JP2008185297A - Heat exchanger for hot water supply - Google Patents

Heat exchanger for hot water supply Download PDF

Info

Publication number
JP2008185297A
JP2008185297A JP2007020648A JP2007020648A JP2008185297A JP 2008185297 A JP2008185297 A JP 2008185297A JP 2007020648 A JP2007020648 A JP 2007020648A JP 2007020648 A JP2007020648 A JP 2007020648A JP 2008185297 A JP2008185297 A JP 2008185297A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
hot water
water supply
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007020648A
Other languages
Japanese (ja)
Inventor
Mitsuharu Numata
光春 沼田
Hideji Furui
秀治 古井
Haruo Nakada
春男 中田
Yasuhiko Oka
恭彦 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007020648A priority Critical patent/JP2008185297A/en
Publication of JP2008185297A publication Critical patent/JP2008185297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the performance of a heat exchanger by regulating the flow velocity of a refrigerant upstream and downstream in a refrigerant passage. <P>SOLUTION: The heat exchanger for hot water supply comprises a core tube 1 forming a water passage, and small-diameter tubes 2 joined to the outer periphery of the core tube 1 to form passages for a carbon dioxide gas refrigerant. Tubes are arranged such that the mass velocity of the carbon dioxide gas refrigerant passing through the passages in the small-diameter tubes 2 is higher on the outlet side than the inlet side. Performance is thereby improved considerably in the same refrigerant tubing length (i.e. the tubing length of the small-diameter tubes), and sharp weight reduction can be attained to obtain the same capacity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、給湯用熱交換器に関し、さらに詳しくは炭酸ガスを冷媒として使用する給湯用熱交換器に関するものである。   The present invention relates to a heat exchanger for hot water supply, and more particularly to a heat exchanger for hot water supply that uses carbon dioxide gas as a refrigerant.

給湯用熱交換器としては、水通路を形成する芯管の外周に冷媒(例えば、炭酸ガス)の通路を形成する細管を螺旋状に巻き付けて構成されたもの(即ち、蛇熱交換器)が従来からよく知られている(特許文献1参照)。   As a heat exchanger for hot water supply, a heat exchanger configured by spirally winding a thin tube forming a refrigerant (for example, carbon dioxide gas) passage around an outer periphery of a core tube forming a water passage (that is, a snake heat exchanger). Conventionally well known (see Patent Document 1).

ところで、安価な夜間電力でお湯を沸かす給湯用熱交換器は一過式で用いるため、水の流量が非常に少ない。そのような条件で水を9℃→90℃(冬条件)、17℃→65℃(夏条件)沸かすため、水管長が約10mと長い。この水と熱交換する給湯用熱交換器は、図9に示すように、水通路を形成する芯管1の外周に細管2を2パス配管で巻き付けて構成されていた。この場合、細管2の内径は入口側から出口側に至る間同径とされている。符号3は分流器、4は合流器である。   By the way, since the heat exchanger for hot water supply which boils hot water with cheap nighttime electric power is used in a transient manner, the flow rate of water is very small. Under such conditions, the water pipe length is as long as about 10 m in order to boil water at 9 ° C. → 90 ° C. (winter conditions) and 17 ° C. → 65 ° C. (summer conditions). As shown in FIG. 9, the hot water supply heat exchanger for exchanging heat with water is configured by winding a thin tube 2 around a core tube 1 forming a water passage with a two-pass pipe. In this case, the inside diameter of the narrow tube 2 is the same diameter from the inlet side to the outlet side. Reference numeral 3 is a shunt, and 4 is a junction.

特開2002−364989号公報。Japanese Patent Application Laid-Open No. 2002-364989.

ところが、冷媒として炭酸ガスを超臨界で用いる場合、図10に示すように、同一圧力においても放熱により、温度低下がある。また、配管の圧力損失により圧力が低下した場合、特に40℃〜60℃の付近では同一冷媒温度においてもエンタルピ差が小さくなり、熱交換器としての能力が低下する。この場合、能力をとるためには伝熱管(即ち、細管)を長くするか、性能を向上させる必要があるが、その場合更に圧力損失が大きくなり、同等能力とする場合には長くなる。パス数を多くした場合は圧力損失は小さくなるが、この場合管内の伝熱性能が低下するため、トータルで見ると性能向上は小さい。つまり、パス数が多い(即ち、冷媒循環量が全体として少ない)と圧損が小さくなるとともに温度差が取れるが、熱貫流率も小さいので能力が小さくなる。一方、パス数が少ない(即ち、冷媒循環量が全体として多い)と圧損が大きくなるとともに温度差が小さいため、熱貫流率が大きくても能力は小さくなる。   However, when carbon dioxide is used as a refrigerant in a supercritical state, as shown in FIG. 10, there is a temperature drop due to heat dissipation even at the same pressure. Further, when the pressure is reduced due to the pressure loss of the piping, especially in the vicinity of 40 ° C. to 60 ° C., the enthalpy difference is reduced even at the same refrigerant temperature, and the ability as a heat exchanger is reduced. In this case, in order to obtain the capacity, it is necessary to lengthen the heat transfer tube (that is, the narrow tube) or improve the performance, but in that case, the pressure loss further increases, and in the case of the equivalent capacity, it becomes longer. When the number of passes is increased, the pressure loss is reduced. However, in this case, the heat transfer performance in the pipe is lowered, so that the performance improvement is small when viewed in total. That is, if the number of passes is large (that is, the refrigerant circulation amount is small as a whole), the pressure loss is small and a temperature difference can be obtained, but the heat flow rate is also small, so the capacity is small. On the other hand, if the number of passes is small (that is, the refrigerant circulation amount is large as a whole), the pressure loss becomes large and the temperature difference is small, so that the capacity becomes small even if the heat transmissivity is large.

ところで、超臨界炭酸ガスの特徴として、
(1) 温度が20℃付近と低い場合、圧力が多少下がってもエンタルピの変化は小さい(図10におけるP1→P2参照)。従って、圧損を大きくしても、伝熱性能を上げれば性能が上がる。
(2) 40℃〜60℃の温度付近では、少しの圧力変化でもエンタルピが大きく変化する(図10におけるP1′→P2′参照)。従って、圧損を付けて性能を上げるよりも、圧損を小さくして温度差を利用する方が性能が上がる。
By the way, as a feature of supercritical carbon dioxide,
(1) When the temperature is as low as about 20 ° C., the change in enthalpy is small even when the pressure is somewhat reduced (see P1 → P2 in FIG. 10). Therefore, even if the pressure loss is increased, the performance is improved if the heat transfer performance is increased.
(2) In the vicinity of a temperature of 40 ° C. to 60 ° C., the enthalpy changes greatly even with a slight pressure change (see P1 ′ → P2 ′ in FIG. 10). Accordingly, the performance is improved by using the temperature difference by reducing the pressure loss, rather than increasing the performance by adding pressure loss.

本願発明は、上記の点に鑑みてなされたもので、冷媒の流速を冷媒通路における上流側と下流側で調整することにより、熱交換器の性能向上を図ることを目的としている。   This invention is made | formed in view of said point, and aims at improving the performance of a heat exchanger by adjusting the flow velocity of a refrigerant | coolant by the upstream and downstream in a refrigerant path.

本願発明では、上記課題を解決するための第1の手段として、水通路を形成する芯管1と、該芯管1の外周に接合されて炭酸ガス冷媒の通路を形成する細管2とからなる給湯用熱交換器において、前記細管2内の通路を流通する炭酸ガス冷媒の質量速度が入口側より出口側で大きくなるような配管構成としている。   In the present invention, as a first means for solving the above-mentioned problems, it comprises a core tube 1 that forms a water passage, and a narrow tube 2 that is joined to the outer periphery of the core tube 1 and forms a passage for carbon dioxide refrigerant. The hot water supply heat exchanger has a piping configuration in which the mass velocity of the carbon dioxide refrigerant flowing through the passage in the narrow tube 2 is larger on the outlet side than on the inlet side.

上記のように構成したことにより、細管2内を流通する炭酸ガス冷媒の質量速度が入口側より出口側で大きくなる。従って、同一冷媒配管長(即ち、細管の配管長)においては大幅に性能が向上するし、同一の能力を得るためには、大幅な軽量化を図ることができる。   By configuring as described above, the mass velocity of the carbon dioxide refrigerant flowing through the narrow tube 2 becomes larger on the outlet side than on the inlet side. Therefore, in the same refrigerant pipe length (that is, the pipe length of the narrow pipe), the performance is greatly improved, and in order to obtain the same capability, a significant weight reduction can be achieved.

本願発明では、さらに、上記課題を解決するための第2の手段として、上記第1の手段を備えた給湯用熱交換器において、前記細管2のパス数を、冷媒入口側より冷媒出口側の方が少なくなるように設定することもでき、そのように構成した場合、細管2のパス数を最適化するだけで、炭酸ガス冷媒の質量速度が入口側より出口側で大きくできることとなり、低コストで熱交換器の性能向上を図ることができる。   In the present invention, as a second means for solving the above-described problem, in the hot water supply heat exchanger provided with the first means, the number of passes of the thin tubes 2 is changed from the refrigerant inlet side to the refrigerant outlet side. In such a configuration, the mass velocity of the carbon dioxide refrigerant can be increased from the inlet side to the outlet side only by optimizing the number of passes of the narrow tube 2, and the cost can be reduced. Thus, the performance of the heat exchanger can be improved.

本願発明では、さらに、上記課題を解決するための第3の手段として、上記第1又は第2の手段を備えた給湯用熱交換器において、前記細管2の内径を、冷媒出口側より冷媒入口側の方が小さくなるように設定することもでき、そのように構成した場合、細管2の内径を最適化するだけで、炭酸ガス冷媒の質量速度が入口側より出口側で大きくできることとなり、低コストで熱交換器の性能向上を図ることができる。   In the present invention, as a third means for solving the above-mentioned problems, in the hot water supply heat exchanger provided with the first or second means, the inner diameter of the narrow tube 2 is changed from the refrigerant outlet side to the refrigerant inlet side. It can also be set so that the side becomes smaller. In such a configuration, the mass velocity of the carbon dioxide refrigerant can be increased from the inlet side to the outlet side only by optimizing the inner diameter of the thin tube 2, and the low The performance of the heat exchanger can be improved at a low cost.

本願発明の第1の手段によれば、水通路を形成する芯管1と、該芯管1の外周に接合されて炭酸ガス冷媒の通路を形成する細管2とからなる給湯用熱交換器において、前記細管2内の通路を流通する炭酸ガス冷媒の質量速度が入口側より出口側で大きくなるような配管構成としたので、同一冷媒配管長(即ち、細管の配管長)においては大幅に性能が向上するし、同一の能力を得るためには、大幅な軽量化を図ることができるという効果がある。   According to the first means of the present invention, in the heat exchanger for hot water supply comprising the core tube 1 forming the water passage and the narrow tube 2 joined to the outer periphery of the core tube 1 to form the carbon dioxide refrigerant passage. Since the pipe configuration is such that the mass velocity of the carbon dioxide refrigerant flowing through the passage in the narrow tube 2 is larger on the outlet side than on the inlet side, performance is greatly improved with the same refrigerant pipe length (that is, the pipe length of the narrow tube) In order to obtain the same ability, there is an effect that significant weight reduction can be achieved.

本願発明の第2の手段におけるように、上記第1の手段を備えた給湯用熱交換器において、前記細管2のパス数を、冷媒入口側より冷媒出口側の方が少なくなるように設定することもでき、そのように構成した場合、細管2のパス数を最適化するだけで、炭酸ガス冷媒の質量速度が入口側より出口側で大きくできることとなり、低コストで熱交換器の性能向上を図ることができる。   As in the second means of the present invention, in the hot water supply heat exchanger provided with the first means, the number of passes of the narrow tube 2 is set so that the refrigerant outlet side is smaller than the refrigerant inlet side. In such a configuration, the mass velocity of the carbon dioxide refrigerant can be increased from the inlet side to the outlet side only by optimizing the number of passes of the narrow tube 2, and the performance of the heat exchanger can be improved at low cost. Can be planned.

本願発明の第3の手段におけるように、上記第1又は第2の手段を備えた給湯用熱交換器において、前記細管2の内径を、冷媒出口側より冷媒入口側の方が小さくなるように設定することもでき、そのように構成した場合、細管2の内径を最適化するだけで、炭酸ガス冷媒の質量速度が入口側より出口側で大きくできることとなり、低コストで熱交換器の性能向上を図ることができる。   As in the third means of the present invention, in the hot water supply heat exchanger provided with the first or second means, the inner diameter of the narrow tube 2 is made smaller on the refrigerant inlet side than on the refrigerant outlet side. In such a configuration, the mass velocity of the carbon dioxide refrigerant can be increased from the inlet side to the outlet side simply by optimizing the inner diameter of the narrow tube 2, and the performance of the heat exchanger can be improved at low cost. Can be achieved.

以下、添付の図面を参照して、本願発明を幾つかの好適な実施の形態について説明する。   The preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

第1の実施の形態
この給湯用熱交換器は、図1に示すように、水通路を形成する芯管1と、該芯管1の外周に接合されて炭酸ガス冷媒の通路を形成する細管2とによって構成されており、細管2は、芯管1の入口側(即ち、前半部分)においては4パスにて芯管1の外周に螺旋状に巻き付けられ、芯管1の出口側(即ち、後半部分)においては2パスにて芯管1の外周に螺旋状に巻き付けられている。本実施の形態の場合、4パスである入口側(即ち、前半部分)における細管2aの内径と、2パスである出口側(即ち、後半部分)における細管2bの内径とは同径とされている。符号3は分流器、4は合流器である。
First Embodiment As shown in FIG. 1, the heat exchanger for hot water supply includes a core tube 1 that forms a water passage, and a thin tube that is joined to the outer periphery of the core tube 1 to form a passage for carbon dioxide gas refrigerant. The thin tube 2 is spirally wound around the outer periphery of the core tube 1 in four passes on the inlet side (that is, the first half portion) of the core tube 1, and the outlet side of the core tube 1 (i.e., the first half portion). In the second half part), the outer periphery of the core tube 1 is spirally wound in two passes. In the case of the present embodiment, the inner diameter of the narrow tube 2a on the inlet side (ie, the first half portion) that is four passes and the inner diameter of the narrow tube 2b on the outlet side (ie, the second half portion) that is two passes are the same diameter. Yes. Reference numeral 3 is a shunt, and 4 is a junction.

上記のように構成したことにより、細管2内を流通する炭酸ガス冷媒の質量速度が入口側より出口側で大きくなる。従って、同一冷媒配管長(即ち、細管の配管長)においては大幅に性能が向上するし、同一の能力を得るためには、大幅な軽量化を図ることができる。   By configuring as described above, the mass velocity of the carbon dioxide refrigerant flowing through the narrow tube 2 becomes larger on the outlet side than on the inlet side. Therefore, in the same refrigerant pipe length (that is, the pipe length of the narrow pipe), the performance is greatly improved, and in order to obtain the same capability, a significant weight reduction can be achieved.

ここで、一例として水管長9mとし、4.5m+4.5mでパス数を4パス→2パスに変更したもの(細実線図示)と、全て2パスの場合(点線図示)および全て4パスの場合(太実線図示)とについて冷媒圧力、冷媒温度、熱貫流率および水の温度の変化を調べた結果を図2〜図5に示す。また、図6には、炭酸ガス冷媒におけるエンタルピ−圧力特性図を示し、図7には、図6における要部拡大図を示している。   Here, as an example, the water pipe length is 9m, the number of passes is changed from 4.5m + 4.5m from 4 passes to 2 passes (thin solid line shown), all 2 passes (dotted line shown), and all 4 passes 2 to 5 show the results of examining changes in refrigerant pressure, refrigerant temperature, heat transmissivity, and water temperature (shown in bold solid lines). 6 shows an enthalpy-pressure characteristic diagram of the carbon dioxide refrigerant, and FIG. 7 shows an enlarged view of the main part in FIG.

上記結果によれば、2パスは圧力損失が大きく、温度低下が早い。また、同一冷媒温度になる長さを計ると、2パスでは3.5mの位置であり、4パスあるいは4パス→2パスでは4.5mの位置となる。従って、0〜3.5mまでの熱貫流率が2パスでは大きくても(図4参照)冷媒温度が低く温度差が小さいため能力は小さい。   According to the above result, the pressure loss in the second pass is large and the temperature drop is fast. Further, when the length of the same refrigerant temperature is measured, the position is 3.5 m in 2 passes, and the position is 4.5 m in 4 passes or 4 passes → 2 passes. Therefore, even if the heat transmissivity from 0 to 3.5 m is large in two passes (see FIG. 4), the capacity is small because the refrigerant temperature is low and the temperature difference is small.

4→2パスは水の入口側(9→4.5mの2パスの部位)では熱貫流率が大きいので、4パスと同一冷媒温度でも、水側の温度は上昇する(図5参照)。出口側(4.5→0mの部位)では熱貫流率は4パスと同等(図4参照)であるが、水温が既に上昇しているため、最終的に能力が大きくなる。   The 4 → 2 pass has a large heat transmissivity on the water inlet side (9 → 4.5 m 2 pass portion), so the water side temperature rises even at the same refrigerant temperature as the 4 pass (see FIG. 5). On the outlet side (4.5 → 0 m), the heat flow rate is equivalent to 4 passes (see FIG. 4), but the water temperature has already risen, so the capacity finally increases.

第2の実施の形態
図8には、本願発明の第2の実施の形態にかかる給湯用熱交換器が示されている。
Second Embodiment FIG. 8 shows a heat exchanger for hot water supply according to a second embodiment of the present invention.

この場合、給湯用熱交換器は、従来技術の項において開示したものと同様の構造(即ち、細管2の全体が2パス)とされているが、入口側(即ち、前半部分)における細管2aの内径より出口側(即ち、後半部分)における細管2bの内径の方が小さくされている。例えば、細管2aの内径を5mmとすれば、細管2bの内径を4mmとする。符号5はパイプ接続部材である。   In this case, the hot water supply heat exchanger has the same structure as that disclosed in the section of the prior art (that is, the entire narrow tube 2 has two paths), but the narrow tube 2a on the inlet side (that is, the first half). The inner diameter of the narrow tube 2b on the outlet side (that is, the latter half) is made smaller than the inner diameter of the tube. For example, if the inner diameter of the thin tube 2a is 5 mm, the inner diameter of the thin tube 2b is 4 mm. Reference numeral 5 denotes a pipe connecting member.

上記のように構成したことにより、細管2内を流通する炭酸ガス冷媒の質量速度が入口側より出口側で大きくなる。従って、同一冷媒配管長(即ち、細管の配管長)においては大幅に性能が向上するし、同一の能力を得るためには、大幅な軽量化を図ることができる。   By configuring as described above, the mass velocity of the carbon dioxide refrigerant flowing through the narrow tube 2 becomes larger on the outlet side than on the inlet side. Therefore, in the same refrigerant pipe length (that is, the pipe length of the narrow pipe), the performance is greatly improved, and in order to obtain the same capability, a significant weight reduction can be achieved.

第3の実施の形態
この場合、給湯用熱交換器は、第1の実施の形態において開示したもの(図1参照)と同様の構造(即ち、細管2の前半部分が4パス、後半部分が2パス)とされているが、入口側(即ち、前半部分)における細管2aの内径より出口側(即ち、後半部分)における細管2bの内径の方が小さくされている。例えば、細管2aの内径を5mmとすれば、細管2bの内径を4mmとする。
Third Embodiment In this case, the heat exchanger for hot water supply has the same structure as that disclosed in the first embodiment (see FIG. 1) (that is, the first half of the thin tube 2 has four passes and the second half has However, the inner diameter of the narrow tube 2b on the outlet side (that is, the second half portion) is smaller than the inner diameter of the narrow tube 2a on the inlet side (that is, the first half portion). For example, if the inner diameter of the thin tube 2a is 5 mm, the inner diameter of the thin tube 2b is 4 mm.

上記のように構成したことにより、細管2内を流通する炭酸ガス冷媒の質量速度が入口側より出口側でより一層大きくなる。従って、同一冷媒配管長(即ち、細管の配管長)においては大幅に性能が向上するし、同一の能力を得るためには、大幅な軽量化を図ることができる。その他の構成および作用効果は、第1の実施の形態におけると同様なので、説明を省略する。   By configuring as described above, the mass velocity of the carbon dioxide refrigerant flowing through the narrow tube 2 is further increased on the outlet side than on the inlet side. Therefore, in the same refrigerant pipe length (that is, the pipe length of the narrow pipe), the performance is greatly improved, and in order to obtain the same capability, a significant weight reduction can be achieved. Other configurations and operational effects are the same as those in the first embodiment, and thus description thereof is omitted.

上記各実施の形態においては、細管を芯管の外周に螺旋状に巻き付けたものについて説明したが、本願発明は、細管を芯管の外周において軸心と平行に沿わせたものにも適用可能である。   In each of the above embodiments, the thin tube is spirally wound around the outer periphery of the core tube has been described. However, the present invention can also be applied to a thin tube that is aligned along the axis of the outer periphery of the core tube. It is.

本願発明は、上記各実施の形態に限定されるものではなく、発明の要旨を逸脱しない範囲において適宜設計変更可能なことは勿論である。   The invention of the present application is not limited to the above-described embodiments, and it goes without saying that the design can be changed as appropriate without departing from the scope of the invention.

本願発明の第1の実施の形態にかかる給湯用熱交換器の要部を示す斜視図である。It is a perspective view which shows the principal part of the heat exchanger for hot water supply concerning 1st Embodiment of this invention. 本願発明の第1の実施の形態にかかる給湯用熱交換器(細実線図示)と、全て2パスの場合(点線図示)および全て4パスの場合(太実線図示)とについて冷媒圧力の変化を示す特性図である。Changes in the refrigerant pressure for the hot water supply heat exchanger according to the first embodiment of the present invention (thin solid line shown), all in the case of two passes (dotted line shown), and in the case of all four passes (thick solid line shown). FIG. 本願発明の第1の実施の形態にかかる給湯用熱交換器(細実線図示)と、全て2パスの場合(点線図示)および全て4パスの場合(太実線図示)とについて冷媒温度の変化を示す特性図である。Changes in refrigerant temperature for the heat exchanger for hot water supply according to the first embodiment of the present invention (shown by thin solid line), and in the case of all two passes (shown by dotted lines) and in the case of all four passes (shown by thick solid lines). FIG. 本願発明の第1の実施の形態にかかる給湯用熱交換器(細実線図示)と、全て2パスの場合(点線図示)および全て4パスの場合(太実線図示)とについて熱貫流率の変化を示す特性図である。Changes in the heat transmissibility for the hot water supply heat exchanger according to the first embodiment of the present invention (shown by a thin solid line) and all cases of two passes (shown by dotted lines) and all four passes (shown by thick solid lines) FIG. 本願発明の第1の実施の形態にかかる給湯用熱交換器(細実線図示)と、全て2パスの場合(点線図示)および全て4パスの場合(太実線図示)とについて水の温度の変化を示す特性図である。Changes in water temperature for the hot water supply heat exchanger according to the first embodiment of the present invention (shown by thin solid line), and in the case of all 2 passes (shown by dotted lines) and in the case of all 4 passes (shown by thick solid lines) FIG. 炭酸ガス冷媒におけるエンタルピ−圧力特性図を示している。The enthalpy pressure characteristic figure in a carbon dioxide refrigerant is shown. 図6における要部拡大図である。It is a principal part enlarged view in FIG. 本願発明の第2の実施の形態にかかる給湯用熱交換器の要部を示す斜視図である。It is a perspective view which shows the principal part of the heat exchanger for hot water supply concerning 2nd Embodiment of this invention. 従来の給湯用熱交換器の要部を示す斜視図である。It is a perspective view which shows the principal part of the conventional heat exchanger for hot water supply. 炭酸ガス冷媒におけるエンタルピ−圧力特性図である。It is an enthalpy pressure characteristic figure in a carbon dioxide refrigerant.

符号の説明Explanation of symbols

1は芯管
2は細管
2aは前半部分
2bは後半部分
1 is the core tube 2 is the narrow tube 2a is the first half 2b is the second half

Claims (3)

水通路を形成する芯管(1)と、該芯管(1)の外周に接合されて炭酸ガス冷媒の通路を形成する細管(2)とからなる給湯用熱交換器であって、前記細管(2)内の通路を流通する炭酸ガス冷媒の質量速度が入口側より出口側で大きくなるような配管構成としたことを特徴とする給湯用熱交換器。 A heat exchanger for hot water supply comprising a core tube (1) that forms a water passage and a thin tube (2) that is joined to the outer periphery of the core tube (1) to form a passage for a carbon dioxide gas refrigerant. (2) A heat exchanger for hot water supply characterized by having a piping configuration in which the mass velocity of the carbon dioxide refrigerant flowing through the inner passage is larger on the outlet side than on the inlet side. 前記細管(2)のパス数を、冷媒入口側より冷媒出口側の方が少なくなるように設定したことを特徴とする給湯用熱交換器。 The hot water supply heat exchanger according to claim 1, wherein the number of passes of the narrow tube (2) is set to be smaller on the refrigerant outlet side than on the refrigerant inlet side. 前記細管(2)の内径を、冷媒出口側より冷媒入口側の方が小さくなるように設定したことを特徴とする請求項1および2のいずれか一項記載の給湯用熱交換器。 The hot water supply heat exchanger according to any one of claims 1 and 2, wherein an inner diameter of the narrow tube (2) is set to be smaller on a refrigerant inlet side than on a refrigerant outlet side.
JP2007020648A 2007-01-31 2007-01-31 Heat exchanger for hot water supply Pending JP2008185297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020648A JP2008185297A (en) 2007-01-31 2007-01-31 Heat exchanger for hot water supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020648A JP2008185297A (en) 2007-01-31 2007-01-31 Heat exchanger for hot water supply

Publications (1)

Publication Number Publication Date
JP2008185297A true JP2008185297A (en) 2008-08-14

Family

ID=39728463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020648A Pending JP2008185297A (en) 2007-01-31 2007-01-31 Heat exchanger for hot water supply

Country Status (1)

Country Link
JP (1) JP2008185297A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168383A (en) * 2008-01-18 2009-07-30 Hitachi Appliances Inc Heat exchanger and heat pump type water heater using the same
JP2012180982A (en) * 2011-03-02 2012-09-20 Panasonic Corp Heat exchanger, and heat pump water heater using the same
JP2012247180A (en) * 2012-08-10 2012-12-13 Hitachi Appliances Inc Heat exchanger
JP2013120027A (en) * 2011-12-08 2013-06-17 Panasonic Corp Double pipe type heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168383A (en) * 2008-01-18 2009-07-30 Hitachi Appliances Inc Heat exchanger and heat pump type water heater using the same
JP2012180982A (en) * 2011-03-02 2012-09-20 Panasonic Corp Heat exchanger, and heat pump water heater using the same
JP2013120027A (en) * 2011-12-08 2013-06-17 Panasonic Corp Double pipe type heat exchanger
JP2012247180A (en) * 2012-08-10 2012-12-13 Hitachi Appliances Inc Heat exchanger

Similar Documents

Publication Publication Date Title
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
JP2014062724A (en) Multiple pipe type heat exchanger
JP2006317096A (en) Heat exchanger for electric water heater
JP2006322643A (en) Heat exchanger
JP2008185297A (en) Heat exchanger for hot water supply
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
CN201242373Y (en) Composite casing tube double helix heat exchanger
JP2009216309A (en) Heat exchanger
JP2005083667A (en) Heat exchanger
JP4063237B2 (en) Heat exchange device and heat pump water heater using the same
JP2008075929A (en) Refrigerator
JP4572662B2 (en) Heat exchanger
JP2005221172A (en) Heat exchanger for supplying hot water
JP2007147221A (en) Heat exchanger with fin
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP4414199B2 (en) Double tube heat exchanger
JP2006057998A (en) Heat exchanger
JP5548957B2 (en) Heat exchanger and heat pump water heater using the same
JP2008249163A (en) Heat exchanger for supplying hot water
JP4713562B2 (en) Heat exchanger and heat pump water heater using the same
JP2007218461A (en) Double tube type heat exchanger
JP2005061771A (en) Heat exchanger
JP2006162165A (en) Heat exchanger
JP2003343995A (en) Heat transfer tube
JP2005147567A (en) Double pipe type heat exchanger