JP2007218461A - Double tube type heat exchanger - Google Patents

Double tube type heat exchanger Download PDF

Info

Publication number
JP2007218461A
JP2007218461A JP2006037445A JP2006037445A JP2007218461A JP 2007218461 A JP2007218461 A JP 2007218461A JP 2006037445 A JP2006037445 A JP 2006037445A JP 2006037445 A JP2006037445 A JP 2006037445A JP 2007218461 A JP2007218461 A JP 2007218461A
Authority
JP
Japan
Prior art keywords
fluid
heat exchanger
pipe
double
spiral shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006037445A
Other languages
Japanese (ja)
Inventor
Hisao Kusuhara
尚夫 楠原
Katsutoshi Ono
勝利 小野
Masakazu Nomura
正和 野村
Kenji Shirai
健二 白井
Masayuki Hamada
真佐行 濱田
Bunji Hayashi
文次 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006037445A priority Critical patent/JP2007218461A/en
Publication of JP2007218461A publication Critical patent/JP2007218461A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double tube type heat exchanger of high heat exchanging efficiency by preventing deposition of scale components. <P>SOLUTION: This double tube type heat exchanger comprises a small diameter tube 7 in which a first fluid flows, and a large diameter tube 8 disposed outside of the small diameter tube 7 to allow a second fluid to flow between the small diameter tube 7 and the large diameter tube 8. The small diameter tube 7 has the spiral shape, and pitch lengths of the spiral shape are various at an upstream side and a downstream side of the first fluid, so that the pitch length of the spiral shape is long at a place where the scale components are often deposited to reduce resistance of a flow channel, thus the scale components are hardly deposited, and heat transfer coefficient can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプ式給湯機において、水と冷媒とを熱交換する2重管式熱交換器に関するものである。   The present invention relates to a double-pipe heat exchanger that exchanges heat between water and a refrigerant in a heat pump type hot water heater.

図4は従来のヒートポンプ式給湯機の構成図である。図4において、ヒートポンプ式給湯機は、圧縮機101、給湯用熱交換器102、減圧器103、熱源用熱交換器104を順次冷媒配管105で接続したヒートポンプサイクルと、貯湯槽106、循環ポンプ107、給湯用熱交換器102を順次液体配管108で接続した給湯サイクルから構成され、給湯用熱交換器102で高温の冷媒と水との間で熱交換が行われ、湯が生成される。このような給湯用熱交換器102として、複数の内管と外管で構成され、内管が螺旋形状で構成されている2重管式熱交換器が使用される(例えば、特許文献1参照)。   FIG. 4 is a configuration diagram of a conventional heat pump type hot water heater. In FIG. 4, the heat pump type hot water heater includes a heat pump cycle in which a compressor 101, a hot water supply heat exchanger 102, a decompressor 103, and a heat source heat exchanger 104 are sequentially connected by a refrigerant pipe 105, a hot water storage tank 106, and a circulation pump 107. The hot water supply heat exchanger 102 is constituted by a hot water supply cycle in which the liquid pipes 108 are sequentially connected, and the hot water supply heat exchanger 102 performs heat exchange between the high-temperature refrigerant and the water to generate hot water. As such a hot water supply heat exchanger 102, a double-pipe heat exchanger configured by a plurality of inner tubes and outer tubes and having an inner tube formed in a spiral shape is used (for example, see Patent Document 1). ).

図5a、bは従来のヒートポンプ式給湯機の2重管式熱交換器の構成図である。このような2重管式熱交換器において、内管を流れる第1の流体と、外管を流れる第2の流体との間で熱交換効率を高めるために、螺旋形状のピッチ長さを小さくしている。螺旋形状のピッチ長さを小さくするとは、単位長さあたりの螺旋の数を多くすることであり、流体間のコンタクトファクタが増加するのに加えて、第2流体の流路において乱流が形成されるため、熱交換効率は高くなる。
特開2005−221087号公報
5A and 5B are configuration diagrams of a double-pipe heat exchanger of a conventional heat pump type hot water heater. In such a double-pipe heat exchanger, in order to increase the heat exchange efficiency between the first fluid flowing through the inner pipe and the second fluid flowing through the outer pipe, the pitch length of the spiral shape is reduced. is doing. Decreasing the pitch length of the spiral shape means increasing the number of spirals per unit length, and in addition to increasing the contact factor between fluids, turbulence is formed in the flow path of the second fluid. Therefore, the heat exchange efficiency is increased.
Japanese Patent Laying-Open No. 2005-221087

しかしながら、熱交換効率はよくなるものの、第2の流体には、熱交換をするうちにスケール成分(例えば、炭酸カルシウム)が析出し、流路の抵抗となることはもちろん、ひいては熱伝達率を低下させるという課題を有していた。   However, although the heat exchange efficiency is improved, scale components (for example, calcium carbonate) are deposited in the second fluid during the heat exchange, and the resistance of the flow path is of course reduced. It had a problem of making it happen.

本発明は、前記従来の課題を解決するもので、スケール成分の析出を防止し、熱交換効率のよい2重管式熱交換器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a double-pipe heat exchanger that prevents precipitation of scale components and has high heat exchange efficiency.

前記従来の課題を解決するために、本発明の2重管式熱交換器は、内部に第1の流体が流れる小径管と、前記小径管の外側に設けられ、前記小径管との間に第2の流体が流れる大径管とを備え、前記小径管は螺旋形状で、前記螺旋形状のピッチ長さを第1の流体の上流側と下流側で変化させたことを特徴とするものである。   In order to solve the above-described conventional problems, a double-pipe heat exchanger according to the present invention is provided between a small-diameter pipe through which a first fluid flows and an outer side of the small-diameter pipe. A large-diameter pipe through which a second fluid flows, wherein the small-diameter pipe has a spiral shape, and the pitch length of the spiral shape is changed on the upstream side and the downstream side of the first fluid. is there.

これによって、スケール成分が析出しやすい場所では、螺旋形状のピッチ長さを大きくすることで、流路抵抗を減ずることができ、スケール成分が析出しにくくなるとともに、熱伝達率も向上させることができる。   This makes it possible to reduce the flow path resistance by increasing the helical pitch length in places where scale components are likely to precipitate, making it difficult for the scale components to precipitate and improving the heat transfer coefficient. it can.

スケール成分の析出を防止し、熱交換効率のよい2重管式熱交換器を提供することができる。   It is possible to provide a double-pipe heat exchanger that prevents precipitation of scale components and has high heat exchange efficiency.

第1の発明は、内部に第1の流体が流れる小径管と、前記小径管の外側に設けられ、前記小径管との間に第2の流体が流れる大径管とを備え、前記小径管は螺旋形状で、前記螺
旋形状のピッチ長さを第1の流体の上流側と下流側で変化させたことにより、スケール成分が析出しやすい場所では、螺旋形状のピッチ長さを大きくできるので、流路抵抗を減ずることができ、スケール成分が析出しにくくなるとともに、ひいては熱伝達率も向上させることができる。
The first invention includes a small-diameter pipe through which a first fluid flows, and a large-diameter pipe provided outside the small-diameter pipe and through which a second fluid flows between the small-diameter pipe and the small-diameter pipe Is a spiral shape, and by changing the pitch length of the spiral shape on the upstream side and the downstream side of the first fluid, the pitch length of the spiral shape can be increased in places where scale components are likely to precipitate, The channel resistance can be reduced, the scale component is less likely to precipitate, and the heat transfer rate can be improved.

第2の発明は、特に第1の発明において、第1の流体を高温流体、第2の流体を低温流体とすることにより、内管内に高温流体を流通させるので、放熱ロスを最大限減ずることができ、効率よく低温流体に熱を移動させることができる。   In the second invention, in particular, in the first invention, the first fluid is a high-temperature fluid and the second fluid is a low-temperature fluid, so that the high-temperature fluid is circulated in the inner pipe, so that the heat dissipation loss is reduced to the maximum. And efficiently transfer heat to the cryogenic fluid.

第3の発明は、特に第2の発明において、第1の流体と、第2の流体を対交流とし、螺旋形状のピッチ長さは、第1の流体の上流側が下流側より大とすることで、スケール成分が一番発生しやすい、第2の流体の出口側つまり第1の流体の入口側(上流側)のピッチ長さを大きくすることで、スケール成分を析出させにくい構成となる。   In the third invention, particularly in the second invention, the first fluid and the second fluid are in an alternating current, and the pitch length of the spiral shape is larger on the upstream side of the first fluid than on the downstream side. Thus, by increasing the pitch length of the second fluid outlet side, that is, the first fluid inlet side (upstream side), where the scale component is most likely to be generated, the scale component is hardly deposited.

第4の発明は、特に第1または第2の発明において、小径管および大径管は直線部および屈曲部を有し、前記屈曲部の螺旋形状のピッチ長さは、前記直線部のピッチ長さよりも大とすることで、屈曲部は直線部に比べて流れが乱れやすくスケール成分が析出しやすいので、屈曲部の螺旋形状のピッチ長さを大きくしてスケール成分を析出させにくい構成としている。   In a fourth aspect of the invention, particularly in the first or second aspect of the invention, the small-diameter pipe and the large-diameter pipe have a straight portion and a bent portion, and the helical pitch length of the bent portion is the pitch length of the straight portion. By making the length larger than this, the bent portion is more likely to disturb the flow than the straight portion, and the scale component is likely to be deposited. .

第5の発明は、特に第1〜第4の発明において、小径管を複数設けたことにより、高温流体の通る経路が増加するため、より熱の伝わりやすい構成となる。   In the fifth aspect of the invention, in particular, in the first to fourth aspects of the invention, by providing a plurality of small-diameter pipes, the route through which the high-temperature fluid passes increases, so that the heat transfer is more easily performed.

第6の発明は、特に第2〜第5の発明において、高温流体に二酸化炭素を用いたことにより、臨界圧力以上に加圧されているので、給湯用熱交換器の水により熱を奪われて温度低下しても凝縮することがなく、給湯用熱交換器の全域で冷媒と水との間の温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。   In the sixth invention, in particular, in the second to fifth inventions, since carbon dioxide is used as the high-temperature fluid, the pressure is increased to a critical pressure or more, so heat is taken away by the water in the hot water heat exchanger. Therefore, it does not condense even when the temperature drops, and it becomes easy to form a temperature difference between the refrigerant and water in the entire area of the heat exchanger for hot water supply, so that hot water can be obtained and the heat exchange efficiency can be increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における2重管式熱交換器の構成図である。図1において、2重管式熱交換器は、2つの小径管7が螺旋形状で、大径管8に内挿されている。本実施例において、小径管7内には、第1の流体である、圧縮機から吐出された高温高圧冷媒の二酸化炭素が流れており、大径管8と小径管7の間に形成される空間には、高温高圧の二酸化炭素と熱交換を行う第2の流体である水が流れている。効率のよい熱交換を行うため、冷媒と水とは対交流をなしている。
(Embodiment 1)
FIG. 1 is a configuration diagram of a double-pipe heat exchanger according to the first embodiment of the present invention. In FIG. 1, the double-pipe heat exchanger has two small-diameter tubes 7 in a spiral shape and is inserted into a large-diameter tube 8. In the present embodiment, carbon dioxide of high-temperature and high-pressure refrigerant discharged from the compressor, which is the first fluid, flows in the small-diameter pipe 7 and is formed between the large-diameter pipe 8 and the small-diameter pipe 7. Water, which is a second fluid that exchanges heat with high-temperature and high-pressure carbon dioxide, flows in the space. In order to perform efficient heat exchange, the refrigerant and water exchange with each other.

第1の流体(冷媒)は矢印Aの向きに、第2の流体(水)は矢印Bの向きに流れており、第1の流体(冷媒)の上流側の螺旋形状のピッチ長さP2は、下流側の螺旋形状のピッチ長さP1よりも大に形成されている。通常、スケール成分である炭酸カルシウムは高温ほど溶け難いという性質があり、第1の流体(冷媒)の高温側(上流側)でスケール成分は発生しやすいので、第1の流体(冷媒)の高温側(上流側)の螺旋形状のピッチ長さP2を大きく形成した方が、流路抵抗を減ずることができるので、スケール成分の析出を抑制し、熱伝達を向上させる。   The first fluid (refrigerant) flows in the direction of arrow A, the second fluid (water) flows in the direction of arrow B, and the helical pitch length P2 on the upstream side of the first fluid (refrigerant) is Further, the pitch length P1 is formed larger than the downstream helical pitch length P1. Usually, calcium carbonate, which is a scale component, has a property that it is difficult to dissolve at higher temperatures, and scale components are likely to be generated on the high temperature side (upstream side) of the first fluid (refrigerant). If the spiral pitch length P2 on the side (upstream side) is formed larger, the flow path resistance can be reduced, so that precipitation of scale components is suppressed and heat transfer is improved.

ヒートポンプサイクルの冷媒には二酸化炭素を用いており、2重管式熱交換器内においては、冷媒は臨界圧力以上に加圧されているので、2重管式熱交換器の水により熱を奪われて温度が低下しても凝縮することがなく、2重管式熱交換器の全域で冷媒と水との間の
温度差を形成しやすくなるので、高温の湯が得られ、かつ熱交換効率を高くできる。さらに、二酸化炭素は比較的安価であり、かつ安定であるので、製品コストを抑えるとともに、信頼性を向上させることができる。またオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。
Carbon dioxide is used as the refrigerant in the heat pump cycle, and in the double pipe heat exchanger, the refrigerant is pressurized above the critical pressure, so heat is taken away by the water in the double pipe heat exchanger. Even if the temperature drops, it does not condense and it is easy to form a temperature difference between the refrigerant and water in the entire area of the double-pipe heat exchanger, so that hot water can be obtained and heat exchange is achieved. High efficiency can be achieved. Furthermore, since carbon dioxide is relatively inexpensive and stable, it is possible to reduce product cost and improve reliability. In addition, since the ozone depletion coefficient is zero and the global warming coefficient is as low as about 1700 of the alternative refrigerant HFC-407C, a product that is friendly to the global environment can be provided.

また、本実施の形態では、P1、P2の2つのピッチ長さを用いて説明したが、図2に示すように、ピッチ長さは第1の流体(冷媒)の高温側(上流側)ほど長くなる構成としてもよく、この場合には、ピッチ長さはP1、P2の2つのピッチ長さに限定されることはなく、P1、P2、・・・・、Pn(P1<P2<・・・・<Pn)というように適宜ピッチ長さを変化させてもよい。このような構成とすることで、より第1の流体(冷媒)の高温側(上流側)ほどピッチ長さが長くなるので、P1、P2の2つのピッチ長さを用いて螺旋形状を構成するよりも、細かなピッチ長さの間隔を設定でき、大きく熱伝達率を損なうことがない。   In the present embodiment, the two pitch lengths P1 and P2 have been described. However, as shown in FIG. 2, the pitch length is higher on the higher temperature side (upstream side) of the first fluid (refrigerant). In this case, the pitch length is not limited to the two pitch lengths P1 and P2, but P1, P2,..., Pn (P1 <P2 <.. .. <Pn) The pitch length may be changed as appropriate. By setting it as such a structure, since the pitch length becomes long toward the higher temperature side (upstream side) of the first fluid (refrigerant), the spiral shape is configured using the two pitch lengths P1 and P2. As compared with the above, a fine pitch length interval can be set, and the heat transfer rate is not greatly impaired.

以上のように、本実施の形態では、第1の流体(冷媒)の高温側(上流側)ほど、小径管のピッチ長さを大きく形成することで、スケール成分の析出を抑制し、ひいては熱伝達率を向上させることができる。   As described above, in the present embodiment, the higher the high temperature side (upstream side) of the first fluid (refrigerant), the larger the pitch length of the small-diameter pipes, thereby suppressing the precipitation of scale components and thus heat. The transmission rate can be improved.

(実施の形態2)
図3は、本発明の第2の実施の形態における2重管式熱交換器の構成図である。図3において、2重管式熱交換器は、2つの小径管7が螺旋形状で、大径管8に内挿されている。本実施例において、小径管7内には、第1の流体である、圧縮機から吐出された高温高圧冷媒の二酸化炭素が流れており、大径管8と小径管7の間に形成される空間には、高温高圧の二酸化炭素と熱交換を行う第2の流体である水が流れている。効率のよい熱交換を行うため、冷媒と水とは対交流をなしている。また、本実施の形態では、小径管7と大径管8は、直線部10と屈曲部11を有している。
(Embodiment 2)
FIG. 3 is a configuration diagram of a double-pipe heat exchanger according to the second embodiment of the present invention. In FIG. 3, the double-pipe heat exchanger has two small-diameter pipes 7 in a spiral shape and is inserted into a large-diameter pipe 8. In the present embodiment, carbon dioxide of high-temperature and high-pressure refrigerant discharged from the compressor, which is the first fluid, flows in the small-diameter pipe 7 and is formed between the large-diameter pipe 8 and the small-diameter pipe 7. Water, which is a second fluid that exchanges heat with high-temperature and high-pressure carbon dioxide, flows in the space. In order to perform efficient heat exchange, the refrigerant and water exchange with each other. Further, in the present embodiment, the small diameter tube 7 and the large diameter tube 8 have a straight portion 10 and a bent portion 11.

このように構成された2重管式熱交換器において、直線部10においては、小径管7はピッチ長さP1で螺旋形状を構成しており、屈曲部11においては、小径管7はピッチ長さP2で螺旋形状を構成している。またピッチ長さP1とピッチ長さP2との間には、P1<P2の関係を有している。これは、屈曲部11では、直線部10に比べて流体の流れが乱れやすく、そのため、スケール成分が発生しやすいので、そのスケール成分の発生を抑制するため、できるだけ流体の流れに乱れを生じさせないように、屈曲部11におけるピッチ長さを、直線部10におけるピッチ長さよりも大きくしている。   In the double pipe heat exchanger configured as described above, in the straight portion 10, the small diameter tube 7 has a helical shape with a pitch length P1, and in the bent portion 11, the small diameter tube 7 has a pitch length. A spiral shape is formed by the length P2. Further, there is a relationship of P1 <P2 between the pitch length P1 and the pitch length P2. This is because the flow of fluid is more turbulent in the bent portion 11 than in the straight portion 10, and therefore, a scale component is easily generated. Therefore, in order to suppress the generation of the scale component, the fluid flow is not disturbed as much as possible. As described above, the pitch length in the bent portion 11 is made larger than the pitch length in the straight portion 10.

ヒートポンプサイクルの冷媒には二酸化炭素を用いており、2重管式熱交換器内においては、冷媒は臨界圧力以上に加圧されているので、2重管式熱交換器の水により熱を奪われて温度が低下しても凝縮することがなく、2重管式熱交換器の全域で冷媒と水との間の温度差を形成しやすくなるので、高温の湯が得られ、かつ熱交換効率を高くできる。さらに、二酸化炭素は比較的安価であり、かつ安定であるので、製品コストを抑えるとともに、信頼性を向上させることができる。またオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。   Carbon dioxide is used as the refrigerant in the heat pump cycle, and in the double pipe heat exchanger, the refrigerant is pressurized above the critical pressure, so heat is taken away by the water in the double pipe heat exchanger. Even if the temperature drops, it does not condense and it is easy to form a temperature difference between the refrigerant and water in the entire area of the double-pipe heat exchanger, so that hot water can be obtained and heat exchange is achieved. High efficiency can be achieved. Furthermore, since carbon dioxide is relatively inexpensive and stable, it is possible to reduce product cost and improve reliability. In addition, since the ozone depletion coefficient is zero and the global warming coefficient is as low as about 1700 of the alternative refrigerant HFC-407C, a product that is friendly to the global environment can be provided.

以上のように、本実施の形態では、第1の流体の螺旋形状のピッチ長さを、直線部に比べて屈曲部で大きく形成することで、スケール成分の析出を抑制し、ひいては熱伝達率を向上させることができる。   As described above, in this embodiment, the pitch length of the spiral shape of the first fluid is formed larger at the bent portion than at the straight portion, thereby suppressing the precipitation of the scale component and thus the heat transfer coefficient. Can be improved.

以上のように、本発明に係る2重管式熱交換器は、ヒートポンプサイクルと給湯サイクルが一体に構成された一体型ヒートポンプ式給湯機、別体に構成された分離型ヒートポンプ式給湯機、給湯用熱交換器で加熱したお湯をそのまま出湯できる直接出湯型ヒートポンプ式給湯機などの各種ヒートポンプ給湯機の水−冷媒熱交換器に適用でき、給湯機能の他に、浴槽給湯、暖房機能、乾燥機能を有するヒートポンプ装置にも適用できる。   As described above, the double-pipe heat exchanger according to the present invention includes an integrated heat pump type hot water heater in which a heat pump cycle and a hot water supply cycle are integrally configured, a separate heat pump type hot water heater configured separately, and a hot water source. It can be applied to water-refrigerant heat exchangers of various heat pump water heaters such as a direct hot water heat pump type water heater that can discharge hot water heated by a heat exchanger for a bath. It is applicable also to the heat pump apparatus which has this.

本発明の実施の形態1における2重管式熱交換器の断面図Sectional drawing of the double-pipe heat exchanger in Embodiment 1 of this invention 同実施の形態における2重管式熱交換器の断面図Sectional drawing of the double-pipe heat exchanger in the same embodiment 本発明の実施の形態2における2重管式熱交換器の断面図Sectional drawing of the double-pipe heat exchanger in Embodiment 2 of this invention 従来のヒートポンプ式給湯機の構成図Configuration diagram of conventional heat pump water heater (a)従来の水―冷媒熱交換器の構成図(b)従来の水―冷媒熱交換器の断面図(A) Configuration of a conventional water-refrigerant heat exchanger (b) Cross-sectional view of a conventional water-refrigerant heat exchanger

符号の説明Explanation of symbols

7 小径管
8 大径管
10 屈曲部
11 直線部
101 圧縮機
102 給湯用熱交換器
103 減圧器
104 熱源用熱交換器
105 冷媒配管
106 貯湯槽
107 循環ポンプ
108 液体配管
7 Small-diameter pipe 8 Large-diameter pipe 10 Bent part 11 Linear part 101 Compressor 102 Heat exchanger for hot water supply 103 Depressurizer 104 Heat exchanger for heat source 105 Refrigerant pipe 106 Hot water tank 107 Circulation pump 108 Liquid pipe

Claims (6)

内部に第1の流体が流れる小径管と、前記小径管の外側に設けられ、前記小径管との間に第2の流体が流れる大径管とを備え、前記小径管は螺旋形状で、前記螺旋形状のピッチ長さを第1の流体の上流側と下流側で変化させたことを特徴とする2重管式熱交換器。 A small-diameter pipe through which the first fluid flows; and a large-diameter pipe provided outside the small-diameter pipe and through which the second fluid flows between the small-diameter pipe, the small-diameter pipe having a spiral shape, A double-pipe heat exchanger, wherein the pitch length of the spiral shape is changed between the upstream side and the downstream side of the first fluid. 第1の流体を高温流体、第2の流体を低温流体とすることを特徴とする請求項1に記載の2重管式熱交換器。 The double-tube heat exchanger according to claim 1, wherein the first fluid is a high-temperature fluid and the second fluid is a low-temperature fluid. 第1の流体と、第2の流体を対交流とし、螺旋形状のピッチ長さは、第1の流体の上流側が下流側より大であることを特徴とする請求項2に記載の2重管式熱交換器。 The double pipe according to claim 2, wherein the first fluid and the second fluid are used as an alternating current, and the pitch length of the spiral shape is larger on the upstream side of the first fluid than on the downstream side. Type heat exchanger. 小径管および大径管は直線部および屈曲部を有し、前記屈曲部の螺旋形状のピッチ長さは、前記直線部のピッチ長さよりも大とすることを特徴とする請求項1または2に記載の2重管式熱交換器。 The small-diameter pipe and the large-diameter pipe have a straight portion and a bent portion, and the pitch length of the spiral shape of the bent portion is larger than the pitch length of the straight portion. The double pipe heat exchanger as described. 小径管を複数設けたことを特徴とする請求項1〜4のいずれか1項に記載の2重管式熱交換器。 The double pipe heat exchanger according to any one of claims 1 to 4, wherein a plurality of small diameter pipes are provided. 高温流体に二酸化炭素を用いたことを特徴とする請求項2〜5のいずれか1項に記載の2重管式熱交換器。 The double-pipe heat exchanger according to any one of claims 2 to 5, wherein carbon dioxide is used as the high-temperature fluid.
JP2006037445A 2006-02-15 2006-02-15 Double tube type heat exchanger Pending JP2007218461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037445A JP2007218461A (en) 2006-02-15 2006-02-15 Double tube type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037445A JP2007218461A (en) 2006-02-15 2006-02-15 Double tube type heat exchanger

Publications (1)

Publication Number Publication Date
JP2007218461A true JP2007218461A (en) 2007-08-30

Family

ID=38495965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037445A Pending JP2007218461A (en) 2006-02-15 2006-02-15 Double tube type heat exchanger

Country Status (1)

Country Link
JP (1) JP2007218461A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125700A1 (en) * 2008-04-08 2009-10-15 サンデン株式会社 Heat exchanger and hot-water supply device using same
JP2010210139A (en) * 2009-03-10 2010-09-24 Orion Mach Co Ltd Water-cooled condenser and refrigerating cycle device
CN103292620A (en) * 2013-05-30 2013-09-11 西安交通大学 Novel telescopic heat exchange tube
KR101326759B1 (en) 2011-02-07 2013-11-07 한라비스테온공조 주식회사 Double pipe heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125700A1 (en) * 2008-04-08 2009-10-15 サンデン株式会社 Heat exchanger and hot-water supply device using same
JP2009270809A (en) * 2008-04-08 2009-11-19 Sanden Corp Heat exchanger and hot-water supply device using the same
JP2010210139A (en) * 2009-03-10 2010-09-24 Orion Mach Co Ltd Water-cooled condenser and refrigerating cycle device
KR101326759B1 (en) 2011-02-07 2013-11-07 한라비스테온공조 주식회사 Double pipe heat exchanger
CN103292620A (en) * 2013-05-30 2013-09-11 西安交通大学 Novel telescopic heat exchange tube

Similar Documents

Publication Publication Date Title
JP4736533B2 (en) Heat exchanger
AU2009234819B2 (en) Heat exchanger and hot water supply system using the same
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2007218461A (en) Double tube type heat exchanger
JP4572662B2 (en) Heat exchanger
JP2010210139A (en) Water-cooled condenser and refrigerating cycle device
KR20140054727A (en) Combustion gas pipe for heat exchange
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2006162165A (en) Heat exchanger
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP2005009832A (en) Double pipe type heat exchanger
JP2007271194A (en) Heat exchanger
JP2003343995A (en) Heat transfer tube
JP2012107768A (en) Water refrigerant heat exchanger
JP2007247917A (en) Triple tube-type heat exchanger
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP2008057908A (en) Heat exchanger
JP2009198043A (en) Heat exchanger
JP2007292331A (en) Heat pump water heater
JP2004218945A (en) Heat exchanger and method of manufacturing the same
JP2008082600A (en) Water-refrigerant heat exchanger and heat pump hot water supply device using the same
JP2008122033A (en) Gas cooler for hot water supply system
JP2005077062A (en) Heat pump water heater
JP4552567B2 (en) Heat exchanger
JP2010078171A (en) Internal heat exchanger