JP5785883B2 - Heat exchanger and heat pump type water heater using the same - Google Patents

Heat exchanger and heat pump type water heater using the same Download PDF

Info

Publication number
JP5785883B2
JP5785883B2 JP2012024638A JP2012024638A JP5785883B2 JP 5785883 B2 JP5785883 B2 JP 5785883B2 JP 2012024638 A JP2012024638 A JP 2012024638A JP 2012024638 A JP2012024638 A JP 2012024638A JP 5785883 B2 JP5785883 B2 JP 5785883B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat
heat exchanger
flow path
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012024638A
Other languages
Japanese (ja)
Other versions
JP2013160479A (en
Inventor
道治 渡部
道治 渡部
榎津 豊
豊 榎津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012024638A priority Critical patent/JP5785883B2/en
Publication of JP2013160479A publication Critical patent/JP2013160479A/en
Application granted granted Critical
Publication of JP5785883B2 publication Critical patent/JP5785883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は熱交換器およびそれを用いたヒートポンプ式給湯機に関する。   The present invention relates to a heat exchanger and a heat pump type water heater using the heat exchanger.

従来、高温の流体を流通させる高温流路と、低温の流体を流通させる低温流路を共にらせん構造とし、高温流路と低温流路を交互に積層した熱交換器が提案されている(特許文献1参照)。また、給湯用熱交換器、膨張弁、蒸発器、圧縮機を冷媒配管で順次接続して構成されるヒートポンプ式給湯機において、らせん状の低温流路の外周に高温流路を巻きつけたものが提案されている(特許文献2参照)。   Conventionally, a heat exchanger has been proposed in which a high-temperature channel for circulating a high-temperature fluid and a low-temperature channel for circulating a low-temperature fluid are both spiral structures, and the high-temperature channel and the low-temperature channel are alternately stacked (patent) Reference 1). In addition, a heat pump type hot water heater constructed by sequentially connecting a heat exchanger for hot water supply, an expansion valve, an evaporator, and a compressor with refrigerant pipes, with a high-temperature channel wrapped around the outer periphery of a helical low-temperature channel Has been proposed (see Patent Document 2).

特開2006−125756号公報JP 2006-125756 A 特開2009−133530号公報JP 2009-133530 A

ところで、らせん状の流路で構成される熱交換器では、流路外側の流速が内側に比べて速くなるため、流路外周面の熱伝達率が他の面に比べて最も高くなる。しかしながら、特許文献1は流路の上下面で熱交換を行うものであって流路外周面を用いておらず、らせん状の熱交換器が本来発揮し得る性能を十分に引き出せない。   By the way, in the heat exchanger comprised of a spiral channel, the flow rate outside the channel is faster than the inside, so that the heat transfer coefficient of the outer peripheral surface of the channel is the highest compared to the other surfaces. However, Patent Document 1 performs heat exchange on the upper and lower surfaces of the flow path and does not use the outer peripheral surface of the flow path, and cannot fully draw out the performance that the spiral heat exchanger can originally exhibit.

また特許文献2の従来技術では、低温流路の外側に高温流路を巻きつけることで、らせん構造の利点である内側流路の外周面の熱伝達率の高さを活用することでき得る。しかし低温流体が流通する内側流路は、らせん径方向の流路幅に比べてらせん高さ方向の流路幅が長くなっており、流路内の2次流れによる伝熱促進効果が充分ではない。   Moreover, in the prior art of patent document 2, the high heat transfer coefficient of the outer peripheral surface of the inner flow path which is the advantage of a helical structure can be utilized by winding a high temperature flow path around the low temperature flow path. However, the inner channel where the low-temperature fluid circulates has a longer channel width in the spiral height direction than the channel width in the spiral diameter direction, and the heat transfer promotion effect by the secondary flow in the channel is not sufficient. Absent.

そこで本発明は、流路断面内の2次流れを促進し、且つ熱伝達率が特に高い部分を熱交換に用いることで、熱交換効率を向上させることができる熱交換器およびそれを用いたヒートポンプ式給湯機を提供することを目的とする。   Therefore, the present invention uses a heat exchanger capable of improving the heat exchange efficiency by promoting a secondary flow in the cross section of the flow path and using a portion having a particularly high heat transfer coefficient for heat exchange, and the heat exchanger. It aims at providing a heat pump type hot water heater.

本発明は、伝熱管を曲げて形成された曲げ部を有し水を流通させる第1の伝熱部と、前記第1の伝熱部と熱交換し冷媒を流通させる第2の伝熱部とを備え、 前記曲げ部は、互いに直交する方向のうち一方向である径方向の流路幅が他方向の流路幅よりも大きい寸法を有し、且つ、前記一方向に沿って対向する伝熱管の管壁部が曲げ部の外側と内側に位置するように構成され、前記外側に位置する管壁部の外側に前記第2の伝熱部が配置されることを特徴とする。
The present invention includes a first heat transfer section that has a bent portion formed by bending a heat transfer tube and distributes water, and a second heat transfer section that exchanges heat with the first heat transfer section and distributes a refrigerant. The bending portion has a dimension in which a radial flow path width which is one direction among directions orthogonal to each other is larger than a flow path width in the other direction, and is opposed along the one direction. The tube wall portion of the heat transfer tube is configured to be positioned outside and inside the bent portion, and the second heat transfer portion is disposed outside the tube wall portion positioned outside.

本発明によれば、流路断面内の2次流れを促進し、且つ熱伝達率が特に高い部分を熱交換に用いることで、熱交換効率を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, heat exchange efficiency can be improved by using the part which accelerates | stimulates the secondary flow in a flow-path cross section, and has especially high heat transfer rate for heat exchange.

本発明の実施形態に係るヒートポンプ式給湯機のシステム図である。1 is a system diagram of a heat pump hot water supply apparatus according to an embodiment of the present invention. 実施例1に係る熱交換器の斜視図である。1 is a perspective view of a heat exchanger according to Embodiment 1. FIG. 実施例1に係る熱交換器の部分断面図である。1 is a partial cross-sectional view of a heat exchanger according to Embodiment 1. FIG. 実施例1に係る熱交換器の部分断面拡大図である。1 is an enlarged partial cross-sectional view of a heat exchanger according to Embodiment 1. FIG. 実施例1に係るらせん構造内の流速分布の模式図である。3 is a schematic diagram of a flow velocity distribution in a spiral structure according to Example 1. FIG. 実施例1に係る内側流路断面内の2次流れの模式図である。FIG. 3 is a schematic diagram of a secondary flow in an inner channel cross section according to the first embodiment. 実施例1に係る内側流路のアスペクト比に対するDean数、流量、交換熱量の関係を示すグラフである。4 is a graph showing the relationship between the Dean number, the flow rate, and the exchange heat amount with respect to the aspect ratio of the inner flow path according to the first embodiment. 実施例2に係る熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger which concerns on Example 2. FIG. 実施例3に係る熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger concerning Example 3. 実施例3に係る内側流路のアスペクト比に対するDean数、流量、交換熱量の関係を示すグラフである。It is a graph which shows the relationship of the Dean number with respect to the aspect-ratio of the inner side flow path which concerns on Example 3, a flow volume, and the amount of exchange heat. 実施例4に係る熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger concerning Example 4. 実施例5に係る熱交換器の部分断面図である。It is a fragmentary sectional view of the heat exchanger concerning Example 5.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に本実施形態に係る熱交換器10を搭載したヒートポンプ式給湯機の構成を示す。熱交換器10の第2の伝熱部2の一端は膨張弁13の入口側へと、膨張弁13の出口側は蒸発器12の入口側へと、蒸発器12の出口側は圧縮機11の吸込側へと、そして圧縮機11の吐出側は熱交換器10の第2の伝熱部2のもう一端へと接続されている。   FIG. 1 shows a configuration of a heat pump type water heater equipped with a heat exchanger 10 according to the present embodiment. One end of the second heat transfer section 2 of the heat exchanger 10 is directed to the inlet side of the expansion valve 13, the outlet side of the expansion valve 13 is directed to the inlet side of the evaporator 12, and the outlet side of the evaporator 12 is the compressor 11. The suction side of the compressor 11 and the discharge side of the compressor 11 are connected to the other end of the second heat transfer section 2 of the heat exchanger 10.

本実施形態のヒートポンプ式給湯機の動作を説明する。ヒートポンプサイクルに封入された冷媒14は圧縮機11で圧縮されて高温・高圧状態になり、熱交換器10の第2の伝熱部2へと流入する。熱交換器10へと流入した冷媒14は第1の伝熱部1を流通する水15に熱を伝え、冷媒14自身は熱を失って熱交換器10から流出する。熱交換器10から流出した冷媒14は膨張弁13を通過することで減圧し、蒸発器12にて外気から熱が加えられた後、再度圧縮機11へと流入する。なお、熱交換器10の第1の伝熱部1内の水15は、冷媒14と対向する方向に流通している。   The operation of the heat pump type water heater of this embodiment will be described. The refrigerant 14 enclosed in the heat pump cycle is compressed by the compressor 11 to be in a high temperature / high pressure state and flows into the second heat transfer section 2 of the heat exchanger 10. The refrigerant 14 that has flowed into the heat exchanger 10 transfers heat to the water 15 that flows through the first heat transfer section 1, and the refrigerant 14 itself loses heat and flows out of the heat exchanger 10. The refrigerant 14 flowing out from the heat exchanger 10 is reduced in pressure by passing through the expansion valve 13, and heat is applied from outside air in the evaporator 12, and then flows into the compressor 11 again. In addition, the water 15 in the first heat transfer unit 1 of the heat exchanger 10 flows in a direction facing the refrigerant 14.

次に、実施例1について図2〜図7に従って説明する。熱交換器10は、図2に示すような外観を有する。そして、図3、図4に示すように、熱交換器10は、伝熱管Tを曲げて形成された曲げ部Rを有する第1の伝熱部1と、前記第1の伝熱部1と熱交換する第2の伝熱部2とを備える。本実施例では、伝熱管Tが全体的に曲げられており、第1の伝熱部1の全体に亘り流れ方向に沿って曲げ部が連続した状態となっている。前記曲げ部Rは、互いに直交する方向のうち一方向の流路幅Wが他方向の流路幅H以上の寸法を有し、且つ、前記一方向に沿って対向する伝熱管Tの管壁部4、5が曲げ部Rの外側と内側に位置するように構成されている。そして、外側に位置する管壁部4の外側に、第2の伝熱部2が配置されている。   Next, Example 1 will be described with reference to FIGS. The heat exchanger 10 has an appearance as shown in FIG. 3 and 4, the heat exchanger 10 includes a first heat transfer unit 1 having a bent portion R formed by bending a heat transfer tube T, and the first heat transfer unit 1. And a second heat transfer section 2 for heat exchange. In the present embodiment, the heat transfer tube T is entirely bent, and the bent portions are continuous along the flow direction over the entire first heat transfer portion 1. The bent portion R has a dimension in which the flow path width W in one direction out of the directions orthogonal to each other is equal to or larger than the flow path width H in the other direction, and the tube wall of the heat transfer tube T facing the one direction. The parts 4 and 5 are configured to be located outside and inside the bent part R. And the 2nd heat-transfer part 2 is arrange | positioned on the outer side of the tube wall part 4 located in an outer side.

また、第1の伝熱部1は、曲げ部Rが複数隣接して配置され、複数隣接して配置される各曲げ部Rの前記外側に位置する管壁部4によって外側伝熱領域Aが構成されている。そして、前記外側伝熱領域Aに前記第2の伝熱部2が配置されている。   Further, the first heat transfer section 1 has a plurality of bent portions R arranged adjacent to each other, and the outer heat transfer region A is formed by the tube wall portion 4 located on the outside of each bent portion R arranged adjacent to the plurality of adjacent heat transferred portions. It is configured. The second heat transfer section 2 is disposed in the outer heat transfer area A.

具体的に説明すると、前記第1の伝熱部1は、らせん状に巻かれた伝熱管Tによって構成される。伝熱管Tをらせん状に巻くと、流れ方向に沿って曲げ部Rが連続する状態となると同時に、各層の同じ周方向位置にある曲げ部Rが高さ方向に沿って隣接する状態となる。即ち、第1の伝熱部1は、伝熱管をらせん状に巻くことで筒状となり、その外周面が外側伝熱領域Aとなる。   If it demonstrates concretely, the said 1st heat-transfer part 1 will be comprised by the heat-transfer tube T wound helically. When the heat transfer tube T is spirally wound, the bent portions R are continuous along the flow direction, and at the same time, the bent portions R at the same circumferential position of each layer are adjacent to each other along the height direction. That is, the 1st heat-transfer part 1 becomes a cylinder shape by winding a heat-transfer tube spirally, and the outer peripheral surface becomes the outer side heat-transfer area | region A.

なお、本実施例では、流路幅Wを与える前記一方向をらせんの径方向とし、流路幅Hを与える前記他方向をらせんの高さ方向としているが、流路幅を決定する方向は、これに限定されず、任意の採り方が可能である。例えば、らせんの径方向と前記一方向又は高さ方向と他方向が一致しているか、傾斜しているかを問わない。   In this embodiment, the one direction that gives the flow path width W is the spiral radial direction, and the other direction that gives the flow path width H is the spiral height direction, but the direction that determines the flow path width is However, the present invention is not limited to this, and an arbitrary method is possible. For example, it does not matter whether the radial direction of the helix and the one direction or the height direction and the other direction are coincident or inclined.

また、この熱交換器10は、らせん状の第1の伝熱部1外周に、第2の伝熱部2をらせん状に巻きつけた構造となっている。従って、第1の伝熱部1の流路を内側流路、第2の伝熱部2の流路を外側流路と呼ぶことができる。第2の伝熱部2の伝熱管は第1の伝熱部1の隣接する2ピッチ分の伝熱管と接触している。即ち、第2の伝熱部2の伝熱管は第1の伝熱部1の2ピッチ分の伝熱管の間に配置されている。第1の伝熱部1の断面は矩形状に形成されている。このようにすれば、熱伝導距離を短くすることができ、伝熱効率を向上させることができる。   In addition, the heat exchanger 10 has a structure in which the second heat transfer section 2 is spirally wound around the outer periphery of the spiral first heat transfer section 1. Therefore, the flow path of the first heat transfer section 1 can be called an inner flow path, and the flow path of the second heat transfer section 2 can be called an outer flow path. The heat transfer tubes of the second heat transfer unit 2 are in contact with adjacent two pitch heat transfer tubes of the first heat transfer unit 1. That is, the heat transfer tubes of the second heat transfer unit 2 are arranged between the heat transfer tubes of two pitches of the first heat transfer unit 1. The cross section of the first heat transfer section 1 is formed in a rectangular shape. If it does in this way, heat conduction distance can be shortened and heat transfer efficiency can be improved.

らせん径方向の流路幅Wと高さ方向の流路幅Hは、2次流れの強さに関係する要素である。図3、図4では、らせん径方向の流路幅Wは高さ方向の流路幅Hの1.25倍となっている。また、第1の伝熱部1と接触する第2の伝熱部2の断面形状は円形である。なお、図3、図4では、流路幅W及び流路幅Hの寸法を流路断面の中心点を通る位置で採っているが、流路幅W及び流路幅Hの寸法は、必ずしも流路断面の中心点3を通る位置で採る必要はない。   The flow path width W in the spiral direction and the flow path width H in the height direction are elements related to the strength of the secondary flow. 3 and 4, the flow path width W in the spiral radial direction is 1.25 times the flow path width H in the height direction. Moreover, the cross-sectional shape of the 2nd heat-transfer part 2 which contacts the 1st heat-transfer part 1 is circular. 3 and 4, the dimensions of the flow path width W and the flow path width H are taken at positions passing through the center point of the flow path cross section, but the dimensions of the flow path width W and the flow path width H are not necessarily limited. It is not necessary to take it at a position passing through the center point 3 of the channel cross section.

図5にらせん状流路内の流速分布を示す。らせん状流路のように旋回する流れ場では、内周側の流速に比べて外周側の流速が速くなるため、流速の高い外周側では内周側に比べて速度勾配および温度勾配が大きくなる。従って、らせん流路の外周面は内周面に比べて熱伝達率が高くなる。   FIG. 5 shows the flow velocity distribution in the spiral channel. In a flow field that swirls like a spiral channel, the flow velocity on the outer peripheral side is faster than the flow velocity on the inner peripheral side, so the velocity gradient and temperature gradient are larger on the outer peripheral side where the flow velocity is higher than on the inner peripheral side. . Therefore, the outer peripheral surface of the spiral channel has a higher heat transfer coefficient than the inner peripheral surface.

図6に第1の伝熱部1の断面内の流れを示す。図5に示したような旋回する流れ場では、運動量保存の法則に従ってらせんの外周側の静圧が内周側の静圧に比べて低くなる。これにより図6に示すような、流路断面の中央部を通過して内周側から外周側へ向かう流れと、流路壁面に沿った外周側から内周側へと向かう流れで構成される渦状の2次流れが発生する。   FIG. 6 shows a flow in the cross section of the first heat transfer section 1. In the swirling flow field as shown in FIG. 5, the static pressure on the outer peripheral side of the helix is lower than the static pressure on the inner peripheral side in accordance with the law of conservation of momentum. Thereby, as shown in FIG. 6, it is composed of a flow from the inner peripheral side to the outer peripheral side through the center of the cross section of the flow path and a flow from the outer peripheral side to the inner peripheral side along the flow path wall surface. A spiral secondary flow is generated.

流路断面内の2次流れによる伝熱促進効果の強さは下記に示すDean数に依存する。   The strength of the heat transfer promotion effect by the secondary flow in the channel cross section depends on the Dean number shown below.

ここで、Reは流路内のレイノルズ数、Wは流路断面のらせん径方向の流路幅、DSPはらせん巻き径である。なお、レイノルズ数は下記のように定義される。 Here, Re is the Reynolds number in the flow path, W is the flow path width in the spiral radial direction of the flow path cross section, and D SP is the spiral winding diameter. The Reynolds number is defined as follows.

ここで、Uは第1の伝熱部1の伝熱管内の平均流速、Dhは水力直径(=4×流路断面積/周長さ)、νは動粘度である。また、矩形断面の水力直径はDh=2WH/(W+H)で表される。 Here, U is the average flow velocity in the heat transfer tube of the first heat transfer section 1, D h is the hydraulic diameter (= 4 × channel cross-sectional area / circumferential length), and ν is the kinematic viscosity. The hydraulic diameter of the rectangular cross section is expressed by D h = 2WH / (W + H).

式(1)からわかる通り、Dean数は流路のらせん径方向の流路幅Wが大きいほど高くなる。ただし、同一の材料使用量で考えた場合、らせん径方向の流路幅Wを大きくすると、その分らせんの高さ方向の流路幅Hが小さくなるため、流路内に水を流すポンプの消費電力が増加し、熱交換器全体としてみた場合に性能が低下してしまう可能性がある。   As can be seen from Equation (1), the Dean number increases as the flow path width W in the spiral diameter direction of the flow path increases. However, when the same material usage is considered, if the flow path width W in the spiral diameter direction is increased, the flow path width H in the height direction of the spiral is reduced accordingly, so that the pump for flowing water into the flow path There is a possibility that the power consumption is increased and the performance is deteriorated when viewed as a whole heat exchanger.

上記に鑑み、流路内の圧力損失を保つ観点から流速Uを一定、材料使用量一定の観点かららせん巻き径DSPおよび流路断面の内周L=2(W+H)を一定とした場合について考える。らせん径方向の流路幅Wとらせん高さ方向の流路幅Hを用いて流路のアスペクト比をC=W/Hと定義すると、流量QとDean数は下記の式で表される。 In view of the above, the case where the flow velocity U is constant from the viewpoint of maintaining the pressure loss in the flow path, and the spiral winding diameter D SP and the inner circumference L = 2 (W + H) of the cross section of the flow path are constant from the viewpoint of constant material usage. Think. If the aspect ratio of the flow path is defined as C = W / H using the flow path width W in the spiral diameter direction and the flow path width H in the spiral height direction, the flow rate Q and the Dean number are expressed by the following equations.

式(3)と(4)をグラフ化したものを図7に示す。横軸は流路断面のアスペクト比、縦軸は流量、Dean数、交換熱量のそれぞれの最大値に対する比率である。   A graph of equations (3) and (4) is shown in FIG. The horizontal axis represents the aspect ratio of the flow path cross section, and the vertical axis represents the ratio of the flow rate, the Dean number, and the exchange heat amount to the maximum values.

流量はアスペクト比が1.0の場合に最大化し、Dean数はアスペクト比が1.5の場合に最大化する。交換熱量は流量と熱伝達率の積であり、さらに熱伝達率はDean数に依存することから、流量とDean数の積は交換熱量に相当する。したがって図7から矩形断面について交換熱量が最大化するアスペクト比は1.25となることがわかる。本実施例ではこれに基づいて、らせん径方向の流路幅Wを高さ方向の流路幅Hの1.25倍としたが、流量が最大化するアスペクト比1.0からDean数が最大化するアスペクト比1.5の範囲であれば十分に性能向上を図ることができる。   The flow rate is maximized when the aspect ratio is 1.0, and the Dean number is maximized when the aspect ratio is 1.5. The exchange heat quantity is a product of the flow rate and the heat transfer coefficient. Further, since the heat transfer coefficient depends on the Dean number, the product of the flow rate and the Dean number corresponds to the exchange heat quantity. Therefore, it can be seen from FIG. 7 that the aspect ratio at which the exchange heat quantity is maximized for the rectangular cross section is 1.25. In this embodiment, the flow path width W in the spiral direction is set to 1.25 times the flow path width H in the height direction based on this, but the Dean number is maximized from the aspect ratio 1.0 that maximizes the flow rate. If the aspect ratio is within the range of 1.5, the performance can be sufficiently improved.

次に、熱交換器10の製造方法について説明する。熱交換器10は、まず円管を矩形状に成形した後にらせん状に巻くことで第1の伝熱部1を形成し、その外周に円管を巻きつけて第2の伝熱部2を形成し、最後に第1の伝熱部1と第2の伝熱部2の伝熱管の接触部をろう材によって接合することで容易に成形できる。   Next, the manufacturing method of the heat exchanger 10 is demonstrated. The heat exchanger 10 is formed by first forming a circular tube into a rectangular shape and then spirally winding it to form the first heat transfer unit 1, and winding the circular tube around the outer periphery to form the second heat transfer unit 2. It forms and finally it can shape | mold easily by joining the contact part of the heat exchanger tube of the 1st heat-transfer part 1 and the 2nd heat-transfer part 2 with a brazing material.

以上のように、本実施例に係る熱交換器10は、従来のものに比べて一定の交換熱量を得るために必要な流路長さを短縮することができる。   As described above, the heat exchanger 10 according to the present embodiment can shorten the flow path length necessary for obtaining a constant amount of exchange heat as compared with the conventional one.

なお、本実施例では第1の伝熱部1を流通する流体を水とし、第2の伝熱部2を流通する流体を冷媒としたが、本実施例の構造は、流体の種類にかかわらず適用可能である。   In this embodiment, the fluid flowing through the first heat transfer section 1 is water, and the fluid flowing through the second heat transfer section 2 is a refrigerant. However, the structure of this embodiment depends on the type of fluid. It is applicable.

本実施例の熱交換器によれば、流路断面内の2次流れを促進し、且つ熱伝達率が特に高い部分を熱交換に用いることで、熱交換効率を向上させることができる。即ち、本実施例の熱交換器によれば、互いに直交する方向の流路幅のうち大きい方の流路幅で対向する伝熱管の管壁部が曲げ部の外側と内側に位置するように構成することで、流路断面内の2次流れを促進することができ、さらに、熱伝達率が特に高い部分である曲げ部の外側に位置する管壁部の外面に第2の伝熱部を配置させることで、熱交換器の性能を十分に活用することができ、熱伝達率を向上させることが可能となる。従って、一定量の交換熱量を得るために必要な流路長さを短縮することが可能となる。   According to the heat exchanger of the present embodiment, the heat exchange efficiency can be improved by accelerating the secondary flow in the cross section of the flow path and using a portion having a particularly high heat transfer coefficient for heat exchange. That is, according to the heat exchanger of the present embodiment, the tube wall portions of the heat transfer tubes facing each other with the larger channel width among the channel widths in the directions orthogonal to each other are positioned outside and inside the bent portion. By configuring, the secondary flow in the cross section of the flow path can be promoted, and further, the second heat transfer section is formed on the outer surface of the tube wall section located outside the bent section, which is a portion having a particularly high heat transfer coefficient. By arranging the above, the performance of the heat exchanger can be fully utilized, and the heat transfer rate can be improved. Therefore, it is possible to shorten the flow path length necessary to obtain a certain amount of exchange heat.

次に、実施例2について図8に従って説明する。なお、他の実施例と共通する構成については説明を省略する。実施例2は実施例1と異なり、第2の伝熱部2の伝熱管を第1の伝熱部1の1ピッチ分の伝熱管と接触させたものになっている。   Next, Example 2 will be described with reference to FIG. Note that description of configurations common to the other embodiments is omitted. The second embodiment is different from the first embodiment in that the heat transfer tubes of the second heat transfer section 2 are brought into contact with the heat transfer tubes of one pitch of the first heat transfer section 1.

ここで、伝熱管をらせん状に形成した場合、流体の温度は厳密には伝熱管の段ごとに異なるため、一方の伝熱部の伝熱管が他方の伝熱部の伝熱管と複数の段に跨って接触すると、段ごとの流体温度が平均化されてしまい、使用方法によっては熱交換効率が低下する場合もあり得る。この点、実施例2の構造とすれば、第1の伝熱部1の伝熱管と第2の伝熱部2の伝熱管とを1ピッチのみで接触するため、熱交換効率の低下を防ぐことが可能となる。   Here, when the heat transfer tube is formed in a spiral shape, the temperature of the fluid is strictly different for each stage of the heat transfer tube. Therefore, the heat transfer tube of one heat transfer unit is connected to the heat transfer tube of the other heat transfer unit and a plurality of stages. If they are in contact with each other, the fluid temperature for each stage is averaged, and the heat exchange efficiency may be lowered depending on the method of use. In this regard, if the structure of the second embodiment is used, the heat transfer tube of the first heat transfer unit 1 and the heat transfer tube of the second heat transfer unit 2 are brought into contact with each other at only one pitch, thereby preventing a decrease in heat exchange efficiency. It becomes possible.

次に、実施例3について図9、図10に従って説明する。なお、他の実施例と共通する構成については説明を省略する。図9に示すとおり本実施例は第1の伝熱部1に断面が円形状の伝熱管を採用した構造である。なお、第1の伝熱部1のアスペクト比が1.0の場合は伝熱管は円管となり、それ以外の場合は楕円管となる。   Next, Example 3 will be described with reference to FIGS. Note that description of configurations common to the other embodiments is omitted. As shown in FIG. 9, this embodiment has a structure in which a heat transfer tube having a circular cross section is adopted for the first heat transfer section 1. In addition, when the aspect ratio of the 1st heat-transfer part 1 is 1.0, a heat-transfer tube becomes a circular tube, and it becomes an elliptical tube otherwise.

本実施例のアスペクト比に対する流量およびDean数の関係を図10に示す。横軸は流路断面のアスペクト比、縦軸はそれぞれの項目の最大値に対する比率である。流量は断面が円形状の場合に最大化し、Dean数はらせん径方向の内径4が高さ方向の内径5の1.31倍の場合に最大化する。従ってアスペクト比を1.0〜1.31の範囲とすれば効率よく交換熱量を得ることができ、特にアスペクト比が1.15の場合に最大の効果が得られる。   FIG. 10 shows the relationship between the flow rate and the Dean number with respect to the aspect ratio of this example. The horizontal axis is the aspect ratio of the channel cross section, and the vertical axis is the ratio of each item to the maximum value. The flow rate is maximized when the cross section is circular, and the Dean number is maximized when the inner diameter 4 in the spiral radial direction is 1.31 times the inner diameter 5 in the height direction. Therefore, if the aspect ratio is in the range of 1.0 to 1.31, the exchange heat quantity can be obtained efficiently, and the maximum effect can be obtained particularly when the aspect ratio is 1.15.

本実施例のような断面円形状の伝熱管を用いた場合、Dean数、流量の絶対値は種々の断面に対して最も高い値となる。したがって、実施例1や2よりもさらに高い性能を得ることが可能である。   When a heat transfer tube having a circular cross section as in the present embodiment is used, the absolute values of the Dean number and flow rate are the highest values for various cross sections. Therefore, it is possible to obtain higher performance than in the first and second embodiments.

次に、実施例4について図11に従って説明する。なお、他の実施例と共通する構成については説明を省略する。本実施例の熱交換器10は、第2の伝熱部2が伝熱管によって構成されるものではなく、第1の伝熱部1の外側に、らせんの高さ方向に沿って流れる流路が形成されている。このようにすれば、第1の伝熱部1と第2の伝熱部2とが熱交換する領域を大きく確保することができる。なお、第2の伝熱部2は、第1の伝熱部1の外周面との間に流路を形成するものであってもよく、内側管と外側管を有する二重管構造を有し、内側管の径方向内側に第1の伝熱部1が配置されるものであっても良い。   Next, Example 4 will be described with reference to FIG. Note that description of configurations common to the other embodiments is omitted. In the heat exchanger 10 of the present embodiment, the second heat transfer section 2 is not configured by a heat transfer tube, and the flow path flows along the height direction of the helix outside the first heat transfer section 1. Is formed. If it does in this way, the area | region where the 1st heat-transfer part 1 and the 2nd heat-transfer part 2 heat-exchange can be ensured large. The second heat transfer section 2 may form a flow path between the outer peripheral surface of the first heat transfer section 1 and has a double tube structure having an inner tube and an outer tube. And the 1st heat-transfer part 1 may be arrange | positioned inside the radial direction of an inner side pipe | tube.

次に、実施例5について図12に従って説明する。なお、他の実施例と共通する構成については説明を省略する。本実施例の熱交換器10は、第2の伝熱部2が第1の伝熱部1の外側においてらせんの高さ方向に沿って配置される伝熱管によって構成される。このようにすれば、第2の伝熱部2の伝熱管をらせん状に巻く手間がかからず、熱交換効率の良い熱交換器を容易に作成することができる。   Next, Example 5 will be described with reference to FIG. Note that description of configurations common to the other embodiments is omitted. The heat exchanger 10 of the present embodiment is configured by a heat transfer tube in which the second heat transfer unit 2 is arranged along the height direction of the helix outside the first heat transfer unit 1. In this way, it is possible to easily create a heat exchanger with good heat exchange efficiency without the need to spirally wind the heat transfer tube of the second heat transfer section 2.

なお、本発明に係る熱交換器は、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。   In addition, the heat exchanger which concerns on this invention is not limited to the structure of the said embodiment, A various change is possible within the range which does not deviate from the meaning of invention.

例えば、上記実施形態では第1の伝熱部1および第2の伝熱部2として円形状または矩形状の断面形状を有する流路を想定しているが、これらを組み合わせたような一部に曲率を持つ断面形状であってもよい。例えば、円弧状部分と直線状部分とが連続した外周形状(いわゆるトラック形状)を有するものであってもよい。また、流路内面は平滑であることを想定しているが、内面に連続的または間欠的な溝や突起を設けた構造であってもよい。さらに、らせん巻き径DSPがらせん構造の積層方向に変化してテーパ状に形成されたものであってもよい。 For example, in the above embodiment, a flow path having a circular or rectangular cross-sectional shape is assumed as the first heat transfer section 1 and the second heat transfer section 2, but some of these are combined. A cross-sectional shape having a curvature may be used. For example, an arcuate portion and a linear portion may have a continuous outer peripheral shape (so-called track shape). In addition, although it is assumed that the inner surface of the flow path is smooth, a structure in which continuous or intermittent grooves and protrusions are provided on the inner surface may be used. Furthermore, the spiral winding diameter D SP may change in the stacking direction of the spiral structure and be formed in a tapered shape.

例えば、上記実施形態では、第1の伝熱部1がらせん状に巻かれるものを例に説明したが、第1の伝熱部は、伝熱管を曲げて形成された曲げ部を有するものであればその形状は特に限定されるものではない。例えば、第1の伝熱部1の全体ではなく一部に曲げ部が設けられ、他部は直線部などの他の形状で構成される構造が考えられる。このような構造であっても、曲げ部の外側に位置する管壁部と前記第2の伝熱部との間の熱交換効率を向上させることができるで効果を奏する。また、第1の伝熱部1の構造に関する他の例としては、例えば、曲げ部の外側又は内側が交互に入れ替わるように蛇行する形状であってもよい。   For example, in the above embodiment, the first heat transfer unit 1 is described as an example in which the first heat transfer unit 1 is spirally wound. However, the first heat transfer unit has a bent portion formed by bending a heat transfer tube. If there is, the shape is not particularly limited. For example, a structure in which a bent portion is provided in a part rather than the entire first heat transfer portion 1 and the other portion is configured in another shape such as a straight portion is conceivable. Even if it is such a structure, there exists an effect because the heat exchange efficiency between the pipe wall part located in the outer side of a bending part and the said 2nd heat-transfer part can be improved. Moreover, as another example regarding the structure of the 1st heat-transfer part 1, the shape which meanders so that the outer side or inner side of a bending part may be replaced alternately may be sufficient, for example.

1 第1の伝熱部
2 第2の伝熱部
3 中心点
4、5 管壁部
10 熱交換器
11 圧縮機
12 蒸発器
13 膨張弁
14 冷媒
15 水
A 外側伝熱領域
SP らせん巻き径
H、W 流路幅
R 曲げ部
T 伝熱管
DESCRIPTION OF SYMBOLS 1 1st heat-transfer part 2 2nd heat-transfer part 3 Center point 4, 5 Tube wall part 10 Heat exchanger 11 Compressor 12 Evaporator 13 Expansion valve 14 Refrigerant 15 Water A Outer heat-transfer area | region DSP spiral winding diameter H, W Channel width R Bend T Heat transfer tube

Claims (8)

伝熱管を曲げて形成された曲げ部を有し水を流通させる第1の伝熱部と、
前記第1の伝熱部と熱交換し冷媒を流通させる第2の伝熱部とを備え、
前記曲げ部は、互いに直交する方向のうち一方向である径方向の流路幅が他方向の流路幅よりも大きい寸法を有し、且つ、前記一方向に沿って対向する伝熱管の管壁部が曲げ部の外側と内側に位置するように構成され、
前記外側に位置する管壁部の外側に前記第2の伝熱部が配置されることを特徴とする熱交換器。
A first heat transfer section having a bent portion formed by bending the heat transfer tube and circulating water;
A second heat transfer section that exchanges heat with the first heat transfer section and distributes the refrigerant;
The bent portion has a dimension in which a radial flow path width, which is one direction among directions orthogonal to each other , is larger than a flow path width in the other direction, and is a tube of a heat transfer tube facing the one direction. The wall part is configured to be located outside and inside the bent part,
The heat exchanger, wherein the second heat transfer unit is disposed outside a tube wall portion located on the outside.
請求項1に記載の熱交換器において、
前記第1の伝熱部は、前記曲げ部が複数隣接して配置され、複数隣接して配置される各曲げ部の前記外側に位置する管壁部によって外側伝熱領域が構成され、
前記外側伝熱領域に前記第2の伝熱部が配置されることを特徴とする熱交換器。
The heat exchanger according to claim 1,
In the first heat transfer portion, a plurality of the bent portions are arranged adjacent to each other, and an outer heat transfer region is configured by a tube wall portion positioned on the outer side of each of the bent portions arranged adjacent to each other.
The heat exchanger, wherein the second heat transfer section is disposed in the outer heat transfer area.
請求項1に記載の熱交換器において、
前記第1の伝熱部は、らせん状に巻かれた伝熱管によって構成されることを特徴とする熱交換器。
The heat exchanger according to claim 1,
The first heat transfer section is constituted by a heat transfer tube wound in a spiral shape.
請求項1に記載の熱交換器において、
前記第1の伝熱部の曲げ部は、前記一方向の流路幅(W)と他方向の流路幅(H)とのアスペクト比(W/H)が、レイノルズ数Reと、伝熱管のらせん巻き径(DSP)を用いて表されるDean数
(Re√(W/DSP))
が最大となる値よりも小さく設定されることを特徴とする熱交換器。
The heat exchanger according to claim 1,
The bent portion of the first heat transfer section has an aspect ratio (W / H) between the channel width (W) in one direction and the channel width (H) in the other direction, the Reynolds number Re, and the heat transfer tube. Dean number (Re√ (W / D SP )) expressed using helical winding diameter (D SP )
Is set to be smaller than the maximum value.
請求項1に記載の熱交換器において、
前記一方向の流路幅は、前記他方向の流路幅の1.25倍の寸法に設定されることを特徴とする熱交換器。
The heat exchanger according to claim 1,
The heat exchanger according to claim 1, wherein the channel width in the one direction is set to a size of 1.25 times the channel width in the other direction.
請求項1に記載の熱交換器において、
前記一方向の流路幅は、前記他方向の流路幅の1.15倍の寸法に設定されることを特徴とする熱交換器。
The heat exchanger according to claim 1,
The heat exchanger according to claim 1, wherein the channel width in the one direction is set to a dimension 1.15 times the channel width in the other direction.
請求項2に記載の熱交換器において、
前記第2の伝熱部は、らせん状に巻かれた伝熱管によって構成され、前記第1の伝熱部の曲げ部の外周側に接触させて配置されることを特徴とする熱交換器。
The heat exchanger according to claim 2,
The second heat transfer part is constituted by a heat transfer tube wound in a spiral shape, and is arranged in contact with the outer peripheral side of the bent part of the first heat transfer part.
請求項1に記載の熱交換器と、前記熱交換器に流入する冷媒を圧縮する圧縮機と、前記熱交換器から排出された前記冷媒を膨張させる膨張機構と、前記膨張機構から排出された前記冷媒と外気とを熱交換させる蒸発器とを備え、
前記熱交換器の第1の伝熱部に水を流通させ、第2の伝熱部に冷媒を流通させることを特徴とするヒートポンプ式給湯機。
The heat exchanger according to claim 1, a compressor that compresses a refrigerant flowing into the heat exchanger, an expansion mechanism that expands the refrigerant discharged from the heat exchanger, and an exhaust mechanism that is discharged from the expansion mechanism An evaporator for exchanging heat between the refrigerant and outside air,
A heat pump type hot water heater characterized in that water flows through the first heat transfer section of the heat exchanger and refrigerant flows through the second heat transfer section.
JP2012024638A 2012-02-08 2012-02-08 Heat exchanger and heat pump type water heater using the same Active JP5785883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012024638A JP5785883B2 (en) 2012-02-08 2012-02-08 Heat exchanger and heat pump type water heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012024638A JP5785883B2 (en) 2012-02-08 2012-02-08 Heat exchanger and heat pump type water heater using the same

Publications (2)

Publication Number Publication Date
JP2013160479A JP2013160479A (en) 2013-08-19
JP5785883B2 true JP5785883B2 (en) 2015-09-30

Family

ID=49172868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012024638A Active JP5785883B2 (en) 2012-02-08 2012-02-08 Heat exchanger and heat pump type water heater using the same

Country Status (1)

Country Link
JP (1) JP5785883B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6280420B2 (en) * 2014-04-04 2018-02-14 日立アプライアンス株式会社 Heat exchanger and heat pump type heating device using the same
JP6687022B2 (en) * 2015-04-28 2020-04-22 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
WO2019087311A1 (en) * 2017-10-31 2019-05-09 学校法人上智学院 Heat radiation device
JP7141379B2 (en) * 2019-10-08 2022-09-22 株式会社ユタカ技研 Double pipe and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567943A (en) * 1984-07-05 1986-02-04 Air Products And Chemicals, Inc. Parallel wrapped tube heat exchanger
JP3792064B2 (en) * 1999-02-16 2006-06-28 松下電器産業株式会社 Heat exchanger
JP3477531B1 (en) * 2002-07-04 2003-12-10 太平洋精工株式会社 Heat exchanger and method for producing the same, and bath water heating system and floor heating system using such heat exchanger
JP4179065B2 (en) * 2003-06-17 2008-11-12 株式会社デンソー Heat exchanger
JP2005133999A (en) * 2003-10-29 2005-05-26 Hitachi Home & Life Solutions Inc Heat pump type hot-water supplier
JP2006125756A (en) * 2004-10-29 2006-05-18 Mitsubishi Electric Corp Heat exchanger
JP2009133530A (en) * 2007-11-29 2009-06-18 Hitachi Appliances Inc Heat exchanger and heat pump hot water supply machine

Also Published As

Publication number Publication date
JP2013160479A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5106453B2 (en) Plate heat exchanger and refrigeration air conditioner
CN209910459U (en) Heat exchange double-layer sleeve
JP6687022B2 (en) Refrigeration cycle equipment
KR20110083996A (en) Double-piped heat exchanger
JP5785883B2 (en) Heat exchanger and heat pump type water heater using the same
WO2017114107A1 (en) Double-row bent type heat exchanger and manufacturing method therefor
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP5899679B2 (en) Heat exchanger and manufacturing method thereof
KR20140106552A (en) Fin tube-type heat exchanger
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
JP5929012B2 (en) Heat exchanger and heat pump water heater
JP4699945B2 (en) Manufacturing method of spiral multistage heat exchanger and spiral multistage heat exchanger
JP4063237B2 (en) Heat exchange device and heat pump water heater using the same
JP2005221087A (en) Heat exchanger
JP6377628B2 (en) Finned tube element, method for manufacturing the same, and heat exchanger provided with finned tube element
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP5548957B2 (en) Heat exchanger and heat pump water heater using the same
JP2010014312A (en) Double tube type supercooler
JP5431210B2 (en) Heat transfer tube and heat exchanger
JP4985456B2 (en) Heat exchanger
JP6016350B2 (en) Manufacturing method of heat exchanger for hot water supply
EP2738503A1 (en) Heat exchanger means
JP2013088045A (en) Heat exchanger and heat pump type water heater using the same
JPH085196A (en) Condenser and manufacture thereof
JP2010255857A (en) Heat exchanger and heat pump water heater using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5785883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350