JP2013088045A - Heat exchanger and heat pump type water heater using the same - Google Patents

Heat exchanger and heat pump type water heater using the same Download PDF

Info

Publication number
JP2013088045A
JP2013088045A JP2011229513A JP2011229513A JP2013088045A JP 2013088045 A JP2013088045 A JP 2013088045A JP 2011229513 A JP2011229513 A JP 2011229513A JP 2011229513 A JP2011229513 A JP 2011229513A JP 2013088045 A JP2013088045 A JP 2013088045A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
flow path
temperature side
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011229513A
Other languages
Japanese (ja)
Inventor
Michiharu Watabe
道治 渡部
Yutaka Enokitsu
豊 榎津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011229513A priority Critical patent/JP2013088045A/en
Publication of JP2013088045A publication Critical patent/JP2013088045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger with high heat exchange performance while suppressing radiation loss on a high temperature side, and a heat pump type water heater using the same.SOLUTION: In the heat exchanger including a fluid passage passing a heating target fluid and a refrigerant passage passing a refrigerant providing heat to the fluid, the fluid and the refrigerant pass in opposite directions. When a maximum inner diameter in a cross section of the refrigerant passage is Dr, a circumference with respect to the maximum inner diameter Dr is πDr, an inner circumference is Lr, and a ratio of the inner circumference Lr and the circumference πDr is Lr/(πDr), an average value of the ratio Lr/(πDr) on a low temperature side is larger than an average value of the ratio Lr/(πDr) on a high temperature side.

Description

本発明は熱交換器及びそれを用いたヒートポンプ式給湯機に関する。   The present invention relates to a heat exchanger and a heat pump type water heater using the heat exchanger.

従来、冷媒によって水を加熱する給湯用熱交換器において、熱交換器の高性能化およびコンパクト化を図るために、冷媒側に溝付管などを適用したものが提案されている(特許文献1参照)。また、給湯用熱交換器、膨張弁、蒸発器、圧縮機を冷媒配管で順次接続して構成し、冷媒が臨界圧力以上で作動するヒートポンプ式給湯装置において、流路長さに対する効率を向上させるために熱交換器の高温側の流路断面積を低温側よりも大きくすることで圧力損失を低減したものが提案されている(特許文献2参照)。   2. Description of the Related Art Conventionally, a hot water supply heat exchanger that heats water using a refrigerant has been proposed in which a grooved tube or the like is applied to the refrigerant side in order to improve the performance and compactness of the heat exchanger (Patent Document 1). reference). In addition, in a heat pump hot water supply apparatus in which a heat exchanger for hot water supply, an expansion valve, an evaporator, and a compressor are sequentially connected by a refrigerant pipe and the refrigerant operates at a critical pressure or higher, the efficiency with respect to the channel length is improved. For this purpose, there has been proposed one in which the pressure loss is reduced by making the flow path cross-sectional area on the high temperature side of the heat exchanger larger than that on the low temperature side (see Patent Document 2).

特開2008−215766号公報JP 2008-215766 A 特開2009−168383号公報JP 2009-168383 A

特許文献1の従来技術を、冷媒が臨界圧力以上で動作するヒートポンプ式給湯機に適用した場合、溝付管による圧力損失の増加作用によって伝熱性能の向上作用を十分に引き出せないことがある。   When the prior art of Patent Document 1 is applied to a heat pump type hot water heater in which the refrigerant operates at a critical pressure or higher, the heat transfer performance may not be sufficiently improved due to the increased pressure loss due to the grooved tube.

また、特許文献2の従来技術では、高温側の流路断面積を低温側よりも大きくすることで高温側での圧力損失を抑制することができ得る。しかし、高温側の流路断面積を大きくしたことに伴って外表面積が大きくなってしまう構造である。このため、特許文献2の従来技術では、高温側での圧力損失を抑制したことによる熱交換効率向上の効果よりも放熱ロスの方が大きくなっていまい、熱交換器全体としての加熱性能が低下してしまう。   Moreover, in the prior art of patent document 2, the pressure loss on the high temperature side can be suppressed by making the flow path cross-sectional area on the high temperature side larger than that on the low temperature side. However, the outer surface area increases as the flow path cross-sectional area on the high temperature side increases. For this reason, in the prior art of Patent Document 2, the heat dissipation loss is larger than the effect of improving the heat exchange efficiency by suppressing the pressure loss on the high temperature side, and the heating performance as the whole heat exchanger is reduced. Resulting in.

そこで、本発明は、高温側における放熱ロスをおさえつつも、熱交換性能の高い熱交換器およびそれを用いたヒートポンプ式給湯機を提供することを目的とする。   Therefore, an object of the present invention is to provide a heat exchanger with high heat exchange performance and a heat pump type water heater using the heat exchanger while suppressing heat dissipation loss on the high temperature side.

本発明は、加熱対象の流体が流通する流体流路と、前記流体に対して熱を供与する冷媒が流通する冷媒流路を備え、前記流体と前記冷媒が対向して流通する熱交換器において、前記冷媒流路の断面における最大内径をDrとし、最大内径Drに対する円周をπDrとし、内周をLrとし、前記内周Lrと円周πDrとの比率をLr/(πDr)とした場合、低温側における前記比率Lr/(πDr)の平均値が高温側における前記比率Lr/(πDr)の平均値よりも大きいことを特徴とする。   The present invention relates to a heat exchanger in which a fluid flow path through which a fluid to be heated flows and a refrigerant flow path through which a refrigerant that provides heat to the fluid flows, the fluid and the refrigerant face each other. When the maximum inner diameter in the cross section of the refrigerant flow path is Dr, the circumference with respect to the maximum inner diameter Dr is πDr, the inner circumference is Lr, and the ratio between the inner circumference Lr and the circumference πDr is Lr / (πDr) The average value of the ratio Lr / (πDr) on the low temperature side is larger than the average value of the ratio Lr / (πDr) on the high temperature side.

また、前記流体流路の断面における最大内径をDwとし、最大内径Dwに対する円周をπDwとし、内周をLwとし、前記内周Lwと円周πDwとの比率をLw/(πDw)とした場合、高温側における前記比率Lw/(πDw)の平均値が低温側における前記比率Lw/(πDw)の平均値よりも大きいものであってもよい。   The maximum inner diameter in the cross section of the fluid flow path is Dw, the circumference with respect to the maximum inner diameter Dw is πDw, the inner circumference is Lw, and the ratio of the inner circumference Lw to the circumference πDw is Lw / (πDw). In this case, the average value of the ratio Lw / (πDw) on the high temperature side may be larger than the average value of the ratio Lw / (πDw) on the low temperature side.

また、前記流体流路もしくは前記冷媒流路の低温側の内周に溝を設けたものであってもよい。   Further, a groove may be provided on the inner periphery of the fluid channel or the refrigerant channel on the low temperature side.

また、前記流体流路もしくは前記冷媒流路の低温側の内周に突起を設けたものであってもよい。   Further, a protrusion may be provided on the inner periphery of the fluid channel or the refrigerant channel on the low temperature side.

また、前記流体流路と前記冷媒流路が流路方向に沿って接触しているものであってもよい。   Further, the fluid channel and the refrigerant channel may be in contact with each other along the channel direction.

また、前記流体流路もしくは前記冷媒流路の少なくとも何れか一方がらせん状に成形されているものであってもよい。   Further, at least one of the fluid channel and the refrigerant channel may be formed in a spiral shape.

また、前記流体が水であり、前記冷媒が二酸化炭素であってもよい。   The fluid may be water and the refrigerant may be carbon dioxide.

また、上記の熱交換器と、前記熱交換器に流入する前記冷媒を圧縮する圧縮手段と、前記熱交換器から排出された前記冷媒を膨張させる膨張手段と、前記膨張手段から排出された前記冷媒と外気とを熱交換させる蒸発手段と、を備えるヒートポンプ式給湯機が好適である。   The heat exchanger, compression means for compressing the refrigerant flowing into the heat exchanger, expansion means for expanding the refrigerant discharged from the heat exchanger, and the discharge from the expansion means A heat pump type water heater provided with an evaporating means for exchanging heat between the refrigerant and the outside air is suitable.

本発明によれば、高温側冷媒流路の一断面の最大内径Drに対する円周πDrを基準とした内周Lrの比率(Lr/(πDr))を低温側冷媒流路に比べて小さくすることで圧力損失を抑制できる。加えて低温側冷媒流路では一断面の最大内径Drに対する円周πDrを基準とした内周Lrの比率(Lr/(πDr))を増加させることで熱伝達が促進される。以上により、高温側における放熱ロスをおさえつつも、熱交換性能を向上させることができる。   According to the present invention, the ratio (Lr / (πDr)) of the inner circumference Lr with respect to the circumference πDr with respect to the maximum inner diameter Dr of one section of the high temperature side refrigerant channel is made smaller than that of the low temperature side refrigerant channel. Can suppress pressure loss. In addition, heat transfer is promoted by increasing the ratio (Lr / (πDr)) of the inner circumference Lr with respect to the circumference πDr with respect to the maximum inner diameter Dr of one section in the low temperature side refrigerant flow path. As described above, the heat exchange performance can be improved while suppressing the heat dissipation loss on the high temperature side.

第1の実施形態に係わる熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a 1st embodiment. 第1の実施形態に係わるヒートポンプ式給湯機のシステム図である。It is a system diagram of the heat pump type water heater according to the first embodiment. 第1の実施形態に係わる熱交換器の低温側冷媒流路の断面図である。It is sectional drawing of the low temperature side refrigerant | coolant flow path of the heat exchanger concerning 1st Embodiment. 第1の実施形態に係わる熱交換器の高温側冷媒流路の断面図である。It is sectional drawing of the high temperature side refrigerant | coolant flow path of the heat exchanger concerning 1st Embodiment. 第1の実施形態に係わる熱交換器内の温度分布の一例である。It is an example of the temperature distribution in the heat exchanger concerning 1st Embodiment. 第2の実施形態に係わる熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a 2nd embodiment. 第2の実施形態に係わる熱交換器の低温側冷媒流路の断面図である。It is sectional drawing of the low temperature side refrigerant | coolant flow path of the heat exchanger concerning 2nd Embodiment. 第3の実施形態に係わる熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a 3rd embodiment. 第4の実施形態に係わる熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a 4th embodiment. 第5の実施形態に係わる熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a 5th embodiment. 第6の実施形態に係わる熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a 6th embodiment. 第6の実施形態に係わる熱交換器の流路断面内の流れの概念図である。It is a conceptual diagram of the flow in the flow-path cross section of the heat exchanger concerning 6th Embodiment. 第7の実施形態に係わる熱交換器の斜視図である。It is a perspective view of the heat exchanger concerning a 7th embodiment.

以下、本発明の実施形態について図面を参照しながら説明する。下記の実施例では加熱対象の流体13として水を、熱を供与する冷媒14として臨界圧力以上で流通する冷媒(例えば、二酸化炭素)を想定しているが、本実施形態に記載する条件の範囲内で変更しても実施可能である。例えば、冷媒は、熱交換の過程で気体から気液混合状態に変化するものであってもよい。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following examples, water is assumed as the fluid 13 to be heated, and a refrigerant (for example, carbon dioxide) that circulates at a critical pressure or higher is assumed as the refrigerant 14 that supplies heat. However, the range of conditions described in this embodiment It can be implemented even if it is changed within. For example, the refrigerant may change from a gas to a gas-liquid mixed state in the process of heat exchange.

第1の実施形態について図1〜図5に従って説明する。図2に本実施形態となる熱交換器20を搭載したヒートポンプ式給湯機の構成を示す。熱交換器20の冷媒出口12は膨張弁23の入口側へと、膨張弁23の出口側は蒸発器22の入口側へと、蒸発器22の出口側は圧縮機21の吸込側へと、そして圧縮機21の吐出側は熱交換器20の冷媒入口11へと接続されている。   A first embodiment will be described with reference to FIGS. FIG. 2 shows a configuration of a heat pump type water heater equipped with a heat exchanger 20 according to the present embodiment. The refrigerant outlet 12 of the heat exchanger 20 is directed to the inlet side of the expansion valve 23, the outlet side of the expansion valve 23 is directed to the inlet side of the evaporator 22, the outlet side of the evaporator 22 is directed to the suction side of the compressor 21, The discharge side of the compressor 21 is connected to the refrigerant inlet 11 of the heat exchanger 20.

図1に熱交換器20の斜視図を示す。熱交換器20は加熱対象の流体13が流通する流体流路2と、冷媒14が流通する冷媒流路1から構成され、流体流路2と冷媒流路1は流路方向に沿って接触している。なお、流体流路2は内面が滑らかな平滑管で構成されている。以下、冷媒流路1の上流側を高温側、下流側を低温側と称す。本実施例では高温側冷媒流路3と低温側冷媒流路4の長さの比率を4:6とし、高温側冷媒流路3には平滑管を、低温側冷媒流路4には内面に溝7を有する溝付管を使用している。溝付管の溝7は流路方向に対して並行に成形されている。   FIG. 1 shows a perspective view of the heat exchanger 20. The heat exchanger 20 includes a fluid flow path 2 through which a fluid 13 to be heated flows and a refrigerant flow path 1 through which a refrigerant 14 flows. The fluid flow path 2 and the refrigerant flow path 1 are in contact with each other along the flow path direction. ing. The fluid flow path 2 is constituted by a smooth tube having a smooth inner surface. Hereinafter, the upstream side of the refrigerant flow path 1 is referred to as a high temperature side, and the downstream side is referred to as a low temperature side. In this embodiment, the ratio of the lengths of the high temperature side refrigerant flow path 3 and the low temperature side refrigerant flow path 4 is 4: 6, a smooth tube is provided in the high temperature side refrigerant flow path 3, and an inner surface is provided in the low temperature side refrigerant flow path 4. A grooved tube having a groove 7 is used. The groove 7 of the grooved tube is formed in parallel to the flow path direction.

低温側冷媒流路4と高温側冷媒流路3の断面形状をそれぞれ図3、図4に示す。低温側冷媒流路4および高温側冷媒流路3の断面形状は流路方向に対して同一である。低温側冷媒流路4を構成する溝付管の流路断面積および外径は、高温側冷媒流路3を構成する平滑管と同一の値である。低温側冷媒流路4は溝7を有しているため、最大内径Drに対する円周πDrを基準とした内周Lrの比率(Lr/(πDr))は1よりも大きい。これに対して、高温側冷媒流路3は最大内径Drに対する円周πDrと内周Lrが同一であるため、(Lr/(πDr))は1である。   The cross-sectional shapes of the low temperature side refrigerant flow path 4 and the high temperature side refrigerant flow path 3 are shown in FIGS. 3 and 4, respectively. The cross-sectional shapes of the low temperature side refrigerant flow path 4 and the high temperature side refrigerant flow path 3 are the same with respect to the flow path direction. The channel cross-sectional area and the outer diameter of the grooved pipe constituting the low temperature side refrigerant flow path 4 are the same values as the smooth pipe constituting the high temperature side refrigerant flow path 3. Since the low temperature side refrigerant flow path 4 has the groove 7, the ratio (Lr / (πDr)) of the inner circumference Lr with respect to the circumference πDr with respect to the maximum inner diameter Dr is larger than 1. On the other hand, since the circumference πDr and the inner circumference Lr with respect to the maximum inner diameter Dr are the same in the high temperature side refrigerant flow path 3, (Lr / (πDr)) is 1.

本実施形態のヒートポンプ式給湯機の動作を説明する。冷媒14は圧縮機21で圧縮されて高温・高圧状態になり、冷媒入口11から熱交換器20へと流入する。熱交換器20へと流入した冷媒14は流体13に熱を伝え、冷媒14自身は熱を失って熱交換器20の冷媒出口12から流出する。熱交換器20から流出した冷媒14は膨張弁23を通過することで減圧し、蒸発器22にて外気から熱が加えられた後、再度圧縮機21へと流入する。   The operation of the heat pump type water heater of this embodiment will be described. The refrigerant 14 is compressed by the compressor 21 to be in a high temperature / high pressure state, and flows into the heat exchanger 20 from the refrigerant inlet 11. The refrigerant 14 flowing into the heat exchanger 20 transfers heat to the fluid 13, and the refrigerant 14 loses heat and flows out from the refrigerant outlet 12 of the heat exchanger 20. The refrigerant 14 flowing out from the heat exchanger 20 is reduced in pressure by passing through the expansion valve 23, and heat is applied from outside air in the evaporator 22, and then flows into the compressor 21 again.

本実施例では熱交換器20の流体入口9から流入した10℃程度の水を、65℃程度またはそれ以上まで沸き上げ、流体出口10から流出させることを想定している。この場合、圧縮機21の吐出側から熱交換器20、膨張弁23の入口側にかけて冷媒14の圧力が臨界圧力以上となる。圧力が臨界圧力以上の場合、冷媒14の温度低下に伴って密度や比熱といった物性値が気体から液体の値へと連続的に変化する。図5に本実施例で想定している熱交換器20での冷媒14と流体13の温度変化の一例を示す。線Jと線Kはそれぞれ、流体13の温度変化と冷媒14の温度変化を表している。冷媒14は入口から下流に向かうに従って温度が低下し、やがてL点にて流体13との熱交換温度差が極小となる。そしてL点の下流では熱交換温度差が再度拡大する。本実施例の動作条件において、冷媒入口11からL点までの流路長さは、冷媒流路1の全長の4割程度である。   In the present embodiment, it is assumed that water at about 10 ° C. flowing from the fluid inlet 9 of the heat exchanger 20 is boiled up to about 65 ° C. or higher and flows out from the fluid outlet 10. In this case, the pressure of the refrigerant 14 becomes higher than the critical pressure from the discharge side of the compressor 21 to the heat exchanger 20 and the inlet side of the expansion valve 23. When the pressure is equal to or higher than the critical pressure, the physical properties such as density and specific heat continuously change from gas to liquid as the temperature of the refrigerant 14 decreases. FIG. 5 shows an example of temperature changes of the refrigerant 14 and the fluid 13 in the heat exchanger 20 assumed in this embodiment. Line J and line K represent the temperature change of the fluid 13 and the temperature change of the refrigerant 14, respectively. The temperature of the refrigerant 14 decreases from the inlet toward the downstream, and the difference in heat exchange temperature with the fluid 13 at the point L is minimized. And the heat exchange temperature difference expands again downstream of point L. In the operating conditions of the present embodiment, the flow path length from the refrigerant inlet 11 to the point L is about 40% of the total length of the refrigerant flow path 1.

L点よりも高温側の領域は、冷媒14の圧力上昇にともなって比熱が増加する領域を含んでいる。これはL点よりも高温側の圧力損失を低減すると、冷媒14の温度変化が鈍化することを意味しており、結果として冷媒14の温度が線Kから線Mへと変化し、L点の熱交換温度差が拡大する。熱交換温度差が拡大するとL点での交換熱量が増加するため、流体13の温度がL点以上の値になるために必要な流路を短くすることができる。   The region on the higher temperature side than the point L includes a region where the specific heat increases as the pressure of the refrigerant 14 increases. This means that if the pressure loss on the higher temperature side than the L point is reduced, the temperature change of the refrigerant 14 slows down. As a result, the temperature of the refrigerant 14 changes from the line K to the line M. The heat exchange temperature difference increases. When the heat exchange temperature difference increases, the amount of heat exchanged at the point L increases, so that the flow path required for the temperature of the fluid 13 to be a value equal to or higher than the point L can be shortened.

以上から、高温側冷媒流路3の圧力損失を低温側冷媒流路4よりも低減させることで、流路長さに対して効率の高い熱交換器20を得ることができることがわかる。そのため本実施例では、L点の前後で冷媒流路1の構造を変更した。なお、本実施例では冷媒流路1の全長に対する高温側冷媒流路3の比率を4割としたが、熱交換器20の動作条件によってL点の位置は変化するため、目的に合わせて高温側冷媒流路3の割合を任意に設定することができる。   From the above, it can be seen that by reducing the pressure loss of the high temperature side refrigerant flow path 3 more than that of the low temperature side refrigerant flow path 4, it is possible to obtain the heat exchanger 20 having high efficiency with respect to the flow path length. Therefore, in this embodiment, the structure of the refrigerant flow path 1 is changed before and after the L point. In this embodiment, the ratio of the high-temperature side refrigerant flow path 3 to the total length of the refrigerant flow path 1 is 40%, but the position of the L point changes depending on the operating conditions of the heat exchanger 20, so that the high temperature according to the purpose is high. The ratio of the side refrigerant flow path 3 can be set arbitrarily.

次に、平滑管と溝付管の圧力損失の差について説明する。   Next, the difference in pressure loss between the smooth tube and the grooved tube will be described.

一般に、管内を流れる流体の圧力損失は代表直径の減少に伴って増加することが知られている。ここで、代表直径は以下の式で定義される。   In general, it is known that the pressure loss of a fluid flowing in a pipe increases as the representative diameter decreases. Here, the representative diameter is defined by the following equation.

h=4×Acsa/L
(Dh[m]:代表直径、Acsa[m2]:流路断面積、L[m]:流路の内周)
D h = 4 × A csa / L
(D h [m]: representative diameter, A csa [m 2 ]: channel cross-sectional area, L [m]: inner circumference of channel)

この代表直径は様々な流路形状に対する直径を意味しており、例えば流路が円の場合には代表直径は流路の内径と一致する。すなわち前述の圧力損失と代表直径の関係は、同一の流路断面積に対して内周が長いほど圧力損失が高くなることを意味している。溝付管と平滑管の代表直径を比較すると、流路断面積は同一だが内周は溝付管の方が長い。そのため同一流路断面積であっても平滑管に比べて溝付管の圧力損失が高くなる。   This representative diameter means a diameter for various flow channel shapes. For example, when the flow channel is a circle, the representative diameter matches the inner diameter of the flow channel. In other words, the relationship between the pressure loss and the representative diameter described above means that the pressure loss increases as the inner circumference increases with respect to the same flow path cross-sectional area. Comparing the representative diameters of the grooved tube and the smooth tube, the channel cross-sectional area is the same, but the inner periphery is longer in the grooved tube. For this reason, even if the cross-sectional area of the flow path is the same, the pressure loss of the grooved tube is higher than that of the smooth tube.

次に溝付管と平滑管の伝熱性能の差について説明する。熱交換器における交換熱量の式を以下に示す。   Next, the difference in heat transfer performance between the grooved tube and the smooth tube will be described. The formula for the exchange heat quantity in the heat exchanger is shown below.

Q=K×A×ΔT
(Q[W]:交換熱量、K[W/m2K]:熱通過率、A[m2]:伝熱面積、ΔT[K]:熱交換温度差)
Q = K × A × ΔT
(Q [W]: Exchange heat quantity, K [W / m 2 K]: Heat passage rate, A [m 2 ]: Heat transfer area, ΔT [K]: Heat exchange temperature difference)

交換熱量は熱通過率と伝熱面積の積に比例するため、この値を伝熱性能と定義し、熱交換器20の性能を表す指標として使用する。同一流路断面積の溝付管と平滑管を比較すると、伝熱面積が大きいぶん溝付管の伝熱性能が高くなる。したがって伝熱性能だけに着目すれば、冷媒流路1を熱交換器20の冷媒入口11から冷媒出口12の全域にわたって溝付管とした方が熱交換器20の性能は高くなる。しかし前述の通り、熱交換温度差が極小となるL点から高温側では冷媒14の圧力損失が熱交換器20の性能に影響を持つため、本実施例ではL点を境にして高温側冷媒流路3に平滑管を、低温側冷媒流路4に溝付管を使用した。   Since the amount of exchange heat is proportional to the product of the heat transfer rate and the heat transfer area, this value is defined as the heat transfer performance and used as an index representing the performance of the heat exchanger 20. When comparing a grooved tube and a smooth tube having the same channel cross-sectional area, the heat transfer performance of the grooved tube having a large heat transfer area is increased. Therefore, if attention is paid only to the heat transfer performance, the performance of the heat exchanger 20 becomes higher if the refrigerant flow path 1 is formed as a grooved tube from the refrigerant inlet 11 to the refrigerant outlet 12 of the heat exchanger 20. However, as described above, since the pressure loss of the refrigerant 14 affects the performance of the heat exchanger 20 on the high temperature side from the L point where the heat exchange temperature difference is minimized, in this embodiment, the high temperature side refrigerant is separated from the L point. A smooth tube was used for the channel 3 and a grooved tube was used for the low-temperature side refrigerant channel 4.

以上から、本実施例によれば、高温側と低温側の冷媒流路の大きさと関係なく高温側の圧力損失を抑制できるため、高温側冷媒管の放熱ロスをおさえつつ熱交換性能を向上させることができる。具体的には、高温側冷媒流路3と低温側冷媒流路4の外表面積が同一であるため、高温側の放熱ロスの増大を抑制しつつ高温側の圧力損失を低温側に比べて低減でき、さらに低温側の伝熱性能の向上により流路長さに対して効率の高い熱交換器20およびヒートポンプ式給湯機を提供できる。   As described above, according to the present embodiment, since the pressure loss on the high temperature side can be suppressed regardless of the size of the refrigerant flow path on the high temperature side and the low temperature side, the heat exchange performance is improved while suppressing the heat dissipation loss of the high temperature side refrigerant pipe. be able to. Specifically, since the outer surface areas of the high temperature side refrigerant flow path 3 and the low temperature side refrigerant flow path 4 are the same, the increase in heat dissipation loss on the high temperature side is suppressed and the pressure loss on the high temperature side is reduced compared to the low temperature side. In addition, by improving the heat transfer performance on the low temperature side, it is possible to provide a heat exchanger 20 and a heat pump type water heater that are highly efficient with respect to the channel length.

なお、本実施例では冷媒14が臨界圧力以上で動作する場合を想定しているが、冷媒14が熱交換の過程で気体から気液混合状態に変化する場合についても、図5のL点に対応する熱交換温度差の極小点が発生するため、本実施例を用いることで熱交換器20の性能向上が可能である。また、本実施例では溝付管の溝7を流路方向に対して並行としたが、流路方向に対してらせん状に成形した場合などについても目的とする効果が得られるため、溝7の形状は任意のものを選択できる。   In the present embodiment, it is assumed that the refrigerant 14 operates at a critical pressure or higher, but the case where the refrigerant 14 changes from a gas to a gas-liquid mixed state in the process of heat exchange is also shown at the point L in FIG. Since the corresponding minimum point of the heat exchange temperature difference is generated, the performance of the heat exchanger 20 can be improved by using this embodiment. In this embodiment, the groove 7 of the grooved tube is parallel to the flow path direction. However, since the intended effect is obtained even when the groove 7 is formed in a spiral shape with respect to the flow path direction, the groove 7 Any shape can be selected.

第2の実施形態について図6と図7に従って説明する。図6に第2の実施形態となる熱交換器20の斜視図を示す。本実施形態では第1の実施形態における低温側冷媒流路4に突起8を有するディンプル管を用いている。突起8は低温側冷媒流路4の内壁にらせん状に配置されている。低温側冷媒流路4を構成するディンプル管の流路体積を流路長さで割った平均流路断面積と、高温側の平滑管の流路断面積は同一である。またディンプル管と平滑管の外径も同一である。   A second embodiment will be described with reference to FIGS. FIG. 6 is a perspective view of the heat exchanger 20 according to the second embodiment. In the present embodiment, a dimple tube having a protrusion 8 is used in the low-temperature side refrigerant flow path 4 in the first embodiment. The protrusions 8 are spirally arranged on the inner wall of the low temperature side refrigerant flow path 4. The average channel cross-sectional area obtained by dividing the channel volume of the dimple tube constituting the low-temperature side refrigerant channel 4 by the channel length is the same as the channel cross-sectional area of the high-temperature side smooth tube. The outer diameters of the dimple tube and the smooth tube are also the same.

図7に低温側冷媒流路4を構成するディンプル管の断面図を示す。ディンプル管の突起8が配置されている箇所にて、最大内径Drに対する円周πDrを基準とした内周Lrの比率(Lr/(πDr))は1よりも大きくなる。したがって、低温側冷媒流路4の入口から出口までの、(Lr/(πDr))の平均値についても高温側の値よりも大きくなる。   FIG. 7 shows a cross-sectional view of a dimple tube constituting the low temperature side refrigerant flow path 4. The ratio (Lr / (πDr)) of the inner circumference Lr based on the circumference πDr with respect to the maximum inner diameter Dr is greater than 1 at the location where the projection 8 of the dimple tube is disposed. Therefore, the average value of (Lr / (πDr)) from the inlet to the outlet of the low temperature side refrigerant flow path 4 is also larger than the value on the high temperature side.

第2の実施形態の動作について説明する。熱交換器20に流入した冷媒14は、高温側の平滑管を流通した後、ディンプル管へと流入する。ディンプル管内の突起8が配置されている部分では、同一流路断面積の平滑管に比べて内周Lrが長いため、第1の実施形態と同様の理由によって平滑管と比べて圧力損失と伝熱性能が上昇する。以上の仕組みにより、本実施例は第1の実施例と同様の効果が得られることがわかる。なお、本実施例では管内の突起8をらせん状に配置しているが、配置の方法にかかわらず目的とする効果が得られるため、任意の形状を選択できる。   The operation of the second embodiment will be described. The refrigerant 14 that has flowed into the heat exchanger 20 flows through the high-temperature smooth tube and then flows into the dimple tube. In the portion where the projection 8 in the dimple tube is disposed, the inner circumference Lr is longer than that of the smooth tube having the same flow path cross-sectional area. Therefore, for the same reason as in the first embodiment, pressure loss and transmission are compared with those of the smooth tube. Increases thermal performance. With the above mechanism, it can be seen that this embodiment can obtain the same effects as those of the first embodiment. In this embodiment, the protrusions 8 in the tube are arranged in a spiral shape, but any desired shape can be selected because the intended effect can be obtained regardless of the arrangement method.

第3の実施形態について図8に従って説明する。第3の実施形態は第1の実施形態のものにおいて、高温側流体流路5に流路方向と並行な溝7を有する溝付管を用いたものとなっている。   A third embodiment will be described with reference to FIG. The third embodiment is the same as that of the first embodiment, except that the high temperature side fluid flow path 5 uses a grooved tube having a groove 7 parallel to the flow path direction.

本実施例の動作について説明する。高温側流体流路5には溝付管を用いているため、平滑管を使用した場合に比べて伝熱性能が向上する。高温側の伝熱性能の向上により、交換熱量を一定とした場合の必要流路長さが減少するため、本実施例によって高温側の放熱ロスの抑制と流路長さに対する効率の向上がさらに促される。   The operation of this embodiment will be described. Since a grooved tube is used for the high temperature side fluid flow path 5, heat transfer performance is improved as compared with the case where a smooth tube is used. Due to the improvement of heat transfer performance on the high temperature side, the required flow path length when the exchange heat quantity is constant is reduced, so this embodiment further suppresses heat loss on the high temperature side and improves the efficiency with respect to the flow path length. Prompted.

なお本実施例では、低温側冷媒流路4と高温側流体流路5の両方に流路方向に平行な溝7を有する溝付管を使用しているが、流路内にらせん状の溝7を有する場合や突起8を有する場合についても同様の効果が得られるため、目的に応じて任意のものを選択できる。   In this embodiment, a grooved tube having a groove 7 parallel to the flow path direction is used for both the low temperature side refrigerant flow path 4 and the high temperature side fluid flow path 5, but a spiral groove is formed in the flow path. Since the same effect can be obtained also in the case of having 7 or the case of having the protrusion 8, any one can be selected according to the purpose.

第4の実施形態について図9に従って説明する。第4の実施形態は第1の実施形態から流体流路2と冷媒流路1の接触方法を変更したもので、冷媒流路1は流体流路2を芯管としてらせん状に巻きつけられている。これにより、直管同士を接触させた場合に比べて流体流路2の単位長さに対する伝熱面積が増加するため、第1の実施例と同様の効果を得つつ、熱交換器20の小型化が可能となる。   A fourth embodiment will be described with reference to FIG. In the fourth embodiment, the contact method between the fluid flow path 2 and the refrigerant flow path 1 is changed from the first embodiment. The refrigerant flow path 1 is wound in a spiral shape with the fluid flow path 2 as a core tube. Yes. Thereby, since the heat transfer area with respect to the unit length of the fluid flow path 2 increases compared with the case where the straight pipes are brought into contact with each other, the effect similar to that of the first embodiment is obtained, and the small size of the heat exchanger 20 is obtained. Can be realized.

第5の実施形態について図10に従って説明する。第5の実施形態は第1の実施形態から流体流路2と冷媒流路1の位置関係を変更したもので、冷媒流路1は流体流路2の内部に配置される。これにより冷媒流路1の外面が全て伝熱に寄与することで伝熱面積が増加し、第1の実施例と同様の効果を得つつ熱交換器20の小型化が可能となる。   A fifth embodiment will be described with reference to FIG. In the fifth embodiment, the positional relationship between the fluid flow path 2 and the refrigerant flow path 1 is changed from the first embodiment, and the refrigerant flow path 1 is arranged inside the fluid flow path 2. As a result, the entire outer surface of the refrigerant flow path 1 contributes to the heat transfer, so that the heat transfer area increases, and the heat exchanger 20 can be downsized while obtaining the same effects as in the first embodiment.

第6の実施形態について図11に従って説明する。第6の実施形態の熱交換器20は第1の実施形態に対して、流路の曲率を変更したものとなっている。流体流路2と冷媒流路1はそれぞれらせん状に成形され、流体流路2の外側に冷媒流路1を配置している。ここで冷媒流路1は隣接する2ピッチ分の流体流路2に対して接触している。この構造は、まず流体流路2をらせん状に成形した後、その外側に冷媒流路1を巻きつけることで容易に製造できる。   A sixth embodiment will be described with reference to FIG. The heat exchanger 20 of the sixth embodiment is obtained by changing the curvature of the flow path with respect to the first embodiment. The fluid flow path 2 and the refrigerant flow path 1 are each formed in a spiral shape, and the refrigerant flow path 1 is disposed outside the fluid flow path 2. Here, the refrigerant flow path 1 is in contact with the fluid flow paths 2 for two adjacent pitches. This structure can be easily manufactured by first forming the fluid flow path 2 in a spiral shape and then winding the refrigerant flow path 1 around the outside.

本実施例における流体流路2と冷媒流路1の断面内の流れの模式図を図12に示す。らせん状の流路では、らせん構造外側16の流路方向の流速がらせん構造内側15に比べて高くなる。流速が高い場所ではエネルギ保存の法則に従って流体の静圧が低下し、逆に流速の遅い場所では静圧が増加する。この流路内の静圧差によって内側から外側に向かう2次流れが発生し、渦が生成される。これにより直管の場合に比べて流路内の流体の混合が促進されるため、壁面の温度が流体に伝わりやすくなる。   FIG. 12 shows a schematic diagram of the flow in the cross section of the fluid channel 2 and the refrigerant channel 1 in the present embodiment. In the spiral flow path, the flow velocity in the flow path direction of the spiral structure outer side 16 is higher than that of the spiral structure inner side 15. In a place where the flow velocity is high, the static pressure of the fluid decreases according to the law of conservation of energy, and conversely, in a place where the flow velocity is slow, the static pressure increases. Due to the static pressure difference in the flow path, a secondary flow from the inside toward the outside is generated, and a vortex is generated. As a result, the mixing of the fluid in the flow path is promoted as compared with the case of the straight pipe, so that the temperature of the wall surface is easily transmitted to the fluid.

以上の仕組みにより、らせん状に成形された流路では直管に比べて伝熱性能が上昇するため、本実施例によって第1の実施例と同様の効果を得つつ熱交換器20の流路の短縮が可能となる。   Due to the above mechanism, the heat flow performance of the spirally formed flow path is higher than that of the straight pipe. Therefore, the flow path of the heat exchanger 20 can be obtained while obtaining the same effect as the first embodiment. Can be shortened.

第7の実施形態について図13の斜視図に従って説明する。第7の実施例は第1の実施例おいて、高温側と低温側とで熱交換器20を別構造に変更したものである。高温側は、高温側冷媒流路3と高温側流体流路5を流路方向に沿って接触させた構造である。これに対して低温側は、らせん状に成形した低温側流体流路6の外面に、低温側冷媒流路4を巻きつけた構造である。低温側冷媒流路4は隣接する2ピッチ分の低温側流体流路6に対して接触している。   A seventh embodiment will be described with reference to the perspective view of FIG. In the seventh embodiment, the heat exchanger 20 is changed to a different structure on the high temperature side and the low temperature side in the first embodiment. The high temperature side has a structure in which the high temperature side refrigerant flow path 3 and the high temperature side fluid flow path 5 are contacted along the flow path direction. On the other hand, the low temperature side has a structure in which the low temperature side refrigerant flow path 4 is wound around the outer surface of the low temperature side fluid flow path 6 formed in a spiral shape. The low temperature side refrigerant flow path 4 is in contact with the adjacent two pitch low temperature side fluid flow paths 6.

上記の方法により、高温側の圧力損失を低温側に比べて低減しつつ低温側の伝熱性能を向上させるという目的に対して、最適な熱交換器を選択することができる。なお本実施例以外にも、目的に応じて高温側と低温側の熱交換器20を任意のものに変更することができる。   With the above method, an optimum heat exchanger can be selected for the purpose of improving the heat transfer performance on the low temperature side while reducing the pressure loss on the high temperature side as compared with the low temperature side. Besides the present embodiment, the heat exchanger 20 on the high temperature side and the low temperature side can be changed to any one according to the purpose.

上記の第4から第7の実施例は第1の実施例を派生させたものであるが、高温側流体流路5および低温側冷媒流路4に、実施例2と実施例3に記載した流路の組み合わせを適用した場合についても同様の効果が得られる。   The fourth to seventh embodiments described above are derived from the first embodiment, but are described in the second and third embodiments in the high temperature side fluid flow path 5 and the low temperature side refrigerant flow path 4. The same effect can be obtained when a combination of flow paths is applied.

1 冷媒流路
2 流体流路
3 高温側冷媒流路
4 低温側冷媒流路
5 高温側流体流路
6 低温側流体流路
7 溝
8 突起
9 流体入口
10 流体出口
11 冷媒入口
12 冷媒出口
13 流体
14 冷媒
15 らせん構造内側
16 らせん構造外側
20 熱交換器
21 圧縮機
22 蒸発器
23 膨張弁
DESCRIPTION OF SYMBOLS 1 Refrigerant flow path 2 Fluid flow path 3 High temperature side refrigerant flow path 4 Low temperature side refrigerant flow path 5 High temperature side fluid flow path 6 Low temperature side fluid flow path 7 Groove 8 Projection 9 Fluid inlet 10 Fluid outlet 11 Refrigerant inlet 12 Refrigerant outlet 13 Fluid 14 Refrigerant 15 Helix structure inner side 16 Helix structure outer side 20 Heat exchanger 21 Compressor 22 Evaporator 23 Expansion valve

Claims (8)

加熱対象の流体が流通する流体流路と、
前記流体に対して熱を供与する冷媒が流通する冷媒流路を備え、
前記流体と前記冷媒が対向して流通する熱交換器において、
前記冷媒流路の断面における最大内径をDrとし、最大内径Drに対する円周をπDrとし、内周をLrとし、前記内周Lrと円周πDrとの比率をLr/(πDr)とした場合、低温側における前記比率Lr/(πDr)の平均値が高温側における前記比率Lr/(πDr)の平均値よりも大きいことを特徴とする熱交換器。
A fluid flow path through which the fluid to be heated flows;
A refrigerant flow path through which a refrigerant that provides heat to the fluid flows;
In the heat exchanger in which the fluid and the refrigerant flow in opposition,
When the maximum inner diameter in the cross section of the refrigerant flow path is Dr, the circumference with respect to the maximum inner diameter Dr is πDr, the inner circumference is Lr, and the ratio of the inner circumference Lr to the circumference πDr is Lr / (πDr), An average value of the ratio Lr / (πDr) on the low temperature side is larger than an average value of the ratio Lr / (πDr) on the high temperature side.
前記流体流路の断面における最大内径をDwとし、最大内径Dwに対する円周をπDwとし、内周をLwとし、前記内周Lwと円周πDwとの比率をLw/(πDw)とした場合、高温側における前記比率Lw/(πDw)の平均値が低温側における前記比率Lw/(πDw)の平均値よりも大きいことを特徴とする、請求項1に記載の熱交換器。   When the maximum inner diameter in the cross section of the fluid channel is Dw, the circumference with respect to the maximum inner diameter Dw is πDw, the inner circumference is Lw, and the ratio of the inner circumference Lw to the circumference πDw is Lw / (πDw), 2. The heat exchanger according to claim 1, wherein an average value of the ratio Lw / (πDw) on the high temperature side is larger than an average value of the ratio Lw / (πDw) on the low temperature side. 前記流体流路もしくは前記冷媒流路の低温側の内周に溝を設けたことを特徴とする、請求項1または2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein a groove is provided in an inner periphery on a low temperature side of the fluid channel or the refrigerant channel. 前記流体流路もしくは前記冷媒流路の低温側の内周に突起を設けたことを特徴とする、請求項1または2に記載の熱交換器。   The heat exchanger according to claim 1, wherein a protrusion is provided on an inner periphery on a low temperature side of the fluid flow path or the refrigerant flow path. 前記流体流路と前記冷媒流路が流路方向に沿って接触していることを特徴とする、請求項1または2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein the fluid channel and the refrigerant channel are in contact with each other along a channel direction. 前記流体流路もしくは前記冷媒流路の少なくとも何れか一方がらせん状に成形されていることを特徴とする、請求項1または2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein at least one of the fluid channel or the refrigerant channel is formed in a spiral shape. 前記流体が水であり、
前記冷媒が二酸化炭素であることを特徴とする、請求項1または2に記載の熱交換器。
The fluid is water;
The heat exchanger according to claim 1 or 2, wherein the refrigerant is carbon dioxide.
請求項1または2に記載の熱交換器と、
前記熱交換器に流入する前記冷媒を圧縮する圧縮手段と、
前記熱交換器から排出された前記冷媒を膨張させる膨張手段と、
前記膨張手段から排出された前記冷媒と外気とを熱交換させる蒸発手段と、を備えることを特徴とする、ヒートポンプ式給湯機。
The heat exchanger according to claim 1 or 2,
Compression means for compressing the refrigerant flowing into the heat exchanger;
Expansion means for expanding the refrigerant discharged from the heat exchanger;
A heat pump type hot water heater comprising: an evaporating unit configured to exchange heat between the refrigerant discharged from the expansion unit and outside air.
JP2011229513A 2011-10-19 2011-10-19 Heat exchanger and heat pump type water heater using the same Pending JP2013088045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229513A JP2013088045A (en) 2011-10-19 2011-10-19 Heat exchanger and heat pump type water heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229513A JP2013088045A (en) 2011-10-19 2011-10-19 Heat exchanger and heat pump type water heater using the same

Publications (1)

Publication Number Publication Date
JP2013088045A true JP2013088045A (en) 2013-05-13

Family

ID=48532130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229513A Pending JP2013088045A (en) 2011-10-19 2011-10-19 Heat exchanger and heat pump type water heater using the same

Country Status (1)

Country Link
JP (1) JP2013088045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199479A1 (en) * 2013-06-13 2014-12-18 三菱電機株式会社 Heat pump device
JP2017159814A (en) * 2016-03-10 2017-09-14 株式会社デンソー Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199479A1 (en) * 2013-06-13 2014-12-18 三菱電機株式会社 Heat pump device
JP6075451B2 (en) * 2013-06-13 2017-02-08 三菱電機株式会社 Heat pump equipment
JP2017159814A (en) * 2016-03-10 2017-09-14 株式会社デンソー Air conditioner
WO2017154465A1 (en) * 2016-03-10 2017-09-14 株式会社デンソー Air conditioning device

Similar Documents

Publication Publication Date Title
JP5106453B2 (en) Plate heat exchanger and refrigeration air conditioner
KR20110083996A (en) Double-piped heat exchanger
CN103542621A (en) Design method of general combination pipe diameter air conditioner heat exchange equipment fluid passage
KR20080004516A (en) Heat transfer tube for supplying hot water
CN109405589A (en) A kind of spherical heat exchanger that two-tube-pass independently exchanges heat
JP6573210B2 (en) Double tube heat exchanger and heat pump heat source machine equipped with the same
JPWO2013084508A1 (en) Finned tube heat exchanger
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
CN203489539U (en) Heat exchanger
JP2010210139A (en) Water-cooled condenser and refrigerating cycle device
JP4572662B2 (en) Heat exchanger
CN104654886B (en) A kind of female thread heat transmission copper pipe
WO2005026638A1 (en) Heat exchanger
WO2013014899A1 (en) Heat exchanger and heat pump using same
JP2013088045A (en) Heat exchanger and heat pump type water heater using the same
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP5785883B2 (en) Heat exchanger and heat pump type water heater using the same
JP2009264644A (en) Heat exchanger
CN209279723U (en) A kind of spherical heat exchanger with Dual heat exchange effect
JP2009186130A (en) Heat transfer tube for radiator with inner face fin
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP2012167854A (en) Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same
JP5548957B2 (en) Heat exchanger and heat pump water heater using the same
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
CN203758100U (en) Fin-shaped tube evaporative condenser