JP2008122033A - Gas cooler for hot water supply system - Google Patents

Gas cooler for hot water supply system Download PDF

Info

Publication number
JP2008122033A
JP2008122033A JP2006308993A JP2006308993A JP2008122033A JP 2008122033 A JP2008122033 A JP 2008122033A JP 2006308993 A JP2006308993 A JP 2006308993A JP 2006308993 A JP2006308993 A JP 2006308993A JP 2008122033 A JP2008122033 A JP 2008122033A
Authority
JP
Japan
Prior art keywords
hot water
gas cooler
water supply
supply system
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006308993A
Other languages
Japanese (ja)
Inventor
Yasushi Murakoshi
康司 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006308993A priority Critical patent/JP2008122033A/en
Priority to FR0707998A priority patent/FR2910116A1/en
Publication of JP2008122033A publication Critical patent/JP2008122033A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas cooler for a hot water supply system, which prevents scale clogging while maintaining heat exchange efficiency. <P>SOLUTION: The gas cooler for the hot water supply system is of the tube-in-tube type and comprises an inner conduit 28 through which a refrigerant of a heat pump unit flows, and an outer conduit 26 surrounding the inner conduit 28 and allowing a tank water of a hot water supply unit to flow through. The outer conduit 26 has a spiral groove 30 on its inner surface. The inner conduit 28 is formed of two inner tubes 32, and the inner tubes 32 extend in parallel with a space from each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプユニットを備えた給湯システムに組み込まれるガスクーラに関する。   The present invention relates to a gas cooler incorporated in a hot water supply system including a heat pump unit.

この種の給湯システムは省エネや地球環境への負荷軽減を目的として、その普及が促進されつつある。給湯システムの性能は成績係数(COP)で評価され、この成績係数はガスクーラでの熱交換効率に大きく左右される。即ち、ガスクーラはヒートポンプユニット側の冷媒と給湯ユニット側のタンク水との間での熱交換をなすことから、給湯システムにとってはその性能を決定する重要な構成要素の1つである。   This type of hot water supply system is being promoted for the purpose of saving energy and reducing the burden on the global environment. The performance of a hot water supply system is evaluated by a coefficient of performance (COP), which greatly depends on the heat exchange efficiency in the gas cooler. That is, the gas cooler exchanges heat between the refrigerant on the heat pump unit side and the tank water on the hot water supply unit side, and thus is an important component for determining the performance of the hot water supply system.

一般的に、ガスクーラにはチューブインチューブ方式が採用され、このチューブインチューブ方式のガスクーラは冷媒を流す内側管路と、タンク水を流す外側管路とを備え、この種のガスクーラの中には、外側管路を螺旋状に形成するか、又は、内側管路と外側管路との間に螺旋状の仕切りを設けたものも知られている(例えば、特許文献1の図1,図9参照)。
特開2005-9832号公報
In general, a tube-in-tube method is adopted for a gas cooler, and this tube-in-tube type gas cooler has an inner conduit for flowing refrigerant and an outer conduit for flowing tank water. In addition, it is also known that the outer pipe line is formed in a spiral shape, or a spiral partition is provided between the inner pipe line and the outer pipe line (for example, FIG. 1 and FIG. 9 of Patent Document 1). reference).
JP 2005-9832 A

特許文献1の螺旋状をなす外側管路や仕切りは、内側管路の外側を流れるタンク水の流路を長くし、また、タンク水の流れに乱流を生起させることで、冷媒とタンク水との間での熱交換効率を高めるものと期待されている。
しかしながら、給湯システムのタンク水は上水道が使用されることから、ガスクーラ内にてタンク水が高温に加熱されると、タンク水に含まれるカルキ成分がスケール化し、タンク水の流路にスケール詰まりが生じる虞がある。
The spiral outer pipe and partition of Patent Document 1 lengthen the tank water flow path that flows outside the inner pipe line, and also generate turbulence in the tank water flow so that the refrigerant and the tank water flow. It is expected to improve the heat exchange efficiency between the two.
However, since the water supply system uses tank water, when the tank water is heated to a high temperature in the gas cooler, the chlorinated components contained in the tank water scale, and the tank water flow path is clogged with scale. May occur.

このようなスケール詰まりを防止するには、タンク水の流路断面積、即ち、外側管路の内径を大径化すればよいが、この場合、タンク水の流速が低下する一方、外側管路の内面に沿って層状に流れるタンク水の割合が増加し、冷媒からタンク水への熱伝達が悪化し、結果的に熱交換率を低下させてしまう。
本発明は上述の事情に基づいてなされたもので、その目的とするところは冷媒とタンク水との間での熱交換効率を維持しつつ、タンク水の流路断面積を大きく確保可能な給湯システムのガスクーラを提供することにある。
In order to prevent such clogging of the scale, it is only necessary to increase the cross-sectional area of the tank water, that is, the inner diameter of the outer conduit. The ratio of tank water flowing in a layered manner along the inner surface of the tank increases, heat transfer from the refrigerant to the tank water deteriorates, and as a result, the heat exchange rate decreases.
The present invention has been made on the basis of the above-described circumstances, and its object is to provide hot water supply that can ensure a large passage cross-sectional area of tank water while maintaining heat exchange efficiency between the refrigerant and the tank water. It is to provide a gas cooler for the system.

上記の目的を達成するため、本発明の給湯システムのガスクーラは、冷媒が流れる内側管路と、この内側管路を囲繞し、内側管路の外側に前記タンク水を流す流路を形成する外側管とを備え、外側管はその内面に内側管路に沿い、タンク水の流れ方向に進行する螺旋溝を有し、そして、内側管路は互いにタンク水の通過を許容する間隔を存して並列的に延びる複数の内側チューブを含んでいる(請求項1)。   In order to achieve the above object, a gas cooler of a hot water supply system according to the present invention includes an inner pipe through which a refrigerant flows and an outer pipe that surrounds the inner pipe and forms a flow path through which the tank water flows outside the inner pipe. The outer pipe has a spiral groove on its inner surface along the inner pipe line and traveling in the direction of the tank water flow, and the inner pipe lines are spaced apart from each other to allow the tank water to pass therethrough. A plurality of inner tubes extending in parallel are included (claim 1).

タンク水が外側管路を通過する際、タンク水は螺旋溝に沿って流れ、外側管路内に内側管路の外側を旋回するようなタンク水の旋回流が発生し、この旋回流の一部は内側管路の内側チューブの間を通過することから、旋回流を掻き乱す。それ故、タンク水は内側チューブの表面に効率良く接触し、内側管路の表面熱伝達率が向上する。
具体的には、冷媒はCOガスであり(請求項2)、このようなCOガスは地球環境への負荷を軽減する。
When the tank water passes through the outer pipe, the tank water flows along the spiral groove, and a swirling flow of the tank water that swirls outside the inner pipe is generated in the outer pipe. Since the portion passes between the inner tubes of the inner conduit, the swirling flow is disturbed. Therefore, the tank water efficiently contacts the surface of the inner tube, and the surface heat transfer coefficient of the inner pipe line is improved.
Specifically, the refrigerant is CO 2 gas (Claim 2), and such CO 2 gas reduces the burden on the global environment.

好ましくは、外側管路は螺旋ピッチが互いに異なる複数の領域を含み(請求項3)、そして、各内側チューブは凹凸状の外周面を有することができる(請求項4)。また、ここでの凹凸状は、内側チューブの外周面に沿って延びる螺旋状の凸条により付与され(請求項5)、この場合、これら凸条及び螺旋溝の螺旋の向きは互いに異なっているのが望ましい(請求項6)。   Preferably, the outer conduit includes a plurality of regions having different helical pitches (Claim 3), and each inner tube may have an uneven outer peripheral surface (Claim 4). Further, the uneven shape here is provided by spiral ridges extending along the outer peripheral surface of the inner tube (Claim 5), and in this case, the directions of the spirals of these ridges and spiral grooves are different from each other. (Claim 6).

請求項3〜6のガスクーラによれば、タンク水の流れが更に掻き乱され、タンク水に対する内側チューブの表面熱伝達率が更に向上する。   According to the gas cooler of claims 3 to 6, the flow of the tank water is further disturbed, and the surface heat transfer coefficient of the inner tube to the tank water is further improved.

請求項1,2のガスクーラは、外側管路の螺旋溝と内側管路を形成する複数の内側チューブとが互いに協働して、タンク水に対する内側チューブの表面熱伝達率を高めることから、ガスクーラの熱交換効率を維持しつつ、外側管路の内径を増大させることが可能となり、外側管路のスケール詰まりを確実に阻止可能となる。
請求項3〜6のガスクーラは、タンク水の流れが更に掻き乱されることで、内側チューブの表面熱伝達が更に良好となり、スケール詰まりを防止ししつつ、その熱交換効率の向上を図ることができる。
The gas cooler according to claims 1 and 2 increases the surface heat transfer coefficient of the inner tube with respect to tank water because the spiral groove of the outer conduit and the plurality of inner tubes forming the inner conduit cooperate with each other. It is possible to increase the inner diameter of the outer pipe line while maintaining the heat exchange efficiency, and it is possible to reliably prevent clogging of the outer pipe line.
The gas cooler according to claims 3 to 6 further improves the heat exchange efficiency while preventing the clogging of the scale by further improving the surface heat transfer of the inner tube by further disturbing the flow of the tank water. Can do.

図1は、給湯システムを概略的に示す。
給湯システムは大きく分けてヒートポンプユニット2と、給湯ユニット4から構成され、これらユニット2,4はガスクーラ6を介して互いに熱的に接続されている。
より詳しくは、ヒートポンプユニット2は、例えばCOガスの冷媒が流れる冷媒循環経路8を備え、この冷媒循環経路8には、大気と冷媒との間で熱交換を行う大気熱交換器10、圧縮機12、ガスクーラ6及び膨脹弁14等が介挿されている。
FIG. 1 schematically shows a hot water supply system.
The hot water supply system is roughly divided into a heat pump unit 2 and a hot water supply unit 4, and these units 2 and 4 are thermally connected to each other via a gas cooler 6.
More specifically, the heat pump unit 2 includes, for example, a refrigerant circulation path 8 through which a refrigerant of CO 2 gas flows, and the refrigerant circulation path 8 includes an atmospheric heat exchanger 10 that performs heat exchange between the atmosphere and the refrigerant, a compression The machine 12, the gas cooler 6, the expansion valve 14 and the like are inserted.

一方、給湯ユニット4はタンク水が流れる貯湯循環経路16を備え、この貯湯循環経路16にガスクーラ6、貯湯タンク18及び循環ポンプ20等がそれぞれ介挿されている。また、給湯ユニット4は、貯湯タンク18に給水する給水経路22及び貯湯タンク18から給湯する給湯経路24もまたそれぞれ備えている。
ガスクーラ6はチューブインチューブ方式であって、図2に示されるように貯湯循環経路16の一部を形成し、タンク水を流す外側管路26と、冷媒循環経路8の一部を形成し、冷媒をタンク水とは逆向きに流す内側管路28とを備え、内側管路28は外側管路26内を延びている。
On the other hand, the hot water supply unit 4 includes a hot water storage circulation path 16 through which tank water flows, and a gas cooler 6, a hot water storage tank 18, a circulation pump 20 and the like are interposed in the hot water storage circulation path 16, respectively. The hot water supply unit 4 also includes a water supply path 22 for supplying water to the hot water storage tank 18 and a hot water supply path 24 for supplying hot water from the hot water storage tank 18.
The gas cooler 6 is a tube-in-tube system, and forms a part of the hot water storage circulation path 16 as shown in FIG. 2, forms an outer conduit 26 through which tank water flows, and a part of the refrigerant circulation path 8, An inner conduit 28 that flows the refrigerant in a direction opposite to the tank water is provided, and the inner conduit 28 extends in the outer conduit 26.

一実施例の場合、外側管路26の内面は螺旋溝30として形成され、この螺旋溝30は外側管路26内でのタンス水の流れ方向に進行すべく、その螺旋の向きが設定されている。従って、図2中の矢印Aで示す如く、外側管路26内を通過するタンク水は螺旋溝30に沿って案内されることで、内側管路28の外側を旋回するような旋回流となる。
一方、本実施例の場合、内側管路28は複数、具体的には2本の銅製の内側チューブ32からなり、これら内側チューブ32は互いに所定の間隔を存して並列的に延びている。従って、内側チューブ32間にはタンク水の通過を許容するスペースが確保され、内側チューブ32の外周面同士が互いに接触することはない。
In one embodiment, the inner surface of the outer conduit 26 is formed as a spiral groove 30, and the spiral groove 30 is set in the direction of the spiral so as to travel in the flow direction of the tang water in the outer conduit 26. Yes. Therefore, as indicated by an arrow A in FIG. 2, the tank water passing through the outer pipe 26 is guided along the spiral groove 30 to form a swirling flow that swirls outside the inner pipe 28. .
On the other hand, in the case of the present embodiment, the inner conduit 28 is composed of a plurality of, specifically, two copper inner tubes 32, and these inner tubes 32 extend in parallel with each other at a predetermined interval. Therefore, a space allowing passage of tank water is secured between the inner tubes 32, and the outer peripheral surfaces of the inner tubes 32 do not contact each other.

図3に示されるように、各内側チューブ32は二重構造をなし、冷媒が流れるインナパイプ34と、このインナパイプ34を囲繞する漏洩検知管としてのアウタパイプ36とからなる。それ故、万一、インナパイプ34から冷媒が漏出しても、漏出冷媒はアウタパイプ36内に捕獲され、外側管路26内のタンク水が冷媒で汚染されるようなことはない。
上述したガスクーラ6によれば、外側管路26内のタンク水は内側チューブ32の回りを旋回する旋回流として流れ、そして、その一部が内側チューブ32間のスペースを通過し、旋回流を掻き乱す。それ故、タンク水の流れは各内側チューブ32の外周面に対し、その径方向から角度をもって衝突することから、各内側チューブ32の表面に良好に接触でき、タンク水に対する内側チューブ32の表面熱伝達を効果に行うことができる。
As shown in FIG. 3, each inner tube 32 has a double structure, and includes an inner pipe 34 through which a refrigerant flows and an outer pipe 36 as a leakage detection pipe surrounding the inner pipe 34. Therefore, even if the refrigerant leaks from the inner pipe 34, the leaked refrigerant is captured in the outer pipe 36, and the tank water in the outer pipe 26 is not contaminated by the refrigerant.
According to the gas cooler 6 described above, the tank water in the outer conduit 26 flows as a swirl flow swirling around the inner tube 32, and a part of the water passes through the space between the inner tubes 32 and scrapes the swirl flow. Disturb. Therefore, since the flow of the tank water collides with the outer peripheral surface of each inner tube 32 at an angle from the radial direction, the surface of the inner tube 32 with respect to the tank water can be satisfactorily brought into contact with the surface of each inner tube 32. Transmission can be effected effectively.

それ故、ガスクーラ6の熱交換効率を維持しつつ、外側管路26の内径を増大させ、タンク水のための流路断面壁を大きく確保することができる。この結果、冷媒との熱交換により、ガスクーラ6内にてタンク水が高温に加熱され、タンク水に含まれるカルキ成分が外側管路26内にてスケール化しても、外側管路26にスケール詰まりを引き起こすようなことはない。   Therefore, while maintaining the heat exchange efficiency of the gas cooler 6, the inner diameter of the outer pipe 26 can be increased, and a large channel cross-sectional wall for tank water can be secured. As a result, the tank water is heated to a high temperature in the gas cooler 6 due to heat exchange with the refrigerant, and even if the chlorinated component contained in the tank water is scaled in the outer pipeline 26, the outer pipeline 26 is clogged with scale. There is no such thing as causing it.

本発明は一実施例に制約されるものではなく、種々の変形が可能である。
図2に示されている外側管路26の螺旋溝30はその螺旋ピッチが一定であるが、図4に示されている外側管路26の螺旋溝30は、螺旋ピッチ(P1,P2)が異なる複数の領域を含んでいる。また、図4の内側管路28は、その外周面に螺旋状の凸条38を有する一対の内側チューブ40から形成されている。
The present invention is not limited to one embodiment, and various modifications are possible.
The spiral groove 30 of the outer conduit 26 shown in FIG. 2 has a constant spiral pitch, but the spiral groove 30 of the outer conduit 26 shown in FIG. 4 has a spiral pitch (P1, P2). It contains several different areas. 4 is formed by a pair of inner tubes 40 having spiral ridges 38 on the outer peripheral surface thereof.

この場合、凸条38の螺旋の向きは、螺旋溝30の向きとは互いに異なっているのが好ましく、また、一方の内側チューブ40の凸条38は他方の内側チューブ40の凸条38に対し、その螺旋ピッチの半分だて互いにずれた状態で延びているのが好ましい。
上述した構成は何れも、外側管路26の内部形状を複雑にし、タンク水の流れを更に掻き乱すことから、内側チューブ32又は40の表面熱伝達が更に良好となり、この結果、前述した外側管路26のスケール詰まりを防止しつつ、ガスクーラ6の熱交換効率を更に向上させることができる。
In this case, the direction of the spiral of the ridge 38 is preferably different from the direction of the spiral groove 30, and the ridge 38 of one inner tube 40 is in relation to the ridge 38 of the other inner tube 40. It is preferable that they extend half of the helical pitch and are shifted from each other.
Each of the above-described configurations complicates the internal shape of the outer pipe 26 and further disturbs the flow of tank water, thereby further improving the surface heat transfer of the inner tube 32 or 40. As a result, the outer pipe described above is obtained. The heat exchange efficiency of the gas cooler 6 can be further improved while preventing the clogging of the passage 26 from being scaled.

上述の一実施例及び変形例では、内側管路28は何れも2本の内側チューブからなっているが、内側チューブは3本以上であってもよい。   In the above-described embodiment and modification, the inner conduit 28 is composed of two inner tubes, but there may be three or more inner tubes.

給湯システムを示した概略構成図である。It is a schematic structure figure showing a hot-water supply system. 図1のガスクーラの内部構造の一部を示した図である。It is the figure which showed a part of internal structure of the gas cooler of FIG. 図2の内側チューブの横断面図である。FIG. 3 is a cross-sectional view of the inner tube of FIG. 2. 変形例の外側管路及び内側管路を示した図である。It is the figure which showed the outer side pipe line and the inner side pipe line of the modification.

符号の説明Explanation of symbols

2 ヒートポンプユニット
4 給湯ユニット
6 ガスクーラ
26 外側管路
28 内側管路
30 螺旋溝
32,40 内側チューブ
38 凸条
2 Heat pump unit 4 Hot water supply unit 6 Gas cooler 26 Outer conduit 28 Inner conduit 30 Spiral grooves 32, 40 Inner tube 38 Projection

Claims (6)

ヒートポンプユニットの冷媒循環経路を流れる冷媒と給湯ユニットの貯湯循環経路を流れるタンク水との間にて熱交換を行い、前記タンク水を所定温度に加熱する給湯システムのガスクーラにおいて、
前記ガスクーラは、
前記冷媒が流れる内側管路と、
前記内側管路を囲繞し、前記内側管路の外側に前記タンク水を流す流路を形成する外側管路とを備え、
前記外側管路はその内面に前記内側管路に沿い、前記タンク水の流れ方向に進行する螺旋溝を有し、
前記内側管路は互いに前記タンク水の通過を許容する間隔を存して並列的に延びる複数の内側チューブを含んでいることを特徴とする給湯システムのガスクーラ。
In the gas cooler of the hot water supply system that performs heat exchange between the refrigerant flowing through the refrigerant circulation path of the heat pump unit and the tank water flowing through the hot water storage circulation path of the hot water supply unit, and heating the tank water to a predetermined temperature,
The gas cooler is
An inner conduit through which the refrigerant flows;
An outer conduit that surrounds the inner conduit and forms a flow path for flowing the tank water outside the inner conduit;
The outer conduit has a spiral groove on its inner surface along the inner conduit and traveling in the tank water flow direction,
The gas cooler of a hot water supply system, wherein the inner conduit includes a plurality of inner tubes extending in parallel with each other to allow passage of the tank water.
前記冷媒はCOガスであることを特徴とする請求項1に記載の給湯システムのガスクーラ。 The gas cooler of a hot water supply system according to claim 1, wherein the refrigerant is CO 2 gas. 前記外側管路は螺旋ピッチが互いに異なる複数の領域を含んでいることを特徴とする請求項1又は2に記載の給湯システムのガスクーラ。   The gas cooler of a hot water supply system according to claim 1 or 2, wherein the outer pipe line includes a plurality of regions having different helical pitches. 前記各内側チューブは凹凸状の外周面を有することを特徴とする請求項1〜3の何れかに記載の給湯システムのガスクーラ。   Each said inner tube has an uneven | corrugated outer peripheral surface, The gas cooler of the hot water supply system in any one of Claims 1-3 characterized by the above-mentioned. 前記凹凸状は、前記内側チューブの外周面に沿って延びる螺旋状の凸条により付与されていることを特徴とする請求項4に記載の給湯システムのガスクーラ。   The gas cooler for a hot water supply system according to claim 4, wherein the uneven shape is provided by a spiral protrusion extending along the outer peripheral surface of the inner tube. 前記凸条及び前記螺旋溝の螺旋の向きは互いに異なっていることを特徴とする請求項5に記載の給湯システムのガスクーラ。   The gas cooler of the hot water supply system according to claim 5, wherein directions of the spirals of the ridges and the spiral grooves are different from each other.
JP2006308993A 2006-11-15 2006-11-15 Gas cooler for hot water supply system Pending JP2008122033A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006308993A JP2008122033A (en) 2006-11-15 2006-11-15 Gas cooler for hot water supply system
FR0707998A FR2910116A1 (en) 2006-11-15 2007-11-14 Gas cooler for use in hot water supply system has inner side tubes that comprises inner side pipe line which mutually exist in predetermined interval and extend in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308993A JP2008122033A (en) 2006-11-15 2006-11-15 Gas cooler for hot water supply system

Publications (1)

Publication Number Publication Date
JP2008122033A true JP2008122033A (en) 2008-05-29

Family

ID=39471706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308993A Pending JP2008122033A (en) 2006-11-15 2006-11-15 Gas cooler for hot water supply system

Country Status (2)

Country Link
JP (1) JP2008122033A (en)
FR (1) FR2910116A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249373A (en) * 2009-04-14 2010-11-04 Panasonic Corp Heat exchanger and heat pump water heater using the same
CN112240725A (en) * 2019-07-18 2021-01-19 芜湖美的厨卫电器制造有限公司 Turbulence piece for heat exchange device, heat exchange device with turbulence piece and gas water heater with turbulence piece

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030619A (en) * 2003-07-07 2005-02-03 Hitachi Cable Ltd Double tube, and double tube type heat exchanger using it
JP2005171580A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Heat exchanger and sanitary washing apparatus equipped with it
JP2006046888A (en) * 2004-07-02 2006-02-16 Kobelco & Materials Copper Tube Inc Composite heat exchanger tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030619A (en) * 2003-07-07 2005-02-03 Hitachi Cable Ltd Double tube, and double tube type heat exchanger using it
JP2005171580A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Heat exchanger and sanitary washing apparatus equipped with it
JP2006046888A (en) * 2004-07-02 2006-02-16 Kobelco & Materials Copper Tube Inc Composite heat exchanger tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249373A (en) * 2009-04-14 2010-11-04 Panasonic Corp Heat exchanger and heat pump water heater using the same
CN112240725A (en) * 2019-07-18 2021-01-19 芜湖美的厨卫电器制造有限公司 Turbulence piece for heat exchange device, heat exchange device with turbulence piece and gas water heater with turbulence piece

Also Published As

Publication number Publication date
FR2910116A1 (en) 2008-06-20

Similar Documents

Publication Publication Date Title
KR20040050853A (en) Double-pipe heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
JP2009216309A (en) Heat exchanger
JP2006242553A (en) Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater
JP2008122033A (en) Gas cooler for hot water supply system
JP7199842B2 (en) water heat exchanger, gas cooler
JP2009264644A (en) Heat exchanger
JP2010038429A (en) Heat exchanger
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2007218461A (en) Double tube type heat exchanger
JP2006057998A (en) Heat exchanger
JP2008057860A (en) Heat exchanger
JP2008185297A (en) Heat exchanger for hot water supply
JP2005009832A (en) Double pipe type heat exchanger
JP2007271194A (en) Heat exchanger
JP2008267631A (en) Heat exchanger
JP2006162165A (en) Heat exchanger
JP2010210137A (en) Heat exchanger
JP2016205764A (en) Heat exchanger and heat pump water heater using the same
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP2010032183A (en) Heat exchanger
JP2010255980A (en) Heat exchanger and heat pump water heater using the same
JP2013088045A (en) Heat exchanger and heat pump type water heater using the same
JP2005180791A (en) Double tube type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111109