WO2019087311A1 - Heat radiation device - Google Patents

Heat radiation device Download PDF

Info

Publication number
WO2019087311A1
WO2019087311A1 PCT/JP2017/039431 JP2017039431W WO2019087311A1 WO 2019087311 A1 WO2019087311 A1 WO 2019087311A1 JP 2017039431 W JP2017039431 W JP 2017039431W WO 2019087311 A1 WO2019087311 A1 WO 2019087311A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
spiral
heat dissipation
section
cross
Prior art date
Application number
PCT/JP2017/039431
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 隆
純哉 鷲足
劉 軍
篠崎 隆
素行 岡田
Original Assignee
学校法人上智学院
株式会社ケーヒン
株式会社エコラ・テック
株式会社ファインテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人上智学院, 株式会社ケーヒン, 株式会社エコラ・テック, 株式会社ファインテック filed Critical 学校法人上智学院
Priority to PCT/JP2017/039431 priority Critical patent/WO2019087311A1/en
Publication of WO2019087311A1 publication Critical patent/WO2019087311A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Definitions

  • the present invention relates to a heat dissipation device that includes a flow path and can efficiently dissipate the heat of fluid such as gas, gas-liquid two-phase fluid, or liquid flowing through the flow path to the outside.
  • the heat dissipating device such as an automobile radiator, an oil cooler, an intercooler, a condenser of a car air conditioner, an evaporator, etc.
  • the heat dissipating device is provided with a flow path for water or refrigerant to flow.
  • the heat of the oil can be dissipated efficiently.
  • a condenser in an air conditioning apparatus one that improves heat dissipation efficiency and achieves miniaturization is proposed (for example, see Patent Document 1).
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a heat dissipation device capable of improving heat dissipation efficiency and achieving downsizing.
  • the present invention is characterized in that a polygonal tube is spirally wound to form a spiral flow passage having a polygonal cross section, and a heat dissipation portion is provided on the outer peripheral side of the spiral flow passage.
  • a core is fitted on at least the inlet side of a tube, and a spiral groove is provided on the outer periphery of the core, and a spiral flow passage having a polygonal cross section is provided between the groove and the inner wall of the tube.
  • a heat dissipation unit is provided on the outer peripheral side of the spiral flow channel.
  • the grooves may be formed such that the pitch of the grooves is gradually narrowed toward the downstream.
  • the spiral flow channel generates a primary flow along the length direction of the flow channel and a secondary flow rotating in the cross section of the flow channel, and the cross section of the spiral flow channel is a pair of secondary flow
  • the flow may be generated.
  • the said thermal radiation part may be comprised with the thermal radiation fin. It may be a radiator, an oil cooler, an intercooler, a radiator of any of a condenser of a refrigerating cycle, or an evaporator, and may be a radiator which is provided with the radiator according to any one of claims 1 to 4.
  • a compressor, a condenser, a decompression device, and an evaporator may be provided, and the condenser may be provided with the heat dissipation device according to any one of claims 1 to 4.
  • the polygonal tube is spirally wound to form a spiral flow passage having a polygonal cross section, and the heat dissipation part is provided on the outer peripheral side of the spiral flow passage.
  • the flow is directed from the inner circumferential side toward the outer circumferential side having the heat radiating portion, heat is efficiently transmitted to the heat radiating portion on the outer circumferential side, and the heat radiation efficiency is improved.
  • a primary flow along the longitudinal direction of the flow channel and a secondary flow rotating in the cross section of the flow channel are generated inside the spiral flow channel, and the heat of the fluid flowing in the flow channel gets on the secondary flow
  • a cold fluid can be stagnated in the inner central portion of the secondary flow, and the temperature of the fluid can be extremely lowered by the internal temperature addition in addition to the heat dissipation from the tube surface.
  • FIG. 1 is a view showing a refrigeration cycle according to a first embodiment.
  • FIG. 2 is a view showing the heat dissipation device according to the first embodiment.
  • FIG. 3 is a view showing a core of the heat dissipation device according to the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view showing a portion of arrow IX of FIG.
  • FIG. 5 is a view showing a core of the heat dissipation device according to the second embodiment.
  • FIG. 6 is a view showing the core of the heat dissipation device according to the third embodiment.
  • FIG. 7 is a perspective view showing the heat dissipation device according to the fourth embodiment.
  • FIG. 8 is a view showing a refrigeration cycle according to a fifth embodiment.
  • FIG. 9A is a cross-sectional view showing a heat dissipation device according to a fifth embodiment
  • FIG. 9B is a cross-sectional view of a rectifier
  • FIG. 10A is a cross-sectional view showing the eddy current generator of the fifth embodiment
  • FIG. 10B is a cross-sectional view taken along the line BB in FIG. 10A.
  • FIG. 1 shows a refrigeration cycle.
  • symbol 7 is a compressor and the condenser 1 is connected to the discharge port of the compressor 7.
  • a pressure reducing device 9 is connected to the condenser 1, and an evaporator 8 is connected to the pressure reducing device 9.
  • the suction port of the compressor 7 is connected to the evaporator 8.
  • the condenser (heat radiation device) 1 includes a plurality of (six in the present embodiment) straight tubes 2-1 to 2-6 and a plurality of radiation fins 3, 3, 3. Have.
  • the inlets of the two upstream tubes 2-1 and 2-2 are connected by a bifurcated inlet pipe 4.
  • the outlet of the tube 2-1 is connected to the inlet of the tube 2-3 via a vent 5-1
  • the outlet of the tube 2-2 is connected to the inlet of the tube 2-4 via a vent 5-2.
  • the outlet of the tube 2-3 is connected to the inlet of the tube 2-5 via a vent 5-3
  • the outlet of the tube 2-4 is connected to the inlet of the tube 2-6 via a vent 5-4.
  • the outlets of the tubes 2-5, 2-6 are connected by a bifurcated outlet pipe 6.
  • the inlet side is not necessarily limited to the two tubes.
  • the core 21 is disposed on the inlet side of the in-tube flow passage 12.
  • the length of the tubes 2-1 to 2-6 is, for example, 300 mm, and the length L of the core 21 is, for example, 100 mm. Since the configurations of the tubes 2-1 to 2-6 are the same, only the tube 2-1 is shown in FIG. 2 and the remaining tubes are not shown, and the description thereof is omitted.
  • the core 21 is fitted to at least the inlet side of the tube 2-1.
  • a groove portion 23 extending in a spiral shape and having a square cross section is formed on the outer peripheral portion of the core 21.
  • the land portion 24 remaining in a spiral shape comes into close contact with the inner wall of the tube 2-1 when the core 21 is fitted to the inlet side of the tube 2-1.
  • a spiral flow channel 25 having a square cross section and extending in a spiral as a whole is formed.
  • a plurality of heat dissipating fins 3, 3,... are attached to the outer peripheral portion of the tube 2-1 over the entire length of the tube 2-1, including the portion where the core 21 is fitted. .
  • the core 21 has a long length L (see FIG. 3)
  • the heat radiation effect is enhanced, but the flow path is narrowed by that amount, and thus the flow resistance is obtained.
  • the length L is short, the flow resistance decreases, but the heat radiation effect decreases accordingly.
  • the inclination ⁇ see FIG.
  • the length L of the core 21 and the inclination ⁇ of the spiral groove 23 are appropriately set in consideration of the heat dissipation effect and the loss due to the flow resistance.
  • the high temperature and high pressure gas refrigerant discharged from the compressor 7 flows into the two tubes 2-1 and 2-2 from the forked inlet pipe 4 at a predetermined flow rate.
  • the core 21 is disposed on the inlet side of the two tubes 2-1 and 2-2, and the liquid refrigerant is formed between the groove 23 of the core 21 and the inner wall of the tube 2-1. , And flows into a spiral channel 25 extending in a spiral shape as a whole and having a square cross section.
  • the liquid refrigerant generates a primary flow X (see FIG. 2) along the longitudinal direction of the spiral flow passage 25.
  • This primary flow X forms a spiral flow.
  • two (plural) secondary flows Y ⁇ that rotate in the square cross section of the helical flow passage 25. It turned out that 1 and Y-2 are generated.
  • the secondary flows Y-1 and Y-2 promote heat transfer to the radiation fins 3, 3,.
  • the mechanism of this heat transfer promotion was clarified.
  • the liquid refrigerant in the spiral flow channel 25 generates a primary flow X (a spiral flow), so that strong turbulence occurs on the outer peripheral side of the spiral flow channel 25.
  • the cross section of the spiral flow passage 25 generates stronger turbulence on the outer peripheral side of the spiral flow passage 25 than the circular shape, for example, in the polygonal shape such as square.
  • pentagonal, hexagonal and the like are included.
  • the cross section has a polygonal shape, a polygonal shape in which the shape of the outer peripheral portion approximates a circular shape is not preferable.
  • the quadrangular shape includes a quadrangular shape in which the chamfered portion has an arc shape or a chamfered shape.
  • the disturbance strength is 1.66 times as compared to the circular cross section. The occurrence of this strong disturbance promotes heat transfer to the radiation fins 3, 3,...
  • the heat transfer is promoted, the refrigerant is largely cooled on the outer peripheral side of the spiral flow passage 25, and the cooled refrigerant moves to the inner peripheral side of the helical flow passage 25 where the heat transfer is small. This movement generates secondary flows Y-1 and Y-2. Also, due to the centrifugal force, the low density material moves to the inner peripheral side of the spiral flow channel 25. This movement also generates secondary flows Y-1 and Y-2. According to the simulation, the lubricating oil mixed in with the refrigerant was present only on the inner peripheral side of the spiral channel 25.
  • the secondary flows Y-1 and Y-2 form a pair of flows Y-1 and Y-2 in the cross section of the spiral channel 25.
  • the heat transfer is promoted on the outer peripheral side of the spiral flow passage 25, and the largely cooled refrigerant moves to the inner peripheral side of the spiral flow passage 25 where the heat transfer is small.
  • the low density portion of the refrigerant moves to the inner peripheral side of the spiral channel 25 by the centrifugal force.
  • the low temperature refrigerant CR stagnates at the center of the cross section on the inner peripheral side of the spiral flow channel 25.
  • the secondary flows Y-1 and Y-2 are flows rotating in the cross section of the spiral flow passage 25.
  • the high temperature refrigerant HR With the rotation of the refrigerant, the high temperature refrigerant HR is cooled on the outer peripheral side by heat transfer, moves to the inner peripheral side, and the heat radiation effect is enhanced by sequentially repeating this movement. According to this promotion mechanism, the high temperature refrigerant HR always circulates on the outer peripheral side of the spiral flow passage 25 where the heat transfer is large, so the heat radiation effect is enhanced.
  • the spiral flow channel 25 is circular, even if a pair of secondary flows Y-1 and Y-2 are produced, there is no stagnation of cold refrigerant as in the polygonal shape, so the spiral flow channel 25 is A strong disturbance can not be expected on the outer peripheral side of the element, and a high heat radiation effect can not be expected.
  • the low temperature refrigerant CR stays in the center of the cross section on the inner peripheral side of the spiral flow channel 25 due to the pair of secondary flows Y-1 and Y-2, and the high temperature refrigerant HR goes to the outer peripheral side. Since the side is cooled and circulated to the inner side, the heat radiation effect is significantly enhanced. Therefore, the condenser 1 can be miniaturized.
  • the cross section of the spiral channel 25 is not limited to the square shape.
  • a space for generating the pair of secondary flows Y-1 and Y-2 in the cross section of the spiral flow channel 25 and retaining the low temperature refrigerant CR in the center of the cross section on the inner peripheral side of the spiral flow channel 25 is provided. It may be any shape that can be secured.
  • the cross section of the spiral channel 25 may be a polygon such as a quadrangle, a trapezoid, a pentagon, or a hexagon.
  • the length of each side on the inner peripheral side and the outer peripheral side of the spiral flow channel 25 needs to be a predetermined length.
  • the second embodiment will be described with reference to FIG.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the explanation thereof is omitted.
  • the core 21 of the second embodiment is formed such that the pitches P, P, P... Of the grooves 23 gradually narrow from upstream to downstream.
  • the pitches P, P, P... May be narrowed from the upstream toward the downstream, and for example, the equal pitch may be continuous at the pitch P in the middle.
  • the condenser 1 is connected to the discharge port of the compressor 7, and high temperature and high pressure gas refrigerant flows into the tubes 2-1 and 2-2 of the condenser 1.
  • the gas refrigerant is cooled while passing through the spiral flow passage 25 of the core 21, and the liquid content of the refrigerant gradually increases.
  • the pitches P, P, P... Of the groove portion 23 gradually narrow from the upstream toward the downstream the refrigerant which has become a gas-liquid two-phase by the increase in the liquid content of the refrigerant
  • the cooling is efficiently performed through the narrow grooves 23 of the pitches P, P, P.
  • the condenser (heat dissipation device) 1 of the third embodiment is connected in the refrigeration cycle of FIG.
  • the condenser 1 according to the third embodiment as shown in FIG. 6, polygonal tubes 121 are respectively joined to the inlet sides of six straight tubes 2-1 to 2-6.
  • the polygonal tube 121 is configured by spirally winding a tube having a rectangular cross section.
  • a spiral channel 125 having a substantially square cross section is formed.
  • a guide member 126 for guiding the refrigerant flowing from the upstream to the inlet of the spiral channel 125 of the polygonal tube 121 is disposed.
  • the high temperature and high pressure liquid refrigerant discharged from the compressor 7 flows into the spiral flow path 125 of the polygonal tube 121 via the guide member 126.
  • Secondary flows Y-1 and Y-2 are generated (see FIG. 4).
  • the refrigerant has a helical flow
  • the outer periphery of the passage 125 is largely cooled to enhance the cooling effect. Therefore, the condenser 1 can be miniaturized.
  • the cross section of the spiral channel 125 is not limited to a square.
  • it may be configured to generate a pair of secondary flows Y-1 and Y-2 in the cross section of the spiral flow channel 125, and secure a space for retaining the low temperature refrigerant CR in the center of the cross section on the inner peripheral side. Just do it.
  • the cross section of the spiral channel 125 may be trapezoidal, pentagonal, hexagonal or the like.
  • the fourth embodiment will be described with reference to FIG. For the sake of convenience of explanation, the same parts as those of the first embodiment are denoted by the same reference numerals, and the explanation thereof is omitted.
  • the condenser (heat radiation device) 1 of the fourth embodiment is configured by providing the radiation fins 3, 3, 3... Directly on the outer periphery of the polygonal tube 121 of the third embodiment.
  • W indicates the width dimension of the radiation fin 3
  • L indicates the length dimension of the radiation fin 3
  • H indicates the height dimension of the radiation fin 3.
  • the primary flow X along the longitudinal direction of the spiral channel 125 and the square cross section of the spiral channel 125 are rotated.
  • Two secondary flows Y-1 and Y-2 are generated (see FIG. 4).
  • the refrigerant has an outer periphery of the spiral flow path 125. It is largely cooled by the side and the cooling effect is enhanced. Therefore, the condenser 1 can be miniaturized.
  • the cross section of the spiral channel 125 is not limited to a square.
  • the cross section of the spiral channel 125 may be trapezoidal, pentagonal, hexagonal or the like.
  • the fifth embodiment will be described with reference to FIG. For the sake of convenience of explanation, the same parts as those of the first embodiment are denoted by the same reference numerals, and the explanation thereof is omitted.
  • the configurations of the two tubes 2-1 and 2-2 on the inlet side of the condenser (heat dissipation device) 1 are different from those of the first embodiment. Since the two tubes 2-1 and 2-2 have the same configuration, the tube 2-1 will be described, and the description of the tube 2-2 will be omitted.
  • FIG. 9A shows a tube 2-1.
  • the vortex flow forming body 51 is connected to the inlet of the tube 2-1, and the flow straightening body 71 is fitted on the downstream side of the vortex flow forming body 51.
  • the vortex flow forming body 51 is fitted to the inner peripheral portion of the tube 2-1 as shown in FIG. 10A.
  • the vortex flow forming body 51 is closed on the downstream side in a dome shape in a state of being disposed on one end side of the in-tube flow passage 12, and has a bag-nut shape and has an inflow portion 52 inside.
  • the outer peripheral wall of the inflow portion 52 has a large diameter portion 53 and a small diameter portion 54.
  • the large diameter portion 53 is fitted to the inner peripheral portion of the tube 2-1, and a gap ⁇ is formed between the outer peripheral portion of the small diameter portion 54 and the inner peripheral portion of the tube 2-1.
  • a gap ⁇ is formed between the outer peripheral portion of the small diameter portion 54 and the inner peripheral portion of the tube 2-1.
  • six through holes 55 are formed as shown in FIG. 10B.
  • the through hole 55 extends in the tangential direction of the inner peripheral wall 56 of the inflow portion 52 and communicates the inflow portion 52 with the in-tube flow passage 12.
  • the refrigerant entering the vortex flow forming body 51 flows into the inflow portion 52, and from the six through holes 55 provided in the small diameter portion 54, as shown by the arrow R (FIG. 10A), to the inner peripheral portion of the tube 2-1.
  • the medium that has flowed into the inner peripheral portion of the tube 2-1 spirally flows from the upstream side toward the downstream side on the inner periphery of the tube 2-1, and a large spiral refrigerant on the downstream side of the vortex flow forming body 51 Form an eddy current UX.
  • the refrigerant that has become the spiral vortex UX flows spirally along the inner wall surface of the tube 2-1, and the heat of the refrigerant is dissipated from the outer wall surface of the tube 2-1.
  • the straightening body 71 is formed by forming a plurality of linear grooves 72 in the outer peripheral portion of a solid round bar and forming a through passage 73 in the central portion.
  • the refrigerant generates an eddy current UX until the inner periphery of the tube 2-1 reaches the rectifying body 71, and flows spirally toward the downstream side, and when reaching the rectifying body 71, a plurality of linear grooves 72 and penetrations It flows into the path 73 where it is rectified. Since the central portion of the flow is at a low temperature, a through passage 73 is provided.
  • the refrigerant When flowing in the form of a spiral vortex UX, the refrigerant is on the side closer to the inner wall surface of the tube 2-1 and on the side closer to the center of the in-tube flow passage 12 (FIG. 9A) It turned out that it separated and flowed. It was found that the refrigerant flowed at high speed on the side close to the inner wall surface of the tube 2-1, resulting in a large vortex flow UX. That is, since the refrigerant flows at high speed along the inner wall surface of the tube 2-1, a centrifugal force acts on the refrigerant to cause a temperature separation phenomenon, and the inner wall surface side of the tube 2-1 becomes hot and the flow center The part side becomes low temperature.
  • the vortex flow forming body 51 is provided in the tube 2-1 and the rectifying body 71 is provided on the downstream side of the vortex flow forming body 51, the refrigerant is between the vortex flow forming body 51 and the flow rectifying body 71.
  • the heat can be dissipated, and the heat dissipation effect can be improved.
  • the same action and effect are exhibited in the tube 2-2.
  • the refrigerant having passed through the two tubes 2-1 and 2-2 passes through the evaporator 1 through the remaining tubes 2-3 to 2-6.
  • the heat radiation effect of the tubes 2-3 to 2-6 is the same as that of the first embodiment, and thus the description thereof is omitted.
  • the present invention is not limited to this, and a gas, a gas-liquid two-phase fluid, Alternatively, it is suitable for flowing a fluid such as water through the tubes 2-1 to 2-6 and dissipating the heat of the gas, the gas-liquid two-phase fluid, or the fluid such as water to the outside. Therefore, it is particularly suitable for a heat dissipating device such as a car radiator, an oil cooler, an intercooler, a condenser of a car air conditioner, an evaporator and the like.
  • a heat dissipating device such as a car radiator, an oil cooler, an intercooler, a condenser of a car air conditioner, an evaporator and the like.
  • the cross sections of the spiral flow channels 25 and 125 are polygonal, the heat dissipation effect can be enhanced, so that the heat dissipation device can be miniaturized.
  • the radiation fins 3, 3, 3... are provided on the outer peripheral side of the spiral flow passages 25 and 125 as the radiation portions, but the present invention is not limited to the radiation fins 3.
  • a cooling pipe (not shown) may be disposed on the outer peripheral side of the spiral flow channels 25 and 125, and a water cooling type heat dissipating unit may be configured by a medium such as water flowing through the cooling pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention provides a heat radiation device and a refrigeration cycle which have improved heat radiation efficiency and can be made more compact. A core 21 is fitted into at least an inlet side of a tube 2-1, groove sections 23 are provided spirally on the outer circumference of the core 21, a spiral flow path 25 having a polygonal cross-section is provided between the groove sections 23 and the tube inner wall, and a heat radiation section 3 is provided on the outer circumference side of the spiral flow path 25.

Description

放熱装置Heat dissipation device
 本発明は、流路を備え、この流路を流れる気体、気液二相流体、または、液体などの流体の熱を効率よく外部に放熱できる放熱装置に関する。 The present invention relates to a heat dissipation device that includes a flow path and can efficiently dissipate the heat of fluid such as gas, gas-liquid two-phase fluid, or liquid flowing through the flow path to the outside.
 従来、自動車用ラジエター、オイルクーラー、インタークーラー、カーエアコンの凝縮器、蒸発器などの放熱装置では、放熱装置が、水や冷媒を通流させる流路を備え、この流路を流れる水や冷媒やオイルの熱を効率よく放熱できる構成となっている。
 例えば、空気調和装置における凝縮器では、放熱効率を向上し、小型化を図るものが提案されている(例えば、特許文献1参照)。
Conventionally, in a heat dissipating device such as an automobile radiator, an oil cooler, an intercooler, a condenser of a car air conditioner, an evaporator, etc., the heat dissipating device is provided with a flow path for water or refrigerant to flow. The heat of the oil can be dissipated efficiently.
For example, as a condenser in an air conditioning apparatus, one that improves heat dissipation efficiency and achieves miniaturization is proposed (for example, see Patent Document 1).
特開2015-1317号公報JP, 2015-1317, A
 しかしながら、従来の技術では、放熱効率の向上が十分でない。そのため、放熱効率を格段に向上することが望まれている。
 そして、ラジエター、オイルクーラー、インタークーラー、カーエアコンの凝縮器、蒸発器などの放熱装置では、さらなる小型化が望まれている。
 本発明は、上述した事情に鑑みてなされたものであり、放熱効率を向上し、小型化が図れる放熱装置を提供することを目的とする。
However, in the prior art, the improvement of the heat dissipation efficiency is not sufficient. Therefore, it is desirable to significantly improve the heat dissipation efficiency.
And further miniaturization is desired for heat dissipation devices such as a radiator, an oil cooler, an intercooler, a condenser of a car air conditioner, and an evaporator.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a heat dissipation device capable of improving heat dissipation efficiency and achieving downsizing.
 本発明は、多角形チューブを螺旋状に巻いて断面が多角形の螺旋流路を形成し、この螺旋流路の外周側に放熱部を備えたことを特徴とする。
 本発明は、チューブの少なくとも入口側に中子を嵌合し、この中子の外周に螺旋状に溝部を設け、この溝部と前記チューブ内壁との間に断面が多角形の螺旋流路を備え、この螺旋流路の外周側に放熱部を備えたことを特徴とする。
 前記溝部のピッチが下流に向けて徐々に狭くなるように形成されてもよい。
The present invention is characterized in that a polygonal tube is spirally wound to form a spiral flow passage having a polygonal cross section, and a heat dissipation portion is provided on the outer peripheral side of the spiral flow passage.
In the present invention, a core is fitted on at least the inlet side of a tube, and a spiral groove is provided on the outer periphery of the core, and a spiral flow passage having a polygonal cross section is provided between the groove and the inner wall of the tube. A heat dissipation unit is provided on the outer peripheral side of the spiral flow channel.
The grooves may be formed such that the pitch of the grooves is gradually narrowed toward the downstream.
 本発明において、前記螺旋流路は当該流路の長さ方向に沿う一次流れと、当該流路の断面内を回転する二次流れとを発生させ、前記螺旋流路の断面は一対の二次流れを発生させる形態であってもよい。
 また、前記放熱部が放熱フィンで構成されていてもよい。
 ラジエター、オイルクーラー、インタークーラー、冷凍サイクルの凝縮器または蒸発器のいずれかの放熱装置であって、請求項1乃至4の何れか一項に記載の放熱装置を備える放熱装置であってもよい。
 圧縮機、凝縮器、減圧装置、蒸発器を備え、前記凝縮器が、請求項1乃至4の何れか一項に記載の放熱装置を備えてもよい。
In the present invention, the spiral flow channel generates a primary flow along the length direction of the flow channel and a secondary flow rotating in the cross section of the flow channel, and the cross section of the spiral flow channel is a pair of secondary flow The flow may be generated.
Moreover, the said thermal radiation part may be comprised with the thermal radiation fin.
It may be a radiator, an oil cooler, an intercooler, a radiator of any of a condenser of a refrigerating cycle, or an evaporator, and may be a radiator which is provided with the radiator according to any one of claims 1 to 4.
A compressor, a condenser, a decompression device, and an evaporator may be provided, and the condenser may be provided with the heat dissipation device according to any one of claims 1 to 4.
 本発明によれば、多角形チューブを螺旋状に巻いて断面が多角形の螺旋流路を形成し、この螺旋流路の外周側に放熱部を備えたため、流路を流れる流体の熱は、当該流路の断面内で、内周側から放熱部を有する外周側に向かう流れとなり、外周側の放熱部に効率よく熱が伝達され、放熱効率が向上する。
 また、螺旋流路の内部に当該流路の長さ方向に沿う一次流れと当該流路の断面内を回転する二次流れとが発生し、流路を流れる流体の熱が二次流れに乗って、当該流路の断面内で、内周側から放熱部を有する外周側に向かう流れとなれば、より効率よく熱が外部に放出される。このとき、チューブ上流から下流にかけて、二次流れの内側中央部には冷たい流体の滞留ができ、流体の温度は、チューブ表面からの放熱に加えて内部の低温化が加わり、著しく低温化できる。
According to the present invention, the polygonal tube is spirally wound to form a spiral flow passage having a polygonal cross section, and the heat dissipation part is provided on the outer peripheral side of the spiral flow passage. In the cross section of the flow path, the flow is directed from the inner circumferential side toward the outer circumferential side having the heat radiating portion, heat is efficiently transmitted to the heat radiating portion on the outer circumferential side, and the heat radiation efficiency is improved.
In addition, a primary flow along the longitudinal direction of the flow channel and a secondary flow rotating in the cross section of the flow channel are generated inside the spiral flow channel, and the heat of the fluid flowing in the flow channel gets on the secondary flow In the cross section of the flow path, heat flows to the outside more efficiently if it flows from the inner peripheral side toward the outer peripheral side having the heat radiating portion. At this time, from the upstream to the downstream of the tube, a cold fluid can be stagnated in the inner central portion of the secondary flow, and the temperature of the fluid can be extremely lowered by the internal temperature addition in addition to the heat dissipation from the tube surface.
図1は第一実施形態による冷凍サイクルを示す図である。FIG. 1 is a view showing a refrigeration cycle according to a first embodiment. 図2は第一実施形態による放熱装置を示す図である。FIG. 2 is a view showing the heat dissipation device according to the first embodiment. 図3は第一実施形態による放熱装置の中子を示す図である。FIG. 3 is a view showing a core of the heat dissipation device according to the first embodiment. 図4は図2の矢視IXの部分を示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view showing a portion of arrow IX of FIG. 図5は第二実施形態による放熱装置の中子を示す図である。FIG. 5 is a view showing a core of the heat dissipation device according to the second embodiment. 図6は第三実施形態による放熱装置の中子を示す図である。FIG. 6 is a view showing the core of the heat dissipation device according to the third embodiment. 図7は第四実施形態による放熱装置を示す斜視図である。FIG. 7 is a perspective view showing the heat dissipation device according to the fourth embodiment. 図8は第五実施形態による冷凍サイクルを示す図である。FIG. 8 is a view showing a refrigeration cycle according to a fifth embodiment. 図9Aは第五実施形態による放熱装置を示す断面図、図9Bは整流体の断面図である。FIG. 9A is a cross-sectional view showing a heat dissipation device according to a fifth embodiment, and FIG. 9B is a cross-sectional view of a rectifier. 図10Aは第五実施形態の渦流形成体を示す断面図、図10Bは図10AのB-B断面図である。FIG. 10A is a cross-sectional view showing the eddy current generator of the fifth embodiment, and FIG. 10B is a cross-sectional view taken along the line BB in FIG. 10A.
<第一実施形態>
 図1は、冷凍サイクルを示す。
 符号7は圧縮機であり、圧縮機7の吐出口には凝縮器1が接続されている。この凝縮器1には減圧装置9が接続され、減圧装置9には蒸発器8が接続されている。この蒸発器8には圧縮機7の吸込み口が接続されている。
First Embodiment
FIG. 1 shows a refrigeration cycle.
The code | symbol 7 is a compressor and the condenser 1 is connected to the discharge port of the compressor 7. As shown in FIG. A pressure reducing device 9 is connected to the condenser 1, and an evaporator 8 is connected to the pressure reducing device 9. The suction port of the compressor 7 is connected to the evaporator 8.
 第一実施形態の凝縮器(放熱装置)1は、複数本(本実施形態では6本)の真直なチューブ2-1~2-6と、複数枚の放熱フィン3、3、3…とを備えている。
 上流の二本のチューブ2-1、2-2の入口は二股の入口管4で連結されている。チューブ2-1の出口はベント5-1を介してチューブ2-3の入口に接続され、チューブ2-2の出口はベント5-2を介してチューブ2-4の入口に接続されている。チューブ2-3の出口はベント5-3を介してチューブ2-5の入口に接続され、チューブ2-4の出口はベント5-4を介してチューブ2-6の入口に接続されている。チューブ2-5、2-6の出口は二股の出口管6で連結されている。なお、チューブの形態や、後述する中子の形態に関する適正サイズ化が図れれば、必ずしも入口側を2本のチューブにすることに限定されるものではない。
The condenser (heat radiation device) 1 according to the first embodiment includes a plurality of (six in the present embodiment) straight tubes 2-1 to 2-6 and a plurality of radiation fins 3, 3, 3. Have.
The inlets of the two upstream tubes 2-1 and 2-2 are connected by a bifurcated inlet pipe 4. The outlet of the tube 2-1 is connected to the inlet of the tube 2-3 via a vent 5-1, and the outlet of the tube 2-2 is connected to the inlet of the tube 2-4 via a vent 5-2. The outlet of the tube 2-3 is connected to the inlet of the tube 2-5 via a vent 5-3, and the outlet of the tube 2-4 is connected to the inlet of the tube 2-6 via a vent 5-4. The outlets of the tubes 2-5, 2-6 are connected by a bifurcated outlet pipe 6. In addition, as long as appropriate sizing can be achieved with respect to the form of the tube and the form of the core to be described later, the inlet side is not necessarily limited to the two tubes.
 6本のチューブ2-1~2-6には、図2に示すように、チューブ内流路12の入口側にすべて中子21が配置されている。チューブ2-1~2-6の長さは例えば300mmであり、中子21の長さLは例えば100mmである。
 チューブ2-1~2-6の構成は同じであるため、図2ではチューブ2-1のみを図示し、残りのチューブは図示を省略し、その説明は省略する。
 この中子21は、チューブ2-1の少なくとも入口側に嵌合されている。中子21の外周部には、図3に示すように、螺旋状に延びる、断面が四角形状の溝部23が形成されている。螺旋状に残ったランド部24は、中子21がチューブ2-1の入口側に嵌合された際に、チューブ2-1の内壁に密着する。
As shown in FIG. 2, in the six tubes 2-1 to 2-6, the core 21 is disposed on the inlet side of the in-tube flow passage 12. The length of the tubes 2-1 to 2-6 is, for example, 300 mm, and the length L of the core 21 is, for example, 100 mm.
Since the configurations of the tubes 2-1 to 2-6 are the same, only the tube 2-1 is shown in FIG. 2 and the remaining tubes are not shown, and the description thereof is omitted.
The core 21 is fitted to at least the inlet side of the tube 2-1. As shown in FIG. 3, a groove portion 23 extending in a spiral shape and having a square cross section is formed on the outer peripheral portion of the core 21. The land portion 24 remaining in a spiral shape comes into close contact with the inner wall of the tube 2-1 when the core 21 is fitted to the inlet side of the tube 2-1.
 中子21の溝部23とチューブ2-1の内壁との間には、図2に示すように、断面が正方形状で、全体としては螺旋状に延びる螺旋流路25が形成されている。
 チューブ2-1の外周部には、中子21が嵌合された部分を含んで、ほぼチューブ2-1の全長に亘って、複数枚の放熱フィン3、3、3…が取り付けられている。
 中子21は、その長さL(図3参照。)が長いと放熱効果が高まるが、その分、流路が絞られるため、流れの抵抗となる。一方で、長さLが短いと流れ抵抗は少なくなるが、その分、放熱効果が低減する。また、螺旋状の溝部23の傾きθ(図3参照。)は、小さいと放熱効果が高まるが、その分、流路が絞られるため、流れの抵抗となる。一方で、傾きθが大きいと流れ抵抗は少なくなるが、その分、放熱効果が低減する。
 従って、中子21の長さLおよび螺旋状の溝部23の傾きθは放熱効果および流れ抵抗による損失を勘案して適宜に設定される。
Between the groove 23 of the core 21 and the inner wall of the tube 2-1, as shown in FIG. 2, a spiral flow channel 25 having a square cross section and extending in a spiral as a whole is formed.
A plurality of heat dissipating fins 3, 3,... Are attached to the outer peripheral portion of the tube 2-1 over the entire length of the tube 2-1, including the portion where the core 21 is fitted. .
When the core 21 has a long length L (see FIG. 3), the heat radiation effect is enhanced, but the flow path is narrowed by that amount, and thus the flow resistance is obtained. On the other hand, when the length L is short, the flow resistance decreases, but the heat radiation effect decreases accordingly. In addition, if the inclination θ (see FIG. 3) of the spiral groove portion 23 is small, the heat radiation effect is enhanced, but the flow path is narrowed by that amount, which is a flow resistance. On the other hand, when the inclination θ is large, the flow resistance decreases, but the heat radiation effect is reduced accordingly.
Therefore, the length L of the core 21 and the inclination θ of the spiral groove 23 are appropriately set in consideration of the heat dissipation effect and the loss due to the flow resistance.
 次に、第一実施形態の作用を説明する。
 圧縮機7から吐出された高温高圧のガス冷媒は、所定の流速で、二股の入口管4から、2本のチューブ2-1、2-2に流入する。
 2本のチューブ2-1、2-2の入口側には、中子21が配置されており、液冷媒は、中子21の溝部23とチューブ2-1の内壁との間に形成された、断面が正方形状で、全体としては螺旋状に延びる螺旋流路25に流入する。
Next, the operation of the first embodiment will be described.
The high temperature and high pressure gas refrigerant discharged from the compressor 7 flows into the two tubes 2-1 and 2-2 from the forked inlet pipe 4 at a predetermined flow rate.
The core 21 is disposed on the inlet side of the two tubes 2-1 and 2-2, and the liquid refrigerant is formed between the groove 23 of the core 21 and the inner wall of the tube 2-1. , And flows into a spiral channel 25 extending in a spiral shape as a whole and having a square cross section.
 螺旋流路25において、液冷媒は、螺旋流路25の長さ方向に沿う一次流れX(図2参照。)を発生させる。この一次流れXは、螺旋状の流れを形成する。
 また、螺旋流路25において、液冷媒は、一次流れXとは別に、図4に示すように、螺旋流路25の正方形状の断面内を回転する二つ(複数)の二次流れY-1、Y-2を発生させることが判明した。
In the spiral flow passage 25, the liquid refrigerant generates a primary flow X (see FIG. 2) along the longitudinal direction of the spiral flow passage 25. This primary flow X forms a spiral flow.
Further, in the helical flow passage 25, as shown in FIG. 4 separately from the primary flow X, two (plural) secondary flows Y − that rotate in the square cross section of the helical flow passage 25. It turned out that 1 and Y-2 are generated.
 この二次流れY-1、Y-2は、放熱フィン3、3、3…への熱伝達を促進させる。この熱伝達促進のメカニズムが判明した。
 螺旋流路25内の液冷媒は、一次流れX(螺旋状の流れ)を発生させるため、螺旋流路25の外周側では強い乱れが発生する。シミュレーションによると、螺旋流路25の断面が、例えば円形形状よりも、四角形状などの多角形状の方が、螺旋流路25の外周側でより強い乱れを発生することが判明した。
 断面が四角形状以外では、五角形状、六角形状などが含まれる。断面が多角形状の場合、外周部の形状が円形形状に近似する多角形状は好ましくない。四角形状には、遇部が円弧状または面取り状となる四角形状が含まれる。
 断面が円形形状に比較して、断面が四角形状の場合には、乱れ強さが、1.66倍であった。この強い乱れの発生により、螺旋流路25の外周側では、放熱フィン3、3、3…への熱伝達が促進される。熱伝達が促進されると、冷媒は、螺旋流路25の外周側で大きく冷却され、この冷却された冷媒は、熱伝達の小さい螺旋流路25の内周側に移動する。この移動が二次流れY-1、Y-2を発生させる。
 また、遠心力により、低密度のものは螺旋流路25の内周側に移動する。この移動も二次流れY-1、Y-2を発生させる。シミュレーションによると、冷媒に混入する潤滑油は、螺旋流路25の内周側にのみ存在した。
The secondary flows Y-1 and Y-2 promote heat transfer to the radiation fins 3, 3,. The mechanism of this heat transfer promotion was clarified.
The liquid refrigerant in the spiral flow channel 25 generates a primary flow X (a spiral flow), so that strong turbulence occurs on the outer peripheral side of the spiral flow channel 25. According to the simulation, it has been found that the cross section of the spiral flow passage 25 generates stronger turbulence on the outer peripheral side of the spiral flow passage 25 than the circular shape, for example, in the polygonal shape such as square.
In addition to the rectangular cross section, pentagonal, hexagonal and the like are included. When the cross section has a polygonal shape, a polygonal shape in which the shape of the outer peripheral portion approximates a circular shape is not preferable. The quadrangular shape includes a quadrangular shape in which the chamfered portion has an arc shape or a chamfered shape.
When the cross section has a square shape, the disturbance strength is 1.66 times as compared to the circular cross section. The occurrence of this strong disturbance promotes heat transfer to the radiation fins 3, 3,... On the outer peripheral side of the spiral flow passage 25. When the heat transfer is promoted, the refrigerant is largely cooled on the outer peripheral side of the spiral flow passage 25, and the cooled refrigerant moves to the inner peripheral side of the helical flow passage 25 where the heat transfer is small. This movement generates secondary flows Y-1 and Y-2.
Also, due to the centrifugal force, the low density material moves to the inner peripheral side of the spiral flow channel 25. This movement also generates secondary flows Y-1 and Y-2. According to the simulation, the lubricating oil mixed in with the refrigerant was present only on the inner peripheral side of the spiral channel 25.
 二次流れY-1、Y-2は、螺旋流路25の断面内で一対の流れY-1、Y-2を形成する。螺旋流路25の外周側では熱伝達が促進し、大きく冷却された冷媒は、熱伝達の小さい螺旋流路25の内周側に移動する。また、遠心力により冷媒の低密度の部分は、螺旋流路25の内周側に移動する。これら移動により、螺旋流路25の内周側の断面中央部には、低温の冷媒CRが滞留する。
 二次流れY-1、Y-2は、螺旋流路25の断面内を回転する流れである。この冷媒の回転に伴って、高温冷媒HRが熱伝達により外周側で冷却されて、内周側に移動し、この移動を順次繰り返すことで、放熱効果が高められる。
 この促進メカニズムによれば、熱伝達の大きい螺旋流路25の外周側に、常に高温冷媒HRが循環するため、放熱効果が高められる。
The secondary flows Y-1 and Y-2 form a pair of flows Y-1 and Y-2 in the cross section of the spiral channel 25. The heat transfer is promoted on the outer peripheral side of the spiral flow passage 25, and the largely cooled refrigerant moves to the inner peripheral side of the spiral flow passage 25 where the heat transfer is small. In addition, the low density portion of the refrigerant moves to the inner peripheral side of the spiral channel 25 by the centrifugal force. As a result of these movements, the low temperature refrigerant CR stagnates at the center of the cross section on the inner peripheral side of the spiral flow channel 25.
The secondary flows Y-1 and Y-2 are flows rotating in the cross section of the spiral flow passage 25. With the rotation of the refrigerant, the high temperature refrigerant HR is cooled on the outer peripheral side by heat transfer, moves to the inner peripheral side, and the heat radiation effect is enhanced by sequentially repeating this movement.
According to this promotion mechanism, the high temperature refrigerant HR always circulates on the outer peripheral side of the spiral flow passage 25 where the heat transfer is large, so the heat radiation effect is enhanced.
 仮に、螺旋流路25の断面が円形形状の場合、一対の二次流れY-1、Y-2ができても、多角形形状のように、冷たい冷媒の滞留がないため、螺旋流路25の外周側での強い乱れが期待できず、高い放熱効果が期待できない。
 本実施形態では、一対の二次流れY-1、Y-2により、螺旋流路25の内周側の断面中央部に低温の冷媒CRが滞留し、高温冷媒HRは外周側に向かい、外周側で冷却されて、内周側に循環するため、放熱効果が著しく高められる。
 従って、凝縮器1の小型化が図れる。
If the cross section of the spiral flow channel 25 is circular, even if a pair of secondary flows Y-1 and Y-2 are produced, there is no stagnation of cold refrigerant as in the polygonal shape, so the spiral flow channel 25 is A strong disturbance can not be expected on the outer peripheral side of the element, and a high heat radiation effect can not be expected.
In the present embodiment, the low temperature refrigerant CR stays in the center of the cross section on the inner peripheral side of the spiral flow channel 25 due to the pair of secondary flows Y-1 and Y-2, and the high temperature refrigerant HR goes to the outer peripheral side. Since the side is cooled and circulated to the inner side, the heat radiation effect is significantly enhanced.
Therefore, the condenser 1 can be miniaturized.
 螺旋流路25の断面は、正方形状に限定されない。例えば、螺旋流路25の断面内に一対の二次流れY-1、Y-2を発生させ、螺旋流路25の内周側の断面中央部あたりに、低温の冷媒CRを滞留させるスペースを確保できる形状であればよい。螺旋流路25の断面は、四角形、台形、五角形、六角形などの多角形であってもよい。螺旋流路25の内周側および外周側の各一辺の長さは、所定の長さが必要である。 The cross section of the spiral channel 25 is not limited to the square shape. For example, a space for generating the pair of secondary flows Y-1 and Y-2 in the cross section of the spiral flow channel 25 and retaining the low temperature refrigerant CR in the center of the cross section on the inner peripheral side of the spiral flow channel 25 is provided. It may be any shape that can be secured. The cross section of the spiral channel 25 may be a polygon such as a quadrangle, a trapezoid, a pentagon, or a hexagon. The length of each side on the inner peripheral side and the outer peripheral side of the spiral flow channel 25 needs to be a predetermined length.
<第二実施形態>
 第二実施形態を、図5を参照して説明する。尚、説明の便宜上、第一実施形態と同一部分には同一符号を付し、説明を省略する。
 第二実施形態の中子21は、溝部23のピッチP、P、P…が、上流から下流に向けて徐々に狭くなるように形成されている。この場合において、ピッチP、P、P…は、上流から下流に向けて狭くなればよく、例えば、途中のピッチPにおいて、等ピッチが連続するようなことがあってもよい。
 図1に示すように、凝縮器1は、圧縮機7の吐出口に接続されており、凝縮器1のチューブ2-1、2-2には、高温高圧のガス冷媒が流入する。ガス冷媒は中子21の螺旋流路25を通る間に冷却されて、冷媒の液分が徐々に増加する。第二実施形態では、溝部23のピッチP、P、P…が、上流から下流に向けて徐々に狭くなるため、冷媒の液分が増加することで、気液二相となった冷媒が、ピッチP、P、P…の狭くなる溝部23を通って、効率よく冷却される。
 別の形態として、ピッチP、P、P…は、上流から下流に向けて狭くなったり、途中において、広くなったり、ピッチが、ランダムに変化する形態も含まれる。この形態でも、冷媒は効率よく冷却される。
Second Embodiment
The second embodiment will be described with reference to FIG. For the sake of convenience of explanation, the same parts as those of the first embodiment are denoted by the same reference numerals, and the explanation thereof is omitted.
The core 21 of the second embodiment is formed such that the pitches P, P, P... Of the grooves 23 gradually narrow from upstream to downstream. In this case, the pitches P, P, P... May be narrowed from the upstream toward the downstream, and for example, the equal pitch may be continuous at the pitch P in the middle.
As shown in FIG. 1, the condenser 1 is connected to the discharge port of the compressor 7, and high temperature and high pressure gas refrigerant flows into the tubes 2-1 and 2-2 of the condenser 1. The gas refrigerant is cooled while passing through the spiral flow passage 25 of the core 21, and the liquid content of the refrigerant gradually increases. In the second embodiment, since the pitches P, P, P... Of the groove portion 23 gradually narrow from the upstream toward the downstream, the refrigerant which has become a gas-liquid two-phase by the increase in the liquid content of the refrigerant The cooling is efficiently performed through the narrow grooves 23 of the pitches P, P, P.
In another form, the pitches P, P, P... Narrow from upstream to downstream, widen in the middle, or randomly change the pitch. Even in this form, the refrigerant is cooled efficiently.
<第三実施形態>
 第三実施形態を、図6を参照して説明する。尚、説明の便宜上、第一実施形態と同一部分には同一符号を付し、説明を省略する。
 第三実施形態の凝縮器(放熱装置)1は、図1の冷凍サイクル中に接続されている。そして、第三実施形態の凝縮器1では、図6に示すように、6本の真直なチューブ2-1~2-6の入口側に、それぞれ多角形チューブ121が接合されている。多角形チューブ121は、断面四角形状のチューブを螺旋状に巻いて構成される。多角形チューブ121には、断面が略四角形状の螺旋流路125が形成される。また、多角形チューブ121の上流端には、上流から流れてくる冷媒を、多角形チューブ121の螺旋流路125の入口に導くためのガイド部材126が配置されている。
Third Embodiment
The third embodiment will be described with reference to FIG. For the sake of convenience of explanation, the same parts as those of the first embodiment are denoted by the same reference numerals, and the explanation thereof is omitted.
The condenser (heat dissipation device) 1 of the third embodiment is connected in the refrigeration cycle of FIG. In the condenser 1 according to the third embodiment, as shown in FIG. 6, polygonal tubes 121 are respectively joined to the inlet sides of six straight tubes 2-1 to 2-6. The polygonal tube 121 is configured by spirally winding a tube having a rectangular cross section. In the polygonal tube 121, a spiral channel 125 having a substantially square cross section is formed. Further, at the upstream end of the polygonal tube 121, a guide member 126 for guiding the refrigerant flowing from the upstream to the inlet of the spiral channel 125 of the polygonal tube 121 is disposed.
 圧縮機7から吐出された高温高圧の液冷媒は、ガイド部材126を介して、多角形チューブ121の螺旋流路125に流入する。
 螺旋流路125内においては、第一実施形態と同様に、螺旋流路125の長さ方向に沿う一次流れXと、螺旋流路125の正方形状(四角形状)の断面内を回転する二つの二次流れY-1、Y-2とを発生させる(図4参照。)。
 第三実施形態では、第一実施形態と同様に、二次流れY-1、Y-2に起因した、放熱フィン3、3、3…への熱伝達促進のメカニズムに従って、冷媒は、螺旋流路125の外周側で大きく冷却され、冷却効果が高められる。
 従って、凝縮器1の小型化が図れる。
The high temperature and high pressure liquid refrigerant discharged from the compressor 7 flows into the spiral flow path 125 of the polygonal tube 121 via the guide member 126.
In the spiral channel 125, as in the first embodiment, a primary flow X along the longitudinal direction of the spiral channel 125 and two rotating in a square (square) cross section of the spiral channel 125. Secondary flows Y-1 and Y-2 are generated (see FIG. 4).
In the third embodiment, as in the first embodiment, according to the mechanism of heat transfer promotion to the radiation fins 3, 3, 3 ... caused by the secondary flows Y-1, Y-2, the refrigerant has a helical flow The outer periphery of the passage 125 is largely cooled to enhance the cooling effect.
Therefore, the condenser 1 can be miniaturized.
 螺旋流路125の断面は、四角形状に限定されない。例えば、螺旋流路125の断面内に一対の二次流れY-1、Y-2を発生させ、内周側の断面中央部あたりに、低温の冷媒CRを滞留させるスペースを確保できる形状であればよい。螺旋流路125の断面は、台形、五角形、六角形などであってもよい。 The cross section of the spiral channel 125 is not limited to a square. For example, it may be configured to generate a pair of secondary flows Y-1 and Y-2 in the cross section of the spiral flow channel 125, and secure a space for retaining the low temperature refrigerant CR in the center of the cross section on the inner peripheral side. Just do it. The cross section of the spiral channel 125 may be trapezoidal, pentagonal, hexagonal or the like.
<第四実施形態>
 第四実施形態を、図7を参照して説明する。尚、説明の便宜上、第一実施形態と同一部分には同一符号を付し、説明を省略する。
 第四実施形態の凝縮器(放熱装置)1は、第三実施形態の多角形チューブ121の外周に、直接、放熱フィン3、3、3…を設けて構成されている。
 Wは、放熱フィン3の幅寸法、Lは、放熱フィン3の長さ寸法、Hは、放熱フィン3の高さ寸法を示している。
Fourth Embodiment
The fourth embodiment will be described with reference to FIG. For the sake of convenience of explanation, the same parts as those of the first embodiment are denoted by the same reference numerals, and the explanation thereof is omitted.
The condenser (heat radiation device) 1 of the fourth embodiment is configured by providing the radiation fins 3, 3, 3... Directly on the outer periphery of the polygonal tube 121 of the third embodiment.
W indicates the width dimension of the radiation fin 3, L indicates the length dimension of the radiation fin 3, and H indicates the height dimension of the radiation fin 3.
 第四実施形態においても、螺旋流路125内では、第一実施形態と同様に、螺旋流路125の長さ方向に沿う一次流れXと、螺旋流路125の正方形状の断面内を回転する二つの二次流れY-1、Y-2とを発生させる(図4参照。)。
 そして、第一実施形態と同様に、二次流れY-1、Y-2に起因した、放熱フィン3、3、3…への熱伝達促進のメカニズムに従って、冷媒は、螺旋流路125の外周側で大きく冷却され、冷却効果が高められる。
 従って、凝縮器1の小型化が図れる。
 螺旋流路125の断面は、四角形状に限定されない。螺旋流路125の断面は、台形、五角形、六角形などであってもよい。
Also in the fourth embodiment, in the spiral channel 125, as in the first embodiment, the primary flow X along the longitudinal direction of the spiral channel 125 and the square cross section of the spiral channel 125 are rotated. Two secondary flows Y-1 and Y-2 are generated (see FIG. 4).
And according to the mechanism of heat transfer promotion to the radiation fins 3, 3, 3 ... caused by the secondary flows Y-1, Y-2 as in the first embodiment, the refrigerant has an outer periphery of the spiral flow path 125. It is largely cooled by the side and the cooling effect is enhanced.
Therefore, the condenser 1 can be miniaturized.
The cross section of the spiral channel 125 is not limited to a square. The cross section of the spiral channel 125 may be trapezoidal, pentagonal, hexagonal or the like.
<第五実施形態>
 第五実施形態を、図8を参照して説明する。尚、説明の便宜上、第一実施形態と同一部分には同一符号を付し、説明を省略する。第五実施形態では、第一実施形態と比較して、凝縮器(放熱装置)1の入口側の2本のチューブ2-1、2-2の構成だけが異なっている。2本のチューブ2-1、2-2は、同じ構成であるため、チューブ2-1について説明し、チューブ2-2についての説明は省略する。
Fifth Embodiment
The fifth embodiment will be described with reference to FIG. For the sake of convenience of explanation, the same parts as those of the first embodiment are denoted by the same reference numerals, and the explanation thereof is omitted. In the fifth embodiment, only the configurations of the two tubes 2-1 and 2-2 on the inlet side of the condenser (heat dissipation device) 1 are different from those of the first embodiment. Since the two tubes 2-1 and 2-2 have the same configuration, the tube 2-1 will be described, and the description of the tube 2-2 will be omitted.
 図9Aは、チューブ2-1を示す。
 このチューブ2-1には、入口に渦流形成体51が接続され、渦流形成体51の下流側に整流体71が嵌合されている。渦流形成体51は、図10Aに示すように、チューブ2-1の内周部に嵌合されている。この渦流形成体51は、チューブ内流路12の一端側に配置された状態で、下流側がドーム状に閉じており、袋ナット状で、内部に流入部52を有している。流入部52の外周壁は、大径部53及び小径部54を有している。大径部53はチューブ2-1の内周部に嵌合され、小径部54の外周部とチューブ2-1の内周部との間には隙間δが形成されている。小径部54には、図10Bに示すように、6個の通孔55が形成されている。通孔55は、流入部52の内周壁56の接線方向に延びて、流入部52とチューブ内流路12とを連通している。
FIG. 9A shows a tube 2-1.
The vortex flow forming body 51 is connected to the inlet of the tube 2-1, and the flow straightening body 71 is fitted on the downstream side of the vortex flow forming body 51. The vortex flow forming body 51 is fitted to the inner peripheral portion of the tube 2-1 as shown in FIG. 10A. The vortex flow forming body 51 is closed on the downstream side in a dome shape in a state of being disposed on one end side of the in-tube flow passage 12, and has a bag-nut shape and has an inflow portion 52 inside. The outer peripheral wall of the inflow portion 52 has a large diameter portion 53 and a small diameter portion 54. The large diameter portion 53 is fitted to the inner peripheral portion of the tube 2-1, and a gap δ is formed between the outer peripheral portion of the small diameter portion 54 and the inner peripheral portion of the tube 2-1. In the small diameter portion 54, six through holes 55 are formed as shown in FIG. 10B. The through hole 55 extends in the tangential direction of the inner peripheral wall 56 of the inflow portion 52 and communicates the inflow portion 52 with the in-tube flow passage 12.
 渦流形成体51に入る冷媒は、流入部52に流入し、小径部54に設けた6個の通孔55から、矢印R(図10A)で示すように、チューブ2-1の内周部に流入する。チューブ2-1の内周部に流入した媒体は、チューブ2-1の内周を、上流側から下流側に向けて螺旋状に流れ、渦流形成体51の下流側に、大きな螺旋状の冷媒の渦流UXを形成する。螺旋状の渦流UXとなった冷媒は、チューブ2-1の内壁面に沿って螺旋状に流れて、冷媒の熱がチューブ2-1の外壁面から放熱する。 The refrigerant entering the vortex flow forming body 51 flows into the inflow portion 52, and from the six through holes 55 provided in the small diameter portion 54, as shown by the arrow R (FIG. 10A), to the inner peripheral portion of the tube 2-1. To flow. The medium that has flowed into the inner peripheral portion of the tube 2-1 spirally flows from the upstream side toward the downstream side on the inner periphery of the tube 2-1, and a large spiral refrigerant on the downstream side of the vortex flow forming body 51 Form an eddy current UX. The refrigerant that has become the spiral vortex UX flows spirally along the inner wall surface of the tube 2-1, and the heat of the refrigerant is dissipated from the outer wall surface of the tube 2-1.
 整流体71は、図9Bに示すように、中実丸棒の外周部に複数条の直線溝72を形成し、中心部に貫通路73を形成して構成される。冷媒は、チューブ2-1の内周を整流体71に至るまで、渦流UXを発生させて、下流側に向けて螺旋状に流れ、整流体71に至ると、複数条の直線溝72及び貫通路73に流れ込み、ここで整流される。流れの中心部は低温となるため、貫通路73が設けられる。 As shown in FIG. 9B, the straightening body 71 is formed by forming a plurality of linear grooves 72 in the outer peripheral portion of a solid round bar and forming a through passage 73 in the central portion. The refrigerant generates an eddy current UX until the inner periphery of the tube 2-1 reaches the rectifying body 71, and flows spirally toward the downstream side, and when reaching the rectifying body 71, a plurality of linear grooves 72 and penetrations It flows into the path 73 where it is rectified. Since the central portion of the flow is at a low temperature, a through passage 73 is provided.
 螺旋状の渦流UXとなって流れる場合、整流体71に至るまでの間、冷媒がチューブ2-1の内壁面に近い側と、チューブ内流路12(図9A)の中心に近い側とに分離して流れることが判明した。チューブ2-1の内壁面に近い側では、冷媒が高速で流れ、大きな渦流UXとなることが判明した。即ち、冷媒がチューブ2-1の内壁面に沿って高速で流れるため、冷媒に遠心力が作用し、温度分離現象が発生し、チューブ2-1の内壁面側は高温になり、流れの中心部側は低温になる。
 第五実施形態では、チューブ2-1内に、渦流形成体51を設け、渦流形成体51の下流側に整流体71を設けたため、渦流形成体51と整流体71との間では、冷媒が、チューブ2-1の内壁面に近い側と、チューブ内流路12(図9A)の中心に近い側とに分離して流れるため、冷媒の熱を、チューブ2-1の外壁面から効率よく放熱でき、放熱効果を向上できる。チューブ2-2内でも、同じ作用効果を奏する。
When flowing in the form of a spiral vortex UX, the refrigerant is on the side closer to the inner wall surface of the tube 2-1 and on the side closer to the center of the in-tube flow passage 12 (FIG. 9A) It turned out that it separated and flowed. It was found that the refrigerant flowed at high speed on the side close to the inner wall surface of the tube 2-1, resulting in a large vortex flow UX. That is, since the refrigerant flows at high speed along the inner wall surface of the tube 2-1, a centrifugal force acts on the refrigerant to cause a temperature separation phenomenon, and the inner wall surface side of the tube 2-1 becomes hot and the flow center The part side becomes low temperature.
In the fifth embodiment, since the vortex flow forming body 51 is provided in the tube 2-1 and the rectifying body 71 is provided on the downstream side of the vortex flow forming body 51, the refrigerant is between the vortex flow forming body 51 and the flow rectifying body 71. And heat flows from the outer wall surface of the tube 2-1 efficiently because it flows separately to the side closer to the inner wall surface of the tube 2-1 and the side closer to the center of the in-tube flow path 12 (FIG. 9A). The heat can be dissipated, and the heat dissipation effect can be improved. The same action and effect are exhibited in the tube 2-2.
 2本のチューブ2-1、2-2を通った冷媒は、残りのチューブ2-3~2-6を通って、蒸発器1を通過する。チューブ2-3~2-6での放熱効果は、第一実施形態と同じであるため、説明を省略する。 The refrigerant having passed through the two tubes 2-1 and 2-2 passes through the evaporator 1 through the remaining tubes 2-3 to 2-6. The heat radiation effect of the tubes 2-3 to 2-6 is the same as that of the first embodiment, and thus the description thereof is omitted.
 以上の各実施形態では、放熱装置1のチューブ2-1~2-6を、冷媒が通流する場合について説明したが、本発明は、これに限定されず、気体、気液二相流体、または、水などの流体を、チューブ2-1~2-6に通流し、気体、気液二相流体、または、水などの流体の熱を外部に放熱するのに好適である。
 従って、自動車用ラジエター、オイルクーラー、インタークーラー、カーエアコンの凝縮器、蒸発器などの放熱装置にとくに好適である。
 本発明では、螺旋流路25、125の断面が多角形であるため、放熱効果が高められるため、放熱装置の小型化を図ることができる。
In the above embodiments, the case where the refrigerant flows through the tubes 2-1 to 2-6 of the heat dissipation device 1 has been described, but the present invention is not limited to this, and a gas, a gas-liquid two-phase fluid, Alternatively, it is suitable for flowing a fluid such as water through the tubes 2-1 to 2-6 and dissipating the heat of the gas, the gas-liquid two-phase fluid, or the fluid such as water to the outside.
Therefore, it is particularly suitable for a heat dissipating device such as a car radiator, an oil cooler, an intercooler, a condenser of a car air conditioner, an evaporator and the like.
In the present invention, since the cross sections of the spiral flow channels 25 and 125 are polygonal, the heat dissipation effect can be enhanced, so that the heat dissipation device can be miniaturized.
 以上の実施形態では、螺旋流路25、125の外周側に放熱部として放熱フィン3、3、3…を設けたが、本発明は、放熱フィン3に限定されない。
 例えば、螺旋流路25、125の外周側に、冷却管(不図示)を配置し、冷却管に通流する水などの媒体により水冷式放熱部を構成してもよい。
 以上、実施形態に基づいて本発明を説明したが、本発明は、これら実施形態に限定されるものではない。上記実施形態では、すべてのチューブに中子を設けたが、すべてに設けることに限定されるものではない。
In the above embodiment, the radiation fins 3, 3, 3... Are provided on the outer peripheral side of the spiral flow passages 25 and 125 as the radiation portions, but the present invention is not limited to the radiation fins 3.
For example, a cooling pipe (not shown) may be disposed on the outer peripheral side of the spiral flow channels 25 and 125, and a water cooling type heat dissipating unit may be configured by a medium such as water flowing through the cooling pipe.
Although the present invention has been described above based on the embodiments, the present invention is not limited to these embodiments. In the above embodiment, all the tubes are provided with the core, but the present invention is not limited to all.
 1 凝縮器
 2-1~2-6 チューブ
 3、3、3… 放熱フィン
 21 中子
 23 溝部
 25 螺旋流路
 51 渦流形成体
 71 整流体
 121 多角形チューブ
 125 螺旋流路
DESCRIPTION OF SYMBOLS 1 Condenser 2-1-2-6 Tube 3, 3, 3 ... Heat dissipation fin 21 Core 23 Groove part 25 Spiral flow path 51 Vortex flow formation body 71 Rectification body 121 Polygonal tube 125 Spiral flow path

Claims (7)

  1.  多角形チューブを螺旋状に巻いて断面が多角形の螺旋流路を形成し、この螺旋流路の外周側に放熱部を備えたことを特徴とする放熱装置。 What is claimed is: 1. A heat dissipation device comprising: a polygonal tube wound in a spiral form to form a spiral flow passage having a polygonal cross section; and a heat dissipation portion provided on an outer peripheral side of the spiral flow passage.
  2.  チューブの少なくとも入口側に中子を嵌合し、この中子の外周に螺旋状に溝部を設け、この溝部と前記チューブ内壁との間に断面が多角形の螺旋流路を備え、この螺旋流路の外周側に放熱部を備えたことを特徴とする放熱装置。 A core is fitted on at least the inlet side of the tube, and a spiral groove is provided on the outer periphery of the core, and a spiral flow passage having a polygonal cross section between the groove and the inner wall of the tube is provided. A heat dissipation device comprising a heat dissipation portion on an outer peripheral side of a path.
  3.  前記溝部のピッチが下流に向けて徐々に狭くなるように形成されていることを特徴とする請求項2に記載の放熱器。 The heat sink according to claim 2, wherein a pitch of the grooves is formed to be gradually narrowed toward the downstream.
  4.  前記螺旋流路は当該流路の長さ方向に沿う一次流れと、当該流路の断面内を回転する二次流れとを発生させ、前記螺旋流路の断面は複数の二次流れを発生させる形態であることを特徴とする請求項1乃至3の何れか一項に記載の放熱装置。 The spiral flow channel generates a primary flow along the length direction of the flow channel and a secondary flow rotating in the cross section of the flow channel, and the cross section of the spiral flow channel generates a plurality of secondary flows The heat dissipation device according to any one of claims 1 to 3, which is in a form.
  5.  前記放熱部が放熱フィンで構成されていることを特徴とする請求項1乃至4の何れか一項に記載の放熱装置。 The heat dissipation device according to any one of claims 1 to 4, wherein the heat dissipation portion is configured by a heat dissipation fin.
  6.  ラジエター、オイルクーラー、インタークーラー、冷凍サイクルの凝縮器または蒸発器のいずれかの放熱装置であって、請求項1乃至5の何れか一項に記載の放熱装置を備えることを特徴とする放熱装置。 A radiator, an oil cooler, an intercooler, a radiator of any one of a condenser of a refrigeration cycle and an evaporator, comprising the radiator according to any one of claims 1 to 5.
  7.  圧縮機、凝縮器、減圧装置、蒸発器を備え、前記凝縮器が、請求項1乃至5の何れか一項に記載の放熱装置を備えることを特徴とする冷凍サイクル。



     
    A refrigeration cycle comprising a compressor, a condenser, a decompression device, and an evaporator, wherein the condenser comprises the heat dissipation device according to any one of claims 1 to 5.



PCT/JP2017/039431 2017-10-31 2017-10-31 Heat radiation device WO2019087311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039431 WO2019087311A1 (en) 2017-10-31 2017-10-31 Heat radiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039431 WO2019087311A1 (en) 2017-10-31 2017-10-31 Heat radiation device

Publications (1)

Publication Number Publication Date
WO2019087311A1 true WO2019087311A1 (en) 2019-05-09

Family

ID=66331568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039431 WO2019087311A1 (en) 2017-10-31 2017-10-31 Heat radiation device

Country Status (1)

Country Link
WO (1) WO2019087311A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063618A (en) * 2019-10-15 2021-04-22 株式会社 オガワクリーンシステム Refrigerant liquefier and refrigeration cycle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223496A (en) * 1987-03-11 1988-09-16 Akutoronikusu Kk Flow passage for thermal medium fluid
JPH0666459A (en) * 1992-08-20 1994-03-08 Nippondenso Co Ltd Heat exchanger
WO2009125913A1 (en) * 2008-04-10 2009-10-15 Kyungdong Navien Co., Ltd. Heat exchanger to which laminar flow type and turbulent flow type were combined
JP2010210139A (en) * 2009-03-10 2010-09-24 Orion Mach Co Ltd Water-cooled condenser and refrigerating cycle device
US20120160465A1 (en) * 2009-07-06 2012-06-28 Webb Frederick Mark Heat exchanger
JP2013160479A (en) * 2012-02-08 2013-08-19 Hitachi Appliances Inc Heat exchanger and heat pump type water heater using the same
WO2016174826A1 (en) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration cycle device using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223496A (en) * 1987-03-11 1988-09-16 Akutoronikusu Kk Flow passage for thermal medium fluid
JPH0666459A (en) * 1992-08-20 1994-03-08 Nippondenso Co Ltd Heat exchanger
WO2009125913A1 (en) * 2008-04-10 2009-10-15 Kyungdong Navien Co., Ltd. Heat exchanger to which laminar flow type and turbulent flow type were combined
JP2010210139A (en) * 2009-03-10 2010-09-24 Orion Mach Co Ltd Water-cooled condenser and refrigerating cycle device
US20120160465A1 (en) * 2009-07-06 2012-06-28 Webb Frederick Mark Heat exchanger
JP2013160479A (en) * 2012-02-08 2013-08-19 Hitachi Appliances Inc Heat exchanger and heat pump type water heater using the same
WO2016174826A1 (en) * 2015-04-28 2016-11-03 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration cycle device using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063618A (en) * 2019-10-15 2021-04-22 株式会社 オガワクリーンシステム Refrigerant liquefier and refrigeration cycle
WO2021075068A1 (en) * 2019-10-15 2021-04-22 株式会社オガワクリーンシステム Refrigerant liquefier and refrigeration cycle
JP7165405B2 (en) 2019-10-15 2022-11-04 株式会社 オガワクリーンシステム Refrigerant liquefier and refrigeration cycle

Similar Documents

Publication Publication Date Title
US7913750B2 (en) Louvered air center with vortex generating extensions for compact heat exchanger
US20090250198A1 (en) Hot water corrugated heat transfer tube
US3394736A (en) Internal finned tube
US20070125528A1 (en) Finned helicoidal heat exchanger
US20160273840A1 (en) Tube heat exchanger with optimized thermo-hydraulic characteristics
US11118847B2 (en) Finned heat exchanger tube
JP2007333254A (en) Tube for heat-exchanger
CN108779945B (en) Radiator, condenser unit, refrigeration cycle
JP2013148309A (en) Coolant distributor and refrigeration cycle device including the same
JP3110197U (en) Refrigerant tube of heat exchanger
WO2019087311A1 (en) Heat radiation device
JP2005214545A (en) Heat exchanger
US9683791B2 (en) Condensation enhancement heat transfer pipe
US20220029509A1 (en) Cooling element for an electric motor, electric motor and method for cooling the motor
JP2009186130A (en) Heat transfer tube for radiator with inner face fin
US10386124B2 (en) Dual pass opposed (reverse) flow cooling coil with improved performance
KR101656176B1 (en) Watercooled heat exchanger with counter flow type
KR20090059434A (en) Oil cooler
EP0889299B1 (en) Heat exchanger having a double pipe construction
JP2021050868A (en) Heat exchanger
US7028766B2 (en) Heat exchanger tubing with connecting member and fins and methods of heat exchange
JP2016042552A (en) heat sink
JP2001133076A (en) Heat exchanger
WO2016151649A1 (en) Heat exchanger
JP7012351B2 (en) Double tube heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP