JP2012167854A - Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same - Google Patents

Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same Download PDF

Info

Publication number
JP2012167854A
JP2012167854A JP2011028591A JP2011028591A JP2012167854A JP 2012167854 A JP2012167854 A JP 2012167854A JP 2011028591 A JP2011028591 A JP 2011028591A JP 2011028591 A JP2011028591 A JP 2011028591A JP 2012167854 A JP2012167854 A JP 2012167854A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
fin
liquid film
film evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011028591A
Other languages
Japanese (ja)
Inventor
Takeshi Nakai
剛 中井
Kenji Kodama
健二 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2011028591A priority Critical patent/JP2012167854A/en
Publication of JP2012167854A publication Critical patent/JP2012167854A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To ensure that a heat transfer tube is wet on the outer surface thereof with refrigerant, thus improving the heat exchange performance of the heat transfer tube.SOLUTION: The heat transfer tube formed into a tubular shape and configured to boil and evaporate falling liquid on the outer surface thereof, includes: a plurality of continuous fins formed annularly or helically in a circumferential direction of the outer surface of the heat transfer tube; and a plurality of cavities formed such that a tip of each of the fins is bent to be substantially parallel to the axial direction of the heat transfer tube so that each fin comes close to the adjacent fin, and the bent tips provide gaps between the fins and the adjacent fins, thus forming the cavities.

Description

本発明は、流下液膜式蒸発器に組み込まれ、伝熱管上に未蒸発の液冷媒を流下させながら熱源媒体との間で熱交換を行わせるのに適した流下液膜式蒸発器用伝熱管、及びそれを用いたターボ冷凍機に関する。   The present invention is incorporated in a falling liquid film evaporator, and is suitable for causing heat exchange with a heat source medium while allowing unvaporized liquid refrigerant to flow down on the heat transfer pipe. And a turbo refrigerator using the same.

一般に、比較的大容量の冷凍サイクルに用いられる蒸発器として、満液式蒸発器と流下液膜式蒸発器とが知られている。   In general, a full liquid evaporator and a falling liquid film evaporator are known as evaporators used in a relatively large capacity refrigeration cycle.

満液式蒸発器では、伝熱管が液冷媒に浸されるように多くの液冷媒を封入する必要がある。また熱負荷によって伝熱性能が著しく変化してしまうため、低熱負荷時の性能は、著しく低下してしまう。また、ヘッド圧分の負荷が加わるため、低圧冷媒では、この分のロスが生じる。一方、流下液膜式蒸発器では、冷媒を散布させるためのポンプが必要であり、ポンプ動力が増えること、さらに伝熱管上の冷媒の濡れを確保することが極めて重要であり、普及のネックとなっている。   In a full liquid evaporator, it is necessary to enclose a lot of liquid refrigerant so that the heat transfer tube is immersed in the liquid refrigerant. In addition, since the heat transfer performance is significantly changed by the heat load, the performance at the time of low heat load is remarkably deteriorated. In addition, since a load corresponding to the head pressure is applied, a loss corresponding to this occurs in the low-pressure refrigerant. On the other hand, the falling liquid film evaporator requires a pump for spraying the refrigerant, and it is extremely important to increase the pump power and to ensure the wetting of the refrigerant on the heat transfer tube. It has become.

そこで、このネックを解消するために、流下液膜式蒸発器用の伝熱管が種々検討されている。例えば、伝熱管の外面に多数の突起やフィンを形成したもの(特許文献1参照)、さらに一歩すすめて伝熱管の外面に空洞部を形成したもの(特許文献2参照)等が提案されている。特に、特許文献2では、背の低い第1のフィンと、背の高い第2のフィンとを伝熱管の外面に交互に形成した上で、背の高い方の第2のフィンの先端部を折り曲げて第1のフィンの先端部に近接させ、第1のフィンと第2のフィンとの間に流入口(隙間)が設けられた空洞部を形成している。   In order to solve this problem, various heat transfer tubes for falling liquid film evaporators have been studied. For example, there are proposed ones in which a large number of protrusions and fins are formed on the outer surface of the heat transfer tube (see Patent Document 1), and one step further in which a hollow portion is formed on the outer surface of the heat transfer tube (see Patent Document 2). . In particular, in Patent Document 2, the first fins having short heights and the second fins having high heights are alternately formed on the outer surface of the heat transfer tube, and the tip of the second fin having the taller height is formed. A hollow portion is formed in which an inflow port (gap) is provided between the first fin and the second fin by being bent and brought close to the tip of the first fin.

特開平9−61080号公報(図2、図5、図6)Japanese Patent Laid-Open No. 9-61080 (FIGS. 2, 5, and 6) 特開2005−121238号公報(図1〜図3)Japanese Patent Laying-Open No. 2005-121238 (FIGS. 1 to 3)

流下液膜式蒸発器では、冷媒を散布させるためにポンプ、散布器、及びポンプを運転させるための動力が必要となり、COP(成績係数)の低下を招くほか、機器のコストアップに繋がる。このポンプの動力分以上に熱交換器の性能を向上させることができれば、満液式の場合と同様のCOPが得ることができる。さらに、冷媒封入量の削減は、今後の環境問題を考えるとその意義は大きく、機器のコストアップ以上の効果をもたらす。   In the falling liquid film evaporator, the pump, the spreader, and the power for operating the pump are required to spray the refrigerant, leading to a decrease in COP (coefficient of performance) and increasing the cost of the equipment. If the performance of the heat exchanger can be improved more than the power of the pump, the same COP as in the case of the full liquid type can be obtained. Furthermore, the reduction of the refrigerant filling amount is significant when considering future environmental problems, and brings about an effect more than the cost increase of equipment.

しかしながら、伝熱管の外面に突起やフィンを形成した特許文献1のものでは、熱交換性能が十分でない。また伝熱管の外面に空洞部を形成した特許文献2ものは、高さの異なる一対のフィンを形成し、背の高い方のフィンのみを折り曲げたりして空洞部を形成しているので、構造が複雑で形成方法も容易でない。したがって、これらを流下液膜式蒸発器用伝熱管に適用したり、ターボ冷凍機に採用したりするには、なお改善の余地があった。   However, the thing of patent document 1 which formed the protrusion and the fin in the outer surface of the heat exchanger tube has not enough heat exchange performance. Further, in Patent Document 2 in which a hollow portion is formed on the outer surface of the heat transfer tube, a pair of fins having different heights are formed, and the hollow portion is formed by bending only the taller fin. However, the formation method is not easy. Therefore, there is still room for improvement in order to apply these to the heat transfer tube for a falling liquid film evaporator or to employ it in a turbo refrigerator.

本発明の目的は、構造が簡単で形成も容易な流下液膜式蒸発器用伝熱管、及びそれを用いた高性能のターボ冷凍機を提供することにある。   An object of the present invention is to provide a heat transfer tube for a falling film evaporator that has a simple structure and is easy to form, and a high-performance turbo refrigerator using the heat transfer tube.

本発明の一実施の形態によれば、管状に形成されて管外面にて流下液膜を沸騰蒸発するように構成された流下液膜式蒸発器用伝熱管において、
前記伝熱管の外面の円周方向に環状または螺旋状に連続して形成された複数のフィンと、
前記各フィンの先端部が隣のフィンに近接するよう前記伝熱管の管軸方向と略平行に折り曲げられ、該折り曲げられた先端部で前記隣のフィンとの間に隙間を設けて形成される複数の空洞部と、
を備えた流下液膜式蒸発器用伝熱管が提供される。
According to one embodiment of the present invention, in the heat transfer tube for the falling liquid film evaporator, which is formed in a tubular shape and configured to evaporate the falling liquid film on the outer surface of the tube,
A plurality of fins continuously formed annularly or spirally in the circumferential direction of the outer surface of the heat transfer tube;
Each fin is bent so that the tip of each fin is close to the adjacent fin, and is formed substantially parallel to the tube axis direction of the heat transfer tube, and a gap is formed between the bent fin and the adjacent fin. A plurality of cavities,
A heat transfer tube for a falling film evaporator is provided.

本発明によれば、構造が簡単で形成も容易な流下液膜式蒸発器用伝熱管、及びそれを用いた高性能のターボ冷凍機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat transfer tube for falling liquid film type evaporators with a simple structure and easy formation, and a high performance turbo refrigerator using the same can be provided.

本発明の一実施の形態に係る液膜式蒸発器用伝熱管の管外面形状を示す部分説明図であって、(a)は斜視断面図、(b)は平面図、(c)は正断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a partial explanatory view which shows the pipe | tube outer surface shape of the heat exchanger tube for liquid film type evaporators concerning one embodiment of this invention, (a) is a perspective sectional view, (b) is a top view, (c) is a front section. FIG. 本発明の一実施の形態に係る流下液膜式蒸発器用伝熱管の製造工程を示す説明図であって、(a)はフィン形成工程図、(b)は切欠き部形成工程図、(c)は空洞部形成工程図である。It is explanatory drawing which shows the manufacturing process of the heat exchanger tube for falling liquid film type evaporators concerning one embodiment of this invention, (a) is a fin formation process figure, (b) is a notch part formation process figure, (c) ) Is a process for forming a cavity. 本発明の一実施の形態に係る流下液膜式蒸発器用伝熱管を評価するための蒸発性能評価方法を実施する蒸発性能評価装置の概略構成図である。It is a schematic block diagram of the evaporation performance evaluation apparatus which implements the evaporation performance evaluation method for evaluating the heat exchanger tube for falling film type evaporators concerning one embodiment of the present invention. 蒸発性能評価方法によって得られる評価結果の一具体例を示す説明図であり、実施例の流下液膜式蒸発器用伝熱管を流下式と満液式とに共通使用したときの熱流束と蒸発熱伝達率との関係を示す図である。It is explanatory drawing which shows one specific example of the evaluation result obtained by the evaporation performance evaluation method, and the heat flux and the evaporation heat when the heat transfer tube for the falling film type evaporator of the embodiment is commonly used for the flowing type and the full type It is a figure which shows the relationship with a transmission rate. 蒸発性能評価方法によって得られる評価結果の一具体例を示す説明図であり、実施例と比較例とにおける熱流束と蒸発熱伝達率との関係を示す図である。It is explanatory drawing which shows a specific example of the evaluation result obtained by the evaporation performance evaluation method, and is a figure which shows the relationship between the heat flux and evaporation heat transfer coefficient in an Example and a comparative example. 比較例の流下液膜式蒸発器用伝熱管の管外面形状を示す説明図であって、(a)は突起状フィンを有する比較例1、(b)は直線状フィンを有する比較例2、(c)は螺旋状フィンを有する比較例3の斜視図である。It is explanatory drawing which shows the pipe | tube outer surface shape of the heat exchanger tube for falling liquid film type evaporators of a comparative example, (a) is the comparative example 1 which has a projecting fin, (b) is the comparative example 2 which has a linear fin, ( c) is a perspective view of a comparative example 3 having spiral fins. 本発明の一実施の形態に係る流下液膜式蒸発器を備えたターボ冷凍機の一例を示す模式図である。It is a mimetic diagram showing an example of the turbo refrigerator provided with the falling liquid film type evaporator concerning one embodiment of the present invention. 一般的な満液式蒸発器を備えた冷凍機の構造を示す模式図である。It is a schematic diagram which shows the structure of the refrigerator provided with the general full liquid evaporator.

本発明の一実施の形態について、添付の図面を参照して説明する。   An embodiment of the present invention will be described with reference to the accompanying drawings.

<第一の実施の形態>
[流下液膜式蒸発器用伝熱管]
図1は、本発明の一実施の形態による流下液膜式蒸発器用伝熱管の管外面形状を示す部分説明図である。
<First embodiment>
[Heat transfer tube for falling film evaporator]
FIG. 1 is a partial explanatory view showing a tube outer surface shape of a heat transfer tube for a falling liquid film evaporator according to an embodiment of the present invention.

流下液膜式蒸発器用伝熱管は、管状に形成されて、伝熱管の周囲を未蒸発の液冷媒が流下しながら伝熱管上に液膜を形成し、伝熱管上で沸騰蒸発を行って伝熱管内部を流動する熱源媒体と熱交換を行う機能を有する。   The heat transfer tube for the falling liquid film type evaporator is formed in a tubular shape, forms a liquid film on the heat transfer tube while the non-evaporated liquid refrigerant flows around the heat transfer tube, performs boiling evaporation on the heat transfer tube, and transfers the heat transfer tube. It has a function of exchanging heat with a heat source medium flowing inside the heat pipe.

このような機能を有する流下液膜式蒸発器用伝熱管は、表面にフィンから構成される空洞部を備える。フィンは、伝熱管の外面の管周方向に環状または螺旋状に連続して複数形成される。空洞部は、前記各フィンの先端部が隣のフィンに近接するよう前記伝熱管の管軸方向と略平行に折り曲げられ、折り曲げられた先端部と隣のフィンとの間に隙間が設けられるように複数形成される。前記フィンの先端部に当該フィンの連続方向に沿って所定
間隔で切欠き部が形成され、前記空洞部は、前記先端部に形成された切欠き部と先端部と隣のフィンとの間に形成される隙間とによって外部に連通されるよう構成される。
The falling liquid film evaporator heat transfer tube having such a function includes a cavity portion formed of fins on the surface. A plurality of fins are continuously formed in a ring shape or a spiral shape in the tube circumferential direction on the outer surface of the heat transfer tube. The hollow portion is bent substantially parallel to the tube axis direction of the heat transfer tube so that the tip portion of each fin is close to the adjacent fin, and a gap is provided between the bent tip portion and the adjacent fin. A plurality are formed. A notch is formed at a predetermined interval along the continuous direction of the fin at the tip of the fin, and the cavity is formed between the notch formed at the tip and the tip and the adjacent fin. The gap is formed so as to communicate with the outside.

実施の形態によっては、フィン及び空洞部は伝熱管を加工することによって形成される。
図1に示す実施の形態の流下液膜式蒸発器用伝熱管では、例えば銅製の伝熱管本体30の伝熱素面(加工前は平滑面である。)を加工することによって、以下に述べる伝熱管外面形状を有する。
In some embodiments, the fins and cavities are formed by processing a heat transfer tube.
In the heat transfer tube for a falling liquid film evaporator according to the embodiment shown in FIG. 1, for example, the heat transfer tube described below is processed by processing the heat transfer element surface of the copper heat transfer tube main body 30 (a smooth surface before processing). It has an outer shape.

複数のフィン31は、伝熱管本体30の外面を切削加工で削り起こして形成されている。削り起こして形成されていることにより、伝熱管本体30の外周面に相当する管外面には、当該管外面の周方向(図中矢印参照)へ環状あるいは螺旋状に連続するフィン31が、隆起した状態に形成されている。また、フィン31は、削り起こして形成されているため、その先端部31aはテーパ状に形成された鋭利なものとなる。後に折り曲げられるフィン31には、当該フィン31の先端部31aから基端部31bに向けて形成された谷状の切欠き部36が、当該フィン31の連続方向に沿って所定間隔で配されている。フィン31間の切欠き部36の配列は、管軸方向と平行になるようにしてもよいが、図示するように管軸方向に対してずらすようにしてもよい。   The plurality of fins 31 are formed by cutting the outer surface of the heat transfer tube main body 30 by cutting. As a result of being formed by shaving, fins 31 that are annularly or spirally continuous in the circumferential direction of the outer surface of the tube (see the arrow in the figure) are raised on the outer surface of the tube corresponding to the outer surface of the heat transfer tube body 30. It is formed in the state. Further, since the fin 31 is formed by shaving, the tip 31a is sharp and formed in a tapered shape. The fin 31 to be bent later is provided with valley-shaped notches 36 formed from the tip end portion 31 a to the base end portion 31 b at predetermined intervals along the continuous direction of the fin 31. Yes. The arrangement of the notches 36 between the fins 31 may be parallel to the tube axis direction, but may be shifted with respect to the tube axis direction as shown.

複数の空洞部38は、各フィン31を折り曲げることによって管周方向に環状に連続して複数形成される。各空洞部38は、折り曲げられたフィン31の内周面38aと、折り曲げられた隣接するフィン31の背面38bと、削り起こしによって新たに露出された伝熱管外面38cとによって形成されている。折り曲げられたフィン31の先端部31aは新たな伝熱面となり、折り曲げられていないフィン31の基端部31bは伝熱壁を構成する。フィン31の折り曲げは、各フィン31の先端部31aを前記伝熱管本体30の管軸方向と平行になるよう実行される。各フィン31の先端部31aは隣のフィン31と近接するよう折り曲げられて、この折り曲げられた先端部31aと前記隣のフィン31との間に隙間37が形成されている。空洞部38は、この隙間37と前述した切欠き部36とによって外部に連通されるよう構成されている。空洞部38が、切欠き部36と、先端部31aと隣のフィン31との間に形成される隙間37とによって外部に連通されるよう構成されていると、液冷媒の空洞部38内への誘導、及び蒸気泡の空洞部38外への放出が容易になる。   The plurality of hollow portions 38 are formed in a plurality of annular shapes continuously in the pipe circumferential direction by bending each fin 31. Each cavity 38 is formed by the inner peripheral surface 38a of the bent fin 31, the rear surface 38b of the adjacent fin 31 bent, and the heat transfer tube outer surface 38c newly exposed by shaving. The bent tip 31a of the fin 31 becomes a new heat transfer surface, and the unfolded base end 31b of the fin 31 forms a heat transfer wall. The bending of the fins 31 is performed so that the tip portions 31 a of the fins 31 are parallel to the tube axis direction of the heat transfer tube body 30. The front end portion 31 a of each fin 31 is bent so as to be close to the adjacent fin 31, and a gap 37 is formed between the bent front end portion 31 a and the adjacent fin 31. The cavity 38 is configured to communicate with the outside through the gap 37 and the notch 36 described above. When the cavity 38 is configured to communicate with the outside by the notch 36 and the gap 37 formed between the tip 31a and the adjacent fin 31, the liquid refrigerant enters the cavity 38. And the discharge of vapor bubbles out of the cavity 38 is facilitated.

このような伝熱管外面形状を有することで、流下液膜式蒸発器用伝熱管の管外面には、その管周方向に連続して形成された空洞部38が、その管軸方向に複数個所定ピッチで並ぶ。その空洞部38の上端部の管周方向に隙間37が配される。さらに複数の切欠き部36が各空洞部38の連続方向に沿って所定間隔で配され、これらの切欠き部36は各空洞部38間でずれていくように配されていることになる。この場合において、先端部31aで構成される空洞部38の新たな伝熱面は、テーパ面を有するだけで凹凸部や溝を有さず、平滑面で構成される。したがって、1つのフィンから空洞部を形成する本実施の形態の流下液膜式蒸発器用伝熱管は、高さの異なる一対のフィンから空洞部を形成するものと比べて、構造が簡単で形成も容易になる。   By having such a heat transfer tube outer surface shape, a plurality of hollow portions 38 continuously formed in the tube circumferential direction are formed on the tube outer surface of the falling liquid film evaporator heat transfer tube in the tube axis direction. Line up on the pitch. A gap 37 is arranged in the pipe circumferential direction at the upper end of the cavity 38. Further, a plurality of notches 36 are arranged at a predetermined interval along the continuous direction of each cavity 38, and these notches 36 are arranged so as to be shifted between each cavity 38. In this case, the new heat transfer surface of the cavity portion 38 constituted by the tip portion 31a has a tapered surface, does not have an uneven portion or a groove, and is a smooth surface. Therefore, the heat transfer tube for the falling liquid film evaporator according to the present embodiment, in which the cavity is formed from one fin, has a simpler structure and can be formed as compared with the case where the cavity is formed from a pair of fins having different heights. It becomes easy.

また、本実施の形態で説明する流下液膜式蒸発器用伝熱管は、上述した構造を有することに加えて、前記伝熱管本体30の内面に螺旋状のリブ45が設けられている。リブ45の形成手法は、特に限定されることはなく、公知の手法を用いて行えばよい。そのため、ここでは、リブ45の形成手法に関する詳細な説明を省略する。このようなリブ45を管内面に有する流下液膜式蒸発器用伝熱管では、当該リブ45がない場合に比べて、流下液膜式蒸発器用伝熱管と伝熱管内を流れる熱源媒体との間の熱伝達効率が向上する。したがって、熱源媒体との熱伝達効率向上を通じて、流下液膜式蒸発器用伝熱管における蒸発性
能(熱伝達性能)の向上に寄与することになる。
In addition to the above-described structure, the flowing-down liquid film evaporator heat transfer tube described in the present embodiment is provided with a spiral rib 45 on the inner surface of the heat transfer tube main body 30. The formation method of the rib 45 is not particularly limited, and may be performed using a known method. Therefore, the detailed description regarding the formation method of the rib 45 is abbreviate | omitted here. In the falling liquid film evaporator heat transfer tube having such a rib 45 on the inner surface of the tube, compared to the case where the rib 45 is not provided, the falling liquid film evaporator heat transfer tube and the heat source medium flowing in the heat transfer tube are provided. Heat transfer efficiency is improved. Therefore, it contributes to the improvement of the evaporation performance (heat transfer performance) in the heat transfer tube for the falling liquid film evaporator through the improvement of the heat transfer efficiency with the heat source medium.

上述したような構成の流下液膜式蒸発器用伝熱管において、伝熱管本体30の周囲を流下する液冷媒は伝熱管本体30上で加熱される。その加熱された液冷媒は、切欠き部36、隙間37から空洞部38内へと誘導され、その空洞部38内で核沸騰を起こす。そこで、発生した沸騰核は、空洞部38内に停滞し、蒸気泡が発達して大きくなり、切欠き部36、隙間37から空洞部38外へと放出される。流下する液冷媒が、空洞部38外へ放出された蒸気泡に代わって空洞部38内へと誘導されていくため、伝熱管本体30上で液冷媒がドライアウトするのを防止できる。したがって、伝熱管本体30上の冷媒の濡れが確保され、伝熱管本体30の熱交換性能をより向上できる。   In the flowing-down liquid film evaporator heat transfer tube configured as described above, the liquid refrigerant flowing down around the heat transfer tube body 30 is heated on the heat transfer tube body 30. The heated liquid refrigerant is guided into the cavity 38 through the notch 36 and the gap 37 and causes nucleate boiling in the cavity 38. Therefore, the generated boiling nuclei stagnate in the cavity 38, vapor bubbles develop and become large, and are discharged from the notch 36 and the gap 37 to the outside of the cavity 38. Since the liquid refrigerant flowing down is guided into the cavity 38 instead of the vapor bubbles discharged outside the cavity 38, the liquid refrigerant can be prevented from drying out on the heat transfer tube body 30. Therefore, wetting of the refrigerant on the heat transfer tube main body 30 is ensured, and the heat exchange performance of the heat transfer tube main body 30 can be further improved.

なお、満液式蒸発器用伝熱管の場合も同様に、伝熱管内部を流れる熱源媒体によって加熱されるわけであるが、満液式蒸発器用伝熱管では液冷媒の充填量が多く、この加熱に必要なエネルギーは流下式の倍以上となるため好ましくないことは上述した通りである。   Similarly, in the case of a heat transfer tube for a full liquid evaporator, the heat source medium flowing inside the heat transfer tube is heated, but the heat transfer tube for a full liquid evaporator has a large filling amount of liquid refrigerant. As described above, the necessary energy is more than double that of the flow-down type, which is not preferable.

図1に示す実施の形態では、具体例には、前記伝熱管の管軸方向にて隣り合う前記空洞部38同士の配置ピッチPは0.4mm以上0.8mm以下であり、前記空洞部38の深さDは0.2mm以上0.8mm以下である。管軸方向の空洞部38同士の配置ピッチPは、0.4mmよりも狭すぎると沸騰領域が減少してしまい、逆に0.8mmよりも広すぎると伝熱壁となる基端部31bとしてのフィン31からの熱伝達が悪くなるため、空洞部38同士の配置ピッチPは0.4mm以上0.8mm以下が好ましい。また、空洞部38の深さDは、0.2mmよりも浅すぎると沸騰核を停滞させておくことが困難となり、逆に0.8mmよりも深すぎると伝熱壁(基端部31b)からの熱伝達が悪くなるため、0.2mm以上0.8mm以下が好ましい。   In the embodiment shown in FIG. 1, as a specific example, the arrangement pitch P between the cavity portions 38 adjacent in the tube axis direction of the heat transfer tube is 0.4 mm or more and 0.8 mm or less, and the cavity portion 38. The depth D is 0.2 mm or more and 0.8 mm or less. When the arrangement pitch P between the hollow portions 38 in the tube axis direction is too narrow than 0.4 mm, the boiling region decreases, and conversely, when the pitch P is too wide than 0.8 mm, the base end portion 31b serving as a heat transfer wall is formed. Therefore, the arrangement pitch P between the hollow portions 38 is preferably 0.4 mm or more and 0.8 mm or less. On the other hand, if the depth D of the cavity 38 is too shallow than 0.2 mm, it becomes difficult to keep the boiling nuclei stagnant. Conversely, if the depth D is too deep than 0.8 mm, the heat transfer wall (base end portion 31 b). Therefore, the heat transfer from the bottom is preferably 0.2 mm or more and 0.8 mm or less.

また、前記切欠き部36が形成されていない先端部31aと前記隣のフィン31との間に形成される前記隙間37の幅Gは0.05mm以上0.5mm以下であることが好ましい。隙間37の幅Gは、0.05mmよりも狭すぎると液冷媒流入の抵抗となり、0.5mmよりも広すぎると液冷媒を空洞部38内に残存させることができなくなるため0.05mm以上0.5mm以下が好ましい。   Moreover, it is preferable that the width G of the gap 37 formed between the tip portion 31a where the notch portion 36 is not formed and the adjacent fin 31 is 0.05 mm or more and 0.5 mm or less. If the width G of the gap 37 is too narrow than 0.05 mm, it becomes a resistance to inflow of liquid refrigerant, and if it is too wide than 0.5 mm, the liquid refrigerant cannot remain in the cavity 38, so that it is 0.05 mm or more. 0.5 mm or less is preferable.

[流下液膜式蒸発器用伝熱管の製造方法]
上述した実施の形態の流下液膜式蒸発器用伝熱管は、図2に示す方法によって製造することができる。
[Method for manufacturing heat transfer tube for falling film evaporator]
The falling-film-film evaporator heat transfer tube of the above-described embodiment can be manufactured by the method shown in FIG.

まず、図2(a)に示すように、外面が平滑で、内面に溝加工を施してある伝熱管本体30を用意し、刃先角が60°のバイト32を使用し、所定の切込角度、切込量、また形成されるフィン31の間隔が所定寸法となるように、バイト32を円周方向に回転させるとともに、伝熱管本体30を管軸方向に移動させ、フィン31を削り起こした。ここでは、バイト32の切込角度を24°とし、バイト32の切込量を0.20mmとした。また、管軸方向の空洞部38の配置ピッチPが、0.5mmとなるようにバイト32の回転速度、伝熱管本体30の送り速度を調整した。   First, as shown in FIG. 2 (a), a heat transfer tube main body 30 having a smooth outer surface and a grooved inner surface is prepared, a cutting tool 32 having a cutting edge angle of 60 ° is used, and a predetermined cutting angle is obtained. The cutting tool 32 is rotated in the circumferential direction and the heat transfer tube body 30 is moved in the tube axis direction so that the fins 31 are shaved up so that the cut amount and the interval between the formed fins 31 have predetermined dimensions. . Here, the cutting angle of the cutting tool 32 was 24 °, and the cutting amount of the cutting tool 32 was 0.20 mm. Further, the rotational speed of the cutting tool 32 and the feed speed of the heat transfer tube main body 30 were adjusted so that the arrangement pitch P of the hollow portions 38 in the tube axis direction was 0.5 mm.

次に、図2(b)に示すように、溝付きロール34を円周方向に回転させるとともに、伝熱管を管軸方向に移動させ、フィン31を溝付きロール34で押圧して先端部31aに深さが0.2mmの切欠き部36を管軸方向に対して45°にて形成した。   Next, as shown in FIG. 2 (b), the grooved roll 34 is rotated in the circumferential direction, the heat transfer tube is moved in the tube axis direction, and the fin 31 is pressed by the grooved roll 34 to move the tip 31a. A notch 36 having a depth of 0.2 mm was formed at 45 ° with respect to the tube axis direction.

さらに図2(c)に示すように、平ロール35を円周方向に回転させるとともに、伝熱管を管軸方向に移動させ、フィン31を平ロール35で押圧して隙間37を有する空洞部38を形成した。ここでは、空洞部38の深さDが0.5mm、前記隙間37の幅Gが0
.1mmとなるように平ロール35の押し込む量を調整した。
Further, as shown in FIG. 2C, the flat roll 35 is rotated in the circumferential direction, the heat transfer tube is moved in the tube axis direction, and the fins 31 are pressed by the flat roll 35 to have a cavity portion 38 having a gap 37. Formed. Here, the depth D of the cavity 38 is 0.5 mm, and the width G of the gap 37 is 0.
. The amount by which the flat roll 35 was pushed in was adjusted to 1 mm.

このように本実施の形態による流下液膜式蒸発器用伝熱管の製造方法によれば、バイトによる削り起こしによりフィンを形成し、溝付きロールにより切欠き部を形成し、平ロールにより空洞部を形成するという3つの工程を実行するだけで、本実施の形態の伝熱管外面形状を有する流下液膜式蒸発器用伝熱管を簡単に作成することができる。     As described above, according to the method of manufacturing a heat transfer tube for a falling liquid film evaporator according to the present embodiment, fins are formed by shaving with a cutting tool, cutout portions are formed with grooved rolls, and hollow portions are formed with flat rolls. By simply executing the three steps of forming, it is possible to easily create a falling liquid film evaporator heat transfer tube having the shape of the outer surface of the heat transfer tube of the present embodiment.

[蒸発性能評価装置]
こうして得られた実施例の伝熱管(供試管8)を図3に示す蒸発性能評価装置により、伝熱性能を評価した。この評価装置は、長さ300(mm)のSUS製シェルからなる蒸発器6及び凝縮器5を配管7で接続した構造となっている。
[Evaporation performance evaluation equipment]
The heat transfer performance of the heat transfer tube (test tube 8) thus obtained was evaluated using the evaporation performance evaluation apparatus shown in FIG. This evaluation apparatus has a structure in which an evaporator 6 and a condenser 5 made of a SUS shell having a length of 300 (mm) are connected by a pipe 7.

蒸発器6には、供試管8が垂直方向に5本設置され、その上部に散布管9を設置している。蒸発器6下部には、下段に配置された供試管8に触れない程度に液冷媒11を充填した。蒸発器6下部には導管12が接続され、蒸発器6内に充填された液冷媒11は、この導管12を通り、ポンプ13によって蒸発器6内に配置された散布管9へと供給され、供試管8に液冷媒を散布する構造となっている。また、ポンプ13はインバータを介して駆動するようになっており、ポンプ吐出量の調整はインバータによって実施し、ポンプ13と散布管9の間に配置した流量計14によって、その散布量をモニタする。   In the evaporator 6, five test tubes 8 are installed in the vertical direction, and a spray tube 9 is installed on the top. The lower part of the evaporator 6 was filled with the liquid refrigerant 11 so as not to touch the test tube 8 arranged in the lower stage. A conduit 12 is connected to the lower part of the evaporator 6, and the liquid refrigerant 11 filled in the evaporator 6 passes through the conduit 12 and is supplied by a pump 13 to a spray pipe 9 disposed in the evaporator 6. The liquid refrigerant is sprayed on the test tube 8. The pump 13 is driven via an inverter, and the pump discharge amount is adjusted by the inverter, and the spray amount is monitored by the flow meter 14 arranged between the pump 13 and the spray pipe 9. .

供試管8の蒸発性能評価は、供試管8内に熱源媒体としての温水を入口から出口へと通水し、この温水の出入口温度は、測温計の一例である白金測温抵抗体15a、15bにより測定される。温水の流量は、電磁流量計16により測定される。   The evaporation performance of the test tube 8 is evaluated by passing hot water as a heat source medium from the inlet to the outlet in the test tube 8, and the temperature of the hot water at the inlet and outlet is a platinum resistance thermometer 15a, which is an example of a thermometer. 15b. The flow rate of the hot water is measured by the electromagnetic flow meter 16.

前記散布管9にはφ1.5(mm)の孔が、管軸方向に15(mm)間隔で設けられており、ここから液冷媒が供試管8上に散布され、さらに供試管8の外表面では、管内に通水された温水によって液冷媒が加熱され液冷媒が蒸発を始めガス冷媒となる。   The spray tube 9 is provided with holes of φ1.5 (mm) at intervals of 15 (mm) in the tube axis direction, from which liquid refrigerant is sprayed onto the test tube 8, and further outside the test tube 8. On the surface, the liquid refrigerant is heated by the hot water passed through the pipe, and the liquid refrigerant starts to evaporate and becomes a gas refrigerant.

凝縮器5には、凝縮促進伝熱管10が水平方向に5本設置されている。これらの凝縮促進伝熱管10には、ブラインが、入口側から出口側へ向けて流れるように構成されている。このブラインによって、凝縮促進伝熱管10の管外面が冷媒蒸気の飽和温度以下に冷却されることになる。ブラインの出入口温度は、測温計の一例である白金測温抵抗体15c、15dによって測定される。また、凝縮器5には、径内の圧力を測定する圧力計17が接続されている。   The condenser 5 is provided with five condensation promoting heat transfer tubes 10 in the horizontal direction. In these condensation promotion heat transfer tubes 10, the brine is configured to flow from the inlet side toward the outlet side. By this brine, the outer surface of the condensation-accelerating heat transfer tube 10 is cooled below the saturation temperature of the refrigerant vapor. The inlet / outlet temperature of the brine is measured by platinum resistance thermometers 15c and 15d which are an example of a thermometer. The condenser 5 is connected to a pressure gauge 17 for measuring the pressure within the diameter.

蒸発器6から配管7を通って凝縮器5へ上昇してきたガス冷媒は、凝縮器5で凝縮液化され、配管7を下降して蒸発器6に回収される構造となっている。   The gas refrigerant that has risen from the evaporator 6 through the pipe 7 to the condenser 5 is condensed and liquefied by the condenser 5, and descends the pipe 7 to be collected by the evaporator 6.

[供試管の蒸発性能評価]
具体的に以下の条件により、供試管8の蒸発性能を評価した。
[Evaporation performance evaluation of test tubes]
Specifically, the evaporation performance of the test tube 8 was evaluated under the following conditions.

まず、蒸発器6内に供試管8をセットし、系内を真空引きした後に、液冷媒となるR134aを封入した。   First, the test tube 8 was set in the evaporator 6 and the system was evacuated, and then R134a serving as a liquid refrigerant was sealed.

次に供試管8内に入口温度が所定の温度となるように調整された熱源媒体としての温水を、流速が1.5(m/s)となるように流量を調整し通水する。その後、ポンプ13を回転させ、液冷媒散布装置を構成する散布管9から液冷媒11を供試管8に散布させる。   Next, hot water as a heat source medium adjusted so that the inlet temperature becomes a predetermined temperature is passed through the test tube 8 at a flow rate adjusted to 1.5 (m / s). Thereafter, the pump 13 is rotated, and the liquid refrigerant 11 is sprayed on the test tube 8 from the spray pipe 9 constituting the liquid refrigerant spray device.

その後、圧力計17の指示値が、例えば冷媒の飽和温度5℃となるように、凝縮器5内の凝縮促進伝熱管10内に流すブラインの温度及び流量をコントロールした。   Thereafter, the temperature and flow rate of the brine flowing into the condensation promotion heat transfer tube 10 in the condenser 5 were controlled so that the indicated value of the pressure gauge 17 was, for example, a refrigerant saturation temperature of 5 ° C.

蒸発器6内において、散布管9から液冷媒が散布されると、供試管8の管内を流れる温水によって当該供試管8の管外面が液冷媒の気化温度以上に加熱され、当該供試管40の管外面に接触した液冷媒が蒸発してガス状になる。   When the liquid refrigerant is sprayed from the spray tube 9 in the evaporator 6, the outer surface of the test tube 8 is heated above the vaporization temperature of the liquid refrigerant by the hot water flowing in the test tube 8. The liquid refrigerant in contact with the outer surface of the tube evaporates and becomes gaseous.

評価工程では、蒸発工程において供試管8が液冷媒を蒸発する際の当該供試管8の管外面における熱伝達率を測定する。熱伝達率の測定手法は、特に限定されることはなく、公知の手法を用いて行えばよい。そのため、ここでは、測定手法に関する詳細な説明を省略する。   In the evaluation step, the heat transfer coefficient on the outer surface of the test tube 8 is measured when the test tube 8 evaporates the liquid refrigerant in the evaporation step. The method for measuring the heat transfer coefficient is not particularly limited, and may be performed using a known method. Therefore, the detailed description regarding the measurement method is omitted here.

図4は本実施例による流下液膜式蒸発器用伝熱管を、流下液膜式蒸発器と満液式蒸発器とに共通使用した場合の伝熱性能の関係を示した図である。図5は、本実施例の流下液膜式蒸発器用伝熱管と比較例による満液式蒸発器用伝熱管とについて、冷媒散布量と蒸発熱伝達率の関係を比較した図である。なお。満液式蒸発器と流下液膜式蒸発器とについては後述する(図7、図8参照)。   FIG. 4 is a view showing the relationship of heat transfer performance when the heat transfer tube for the falling liquid film evaporator according to this embodiment is commonly used for the falling liquid film evaporator and the full liquid evaporator. FIG. 5 is a graph comparing the relationship between the amount of refrigerant sprayed and the evaporation heat transfer coefficient for the falling liquid film evaporator heat transfer tube of this example and the full liquid evaporator heat transfer tube of the comparative example. Note that. The full liquid evaporator and the falling liquid film evaporator will be described later (see FIGS. 7 and 8).

図4から明らかなように、実施例による流下液膜式蒸発器用伝熱管は、満液式蒸発器で用いられていた沸騰促進管よりも高い伝熱性能を示し、低熱負荷時(低熱流速時)においても高い伝熱性能が得られる。また、高熱負荷時(高熱流速時)においても、満液式同様の伝熱性能を確保できる。   As is clear from FIG. 4, the heat transfer tube for the falling liquid film evaporator according to the example shows higher heat transfer performance than the boiling promotion tube used in the full liquid evaporator, and has a low heat load (at a low heat flow rate). ), High heat transfer performance can be obtained. In addition, heat transfer performance similar to the full liquid type can be ensured even at high heat load (at high heat flow rate).

また、図5から、実施例による流下液膜式蒸発器用伝熱管は、比較例1、2及び3の各伝熱管の場合と比べて高い伝熱性能を示す。ここで、比較例1、2及び3は、それぞれ表面に多数の突起を加工した伝熱管(図6(a))、伝熱管長手方向にフィンを有する伝熱管(図6(b))、螺旋状にフィンを有する伝熱管(図6(c))を意味する。実施例による流下液膜式蒸発器用伝熱管は、また、満液式蒸発器では困難な伝熱性能の制御を、冷媒散布量を変えることで、実行することが可能となる。したがって、液冷媒散布装置から散布される液冷媒の散布量を調整し得るよう構成すると、当該流下液膜式蒸発器用伝熱管に適した熱交換を行わせることができるので、汎用性や柔軟性などを十分に確保することが可能となる。   Moreover, from FIG. 5, the heat-transfer pipe | tube for falling liquid film type evaporators by an Example shows high heat-transfer performance compared with the case of each heat-transfer pipe | tube of the comparative examples 1, 2, and 3. FIG. Here, Comparative Examples 1, 2, and 3 are a heat transfer tube (FIG. 6 (a)) having a large number of protrusions on the surface, a heat transfer tube having fins in the longitudinal direction of the heat transfer tube (FIG. 6 (b)), and a spiral. It means a heat transfer tube having fins in a shape (FIG. 6C). The heat transfer pipe for a falling liquid film evaporator according to the embodiment can also control the heat transfer performance, which is difficult with a full liquid evaporator, by changing the refrigerant spray amount. Therefore, if it is configured so that the amount of liquid refrigerant sprayed from the liquid refrigerant spraying device can be adjusted, heat exchange suitable for the falling liquid film evaporator heat transfer tube can be performed. It is possible to ensure sufficient.

[第一の実施の形態の効果]
本発明の実施の形態によれば、以下に挙げる一つまたはそれ以上の効果を有する。
(1)本発明の一実施の形態によれば、流下液膜式蒸発器用伝熱管において、前記伝熱管の外面の円周方向に環状または螺旋状に連続して形成された複数のフィンと、前記各フィンの先端部が隣のフィンに近接するよう前記伝熱管の管軸方向と平行に折り曲げられ、該折り曲げられた先端部で前記隣のフィンとの間に隙間を設けて形成される複数の空洞部と、を備えた流下液膜式蒸発器用伝熱管が提供される。このように構成することによって、伝熱管の周囲を流下する液冷媒は伝熱管上で加熱され、その加熱された液冷媒は、隙間から空洞部内へと誘導され、その空洞部内で核沸騰を起こす。そこで、発生した沸騰核は、空洞部内に停滞し、蒸気泡が発達して大きくなり、隙間から空洞部外へと放出される。流下する液冷媒が、空洞部外へ放出された蒸気泡に代わって空洞部内へと誘導されていくため、伝熱管上で液冷媒がドライアウトするのを防止できる。したがって、伝熱管上の冷媒の濡れが確保され、伝熱管の熱交換性能をより向上できる。また、各フィンを折り曲げて空洞部を形成する本実施の形態の流下液膜式蒸発器用伝熱管は、フィンを1つ置きに折り曲げて空洞部を形成するものと比べて、構造が簡単で形成も容易になる。
[Effect of the first embodiment]
The embodiments of the present invention have one or more of the following effects.
(1) According to one embodiment of the present invention, in the heat transfer tube for a falling liquid film evaporator, a plurality of fins continuously formed in an annular shape or a spiral shape in the circumferential direction of the outer surface of the heat transfer tube; A plurality of fins formed by bending the tip of each fin in parallel with the tube axis direction of the heat transfer tube so as to be close to the adjacent fin, and providing a gap between the bent fin and the adjacent fin. And a heat transfer tube for a falling liquid film evaporator provided with a hollow portion. With this configuration, the liquid refrigerant flowing around the heat transfer tube is heated on the heat transfer tube, and the heated liquid refrigerant is guided into the cavity from the gap, causing nucleate boiling in the cavity. . Therefore, the generated boiling nuclei are stagnated in the cavity, and vapor bubbles develop and become larger, and are released from the gap to the outside of the cavity. Since the flowing liquid refrigerant is guided into the cavity instead of the vapor bubbles released outside the cavity, it is possible to prevent the liquid refrigerant from drying out on the heat transfer tube. Therefore, wetting of the refrigerant on the heat transfer tube is ensured, and the heat exchange performance of the heat transfer tube can be further improved. In addition, the falling liquid film evaporator heat transfer tube of the present embodiment, in which each fin is bent to form a cavity, has a simpler structure than that in which every other fin is bent to form a cavity. Will also be easier.

(2)この場合、前記フィンが、前記伝熱管の外面をバイトなどの切削工具により削り起こして形成されていることが好ましい。転造加工によってもフィンを形成できるが、バイトによる削り起こしによってフィンを形成すると、伝熱管の外面に伝熱面を容易に形成で
きる。
(2) In this case, it is preferable that the fin is formed by shaving the outer surface of the heat transfer tube with a cutting tool such as a cutting tool. Fins can also be formed by rolling, but if the fins are formed by cutting with a cutting tool, a heat transfer surface can be easily formed on the outer surface of the heat transfer tube.

(3)また、前記空洞部は、平ロールを前記フィンに押圧して前記フィンの先端部を折り曲げることにより形成されていることが好ましい。平ロールを使ってフィンの先端部を折り曲げることにより、伝熱管の外面に空洞部を容易に形成できる。 (3) Moreover, it is preferable that the said cavity part is formed by pressing a flat roll against the said fin and bending the front-end | tip part of the said fin. By bending the tip of the fin using a flat roll, a cavity can be easily formed on the outer surface of the heat transfer tube.

(4)また、前記フィンの先端部に当該フィンの連続方向に沿って所定間隔で切欠き部が形成され、前記空洞部は、前記先端部に形成された切欠き部と、前記切欠き部が形成されていない先端部と前記隣のフィンとの間に形成される隙間とによって外部に連通されるよう構成され、前記伝熱管の管軸方向にて隣り合う前記空洞部同士の配置ピッチは0.4mm以上0.8mm以下であり、前記空洞部の深さは0.2mm以上0.8mm以下であることが好ましい。このように空洞部が、切欠き部と、先端部と隣のフィンとの間に形成される隙間とによって外部に連通されるよう構成されていると、液冷媒の空洞部内への誘導、及び蒸気泡の空洞部外への放出が容易になる。この場合において、管軸方向の空洞部同士の配置ピッチは、0.4mmよりも狭すぎると沸騰領域が減少してしまい、逆に0.8mmよりも広すぎると伝熱壁となるフィンからの熱伝達が悪くなるため0.4mm以上0.8mm以下が好ましい。また、空洞部の深さは、0.2mmよりも浅すぎると沸騰核を停滞させておくことが困難となり、逆に0.8mmよりも深すぎると伝熱壁からの熱伝達が悪くなるため、0.2mm以上0.8mm以下が好ましい。 (4) Moreover, the notch part is formed in the front-end | tip part of the said fin at predetermined intervals along the continuous direction of the said fin, The said cavity part has the notch part formed in the said front-end | tip part, and the said notch part Is configured to communicate with the outside by a gap formed between the tip portion where the heat sink tube is not formed and the adjacent fin, and the arrangement pitch between the cavity portions adjacent in the tube axis direction of the heat transfer tube is It is preferably 0.4 mm or more and 0.8 mm or less, and the depth of the cavity is preferably 0.2 mm or more and 0.8 mm or less. Thus, when the cavity is configured to communicate with the outside by the notch and the gap formed between the tip and the adjacent fin, the liquid refrigerant is guided into the cavity, and Emission of vapor bubbles out of the cavity is facilitated. In this case, if the arrangement pitch between the cavities in the tube axis direction is too narrow than 0.4 mm, the boiling region decreases, and conversely, if it is too wide than 0.8 mm, it is from the fin that becomes the heat transfer wall. Since heat transfer worsens, 0.4 mm or more and 0.8 mm or less are preferable. Moreover, if the depth of the cavity is too shallow than 0.2 mm, it is difficult to keep the boiling nuclei stagnant. Conversely, if the depth of the cavity is too deep than 0.8 mm, heat transfer from the heat transfer wall becomes worse. 0.2 mm or more and 0.8 mm or less is preferable.

(5)また、前記切欠き部は、前記フィンの先端部に溝付きロールを押圧することにより形成されていることが好ましい。このように溝付きロールを使ってフィンの先端部を押圧することにより、空洞部に外部と連通する切欠き部を容易に形成できる。 (5) Moreover, it is preferable that the said notch part is formed by pressing a grooved roll to the front-end | tip part of the said fin. By thus pressing the tip of the fin using the grooved roll, a notch communicating with the outside can be easily formed in the cavity.

(6)また、前記切欠き部が形成されていない先端部と前記隣のフィンとの間に形成される前記隙間が0.05mm以上0.5mm以下であることが好ましい。前記隙間は、0.05mmよりも狭すぎると冷媒液流入の抵抗となり、0.5mmよりも広すぎると冷媒液を空洞内に残存させることができなくなるため0.05mm以上0.5mm以下が好ましい。 (6) Moreover, it is preferable that the said clearance gap formed between the front-end | tip part in which the said notch part is not formed, and the said adjacent fin is 0.05 mm or more and 0.5 mm or less. If the gap is too narrow than 0.05 mm, it becomes a resistance to inflow of the refrigerant liquid, and if it is too wide than 0.5 mm, the refrigerant liquid cannot remain in the cavity, so 0.05 mm or more and 0.5 mm or less is preferable. .

(7)また、前記伝熱管の内面に螺旋状のリブが設けられていることが好ましい。伝熱管の内面に螺旋状のリブが設けられていると、伝熱管内部を流動する熱源媒体の伝熱が促進される。 (7) Moreover, it is preferable that the spiral rib is provided in the inner surface of the said heat exchanger tube. When the spiral rib is provided on the inner surface of the heat transfer tube, the heat transfer of the heat source medium flowing inside the heat transfer tube is promoted.

(8)上述した構成の一部または全てを備えた流下液膜式蒸発器用伝熱管によれば、低熱負荷時においても、極めて良好な伝熱性能が得られる。また、高熱負荷時においても、満液式同様の伝熱性能を確保できるため、ターボ冷凍機の高性能化が図れる。同時に、流下液膜式の熱交換器であるため、冷媒封入量の削減を図ることができる。 (8) According to the falling-film-film heat exchanger tube having part or all of the above-described configuration, extremely good heat transfer performance can be obtained even at low heat loads. Moreover, since the heat transfer performance similar to the full liquid type can be ensured even under a high heat load, the turbo refrigerator can be improved in performance. At the same time, since it is a falling film type heat exchanger, the amount of refrigerant enclosed can be reduced.

このほかにも、本実施の形態の流下液膜式蒸発器用伝熱管は、その要旨を逸脱しない範囲で種々様々変形実施可能なことは勿論である。例えば、実施の形態では、バイトによるフィンの削り起こしによって、伝熱面を形成したが、転造加工による方法でも伝熱面を形成できる。   In addition to the above, it is needless to say that the heat transfer tube for the falling liquid film evaporator according to the present embodiment can be variously modified without departing from the gist thereof. For example, in the embodiment, the heat transfer surface is formed by shaving the fin with a cutting tool, but the heat transfer surface can also be formed by a method by rolling.

<第二の実施の形態>
[流下液膜式蒸発器を用いた冷凍機]
図7に、上述した実施の形態の流下液膜式蒸発器用伝熱管を備えた冷凍機を示す。圧縮機18から吐出されたガス冷媒が、凝縮器19で凝縮液化し、次いで膨張弁または絞り弁24で気液二相の状態となり、蒸発器20下部に設けられた分配板23を介して蒸発器20に供給される構造となっている。蒸発器20内部には、熱源媒体が流動する多数の流下
液膜式蒸発器用伝熱管21が設置され、その上部には上昇するガス冷媒26に随伴される液滴の圧縮機への流入を防止するためにエリミネータ22が設けられている。
<Second Embodiment>
[Refrigerator using falling liquid film evaporator]
FIG. 7 shows a refrigerator equipped with the heat transfer tube for a falling liquid film evaporator according to the above-described embodiment. The gas refrigerant discharged from the compressor 18 is condensed and liquefied by the condenser 19, then becomes a gas-liquid two-phase state by the expansion valve or the throttle valve 24, and is evaporated through the distribution plate 23 provided at the lower part of the evaporator 20. The structure is supplied to the container 20. Inside the evaporator 20, a large number of falling liquid film evaporator heat transfer tubes 21 through which the heat source medium flows are installed, and the upper part thereof prevents the inflow of droplets accompanying the rising gas refrigerant 26 into the compressor. In order to do so, an eliminator 22 is provided.

蒸発器20に設置された多数の流下液膜式蒸発器用伝熱管21の上部に散布管29が設置され、この散布管29と蒸発器20下部に溜まった液冷媒25とは導管28で連結され、この導管28に介設された循環ポンプ27により液冷媒としてR134aが供給される。循環ポンプ27は、図示せぬインバータを介して駆動されるようになっており、そのインバータによってポンプ吐出量が調整される。また、循環ポンプ27と散布管29との間の導管28の経路途中には、液冷媒25の流量をモニタする流量計(図示せず)が配置されており、そのモニタ結果に基づきポンプ吐出量をフィードバック制御することで、散布管29への液冷媒25の供給量を調整し得るように構成されている。上述した散布管29、導管28、循環ポンプ27、流量計で液冷媒散布装置が構成される。   A spray pipe 29 is installed on the upper part of the many falling liquid film evaporator heat transfer pipes 21 installed in the evaporator 20, and the spray pipe 29 and the liquid refrigerant 25 accumulated in the lower part of the evaporator 20 are connected by a conduit 28. R134a is supplied as a liquid refrigerant by a circulation pump 27 provided in the conduit 28. The circulation pump 27 is driven through an inverter (not shown), and the pump discharge amount is adjusted by the inverter. Further, a flow meter (not shown) for monitoring the flow rate of the liquid refrigerant 25 is disposed in the path of the conduit 28 between the circulation pump 27 and the spray pipe 29, and the pump discharge amount is based on the monitoring result. Is configured so that the supply amount of the liquid refrigerant 25 to the spray tube 29 can be adjusted. The above-described spray pipe 29, conduit 28, circulation pump 27, and flow meter constitute a liquid refrigerant spray device.

また、散布管29には、凝縮器19から膨張弁または絞り弁24を流出した気液二相状態の液冷媒25が蒸発器20下部へ供給され、蒸発器20下部から循環される液冷媒とともに伝熱管21上に散布される。   Further, the gas / liquid two-phase liquid refrigerant 25 that has flowed out of the expansion valve or the throttle valve 24 from the condenser 19 is supplied to the lower part of the evaporator 20, and together with the liquid refrigerant circulated from the lower part of the evaporator 20. It is sprayed on the heat transfer tube 21.

散布管29からR134aを散布する際には、その散布量が所望量となるように、ポンプ吐出量の制御を通じて散布管29へのR134aの供給量を調整する。このように散布管29からのR134aの散布量をコントロールすることで、流下液膜式蒸発器用伝熱管21の管外面を覆うR134aの量を調整するのである。   When spraying R134a from the spray tube 29, the supply amount of R134a to the spray tube 29 is adjusted through control of the pump discharge amount so that the spray amount becomes a desired amount. By controlling the amount of R134a sprayed from the spray tube 29 in this way, the amount of R134a covering the outer surface of the falling liquid film evaporator heat transfer tube 21 is adjusted.

散布管29から散布されて流下した液冷媒は、各伝熱管21の外面に薄い液膜を形成しながら、供試管8内部を流動する熱源媒体との間で熱交換を行い、蒸発する。このような流下液膜式の蒸発器では、蒸発器内の冷媒量が熱負荷に応じた蒸発量の数倍程度でよいため、満液式の蒸発器と比較すると冷媒量は非常に少なくてすむ。したがって、ターボ冷凍機の冷媒封入量の削減を図ることができる。また、伝熱管上に未蒸発の液冷媒を流下させながら熱源媒体との間で熱交換を行わせるのに適した流下液膜式蒸発器用伝熱管を用いたターボ冷凍機を実現でき、しかも従来の満液式蒸発器用伝熱管以上に高性能なターボ冷凍機を提供することが可能になる。   The liquid refrigerant sprayed and flowed down from the spray tube 29 evaporates by exchanging heat with the heat source medium flowing inside the test tube 8 while forming a thin liquid film on the outer surface of each heat transfer tube 21. In such a falling liquid film type evaporator, the amount of refrigerant in the evaporator may be several times the amount of evaporation according to the heat load, so the amount of refrigerant is very small compared to a full liquid type evaporator. I'm sorry. Therefore, it is possible to reduce the amount of refrigerant enclosed in the turbo refrigerator. In addition, it is possible to realize a turbo chiller that uses a falling liquid film evaporator heat transfer tube suitable for heat exchange with a heat source medium while causing unvaporized liquid refrigerant to flow down on the heat transfer tube. This makes it possible to provide a turbo chiller with higher performance than the heat transfer tubes for full liquid evaporators.

[比較例としての満液式蒸発器]
満液式蒸発器を備えた冷凍機を図8に示す。冷凍サイクルの構成は流下式のそれと同様であるが、蒸発器20内部には、熱源媒体が流動する多数の伝熱管21が液冷媒25に浸されるように設置されている。このような構造の満液式蒸発器は、伝熱管内部を流動する熱源媒体との間の熱交換を、伝熱管外面に活発に生じる沸騰熱伝達によって行うため、伝熱特性は優れている。その反面、蒸発器には伝熱管が液冷媒に浸されるように多くの液冷媒を封入する必要があった。
[Full liquid evaporator as a comparative example]
A refrigerator equipped with a full liquid evaporator is shown in FIG. The configuration of the refrigeration cycle is the same as that of the flow-down type, but a large number of heat transfer tubes 21 through which the heat source medium flows are installed in the evaporator 20 so as to be immersed in the liquid refrigerant 25. The full-liquid evaporator having such a structure has excellent heat transfer characteristics because heat exchange with the heat source medium flowing inside the heat transfer tube is performed by boiling heat transfer actively generated on the outer surface of the heat transfer tube. On the other hand, it is necessary to enclose a large amount of liquid refrigerant in the evaporator so that the heat transfer tube is immersed in the liquid refrigerant.

[第二の実施の形態の効果]
本実施の形態によれば、上述した流下液膜式蒸発器用伝熱管を多数列の伝熱管群として配置し、該伝熱管群の上部に設置された液冷媒散布装置から散布される液冷媒が流下しながら前記伝熱管群の外面に液膜を形成し、各伝熱管上で沸騰蒸発を行って各伝熱管内部を流動する熱源媒体と熱交換を行うよう構成された流下液膜式蒸発器を有するターボ冷凍機が提供される。このように上述した流下液膜式蒸発器用伝熱管を適用した流下液膜式蒸発器をターボ冷凍機に採用すると、液冷媒を散布させるために必要なポンプの動力分以上に熱交換機の性能を向上させることが可能となるので、満液式蒸発器を採用したターボ冷凍機と比べて、安価で高性能化を図ることができる。また、低熱負荷時においても良好な伝熱性能が得られ、高熱負荷時においても満液式同様の伝熱性能を確保できるため、ターボ冷凍機の高性能化が図れる。
[Effect of the second embodiment]
According to the present embodiment, the heat transfer tubes for the falling liquid film evaporator described above are arranged as a multi-row heat transfer tube group, and the liquid refrigerant sprayed from the liquid refrigerant spraying device installed at the top of the heat transfer tube group is A falling liquid film evaporator configured to form a liquid film on the outer surface of the heat transfer tube group while flowing down, perform boiling evaporation on each heat transfer tube, and exchange heat with a heat source medium flowing inside each heat transfer tube A turbo chiller is provided. When the falling liquid film evaporator to which the heat transfer pipe for the falling liquid film evaporator is applied as described above is adopted in the turbo chiller, the performance of the heat exchanger exceeds the power of the pump necessary for spraying the liquid refrigerant. Since it is possible to improve, it is possible to achieve high performance at low cost compared to a turbo chiller employing a full liquid evaporator. In addition, good heat transfer performance can be obtained even at low heat loads, and heat transfer performance similar to the full liquid type can be secured even at high heat loads, so that the performance of the turbo refrigerator can be improved.

30 伝熱管本体
31 フィン
31a 先端部
31b 基端部
32 バイト
34 溝付きロール
35 平ロール
36 切欠き部
37 隙間
38 空洞部
45 リブ
30 Heat Transfer Tube Body 31 Fin 31a Tip 31b Base End 32 Bite 34 Grooved Roll 35 Flat Roll 36 Notch 37 Gap 38 Cavity 45 Rib

Claims (9)

管状に形成されて管外面にて流下液膜を沸騰蒸発するように構成された流下液膜式蒸発器用伝熱管において、
前記伝熱管の外面の円周方向に環状または螺旋状に連続して形成された複数のフィンと、
前記各フィンの先端部が隣のフィンに近接するよう前記伝熱管の管軸方向と略平行に折り曲げられ、該折り曲げられた先端部で前記隣のフィンとの間に隙間を設けて形成される複数の空洞部と、
を備えた流下液膜式蒸発器用伝熱管。
In the heat transfer tube for the falling liquid film evaporator, which is formed in a tubular shape and configured to boil and evaporate the falling liquid film on the outer surface of the pipe
A plurality of fins continuously formed annularly or spirally in the circumferential direction of the outer surface of the heat transfer tube;
Each fin is bent so that the tip of each fin is close to the adjacent fin, and is formed substantially parallel to the tube axis direction of the heat transfer tube, and a gap is formed between the bent fin and the adjacent fin. A plurality of cavities,
A heat transfer tube for a falling liquid film evaporator.
前記フィンの先端部に当該フィンの連続方向に沿って所定間隔で切欠き部が形成され、
前記空洞部は、前記先端部に形成された切欠き部と、前記切欠き部が形成されていない先端部と前記隣のフィンとの間に形成される前記隙間とによって外部に連通されるよう構成され、
前記伝熱管の管軸方向にて隣り合う前記空洞部同士の配置ピッチは0.4mm以上0.8mm以下であり、前記空洞部の深さは0.2mm以上0.8mm以下である請求項1に記載の流下液膜式蒸発器用伝熱管。
Notch portions are formed at predetermined intervals along the continuous direction of the fins at the tip portions of the fins,
The cavity is communicated to the outside by a notch formed in the tip and a gap formed between the tip not formed with the notch and the adjacent fin. Configured,
The arrangement pitch between the hollow portions adjacent in the tube axis direction of the heat transfer tube is 0.4 mm or more and 0.8 mm or less, and the depth of the hollow portion is 0.2 mm or more and 0.8 mm or less. A heat transfer tube for a falling liquid film evaporator as described in 1.
前記切欠き部は、前記フィンの先端部に溝付きロールを押圧することにより形成されている請求項2に記載の流下液膜式蒸発器用伝熱管。   The downflow liquid film evaporator heat transfer tube according to claim 2, wherein the notch is formed by pressing a grooved roll against the tip of the fin. 前記先端部と前記隣のフィンとの間に形成される前記隙間が0.05mm以上0.5mm以下である請求項1ないし3のいずれかに記載の流下液膜式蒸発器用伝熱管。   The heat transfer tube for a falling liquid film evaporator according to any one of claims 1 to 3, wherein the gap formed between the tip portion and the adjacent fin is 0.05 mm or more and 0.5 mm or less. 前記フィンが、前記伝熱管の外面をバイトにより削り起こして形成されている請求項1ないし4のいずれかに記載の流下液膜式蒸発器用伝熱管。   The heat transfer tube for a falling film evaporator according to any one of claims 1 to 4, wherein the fin is formed by scraping and raising the outer surface of the heat transfer tube with a cutting tool. 前記空洞部は、平ロールを前記フィンに押圧して前記フィンの先端部を折り曲げることにより形成されている請求項1ないし5のいずれかに記載の流下液膜式蒸発器用伝熱管。   The heat transfer tube for a falling liquid film evaporator according to any one of claims 1 to 5, wherein the hollow portion is formed by pressing a flat roll against the fin and bending a tip portion of the fin. 前記伝熱管の内面に螺旋状のリブが設けられている請求項1ないし6のいずれかに記載の流下液膜式蒸発器用伝熱管。   The heat transfer tube for a falling liquid film evaporator according to any one of claims 1 to 6, wherein a spiral rib is provided on an inner surface of the heat transfer tube. 流下液膜式蒸発器を備えたターボ冷凍機において、
前記流下液膜式蒸発器は、請求項1ないし7のいずれかに記載の流下液膜式蒸発器用伝熱管が多数列配置されてなる伝熱管群と、該伝熱管群の上部に設置された液冷媒散布装置とを有し、該液冷散布装置から散布される液冷媒が流下しながら前記伝熱管群の外面に液膜を形成し、各伝熱管上で沸騰蒸発を行って各伝熱管内部を流動する熱源媒体と熱交換を行うよう構成されているターボ冷凍機。
In a turbo refrigerator equipped with a falling liquid film evaporator,
The falling liquid film evaporator is installed on a heat transfer tube group in which a plurality of heat transfer tubes for the falling liquid film evaporator according to any one of claims 1 to 7 are arranged, and an upper portion of the heat transfer tube group. A liquid refrigerant spraying device, forming a liquid film on the outer surface of the heat transfer tube group while the liquid refrigerant sprayed from the liquid cooling spraying device flows down, and performing boiling evaporation on each heat transfer tube to each heat transfer tube A turbo refrigerator configured to exchange heat with a heat source medium flowing inside.
前記液冷媒散布装置は、これから散布される前記液冷媒の散布量が調整し得るよう構成されている請求項8に記載のターボ冷凍機。   The turbo chiller according to claim 8, wherein the liquid refrigerant spraying device is configured so that a spraying amount of the liquid refrigerant sprayed from now on can be adjusted.
JP2011028591A 2011-02-14 2011-02-14 Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same Withdrawn JP2012167854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011028591A JP2012167854A (en) 2011-02-14 2011-02-14 Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028591A JP2012167854A (en) 2011-02-14 2011-02-14 Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2012167854A true JP2012167854A (en) 2012-09-06

Family

ID=46972187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011028591A Withdrawn JP2012167854A (en) 2011-02-14 2011-02-14 Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same

Country Status (1)

Country Link
JP (1) JP2012167854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737646A (en) * 2019-03-07 2019-05-10 常州九洲创胜特种铜业有限公司 Evaporation tube and its application and preparation method
CN110612426A (en) * 2017-05-12 2019-12-24 开利公司 Internally enhanced heat exchanger tube
JP7350561B2 (en) 2019-08-09 2023-09-26 株式会社前川製作所 Falling film heat exchanger and falling film tube ice maker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612426A (en) * 2017-05-12 2019-12-24 开利公司 Internally enhanced heat exchanger tube
CN110612426B (en) * 2017-05-12 2022-05-17 开利公司 Heat transfer tube for heating, ventilating, air conditioning and refrigerating system
CN109737646A (en) * 2019-03-07 2019-05-10 常州九洲创胜特种铜业有限公司 Evaporation tube and its application and preparation method
JP7350561B2 (en) 2019-08-09 2023-09-26 株式会社前川製作所 Falling film heat exchanger and falling film tube ice maker

Similar Documents

Publication Publication Date Title
JP6765964B2 (en) Heat exchanger
JP6408572B2 (en) Heat exchanger
US8646286B2 (en) Refrigeration system controlled by refrigerant quality within evaporator
JP4728897B2 (en) Return bend and fin-and-tube heat exchangers
JP2002372390A (en) Heat exchanger tube for falling film evaporator
JP2016525205A (en) Heat exchanger
JP2016525205A5 (en)
Chen et al. Thermal performance of a boiling and condensation enhanced heat transfer tube—stepped lattice finned tube
JP4119836B2 (en) Internal grooved heat transfer tube
JP6738593B2 (en) Boiling heat transfer tube
JP2012167854A (en) Heat transfer tube for falling liquid film evaporator, and turbo refrigerator using the same
KR101200597B1 (en) A complex pipe for transferring heat, heat exchanging system and heat exchanger using the same
KR100479781B1 (en) Evaporator and refrigerator
JPH11148747A (en) Heat exchanger tube for evaporator of absorption refrigerating machine
JP2006098033A (en) Return bent tube, and fin and tube type heat exchanger
JP4744330B2 (en) Heat transfer tube for falling film evaporator and method of use
US11015878B2 (en) Heat transfer tube for heat exchanger
JP3862584B2 (en) Heat transfer tube for falling film evaporator
JP4518861B2 (en) Heat transfer tube for falling film evaporator
JP6177195B2 (en) Heat transfer tube for supercooled double tube heat exchanger
JP2013088045A (en) Heat exchanger and heat pump type water heater using the same
JP2004301440A (en) Heat transfer pipe for falling liquid film type evaporator
JP6807476B2 (en) Boiling water reactor
CN212362901U (en) Small-channel parallel pipeline heat exchanger with fins
JP7281059B2 (en) heat exchanger and heat pump equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513