JP5548957B2 - Heat exchanger and heat pump water heater using the same - Google Patents

Heat exchanger and heat pump water heater using the same Download PDF

Info

Publication number
JP5548957B2
JP5548957B2 JP2011044642A JP2011044642A JP5548957B2 JP 5548957 B2 JP5548957 B2 JP 5548957B2 JP 2011044642 A JP2011044642 A JP 2011044642A JP 2011044642 A JP2011044642 A JP 2011044642A JP 5548957 B2 JP5548957 B2 JP 5548957B2
Authority
JP
Japan
Prior art keywords
refrigerant
water
pipe
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011044642A
Other languages
Japanese (ja)
Other versions
JP2012180982A (en
Inventor
和彦 町田
智朗 安藤
治 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2011044642A priority Critical patent/JP5548957B2/en
Publication of JP2012180982A publication Critical patent/JP2012180982A/en
Application granted granted Critical
Publication of JP5548957B2 publication Critical patent/JP5548957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、空調装置、給湯装置等の機器に用いられ、特にヒートポンプ式の給湯機等のように、水等の流体と冷媒等の二種の流体を熱交換させるための熱交換器に関するものである。   The present invention relates to a heat exchanger for exchanging heat between a fluid such as water and two kinds of fluids such as a refrigerant, such as a heat pump type hot water heater, etc., used in equipment such as an air conditioner and a hot water heater. It is.

従来、この種の熱交換器としては、水流路を構成する水管と、冷媒流路を構成する冷媒管とからなり、水流路を流れる水と冷媒流路を流れる冷媒とを熱交換する二重管式タイプの熱交換器が考案されている(例えば、特許文献1参照)。   Conventionally, this type of heat exchanger is composed of a water pipe that constitutes a water flow path and a refrigerant pipe that constitutes a refrigerant flow path, and is a dual type that exchanges heat between water flowing through the water flow path and refrigerant flowing through the refrigerant flow path. A pipe-type heat exchanger has been devised (see, for example, Patent Document 1).

図8は、特許文献1に記載された従来の熱交換器の概略図であり、図9は同文献に記載された従来の熱交換器の二重管の軸方向断面図を示すものである。   FIG. 8 is a schematic view of a conventional heat exchanger described in Patent Document 1, and FIG. 9 is an axial sectional view of a double tube of the conventional heat exchanger described in the same document. .

図8と図9に示すように、この熱交換器101は、複数の二重管102a、102bを渦巻状に形成したものを連接した二重管式の熱交換器であり、二重管102a、102bは内部を冷媒流路103とする冷媒管104と、冷媒管104を内挿して冷媒管104の外壁との間に水流路105を形成した水管106からなる。冷媒流路103と水流路105は対向して流れており、この結果、熱交換効率を高めることができる。   As shown in FIGS. 8 and 9, the heat exchanger 101 is a double-tube heat exchanger in which a plurality of double tubes 102a and 102b formed in a spiral shape are connected, and the double tube 102a , 102b includes a refrigerant pipe 104 having a refrigerant flow path 103 therein, and a water pipe 106 in which a water flow path 105 is formed between the refrigerant pipe 104 and the outer wall of the refrigerant pipe 104. The refrigerant flow path 103 and the water flow path 105 are opposed to each other. As a result, the heat exchange efficiency can be improved.

そして、冷媒管104は、冷媒流路103の入口側(高温部と呼ぶ)に配置した2本の高温部冷媒管104aと、冷媒流路103の出口側(低温部と呼ぶ)に併設した4本の低温部冷媒管104bを、途中、冷媒用ヘッダ107を介して、順次連接して形成されている。   The refrigerant pipe 104 is provided with two high temperature part refrigerant pipes 104a arranged on the inlet side (referred to as a high temperature part) of the refrigerant flow path 103 and 4 on the outlet side (referred to as a low temperature part) of the refrigerant flow path 103. The low-temperature part refrigerant pipes 104b are sequentially connected to each other through the refrigerant header 107 on the way.

また、高温部冷媒管104aを内包する水管径は、低温部冷媒管104bを内包する水管径よりも拡径されている。   In addition, the diameter of the water pipe that encloses the high temperature part refrigerant pipe 104a is larger than the diameter of the water pipe that encloses the low temperature part refrigerant pipe 104b.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

熱交換器101は、冷媒流路103を流れる冷媒と水流路105を流れる水とが、冷媒管104aを介して熱交換されるようになっている。   The heat exchanger 101 is configured such that heat is exchanged between the refrigerant flowing through the refrigerant flow path 103 and the water flowing through the water flow path 105 via the refrigerant pipe 104a.

熱交換器101の高温部に配置された水管106は、低温部に配置された水管よりも拡径されているので、析出したスケール成分により管内を閉塞させることはない。   Since the water pipe 106 arranged in the high temperature part of the heat exchanger 101 has a larger diameter than the water pipe arranged in the low temperature part, the inside of the pipe is not blocked by the deposited scale component.

熱交換性能面では、高温部に配置された水管106の水管径が低温部よりも拡径されているので水側伝熱促進が弱くなるが、高温部の水管106の本数を低温部よりも少なくすることで、水流速の低下を回避し水側の伝熱促進効果を保っている。   In terms of heat exchanging performance, the water pipe diameter of the water pipe 106 arranged in the high temperature part is larger than that in the low temperature part, so that water-side heat transfer promotion is weakened, but the number of water pipes 106 in the high temperature part is less than that in the low temperature part. As a result, the decrease in water flow rate is avoided and the heat transfer promotion effect on the water side is maintained.

特開2005−147566号公報JP 2005-147466 A

しかしながら、前記従来における構成では、冷媒流路103の入口側、つまり高温部に配置した高温冷媒管104aの本数は、冷媒流路103の出口側、つまり低温部に配置した低温冷媒管の本数よりも少ないため、高温であることと冷媒流路断面積が小さいことの
両方の影響により高温部の冷媒流速が過度に大きくなり、高温部の冷媒圧力損失が増大し冷媒圧力と冷媒温度が低下してしまう。
However, in the conventional configuration, the number of the high-temperature refrigerant pipes 104a arranged on the inlet side of the refrigerant flow path 103, that is, the high-temperature part is larger than the number of the low-temperature refrigerant pipes arranged on the outlet side of the refrigerant flow path 103, that is, the low-temperature part. Therefore, due to both the high temperature and the small refrigerant flow area, the refrigerant flow rate in the high temperature part becomes excessively large, the refrigerant pressure loss in the high temperature part increases, and the refrigerant pressure and the refrigerant temperature decrease. End up.

その結果、冷媒と水との温度差が減少することなり、高温部での熱交換能力が低下するという課題があった。   As a result, the temperature difference between the refrigerant and water is reduced, and there is a problem that the heat exchange capability in the high temperature part is lowered.

一方、低温部においても、低温部冷媒管の本数が高温部冷媒管よりも多いため、低温部冷媒管の冷媒流速が小さく伝熱促進が弱くなるという課題も有していた。   On the other hand, since there are more low temperature part refrigerant pipes in the low temperature part than in the high temperature part refrigerant pipe, the refrigerant flow rate in the low temperature part refrigerant pipe is small and heat transfer promotion is weak.

本発明は、上記従来の課題を解決するもので、熱交換器の冷媒流路の圧力損失と熱伝達率のバランスの最適化を実現する熱交換器を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a heat exchanger that realizes optimization of the balance between the pressure loss and the heat transfer coefficient of the refrigerant flow path of the heat exchanger.

上記従来の課題を解決するために、本発明の熱交換器は、水流路を構成する水管と、内部が冷媒流路を構成する冷媒管とを有し2本の前記冷媒管が前記水管に内挿されて二重管が構成され、前記水流路は、2本の前記冷媒管の外壁と前記水管の内壁との間に形成され、冷媒用ヘッダと水用ヘッダとを介して連接する複数の前記二重管が渦巻状に巻かれて形成され、前記水流路を流れる水と前記冷媒流路を流れる冷媒とを熱交換する二重管式の熱交換器において、前記冷媒と前記水とは対向して流れる構成であり、前記冷媒管は、前記冷媒用ヘッダよりも前記冷媒流路の上流側である高温部冷媒管と、前記冷媒用ヘッダよりも前記冷媒流路の下流側である低温部冷媒管からなり、前記高温部冷媒管の本数N1および長さL1と、前記低温部冷媒管の本数N2および長さL2とした時、N1が4、N2が2で、かつ(数1)で定義された平均パス数Nが、1.2ないし1.5未満の範囲であることを特徴とするものである。 In order to solve the above-described conventional problems, the heat exchanger of the present invention has a water pipe that forms a water flow path and a refrigerant pipe that forms a refrigerant flow path inside , and the two refrigerant pipes are the water pipes. A double pipe is formed, and the water flow path is formed between the outer wall of the two refrigerant pipes and the inner wall of the water pipe, and is connected via the refrigerant header and the water header. In the double-tube type heat exchanger formed by winding a plurality of the double pipes in a spiral shape and exchanging heat between the water flowing through the water flow path and the refrigerant flowing through the refrigerant flow path, the refrigerant and the water and a configuration which flows opposite, the refrigerant pipe, and the high temperature section refrigerant pipe than the refrigerant header is the upstream side of the refrigerant passage, downstream of the refrigerant flow path than the refrigerant header A low-temperature part refrigerant pipe, the number N1 and the length L1 of the high-temperature part refrigerant pipe, When the number of medium pipes is N2 and the length is L2, N1 is 4, N2 is 2 , and the average number of paths N defined in (Equation 1) is within the range of 1.2 to less than 1.5. It is characterized by.

この構成によって、冷媒圧力損失が熱交換能力に与える影響が顕著な高温部冷媒管において冷媒圧力損失の増加を最小限に抑え、冷媒流速が熱交換能力に与える影響が顕著な低温部冷媒管において冷媒流速の低下を抑えることとなり、熱交換器全体の冷媒圧力損失と熱伝達率のバランスを最適することができ、熱交換器の小型軽量化が図れる。   This configuration minimizes the increase in refrigerant pressure loss in the high-temperature section refrigerant pipe where the effect of refrigerant pressure loss on the heat exchange capacity is remarkable, and in the low-temperature section refrigerant pipe where the influence of the refrigerant flow rate on the heat exchange capacity is remarkable. The reduction in the refrigerant flow rate is suppressed, and the balance between the refrigerant pressure loss and the heat transfer coefficient of the entire heat exchanger can be optimized, and the heat exchanger can be reduced in size and weight.

本発明によれば、熱交換器の冷媒流路の圧力損失と熱伝達率のバランスの最適化を実現する熱交換器を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat exchanger which implement | achieves optimization of the balance of the pressure loss and heat transfer coefficient of the refrigerant flow path of a heat exchanger can be provided.

本発明の実施の形態1における熱交換器の概略図Schematic of the heat exchanger in Embodiment 1 of the present invention 同熱交換器の高温部二重管と低温部二重管の軸方向断面図Axial cross-sectional view of the high-temperature section double pipe and low-temperature section double pipe 同熱交換器の平均パス数と冷媒圧力損失の関係を示した図Diagram showing the relationship between the average number of passes and the refrigerant pressure loss of the heat exchanger 同熱交換器の平均パス数が1.3の場合の冷媒エンタルピhと冷媒温度Tの関係を示した図The figure which showed the relationship between the refrigerant | coolant enthalpy h and the refrigerant | coolant temperature T in case the average path | pass number of the same heat exchanger is 1.3 同熱交換器の平均パス数とピンチ温度部の冷媒温度を示した図The figure which showed the average number of passes of the heat exchanger, and the refrigerant temperature of the pinch temperature part 同熱交換器の平均パス数と冷媒と水の温度差の関係を示した図Figure showing the relationship between the average number of passes of the heat exchanger and the temperature difference between the refrigerant and water 同熱交換器の平均パス数と熱交換能力比の関係を示した図A diagram showing the relationship between the average number of passes and the heat exchange capacity ratio of the heat exchanger 従来の熱交換器の概略図Schematic diagram of conventional heat exchanger 従来の熱交換器の二重管の軸方向断面図Axial sectional view of a double pipe of a conventional heat exchanger

第1の発明は、水流路を構成する水管と、内部が冷媒流路を構成する冷媒管とを有し2本の前記冷媒管が前記水管に内挿されて二重管が構成され、前記水流路は、2本の前記冷媒管の外壁と前記水管の内壁との間に形成され、冷媒用ヘッダと水用ヘッダとを介して
連接する複数の前記二重管が渦巻状に巻かれて形成され、前記水流路を流れる水と前記冷媒流路を流れる冷媒とを熱交換する二重管式の熱交換器において、前記冷媒と前記水とは対向して流れる構成であり、前記冷媒管は、前記冷媒用ヘッダよりも前記冷媒流路の上流側である高温部冷媒管と、前記冷媒用ヘッダよりも前記冷媒流路の下流側である低温部冷媒管からなり、前記高温部冷媒管の本数N1および長さL1と、前記低温部冷媒管の本数N2および長さL2とした時、N1が4、N2が2で、かつ(数1)で定義された平均パス数Nが、1.2ないし1.5未満の範囲であることを特徴とするものである。
A first aspect of the present invention is a water pipe constituting the water flow path, inside and a refrigerant pipe constituting the refrigerant flow path, the double tube the refrigerant tubes 2 is being inserted into the said water tubes are configured and The water flow path is formed between the outer wall of the two refrigerant pipes and the inner wall of the water pipe, and passes through the refrigerant header and the water header.
A plurality of the double pipe which connects is formed coiled, and a refrigerant flowing through the water and the refrigerant flow path flowing through the water passage in the double-pipe heat exchanger for exchanging heat, and the refrigerant the water and has a configuration which flows opposite, the refrigerant pipe, and the high temperature section refrigerant pipe than the refrigerant header is the upstream side of the refrigerant passage, downstream of the refrigerant flow path than the refrigerant header And the number N1 and the length L1 of the high-temperature part refrigerant pipes, and the number N2 and the length L2 of the low-temperature part refrigerant pipes, N1 is 4, N2 is 2 , and The average path number N defined by (Equation 1) is in the range of 1.2 to less than 1.5 .

これにより、冷媒圧力損失が熱交換能力に与える影響が顕著な高温部冷媒管において冷媒圧力損失の増加を最小限に抑え、冷媒流速が熱交換能力に与える影響が顕著な低温部冷媒管において冷媒流速の低下を抑えることとなり、熱交換器全体の冷媒圧力損失と熱伝達率のバランスを最適化することができ、熱交換器の小型軽量化が図れる。   This minimizes the increase in refrigerant pressure loss in the high-temperature section refrigerant pipe where the effect of the refrigerant pressure loss on the heat exchange capacity is remarkable, and the refrigerant in the low-temperature section refrigerant pipe where the influence of the refrigerant flow rate on the heat exchange capacity is remarkable. The reduction in the flow velocity is suppressed, the balance between the refrigerant pressure loss and the heat transfer coefficient of the entire heat exchanger can be optimized, and the heat exchanger can be reduced in size and weight.

第2の発明は、第1の発明の熱交換器を搭載し、前記冷媒を二酸化炭素としたヒートポンプ給湯機である。   A second invention is a heat pump water heater equipped with the heat exchanger of the first invention and using the carbon dioxide as the refrigerant.

これにより、当該熱交換器を、ヒートポンプ式給湯機用として、水と冷媒の間で熱交換を行う熱交換器として用いた場合、前記二酸化炭素は超臨界状態で動作し、フロン系の冷媒に比して密度が高い状態で作動するため、高いヒートポンプ効率を得ることができる。   As a result, when the heat exchanger is used for a heat pump type hot water heater as a heat exchanger that performs heat exchange between water and refrigerant, the carbon dioxide operates in a supercritical state, and becomes a fluorocarbon refrigerant. Compared with the high density operation, high heat pump efficiency can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器の概略図である。図2は、同熱交換器の高温部二重管と低温部二重管の軸方向断面図である。
(Embodiment 1)
FIG. 1 is a schematic diagram of a heat exchanger according to Embodiment 1 of the present invention. FIG. 2 is an axial cross-sectional view of the high-temperature section double pipe and the low-temperature section double pipe of the heat exchanger.

図1と図2において、熱交換器1は、複数の二重管2a、2bを渦巻状に形成したものを連接した二重管式の熱交換器であり、二重管2a、2bは内部を冷媒流路3とする冷媒管4と、冷媒管4を2本内挿して冷媒管4の外壁との間に水流路5を形成した水管6からなる。冷媒流路3と水流路5は対向して流れており、この結果、熱交換効率を高めることができる。   1 and 2, the heat exchanger 1 is a double-pipe heat exchanger in which a plurality of double tubes 2a and 2b formed in a spiral shape are connected, and the double tubes 2a and 2b are internal. Is composed of a refrigerant pipe 4 having a refrigerant flow path 3 and a water pipe 6 in which two refrigerant pipes 4 are inserted and a water flow path 5 is formed between the outer wall of the refrigerant pipe 4. The refrigerant flow path 3 and the water flow path 5 are opposed to each other. As a result, the heat exchange efficiency can be increased.

そして、冷媒管4は、冷媒流路3の入口側(高温部Hと呼ぶ)に配置した4本の高温部冷媒管4aと、冷媒流路3の出口側(低温部Cと呼ぶ)に併設した2本の低温部冷媒管4bを、途中、冷媒用ヘッダ7を介して、順次連接して形成されている。
本実施の形態では、冷媒用ヘッダ7より冷媒流路3の上流を高温部H、下流側を低温部Cと定義し、冷媒管4は冷媒流路3の上流側である高温部冷媒管4aと下流側である低温部冷媒管4bからなっている。
The refrigerant pipe 4 is provided with four high-temperature part refrigerant pipes 4 a arranged on the inlet side (referred to as the high temperature part H) of the refrigerant flow path 3 and on the outlet side (referred to as the low temperature part C) of the refrigerant flow path 3. The two low-temperature part refrigerant pipes 4b are sequentially connected to each other through the refrigerant header 7 in the middle.
In the present embodiment, the upstream side of the refrigerant flow path 3 from the refrigerant header 7 is defined as the high temperature part H, and the downstream side is defined as the low temperature part C, and the refrigerant pipe 4 is the high temperature part refrigerant pipe 4a upstream of the refrigerant flow path 3. And a low-temperature part refrigerant pipe 4b on the downstream side.

高温部冷媒管4aの本数N1および長さL1と、低温部冷媒管4bの本数N2および長さL2とした時、N1>N2の関係(本実施の形態ではN1が4本、N2が2本とする)で、かつ、(式1)で定義された平均パス数Nが、1.05ないし1.68の範囲に、好ましくは、1.2ないし1.5の範囲に設けられている。但し、(式1)において分母にN2を加えているのは、N2≧1とするためである。   When the number N1 and the length L1 of the high-temperature part refrigerant pipe 4a and the number N2 and the length L2 of the low-temperature part refrigerant pipe 4b are set, N1> N2 (in this embodiment, N1 is four and N2 is two And the average path number N defined in (Equation 1) is in the range of 1.05 to 1.68, preferably in the range of 1.2 to 1.5. However, the reason why N2 is added to the denominator in (Expression 1) is that N2 ≧ 1.

また、冷媒流路3と水流路5は対向して流れる構成であり、冷媒流路3は冷媒入口9aから流入し冷媒出口9bから流出し、冷媒流路3は水入り口10aから流入し水出口10bから流出する。   Further, the refrigerant flow path 3 and the water flow path 5 are configured to flow in opposition, the refrigerant flow path 3 flows in from the refrigerant inlet 9a and flows out from the refrigerant outlet 9b, and the refrigerant flow path 3 flows in from the water inlet 10a and flows out of the water outlet. It flows out from 10b.

以上のように構成された熱交換器について、以下その動作を説明する。   The operation of the heat exchanger configured as described above will be described below.

熱交換器1は、冷媒流路3を流れる冷媒(例えば二酸化炭素)と水流路5を流れる水が、冷媒管4を介して熱交換されるようになっている。   In the heat exchanger 1, the refrigerant (for example, carbon dioxide) flowing through the refrigerant flow path 3 and the water flowing through the water flow path 5 are heat-exchanged via the refrigerant pipe 4.

熱交換器1をヒートポンプ式給湯機用の水と冷媒の間で熱交換を行う熱交換器として用いた場合、二酸化炭素は超臨界状態で動作し、フロン系の冷媒に比して密度が高い状態で作動するため、高いヒートポンプ効率を得ることができる。   When the heat exchanger 1 is used as a heat exchanger for exchanging heat between water and refrigerant for a heat pump type hot water heater, carbon dioxide operates in a supercritical state and has a higher density than a chlorofluorocarbon refrigerant. Since it operates in a state, high heat pump efficiency can be obtained.

熱交換器1の熱交換能力Qを効率的に高めるためには、冷媒熱伝達率αと冷媒圧力損失DPをそれぞれ最適に作用させることが重要である。   In order to efficiently increase the heat exchange capability Q of the heat exchanger 1, it is important that the refrigerant heat transfer coefficient α and the refrigerant pressure loss DP are optimally acted respectively.

冷媒熱伝達率αを高めるためには、例えば冷媒流路3の流路断面積を小さくして冷媒速度を増加させる方法があるが、同時に冷媒圧力損失DPも増大してしまう。   In order to increase the refrigerant heat transfer coefficient α, for example, there is a method of increasing the refrigerant speed by reducing the cross-sectional area of the refrigerant flow path 3, but at the same time, the refrigerant pressure loss DP is also increased.

この冷媒圧力損失DPが大きいと冷媒温度Trが小さくなり、冷媒と水との温度差DTが小さくなるため、冷媒熱伝達率αを増加させたとしても熱交換能力Qは向上せず好ましくない。   If the refrigerant pressure loss DP is large, the refrigerant temperature Tr becomes small, and the temperature difference DT between the refrigerant and water becomes small. Therefore, even if the refrigerant heat transfer coefficient α is increased, the heat exchange capability Q is not improved, which is not preferable.

これと逆に、冷媒流路3の流路断面積を大きくして冷媒流速を減速させて冷媒圧力損失DPを小さくする方法もあるが、冷媒熱伝達率αが低下してしまう。   On the contrary, there is a method in which the refrigerant pressure loss DP is reduced by increasing the flow path cross-sectional area of the refrigerant flow path 3 to reduce the refrigerant flow rate, but the refrigerant heat transfer coefficient α is lowered.

この様に、冷媒熱伝達率αを必要量維持させながら、同時に冷媒圧力損失DPを低減させるような冷媒熱伝達率αと冷媒圧力損失DPのバランスの最適化こそが、熱交換能力Qを効率的に高めるポイントと言える。   Thus, the optimization of the balance between the refrigerant heat transfer coefficient α and the refrigerant pressure loss DP that reduces the refrigerant pressure loss DP while maintaining the required amount of the refrigerant heat transfer coefficient α at the same time improves the efficiency of the heat exchange capacity Q. It can be said that it is a point to raise.

具体的には高温部冷媒管4aと低温部冷媒管4bの管本数と冷媒管の長さを、それぞれに最適化することにある。   Specifically, the number of the high-temperature part refrigerant pipes 4a and the low-temperature part refrigerant pipes 4b and the length of the refrigerant pipes are optimized.

以下、冷媒管本数と冷媒管の長さを最適化した一例について冷媒に二酸化炭素を用いて説明する。   Hereinafter, an example of optimizing the number of refrigerant tubes and the length of the refrigerant tubes will be described using carbon dioxide as the refrigerant.

本実施の形態では、N1が4本、N2が2本(以後、高温部4本仕様と呼ぶ)であるとし、参考までにN1が2本、N2が4本(以後、高温部2本仕様と呼ぶ)の特性を併記して示す。   In this embodiment, it is assumed that N1 is four and N2 is two (hereinafter referred to as a high temperature part four specification). For reference, N1 is two and N2 is four (hereinafter high temperature part two specifications). The characteristics are also shown.

熱交換器への材料投入量に対する効果をわかりやすくするため、平均パス数NをX軸とする特性図については、材料投入長さS(S=L1×N1+L2×N2)は一定とした。   In order to make it easy to understand the effect on the amount of material input to the heat exchanger, the material input length S (S = L1 × N1 + L2 × N2) is constant in the characteristic diagram with the average number of passes N as the X axis.

図3に平均パス数Nと冷媒圧力損失DPの関係について示す。これによると、材料投入長さSがどれも同じであるにもかかわらず、高温部4本仕様の冷媒圧力損失DPは高温部2本仕様よりも低減されている。   FIG. 3 shows the relationship between the average number of passes N and the refrigerant pressure loss DP. According to this, despite the same material input length S, the refrigerant pressure loss DP of the four high temperature parts specification is reduced compared to the two high temperature part specifications.

これは、冷媒密度が小さく冷媒流速が速くなる高温部においては、高温部2本仕様は冷媒管本数が少ないため、冷媒圧力損失をより大きくしてしまうためである。   This is because, in the high temperature part where the refrigerant density is small and the refrigerant flow rate is high, the specification of the two high temperature parts has a small number of refrigerant pipes, so that the refrigerant pressure loss is increased.

図4には、熱交換器の冷媒エンタルピhと冷媒温度Tの関係を、一例として平均パス数Nが1.3の時について示している。   FIG. 4 shows the relationship between the refrigerant enthalpy h of the heat exchanger and the refrigerant temperature T as an example when the average number of passes N is 1.3.

これによると、高温部4本仕様の冷媒温度Tは、冷媒圧力損失DPが比較的小さいため
、高温部2本仕様よりも高く維持できる。
According to this, the refrigerant temperature T of the high temperature part four specification can be maintained higher than the high temperature part two specification because the refrigerant pressure loss DP is relatively small.

図5には、熱交換器としての平均パス数Nとピンチ温度部(二酸化炭素と水の温度差が最も小さくなるポイント)の冷媒温度Tpの関係について示している。   FIG. 5 shows the relationship between the average number of passes N as a heat exchanger and the refrigerant temperature Tp of the pinch temperature part (the point where the temperature difference between carbon dioxide and water becomes the smallest).

このピンチ温度部の冷媒温度Tpが高ければ高いほど理論熱交換能力が高くなり、熱交換能力の向上に有利になる。   The higher the refrigerant temperature Tp in the pinch temperature part, the higher the theoretical heat exchange capacity, which is advantageous for improving the heat exchange capacity.

この図によると、高温部4本仕様の冷媒温度Tpは高温部2本仕様よりも高く、特に平均パス数Nが1.2ないし1.7の範囲が顕著であり効果的である。   According to this figure, the refrigerant temperature Tp of the specification with four high-temperature parts is higher than that of the specification with two high-temperature parts.

図6には、平均パス数Nと冷媒と水の温度差DT(熱交換器の平均)の関係について示している。これによると、高温部4本仕様の冷媒と水の温度差DTは、高温部2本仕様よりも高く維持できており、特に平均パス数Nが1.1ないし1.8の範囲が顕著である。   FIG. 6 shows the relationship between the average number of passes N and the temperature difference DT of the refrigerant and water (average of the heat exchanger). According to this, the temperature difference DT between the refrigerant and water having the specification of four high-temperature parts can be maintained higher than that of the specification of two high-temperature parts. is there.

図7には、平均パス数Nと、N=2のときの熱交換能力を100%としたときをベースとする熱交換能力の比(熱交換能力比Qと呼ぶ)の関係について示している。   FIG. 7 shows the relationship between the average number of passes N and the ratio of heat exchange capacities based on the heat exchange capability when N = 2 as 100% (referred to as heat exchange capability ratio Q). .

これによると、高温部4本仕様の熱交換能力比Qは高温部2本仕様よりも高く維持できており、特に平均パス数Nが1.05ないし1.68の範囲において熱交換能力比Qを効率的に高めている。   According to this, the heat exchange capacity ratio Q of the specification with four high-temperature parts can be maintained higher than that of the specification with two high-temperature parts. Is increasing efficiently.

以上のように、冷媒流路3の上流側は冷媒圧力損失DPの影響を受けやすくなるため、冷媒流路3の流路断面積を大きくして冷媒流速を低くするほうが効果的である一方、冷媒流路3の下流側は冷媒圧力損失DPの影響は小さいので冷媒流路3の流路断面積を小さくして冷媒流速を速くして冷媒熱伝達率αを大きくするほうが効果的である。   As described above, since the upstream side of the refrigerant flow path 3 is easily affected by the refrigerant pressure loss DP, it is more effective to increase the cross-sectional area of the refrigerant flow path 3 and lower the refrigerant flow velocity. Since the downstream side of the refrigerant flow path 3 is less affected by the refrigerant pressure loss DP, it is more effective to increase the refrigerant heat transfer coefficient α by decreasing the flow path cross-sectional area of the refrigerant flow path 3 and increasing the refrigerant flow velocity.

さらに、(式1)で定義された平均パス数Nが、1.05ないし1.68の範囲に、好ましくは、1.2ないし1.5の範囲に設けることで、高温部Hと低温部Cのそれぞれの冷媒熱伝達率αと冷媒圧力損失DPのバランスを最適化せしめ、熱交換能力比Qを効率的に高めることができる。   Further, the average path number N defined by (Equation 1) is in the range of 1.05 to 1.68, preferably in the range of 1.2 to 1.5, so that the high temperature part H and the low temperature part By optimizing the balance between the refrigerant heat transfer coefficient α and the refrigerant pressure loss DP of C, the heat exchange capacity ratio Q can be efficiently increased.

よって、熱交換器の軽量化が図れ、コストパフォーマンスに優れた熱交換器を提供することができる。
特に、ヒートポンプ式給湯機用の水・冷媒熱交換器として用いた場合には、高いヒートポンプ効率を得ることができる。
Therefore, the heat exchanger can be reduced in weight and a heat exchanger excellent in cost performance can be provided.
In particular, when used as a water / refrigerant heat exchanger for a heat pump type hot water heater, high heat pump efficiency can be obtained.

また、低温部の二重管2bが1本であることに対し、高温部の二重管2aが2本のため水流路断面積が拡大され、スケール成分により管内を閉塞させることもない。   Further, since the number of the double pipes 2b in the low temperature part is one, the number of the double pipes 2a in the high temperature part is two, so that the cross-sectional area of the water channel is enlarged, and the inside of the pipe is not blocked by the scale component.

このように、本実施の形態1における熱交換器1は、水流路5を構成する水管6と、冷媒流路3を構成する冷媒管4とからなり、水流路5を流れる水と冷媒流路3を流れる冷媒とを熱交換するものであって、冷媒管4は冷媒流路3の上流側である高温部冷媒管4aと下流側である低温部冷媒管4bからなり、高温部冷媒管4aの本数N1および長さL1と、低温部冷媒管4bの本数N2および長さL2とした時、N1>N2の関係で、かつ、(数1)で定義された平均パス数Nが、1.05ないし1.68の範囲に設けられている。   As described above, the heat exchanger 1 according to the first embodiment includes the water pipe 6 constituting the water flow path 5 and the refrigerant pipe 4 constituting the refrigerant flow path 3, and the water and the refrigerant flow path flowing through the water flow path 5. The refrigerant pipe 4 includes a high-temperature part refrigerant pipe 4a on the upstream side of the refrigerant flow path 3 and a low-temperature part refrigerant pipe 4b on the downstream side, and the high-temperature part refrigerant pipe 4a. N1 and length L1, and the number N2 and length L2 of the low-temperature part refrigerant tubes 4b, the relationship of N1> N2 and the average number of passes N defined by (Equation 1) are 1. It is provided in the range of 05 to 1.68.

このため、冷媒圧力損失DPが熱交換能力に与える影響が顕著な高温部冷媒管4aにおいて冷媒圧力損失DPの増加を最小限に抑え、かつ冷媒流速の熱交換能力に与える影響が顕著な低温部冷媒管4bでは冷媒流速の低下を抑えることとなり、熱交換器1全体の冷媒
圧力損失DPと熱伝達率αのバランスを最適化することができ、熱交換器1の小型軽量化が図れる。
For this reason, in the high temperature part refrigerant pipe 4a in which the influence of the refrigerant pressure loss DP on the heat exchange capability is remarkable, an increase in the refrigerant pressure loss DP is minimized, and the low temperature part in which the influence of the refrigerant flow rate on the heat exchange ability is remarkable. The refrigerant pipe 4b suppresses the decrease in the refrigerant flow velocity, and the balance between the refrigerant pressure loss DP and the heat transfer coefficient α of the entire heat exchanger 1 can be optimized, and the heat exchanger 1 can be reduced in size and weight.

そして、高温部冷媒管4aと低温部冷媒管4bからなる冷媒管4を水管6の内に配設することにより、伝熱面がすべて水と接するため、冷媒からの熱を水に効率良く伝えることができ、熱交換器1の重量に対する熱交換能力の比を最大限に引き出すことができる。   Then, by disposing the refrigerant pipe 4 composed of the high-temperature part refrigerant pipe 4a and the low-temperature part refrigerant pipe 4b in the water pipe 6, all the heat transfer surfaces are in contact with water, so that the heat from the refrigerant is efficiently transferred to the water. The ratio of the heat exchange capacity to the weight of the heat exchanger 1 can be maximized.

さらに、冷媒を特に二酸化炭素とし、熱交換器1をヒートポンプ式給湯機用として水と冷媒の間で熱交換を行う熱交換器として用いた場合、二酸化炭素は超臨界状態で動作しフロン系の冷媒に比して密度が高い状態で作動するため、高いヒートポンプ効率を得ることができる。   Furthermore, when the refrigerant is carbon dioxide in particular and the heat exchanger 1 is used for a heat pump type hot water heater as a heat exchanger for exchanging heat between water and the refrigerant, the carbon dioxide operates in a supercritical state and is a fluorocarbon-based one. Since it operates in a state where the density is higher than that of the refrigerant, high heat pump efficiency can be obtained.

尚、本発明の実施の形態1では、水管6内に配置する高温部冷媒管4aと低温部冷媒管4bの本数をそれぞれ4本、2本としているが、それ以上の本数とすることもでき、同様の作用効果を期待することができる。   In the first embodiment of the present invention, the number of the high-temperature part refrigerant pipes 4a and the low-temperature part refrigerant pipes 4b arranged in the water pipe 6 is four and two, respectively. A similar effect can be expected.

さらに、本発明の実施の形態1において、水管6、冷媒管4を銅製としたが、少なくともいずれか一方を真鍮、ステンレス、耐食性を持った鉄、アルミ合金等を材料として構成しても、同様の作用効果が期待できる。   Furthermore, in the first embodiment of the present invention, the water pipe 6 and the refrigerant pipe 4 are made of copper. However, even if at least one of them is made of brass, stainless steel, corrosion-resistant iron, aluminum alloy, or the like, it is the same. Can be expected.

また、本発明の実施の形態1では、冷媒管4を流れる冷媒を二酸化炭素としたが、ハイドロカーボン系やHFC系(R410A等)の冷媒、あるいはこれらの代替冷媒とすることも同様の作用効果が期待できる。   In the first embodiment of the present invention, the refrigerant flowing through the refrigerant pipe 4 is carbon dioxide. However, it is also possible to use a hydrocarbon-based or HFC-based (such as R410A) refrigerant, or an alternative refrigerant thereof. Can be expected.

以上のように、本発明にかかる熱交換器は、管長を長くして内管の伝熱面積を増加させることなく、熱交換器の熱交換能力を向上させることができるもので、二酸化炭素を用いた超臨界ヒートポンプ式給湯機や、暖房用ブラインを加熱する超臨界ヒートポンプ装置、さらには、家庭用、業務用の空気調和機、あるいはヒートポンプによる乾燥機能を具備した洗濯乾燥機、穀物貯蔵倉庫等のヒートポンプ機器の他に、燃料電池等の熱交換用途にも適用できる。   As described above, the heat exchanger according to the present invention can improve the heat exchange capability of the heat exchanger without increasing the heat transfer area of the inner tube by increasing the tube length. Supercritical heat pump water heater used, supercritical heat pump device for heating brine for heating, air conditioner for home use and business use, washing dryer with drying function by heat pump, grain storage warehouse, etc. In addition to the heat pump device, it can be applied to heat exchange applications such as fuel cells.

1 熱交換器
3 冷媒流路
4 冷媒管
4a 高温部冷媒管
4b 低温部冷媒管
5 水流路
6 水管
水用ヘッダ
H 高温部
C 低温部
N 平均パス数
L1 高温部冷媒管の長さ
L2 低温部冷媒管の長さ
N1 高温部冷媒管の本数
N2 低温部冷媒管の本数
DESCRIPTION OF SYMBOLS 1 Heat exchanger 3 Refrigerant flow path 4 Refrigerant pipe 4a High temperature part refrigerant pipe 4b Low temperature part refrigerant pipe 5 Water flow path 6 Water pipe
8 Water header H High temperature part C Low temperature part N Average number of passes L1 Length of high temperature part refrigerant pipe L2 Length of low temperature part refrigerant pipe N1 Number of high temperature part refrigerant pipes N2 Number of low temperature part refrigerant pipes

Claims (2)

水流路を構成する水管と、内部が冷媒流路を構成する冷媒管とを有し
2本の前記冷媒管が前記水管に内挿されて二重管が構成され、
前記水流路は、2本の前記冷媒管の外壁と前記水管の内壁との間に形成され、
冷媒用ヘッダと水用ヘッダとを介して連接する複数の前記二重管が渦巻状に巻かれて形成され、前記水流路を流れる水と前記冷媒流路を流れる冷媒とを熱交換する二重管式の熱交換器において、
前記冷媒と前記水とは対向して流れる構成であり、
前記冷媒管は、前記冷媒用ヘッダよりも前記冷媒流路の上流側である高温部冷媒管と、前記冷媒用ヘッダよりも前記冷媒流路の下流側である低温部冷媒管からなり、
前記高温部冷媒管の本数N1および長さL1と、前記低温部冷媒管の本数N2および長さL2とした時、N1が4、N2が2で、かつ
で定義された平均パス数Nが、1.2ないし1.5未満の範囲であることを特徴とする熱交換器。
A water pipe constituting the water flow path, and a refrigerant pipe internal constitutes a refrigerant flow path,
Two refrigerant pipes are inserted into the water pipe to form a double pipe,
The water flow path is formed between the outer wall of the two refrigerant tubes and the inner wall of the water tube,
A plurality of the double pipe which connects via a header for coolant header and water is formed coiled, double the refrigerant heat exchanger through the water and the refrigerant flow path flowing through the water flow path In tubular heat exchangers,
The refrigerant and the water are configured to flow opposite to each other,
The refrigerant pipe, and the high temperature section refrigerant pipe on the upstream side of the refrigerant passage than the coolant header, made from the low temperature portion the refrigerant pipe on the downstream side of the refrigerant passage than the coolant header,
When the number N1 and the length L1 of the high-temperature part refrigerant pipes and the number N2 and the length L2 of the low-temperature part refrigerant pipes, N1 is 4, N2 is 2 , and
A heat exchanger characterized in that the average number of passes N defined in (1) is in the range of 1.2 to less than 1.5 .
前記請求項1に記載の熱交換器を搭載し、前記冷媒を二酸化炭素としたヒートポンプ給湯機。
A heat pump water heater equipped with the heat exchanger according to claim 1 and using carbon dioxide as the refrigerant.
JP2011044642A 2011-03-02 2011-03-02 Heat exchanger and heat pump water heater using the same Active JP5548957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011044642A JP5548957B2 (en) 2011-03-02 2011-03-02 Heat exchanger and heat pump water heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011044642A JP5548957B2 (en) 2011-03-02 2011-03-02 Heat exchanger and heat pump water heater using the same

Publications (2)

Publication Number Publication Date
JP2012180982A JP2012180982A (en) 2012-09-20
JP5548957B2 true JP5548957B2 (en) 2014-07-16

Family

ID=47012325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011044642A Active JP5548957B2 (en) 2011-03-02 2011-03-02 Heat exchanger and heat pump water heater using the same

Country Status (1)

Country Link
JP (1) JP5548957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120027A (en) * 2011-12-08 2013-06-17 Panasonic Corp Double pipe type heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034662A (en) * 2013-08-08 2015-02-19 サンデン株式会社 Heat exchanger
CN105020942B (en) * 2015-06-26 2017-12-22 浙江青风环境股份有限公司 A kind of more package full-liquid type heat exchangers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185297A (en) * 2007-01-31 2008-08-14 Daikin Ind Ltd Heat exchanger for hot water supply
JP2010139101A (en) * 2008-12-09 2010-06-24 Sanden Corp Heat exchanger and hot water supply device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120027A (en) * 2011-12-08 2013-06-17 Panasonic Corp Double pipe type heat exchanger

Also Published As

Publication number Publication date
JP2012180982A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
WO2017114107A1 (en) Double-row bent type heat exchanger and manufacturing method therefor
WO2013084508A1 (en) Fin tube-type heat exchanger
JP5548957B2 (en) Heat exchanger and heat pump water heater using the same
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP4572662B2 (en) Heat exchanger
WO2005026638A1 (en) Heat exchanger
JP5785883B2 (en) Heat exchanger and heat pump type water heater using the same
CN110705047B (en) Design calculation method for winding tube type heat exchanger with baffle plate
JP2010038429A (en) Heat exchanger
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP5157617B2 (en) Heat exchanger
JP2009264644A (en) Heat exchanger
JP4414197B2 (en) Double tube heat exchanger
CN105115345A (en) Header pipe, micro channel structure with same, hot water heat exchanger and water heater
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP5533328B2 (en) Heat exchanger
JP2012007773A (en) Heat exchanger
JP4713562B2 (en) Heat exchanger and heat pump water heater using the same
KR100854098B1 (en) A heatexchanger
KR101149725B1 (en) A heat exchanger
JP5531810B2 (en) Heat exchanger
JP2010112565A (en) Heat exchanger
CN112146477A (en) Efficient spiral baffle plate shell-and-tube heat exchanger and heat exchange method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R151 Written notification of patent or utility model registration

Ref document number: 5548957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151