユニット24を給湯器30に用いた例である。ヒートポンプユニット24の熱交換の部分に本発明の複合伝熱管1、1a、1b、1cを用いることができる。複合伝熱管1の大径管2に水(第1熱媒体)を、小径管3に二酸化炭素冷媒(第2熱媒体)を流通させる。二酸化炭素冷媒(第2熱媒体)は、蒸発器25において大気熱を吸収した後、圧縮機26により圧縮され、高温高圧の流体として複合伝熱管1、1a、1b、1cの小径管3に送られる。複合伝熱管1、1a、1b、1cにおいて大径管2内の水(第1熱媒体)と熱交換して低温の流体となり、膨張弁27に送られる。膨張弁27により膨張し、蒸発器25で再度吸熱する。一方、貯湯タンク28(タンク29)よりポンプPにより供給される低温の水(第1熱媒体)は複合伝熱管1、1a、1b、1cの大径管2に入り、小径管3と接触することにより加熱され、高温の水(第1熱媒体)となって貯湯タンク28(タンク29)に戻る。このように、本発明の複合伝熱管1、1a、1b、1cは伝熱性能が優れるため、二酸化炭素冷媒ヒートポンプ式給湯器30の熱交換部分に好適に使用される。   Next, the example which used one of the composite heat exchanger tubes of this invention for the heat pump for water heaters is demonstrated. FIG. 9 shows an example in which the heat pump unit 24 is used in the water heater 30. The composite heat transfer tubes 1, 1a, 1b, 1c of the present invention can be used in the heat exchange portion of the heat pump unit 24. Water (first heat medium) is circulated through the large diameter tube 2 of the composite heat transfer tube 1, and carbon dioxide refrigerant (second heat medium) is circulated through the small diameter tube 3. The carbon dioxide refrigerant (second heat medium) absorbs atmospheric heat in the evaporator 25, is then compressed by the compressor 26, and is sent to the small-diameter tubes 3 of the composite heat transfer tubes 1, 1a, 1b, and 1c as a high-temperature and high-pressure fluid. It is done. The composite heat transfer tubes 1, 1 a, 1 b, 1 c exchange heat with the water (first heat medium) in the large-diameter tube 2 to form a low-temperature fluid, which is sent to the expansion valve 27. It expands by the expansion valve 27 and absorbs heat again by the evaporator 25. On the other hand, the low-temperature water (first heat medium) supplied from the hot water storage tank 28 (tank 29) by the pump P enters the large-diameter pipe 2 of the composite heat transfer pipes 1, 1a, 1b, 1c and comes into contact with the small-diameter pipe 3. As a result, it is heated to return to the hot water storage tank 28 (tank 29) as high-temperature water (first heat medium). Thus, since the composite heat exchanger tubes 1, 1a, 1b, and 1c of the present invention have excellent heat transfer performance, they are preferably used in the heat exchange portion of the carbon dioxide refrigerant heat pump hot water heater 30.

以下、本発明の実施例について具体的に説明する。
実施例1、2として、大径管2の内部に管軸方向に沿って4本の小径管3(図5(a)参照)を設け、図1(巻き形状1:実施例1)、図3(a)(巻き形状2:実施例2)に示すような、大径管2に渦巻状の巻回部9を形成した複合伝熱管1aを作製した。各構成については、以下の通りである。
Examples of the present invention will be specifically described below.
As Examples 1 and 2, four small-diameter pipes 3 (see FIG. 5A) are provided in the large-diameter pipe 2 along the pipe axis direction, and FIG. 1 (winding shape 1: Example 1), FIG. 3 (a) (winding shape 2: Example 2) A composite heat transfer tube 1a in which a spiral winding portion 9 was formed on a large-diameter tube 2 was produced. Each configuration is as follows.

(1)大径管
大径管2として、JISH3300に規定された合金番号C1220のりん脱酸銅で作製された、外径12.7mm、内径10.9mm、全長6700mの平滑管を使用した。
(2)小径管
図5(a)に示すように、小径管3として、外管4(内面溝付管)に内管5(平滑管)を挿入して、空引きすることにより外管4に内管5をかしめ、外管4と内管5の間に空間部6(管軸直交断面積:0.97mm2)が形成された二重管を使用した。なお、図5(a)に示すように、4本の小径管3は、大径管2内部の外側流路7を均等に分割するように配置した。また、管軸直交断面における1本の小径管3の流路断面積と、外側流路7の断面積との比(外側流路/小径管)が約15なるように、外管4および内管5を設定した。
(外管)
外管4として、JISH3300に規定された合金番号C1220のりん脱酸銅で作製された、外径4.0mm、内径3.0mm、全長6700mの内面溝付管を使用した。溝形状としては、溝数40、溝リード角(外管管軸と溝がなす角度)0°、溝間に形成されるフィンの高さ0.2mm、フィンの山頂角20°、フィンピッチ0.23mmとした。
(内管)
内管5として、JISH3300に規定された合金番号C1220のりん脱酸銅で作製された、外径3.0mm、内径2.0mm、全長6700mの平滑管を使用した。
(1) Large-diameter pipe As the large-diameter pipe 2, a smooth pipe having an outer diameter of 12.7 mm, an inner diameter of 10.9 mm, and an overall length of 6700 m made of phosphorus deoxidized copper having an alloy number of C1220 defined in JISH3300 was used.
(2) Small-diameter pipe As shown in FIG. 5 (a), as the small-diameter pipe 3, the outer pipe 4 is inserted by inserting the inner pipe 5 (smooth pipe) into the outer pipe 4 (inner grooved pipe) and emptying it. The inner tube 5 was caulked, and a double tube in which a space 6 (tube axis orthogonal cross-sectional area: 0.97 mm 2 ) was formed between the outer tube 4 and the inner tube 5 was used. In addition, as shown to Fig.5 (a), the four small diameter pipe | tubes 3 have been arrange | positioned so that the outer side flow path 7 inside the large diameter pipe | tube 2 may be divided | segmented equally. Also, the outer tube 4 and the inner tube 4 are arranged so that the ratio of the cross-sectional area of one small-diameter tube 3 to the cross-sectional area of the outer channel 7 (outer channel / small-diameter tube) in the tube axis orthogonal section is about 15. Tube 5 was set up.
(Outer pipe)
As the outer tube 4, an internally grooved tube having an outer diameter of 4.0 mm, an inner diameter of 3.0 mm, and a total length of 6700 m made of phosphorous deoxidized copper having an alloy number of C1220 specified in JISH3300 was used. As the groove shape, the number of grooves is 40, the groove lead angle (angle formed by the outer tube axis and the groove) is 0 °, the height of the fin formed between the grooves is 0.2 mm, the peak angle of the fin is 20 °, the fin pitch is 0 .23 mm.
(Inner pipe)
As the inner pipe 5, a smooth pipe having an outer diameter of 3.0 mm, an inner diameter of 2.0 mm, and a total length of 6700 m made of phosphorus deoxidized copper having an alloy number of C1220 defined in JISH3300 was used.

(3)巻回部
大径管2に、図1(巻き形状1)、図3(a)(巻き形状2)に示すような最大外径OD186.2mm、最小内径ID84.6mmの渦巻状の巻回部9を二層に形成した。なお、巻回部9の高さHは25.7mmとした。
(3) Winding portion The large-diameter tube 2 has a spiral shape with a maximum outer diameter OD186.2 mm and a minimum inner diameter ID 84.6 mm as shown in FIG. 1 (winding shape 1) and FIG. 3 (a) (winding shape 2). The winding part 9 was formed in two layers. The height H of the winding part 9 was 25.7 mm.

(巻き形状1:実施例1)
巻回部9の各周(9a、9b、9c、9d)の湾曲路11の1/4円の半径を最内周9aから最外周9dまで40mm、52.7mm、65.4mm、78.1mmと段階的に大きくし、長辺部の長さ300mm、短辺部の長さ30mm、42.7mmの直線路10で結び、各周の大径管2同士が当接するように巻回した。また、巻回部9の各段(9A、9B)の大径管2同士は当接させ、大径管2の両管端部2a、2bを巻回部9の内側(最内周9a)に形成した。
(Winding shape 1: Example 1)
The radius of the quarter circle of the curved path 11 on each circumference (9a, 9b, 9c, 9d) of the winding portion 9 is 40 mm, 52.7 mm, 65.4 mm, 78.1 mm from the innermost circumference 9a to the outermost circumference 9d. It was connected in a straight line 10 with a long side length of 300 mm, a short side length of 30 mm, and a 42.7 mm length, and wound so that the large-diameter tubes 2 of each circumference were in contact with each other. Further, the large-diameter pipes 2 of the respective stages (9A, 9B) of the winding part 9 are brought into contact with each other, and both pipe end portions 2a, 2b of the large-diameter pipe 2 are located inside the inner part (the innermost circumference 9a). Formed.

(巻き形状2:実施例2)
巻回部9の湾曲路11の1/4円の半径を最外周9d、その隣接周9cを52.7mm、65.4mm、それ以外の周を40mmとし、長辺部の長さ338.1mm、312.7mmと、325.4mm、300mm、および、短辺部の長さ68.1mm、42.7mmと、80.8mm、55.4mm、30mmの直線路10で結び、最外周9dとその隣接周9cの大径管2同士が当接し、それ以外の周の大径管2同士の間に隙間部13が形成されように巻回した。また、巻回部9の各段(9A、9B)の大径管2同士は当接させ、大径管2の両管端部2a、2bを巻回部9の内側(最内周9a)に形成した。
(Winding shape 2: Example 2)
The radius of the quarter circle of the curved path 11 of the winding portion 9 is the outermost periphery 9d, the adjacent periphery 9c is 52.7 mm, 65.4 mm, and the other periphery is 40 mm, and the length of the long side portion is 338.1 mm. , 312.7 mm, 325.4 mm, 300 mm, and short side lengths 68.1 mm, 42.7 mm, and 80.8 mm, 55.4 mm, 30 mm, and a straight path 10, the outermost periphery 9d and its It wound so that the large diameter pipe | tubes 2 of the adjacent periphery 9c contact | abutted, and the clearance gap part 13 might be formed between the large diameter pipe | tubes 2 of the other periphery. Further, the large-diameter pipes 2 of the respective stages (9A, 9B) of the winding part 9 are brought into contact with each other, and both pipe end portions 2a, 2b of the large-diameter pipe 2 are located inside the inner part (the innermost circumference 9a). Formed.

また、比較例1として、図11(a)(巻き形状3)に示すような渦巻状の巻回部53を形成した複合伝熱管51を作製した。そして、大径管52の両管端部52a、52bを巻回部53の最外周(外側)に形成したこと以外は、実施例1の複合伝熱管(巻き形状1)1aと同様とした。なお、巻回部53の直線路10の短辺部の長さは、30mm、17.3mmとなる。   Further, as Comparative Example 1, a composite heat transfer tube 51 in which a spiral winding part 53 as shown in FIG. 11A (winding shape 3) was formed was produced. And it was made to be the same as that of the composite heat exchanger tube (winding shape 1) 1a of Example 1 except having formed both the pipe end parts 52a and 52b of the large diameter pipe | tube 52 in the outermost periphery (outer side) of the winding part 53. FIG. In addition, the length of the short side part of the straight path 10 of the winding part 53 will be 30 mm and 17.3 mm.

作製された複合伝熱管1a、51(実施例1、2、比較例1)を使用して、各複合伝熱管1a、51を収納する断熱ケース15を作製し、各断熱ケース15の面積を測定した。ここで、断熱ケース15内での複合伝熱管1a、51のクリアランスは全て同じとした。そして、複合伝熱管51(比較例1)の断熱ケース15の面積を100としたときの、実施例1、2の断熱ケース15の面積比を表1に示す。   Using the produced composite heat transfer tubes 1a and 51 (Examples 1 and 2 and Comparative Example 1), a heat insulating case 15 for housing each composite heat transfer tube 1a and 51 is prepared, and the area of each heat insulating case 15 is measured. did. Here, the clearances of the composite heat transfer tubes 1a and 51 in the heat insulating case 15 are all the same. Table 1 shows the area ratio of the heat insulating case 15 of Examples 1 and 2 when the area of the heat insulating case 15 of the composite heat transfer tube 51 (Comparative Example 1) is 100.

Figure 2007032943
Figure 2007032943

表1に示すように、実施例1、2の断熱ケース15は、比較例1の断熱ケース15と比較して、その面積が小さい。したがって、実施例1、2の複合伝熱管1aは、比較例1の複合伝熱管51と比較して、複合伝熱管1aの占める容積が小さくなることが確認された。   As shown in Table 1, the heat insulation case 15 of Examples 1 and 2 has a smaller area than the heat insulation case 15 of Comparative Example 1. Therefore, it was confirmed that the composite heat transfer tube 1a of Examples 1 and 2 has a smaller volume occupied by the composite heat transfer tube 1a than the composite heat transfer tube 51 of Comparative Example 1.

本発明に係る複合伝熱管の構成を示す平面図である。It is a top view which shows the structure of the composite heat exchanger tube which concerns on this invention. (a)は図1のA−A線断面図、(b)はB−B線断面図で小径管の記載は省略したもの、(c)は大径管の拡大断面図である。(A) is the sectional view on the AA line of FIG. 1, (b) is the sectional view on the BB line, the description of the small diameter pipe is omitted, and (c) is an enlarged sectional view of the large diameter pipe. (a)は巻回部の他の形態を示す平面図、(b)は(a)のC−C線断面図で小径管の記載は省略したものである。(A) is a top view which shows the other form of a winding part, (b) is CC sectional view taken on the line of (a), and description of a small diameter pipe is abbreviate | omitted. (a)は巻回部の他の形態を示す平面図、(b)はユニットを並列に重ねた状態を示す模式図、(c)、(d)は直列に重ねた状態を示す模式図である。(A) is a top view which shows the other form of a winding part, (b) is a schematic diagram which shows the state which accumulated the unit in parallel, (c), (d) is a schematic diagram which shows the state accumulated in series is there. (a)は複合伝熱管の他の実施形態の大径管の管軸直交断面図、(b)は(a)の小径管の拡大断面図である。(A) is a pipe axis orthogonal cross-sectional view of a large-diameter pipe of another embodiment of the composite heat transfer pipe, and (b) is an enlarged cross-sectional view of the small-diameter pipe of (a). バッフル材が配置された複合伝熱管の構成を示す一部破断斜視図である。It is a partially broken perspective view which shows the structure of the composite heat exchanger tube with which the baffle material is arrange | positioned. 束ね部材およびインナー材が配置された複合伝熱管の構成を示す一部破断斜視図である。It is a partially broken perspective view which shows the structure of the composite heat exchanger tube with which the bundle member and the inner material are arrange | positioned. 凹凸部が形成された複合伝熱管を示し、(a)は一部破断側面図、(b)は(a)のD−D線断面図である。The composite heat exchanger tube in which the uneven | corrugated | grooved part was formed is shown, (a) is a partially broken side view, (b) is the DD sectional view taken on the line of (a). 複合伝熱管を使用した給湯器の構成を模式的に示す説明図である。It is explanatory drawing which shows typically the structure of the water heater using a composite heat exchanger tube. 従来の複合伝熱管の構成を示す斜視図である。It is a perspective view which shows the structure of the conventional composite heat exchanger tube. (a)は従来の複合伝熱管の構成を示す平面図、(b)は(a)のE−E線断面図、(c)は(a)のF−F線断面図である。(A) is a top view which shows the structure of the conventional composite heat exchanger tube, (b) is the EE sectional view taken on the line of (a), (c) is the FF sectional view taken on the line of (a).

符号の説明Explanation of symbols

1 複合伝熱管
2 大径管
2a、2b 管端部
3 小径管
7 外側流路
9 巻回部
9a 周(最内周)
9b、9c 周(隣接周)
9d 周(最外周)
X 第2熱媒体
W 第1熱媒体
DESCRIPTION OF SYMBOLS 1 Composite heat exchanger tube 2 Large diameter pipe 2a, 2b Pipe end part 3 Small diameter pipe 7 Outer flow path 9 Winding part 9a circumference (innermost circumference)
9b, 9c circumference (adjacent circumference)
9d circumference (outermost circumference)
X 2nd heat medium W 1st heat medium

Claims (8)

大径管と、前記大径管の内径より小さい外径を有し、当該大径管の内部で管軸方向に沿って設けられる小径管とを備え、
前記大径管と前記小径管との間に形成される外側流路を第1熱媒体の流路とし、前記小径管の内部を第2熱媒体の流路とする複合伝熱管であって、
前記大径管は、その全長の少なくとも一部が渦巻状の巻回部に形成され、
前記巻回部が偶数段に重ねられると共に、当該巻回部の最外周の前記大径管がその最外周に隣接する隣接周の当該大径管と当接するように巻回され、かつ、当該大径管の両管端部が当該巻回部の最内周に形成されることを特徴とする複合伝熱管。
A large-diameter pipe, and an outer diameter smaller than the inner diameter of the large-diameter pipe, and a small-diameter pipe provided along the pipe axis direction inside the large-diameter pipe
A composite heat transfer tube having an outer flow path formed between the large-diameter pipe and the small-diameter pipe as a first heat medium flow path, and an inside of the small-diameter pipe as a second heat medium flow path,
The large-diameter pipe is formed in a spiral winding part at least a part of its entire length,
The winding part is stacked in an even number of stages, and the large-diameter pipe on the outermost periphery of the winding part is wound so as to abut on the large-diameter pipe on the adjacent circumference adjacent to the outermost periphery, and the A composite heat transfer tube characterized in that both end portions of the large-diameter tube are formed on the innermost periphery of the winding portion.
前記巻回部は、その各段の前記大径管が隣接段の当該大径管と当接すると共に、当該巻回部の各周の当該大径管が隣接周の当該大径管と当接するように形成されることを特徴とする請求項1に記載の複合伝熱管。   The winding portion has the large-diameter tube at each stage in contact with the large-diameter tube at the adjacent stage, and the large-diameter tube at each circumference of the winding portion contacts the large-diameter tube at the adjacent circumference. The composite heat transfer tube according to claim 1, wherein the composite heat transfer tube is formed as follows. 前記巻回部は、その巻回形状が巻回軸に対して直交する平面において、直線路と湾曲路とを交互に有する小判形状であることを特徴とする請求項1または請求項2に記載の複合伝熱管。   The said winding part is an oval shape which has a straight path and a curved path alternately in the plane where the winding shape orthogonally crosses with respect to a winding axis | shaft. Composite heat transfer tube. 前記両管端部は、同一方向に向けて形成されることを特徴とする請求項1ないし請求項3のいずれか一項に記載の複合伝熱管。   The composite heat transfer tube according to any one of claims 1 to 3, wherein the both tube end portions are formed in the same direction. 前記小径管は、外管と、前記外管の内部に同軸に設けられ、前記外管の内径よりも小さい外径を有する内管とからなり、前記外管と前記内管との間に空間部が形成される二重管であることを特徴とする請求項1ないし請求項4のいずれか一項に記載の複合伝熱管。   The small-diameter pipe is composed of an outer pipe and an inner pipe provided coaxially inside the outer pipe and having an outer diameter smaller than the inner diameter of the outer pipe, and a space between the outer pipe and the inner pipe. The composite heat transfer tube according to any one of claims 1 to 4, wherein the composite heat transfer tube is a double tube in which a portion is formed. 前記第1熱媒体の流れる方向と、前記第2熱媒体の流れる方向とが対向することを特徴とする請求項1ないし請求項5のいずれか一項に記載の複合伝熱管。   The composite heat transfer tube according to any one of claims 1 to 5, wherein a direction in which the first heat medium flows and a direction in which the second heat medium flows are opposed to each other. 前記第1熱媒体が水、前記第2熱媒体が冷媒であることを特徴とする請求項1ないし請求項6のいずれか一項に記載の複合伝熱管。   The composite heat transfer tube according to any one of claims 1 to 6, wherein the first heat medium is water, and the second heat medium is a refrigerant. 前記大径管および前記小径管の少なくとも一方は、銅または銅合金からなることを特徴とする請求項1ないし請求項7のいずれか一項に記載の複合伝熱管。   The composite heat transfer tube according to any one of claims 1 to 7, wherein at least one of the large-diameter tube and the small-diameter tube is made of copper or a copper alloy.
JP2005217865A 2005-07-27 2005-07-27 Composite heat exchanger tube Pending JP2007032943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005217865A JP2007032943A (en) 2005-07-27 2005-07-27 Composite heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217865A JP2007032943A (en) 2005-07-27 2005-07-27 Composite heat exchanger tube

Publications (1)

Publication Number Publication Date
JP2007032943A true JP2007032943A (en) 2007-02-08

Family

ID=37792418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217865A Pending JP2007032943A (en) 2005-07-27 2005-07-27 Composite heat exchanger tube

Country Status (1)

Country Link
JP (1) JP2007032943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243747A (en) * 2008-03-31 2009-10-22 Sharp Corp Heat pump type hot water supply heater
JP2012237494A (en) * 2011-05-11 2012-12-06 Hoshizaki Electric Co Ltd Refrigerating device
JP2016003774A (en) * 2014-06-13 2016-01-12 リンナイ株式会社 Heat exchanger and heat pump heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243747A (en) * 2008-03-31 2009-10-22 Sharp Corp Heat pump type hot water supply heater
JP2012237494A (en) * 2011-05-11 2012-12-06 Hoshizaki Electric Co Ltd Refrigerating device
JP2016003774A (en) * 2014-06-13 2016-01-12 リンナイ株式会社 Heat exchanger and heat pump heating device

Similar Documents

Publication Publication Date Title
JP6172950B2 (en) Double tube for heat exchanger
JP2006071270A (en) Heat exchanger, intermediate heat exchanger, and refrigeration cycle
CN209910459U (en) Heat exchange double-layer sleeve
JP2008164245A (en) Heat exchanger
JP2006046888A (en) Composite heat exchanger tube
JP2006258368A (en) Heat exchanger and heat pump water heater using it
JP2007271122A (en) Heat exchanger
JP2009243715A (en) Leakage detecting tube and heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2005133999A (en) Heat pump type hot-water supplier
JP2007032943A (en) Composite heat exchanger tube
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2009041798A (en) Heat exchanger
JP2006194476A (en) Outdoor heat exchanger
JP2005221087A (en) Heat exchanger
JP2005201625A (en) Heat exchanger and its manufacturing method
JP3477531B1 (en) Heat exchanger and method for producing the same, and bath water heating system and floor heating system using such heat exchanger
JP2007271238A (en) Heat exchanger
WO2012017777A1 (en) Double pipe for heat exchanger
JP2007218461A (en) Double tube type heat exchanger
JP2007078252A (en) Heat exchanger
JP2022170142A (en) Pipe connection structure and refrigeration cycle device
JP2007101151A (en) Heat exchanger
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP2004218945A (en) Heat exchanger and method of manufacturing the same