WO2013014899A1 - Heat exchanger and heat pump using same - Google Patents

Heat exchanger and heat pump using same Download PDF

Info

Publication number
WO2013014899A1
WO2013014899A1 PCT/JP2012/004636 JP2012004636W WO2013014899A1 WO 2013014899 A1 WO2013014899 A1 WO 2013014899A1 JP 2012004636 W JP2012004636 W JP 2012004636W WO 2013014899 A1 WO2013014899 A1 WO 2013014899A1
Authority
WO
WIPO (PCT)
Prior art keywords
φin
tube
heat exchanger
fluid
flow path
Prior art date
Application number
PCT/JP2012/004636
Other languages
French (fr)
Japanese (ja)
Inventor
森田 健一
長生 木戸
鈴木 基啓
町田 和彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013525578A priority Critical patent/JP6037235B2/en
Priority to CN201280024474.9A priority patent/CN103562665B/en
Priority to EP12818246.6A priority patent/EP2735832B1/en
Publication of WO2013014899A1 publication Critical patent/WO2013014899A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the present invention relates to a heat exchanger and a heat pump using the heat exchanger.
  • a heat exchanger for exchanging heat between two types of fluids for example, water and refrigerant, air and refrigerant
  • two types of fluids for example, water and refrigerant, air and refrigerant
  • Patent Document 1 describes a double-tube heat exchanger having an inner tube and an outer tube.
  • the heat exchanger of Patent Document 1 includes two double tubes and a header. Two double pipes are connected in parallel by the header. Each double pipe is composed of one outer pipe and two inner pipes.
  • Patent Document 2 describes a heat exchanger including a casing having a rectangular flow path and a heat transfer tube disposed in a flow path inside the casing.
  • the heat exchanger described in Patent Document 2 is common to the heat exchanger described in Patent Document 1 in that it has a structure in which a pipe having a flow path of the other fluid is arranged in the flow path of one fluid. ing.
  • a heat exchanger having a structure in which the flow path of one fluid is arranged in the flow path of one fluid is referred to as a “double flow heat exchanger”.
  • an object of the present invention is to provide a technique for reducing the weight of a double-channel heat exchanger.
  • a heat exchanger for exchanging heat between the first fluid and the second fluid A plurality of heat exchange segments each having a first flow path and a second flow path; A first header provided at one end of the plurality of heat exchange segments to guide the first fluid to the first flow path and collect the second fluid from the second flow path; A second header provided at the other end of the plurality of heat exchange segments so as to collect the first fluid from the first flow path and guide the second fluid to the second flow path;
  • the heat exchange segment includes (i) two inner pipes each having the first flow path, and an inner pipe assembly formed by twisting the two inner pipes in a spiral shape; and (ii) It is constituted by an exterior body that houses the inner pipe assembly so that the second flow path is formed between the inner peripheral surface of the inner pipe and the outer peripheral surface of the inner pipe assembly.
  • the number of paths N representing the number of the heat exchange segments arranged between the first header and the second header is 4 to 8,
  • the gap G expressed by the difference between the half of the inner diameter ⁇ in of the outer body and the outer diameter ⁇ out of the inner tube (( ⁇ in / 2) ⁇ out) is 0 ⁇ G ⁇ 0.8 (unit: mm)
  • the filling Provided is a heat exchanger in which the number of passes N and the inner diameter ⁇ in (unit: mm) of the exterior body satisfy any of the following relationships (1) to (5).
  • the heat exchange capacity equivalent to that of a conventional double-channel heat exchanger is provided.
  • a light weight heat exchanger can be provided.
  • FIG. 1 The schematic plan view of the heat exchanger which concerns on one Embodiment of this invention. Sectional drawing of the heat exchange segment used for the heat exchanger shown in FIG. Schematic diagram of inner tube assembly Configuration of heat pump water heater Graph showing simulation results Another graph showing the results of the simulation Yet another graph showing simulation results Yet another graph showing simulation results
  • the heat exchanger of Patent Document 1 Since the heat exchanger of Patent Document 1 has a large space in the central portion, it has a large size for the heat exchange capacity (see FIG. 3 and the like).
  • the dimensions of the heat exchanger of Patent Document 1 are greatly affected by, for example, the radius of curvature of the corner portion. The smaller the radius of curvature of the corner portion, the smaller the overall dimensions. However, the radius of curvature of the corner portion has an inevitable limit depending on the thickness of the double tube and the like. Therefore, it is almost impossible to reduce the size by devising the bent shape of the double pipe.
  • the present inventors have maintained the heat exchange capacity at a constant value, the number of channels of the double channel heat exchanger (corresponding to the number of double tubes of Patent Document 1), the inner diameter of the outer tube
  • the weight of the heat exchanger changed was examined by computer simulation. As a result, it has been found that the weight of the heat exchanger can be reduced when the number of flow paths, the inner diameter of the outer tube, and the width of the gap take specific values. Based on these findings, the present inventors disclose the following.
  • the first aspect of the present disclosure is: A heat exchanger for exchanging heat between the first fluid and the second fluid, A plurality of heat exchange segments each having a first flow path and a second flow path; A first header provided at one end of the plurality of heat exchange segments to guide the first fluid to the first flow path and collect the second fluid from the second flow path; A second header provided at the other end of the plurality of heat exchange segments so as to collect the first fluid from the first flow path and guide the second fluid to the second flow path;
  • the heat exchange segment includes (i) two inner pipes each having the first flow path, and an inner pipe assembly formed by twisting the two inner pipes in a spiral shape; and (ii) It is constituted by an exterior body that houses the inner pipe assembly so that the second flow path is formed between the inner peripheral surface of the inner pipe and the outer peripheral surface of the inner pipe assembly.
  • the number of paths N representing the number of the heat exchange segments arranged between the first header and the second header is 4 to 8,
  • the gap width G expressed by the difference between the half of the inner diameter ⁇ in of the exterior body and the outer diameter ⁇ out of the inner tube (( ⁇ in / 2) ⁇ out) is 0 ⁇ G ⁇ 0.8 (unit: mm)
  • the filling Provided is a heat exchanger in which the number of passes N and the inner diameter ⁇ in (unit: mm) of the exterior body satisfy any of the following relationships (1) to (5).
  • the second aspect of the present disclosure provides, in addition to the first aspect, a heat exchanger in which the gap width G satisfies 0.16 ⁇ G ⁇ 0.8. Thereby, an inner pipe assembly can be smoothly put in an exterior body.
  • the third aspect of the present disclosure provides a heat exchanger in which, in addition to the first or second aspect, the inner tube and the exterior body are each formed of a copper tube. Thereby, heat exchange between the first fluid and the second fluid can be efficiently performed.
  • the fourth aspect of the present disclosure provides a heat exchanger in which, in addition to the first or second aspect, the inner tube is made of a copper tube, and the exterior body is made of resin. If the exterior body is made of resin, there is a possibility that a lighter heat exchanger can be provided.
  • the inner tube includes an inner surface smooth tube and an inner grooved tube provided outside the inner surface smooth tube.
  • a heat exchanger that is a leak detection tube is provided. According to the leak detection tube, even if the inner surface smooth tube is damaged, the first fluid can be prevented from flowing into the second flow path.
  • the sixth aspect of the present disclosure provides the heat exchanger according to any one of the first to fifth aspects, in which the first fluid is carbon dioxide and the second fluid is water.
  • the first fluid is carbon dioxide and the second fluid is water.
  • carbon dioxide is used as a refrigerant
  • water can be heated to a temperature close to the boiling point.
  • the seventh aspect of the present disclosure is: A compressor for compressing the refrigerant; A heat radiator configured by any one of the first to sixth heat exchangers for cooling the compressed refrigerant; An expansion mechanism for expanding the cooled refrigerant; An evaporator for evaporating the expanded refrigerant; A water circuit for circulating water through the radiator; A heat pump is provided.
  • the heat pump efficiency can be increased by using any one of the first to sixth heat exchangers.
  • the heat exchanger 100 of this embodiment includes a plurality of heat exchange segments 10, a first header 16, and a second header 22.
  • the first header 16 and the second header 22 are provided at one end and the other end of the plurality of heat exchange segments 10, respectively.
  • the heat exchange segment 10 is composed of an inner tube assembly 26 and an outer tube 28 (exterior body).
  • the inner tube assembly 26 includes two inner tubes 24.
  • the two inner tubes 24 each have a first flow path 24h.
  • the inner tube assembly 26 is formed by twisting these two inner tubes 24 in a spiral shape.
  • the inner tube assembly 26 is disposed in the outer tube 28.
  • a second flow path 28 h is formed between the inner peripheral surface of the outer tube 28 and the outer peripheral surface of the inner tube assembly 26.
  • the cross-sectional shape of the first flow path 24h and the cross-sectional shape of the second flow path 28h are typically circular.
  • the helical pitch and the helical angle are not particularly limited.
  • the spiral pitch is adjusted to a range of 20 to 65 mm, for example.
  • the spiral angle is adjusted to a range of 13 to 26 °, for example. Although it is desirable that the spiral angle is large to some extent, there is a processing limit depending on the outer diameter of the inner tube 24.
  • “spiral pitch” means the length of one cycle of the twisted inner tube 24.
  • “Helix angle” is an angle defined as follows. When the inner tube assembly 26 is viewed in plan, the center line L 1 of the inner tube assembly 26 and the contact point P of the two inner tubes 24 at the antinode position of the inner tube assembly 26 are defined. Further, a tangent line L 2 of the inner tube 24 is defined so as to pass through the contact point P. An angle formed by the center line L 1 and the tangent line L 2 is defined as a “spiral angle”.
  • the first header 16 includes an exit header 12 and an entrance header 14.
  • the first header 16 serves to collect the second fluid from the second flow path 28h and guide the first fluid to the first flow path 24h.
  • the second header 22 includes an inlet header 18 and an outlet header 20.
  • the second header 22 guides the second fluid to the second flow path 28h and collects the first fluid from the first flow path 24h.
  • An example of the first fluid is a refrigerant such as carbon dioxide
  • an example of the second fluid is water.
  • Carbon dioxide is suitable for a heat pump as a refrigerant having a low GWP (Global Warming Potential).
  • GWP Global Warming Potential
  • water can be heated to a temperature close to the boiling point.
  • a fluorine refrigerant such as hydrofluorocarbon can be used as the refrigerant.
  • first header 16 and the second header 22 are described in, for example, Patent Document 1 (FIG. 6).
  • the inner tube 24 and the outer tube 28 are each formed of a copper tube. Thereby, heat exchange between the first fluid and the second fluid can be efficiently performed.
  • the second flow path 28h may be formed of a member having a shape other than a pipe.
  • a member may be made of metal or may be made of a material other than metal.
  • the inner tube 24 may be made of a copper tube, and a member (exterior body) corresponding to the outer tube 28 may be made of resin. If the member corresponding to the outer tube 28 is made of resin, there is a possibility that a lighter heat exchanger can be provided.
  • the member corresponding to the outer tube 28 is made of, for example, a resin such as polyphenylene sulfide, polyether ether ketone, polytetrafluoroethylene, polysulfone, polyether sulfone, polyarylate, polyamideimide, polyetherimide, liquid crystal polymer, or polypropylene. It may be done. These resins (thermoplastic resins) have excellent heat resistance and chemical durability, and do not easily deteriorate even when exposed to water.
  • the outer tube 28 may also be made of a resin containing a reinforcing material such as a glass filler.
  • the inner tube 24 is a leak detection tube composed of an inner surface smooth tube 32 and an inner surface grooved tube 30 provided outside the inner surface smooth tube 32.
  • the outer diameter of the inner smooth tube 32 is equal to the inner diameter of the inner grooved tube 30. According to the leak detection tube, even if the inner surface smooth tube 32 is damaged, the first fluid can be prevented from flowing into the second flow path 28h.
  • the inner tube 24 is a leak detection tube.
  • the inner tube 24 may be composed only of the inner smooth tube 32. Further, dimples (unevenness) may be formed on the surface of the inner tube 24. Such dimples improve the heat transfer coefficient at the surface of the inner tube 24.
  • the number of passes N representing the number of heat exchange segments 10 arranged between the first header 16 and the second header 22 is four.
  • the number of passes N can be appropriately changed within the range of 4-8.
  • the number of passes N of the conventional double-channel heat exchanger is, for example, two.
  • the number of passes N is increased, the flow path area increases in proportion to the number of passes, so that the pressure loss is greatly reduced.
  • the heat transfer rate decreases as the fluid flow rate decreases.
  • the present inventors examined in detail the relationship between the number of flow paths (number of passes), the inner diameter of the outer tube, and the width of the gap by computer simulation. As a result, when these parameters take specific values, it is possible to provide a heat exchanger that is reduced in weight even though it has a heat exchange capacity equivalent to that of a conventional double-channel heat exchanger. I found out.
  • the heat exchanger 100 of the present embodiment satisfies the following relationship.
  • the number of passes N is in the range of 4-8.
  • the inner diameter ⁇ in of the outer tube 28 is in the range of 6.52 to 9.50 mm.
  • the gap G expressed by the difference between the half of the inner diameter ⁇ in of the outer tube 28 and the outer diameter ⁇ out of the inner tube 24 (( ⁇ in / 2) ⁇ out) is 0 ⁇ G ⁇ 0.8 (unit: mm) Meet.
  • the number of passes N and the inner diameter ⁇ in (unit: mm) of the outer tube 28 satisfy any of the following relationships (1) to (5).
  • the outer diameter of the inner tube assembly 26 is equal to twice the outer diameter ⁇ out of the inner tube 24.
  • the number of passes N increases, the number of brazing points increases and the structure of the headers 16 and 22 becomes complicated. If the number of passes N exceeds 8, even if weight reduction can be achieved, mass production is difficult. If the number of passes N is too large, it is difficult to flow the first fluid and the second fluid uniformly through each of the heat exchange segments 10. Therefore, the number of passes N is desirably in the range of 4-8.
  • the gap width G is zero, the inner tube assembly 26 cannot be inserted into the outer tube 28. It is therefore essential that the gap width G is greater than zero.
  • the gap width G is preferably 0.16 mm or more.
  • the upper limit value of the gap width G is preferably 0.8 mm.
  • the outer diameter ⁇ out of the inner tube 24 is determined.
  • the weight reduction of the heat exchanger 100 can reduce the inner diameter ⁇ in of the outer tube 28 and / or the outer diameter ⁇ out of the inner tube 24, and further reduce the thickness of the outer tube 28 and / or the thickness of the inner tube 24. Can be achieved due to that.
  • the inner tube 24 and the outer tube 28 each require a certain thickness. Considering the corrosion resistance, the thickness of the detection tube 30 (the thickness of the portion without the groove) is adjusted to a range of 0.5 to 0.7 mm, for example.
  • the thickness of the outer tube 28 is adjusted to a range of 0.5 to 0.7 mm, for example.
  • the wall thickness of the inner smooth tube 32 is adjusted to a range of 0.2 to 0.4 mm, for example.
  • the inner smooth tube 32 refrigerant tube
  • a thickness that can withstand the pressure of the refrigerant (first fluid) is required. If the thickness of the inner smooth tube 32 is excessive, the weight, cost, refrigerant pressure loss, etc. of the heat exchanger 100 are affected. Therefore, the thickness of the inner surface smooth tube 32 can be set in a range of, for example, 12 to 20% (preferably 12 to 16%) of the outer diameter of the inner surface smooth tube 32 itself.
  • the heat exchange capacity of the heat exchanger 100 is not particularly limited, but is, for example, in the range of 4.5 to 6.0 kW.
  • the heat exchanger 100 can be suitably used for a heat pump for general households.
  • two heat exchangers 100 can be used in parallel.
  • the heat exchange segment 10 is not bent. Depending on the number of passes N, the heat exchange segment 10 has a length of 2-5 meters. Therefore, in the heat exchanger 100 of the present embodiment, the heat exchange segment 10 may be bent in a spiral shape. By using a thin tube for the heat exchange segment 10, the bending radius can be reduced, and the dead space may be reduced.
  • FIG. 4 is a configuration diagram of a heat pump water heater 200 that can employ the heat exchanger 100.
  • the heat pump water heater 200 includes a heat pump unit 201 and a tank unit 203. Hot water produced by the heat pump unit 201 is stored in the tank unit 203. Hot water is supplied from the tank unit 203 to the hot-water tap 204.
  • the heat pump unit 201 includes a compressor 205 that compresses the refrigerant, a radiator 207 that cools the refrigerant, an expansion mechanism 209 that expands the refrigerant, an evaporator 211 that evaporates the refrigerant, and a refrigerant pipe that connects these devices in this order. 213.
  • the expansion mechanism 209 is typically an expansion valve. Instead of the expansion valve, a positive displacement expander that can recover the expansion energy of the refrigerant may be used.
  • the heat exchanger 100 can be used as the radiator 207.
  • the tank unit 203 includes a hot water storage tank 215 and a water circuit 217. The water circuit 217 plays a role of circulating water through the radiator 207.
  • the inner diameter ⁇ in of the outer tube was fixed to 7.06 mm or 8.6 mm, and the weight when the number of passes N was changed was calculated by computer simulation. .
  • the gap width G was fixed at 0.4 mm.
  • a calculation result of a heat exchanger in which the number of passes N is 2 and the inner diameter ⁇ in of the outer tube is 10.8 mm was prepared.
  • the number of passes N was changed while maintaining the heat exchange capacity at the value of the reference example (about 4.7 kW). That is, the length of the heat exchange segment (the length of the outer tube) was set so that the same heat exchange capability as in the reference example was exhibited.
  • the simulation conditions are as follows.
  • Results are shown in Tables 1 and 2.
  • the gap width G was fixed to 0.4 mm, and various combinations of the inner diameter ⁇ in of the outer tube and the number of passes N were examined. Then, a combination of the inner diameter ⁇ in of the outer tube and the number of passes N in the heat exchanger lighter than the reference example was picked up. The results are shown in Table 3.
  • the results of Table 3 are shown in the graphs of FIGS.
  • the horizontal axis represents the number of passes N
  • the vertical axis represents the weight.
  • the leftmost mark corresponds to the reference example.
  • the horizontal axis represents the inner diameter ⁇ in of the outer tube
  • the vertical axis represents the number of passes N.
  • the gap width G exceeds 0.8 mm, the heat transfer coefficient on the surface of the inner tube is lowered, and there is a possibility that the deterioration of the heat exchange performance becomes obvious. Therefore, no simulation is performed for a range exceeding 0.8 mm.
  • the lower limit value of the gap width G is not particularly limited. However, as shown in Table 6, when the gap width G is optimized, the weight of the heat exchanger is reduced to the maximum as compared with the reference example. Can do.
  • the data when the gap width G is optimized in a range where the pressure loss of the second fluid (water) does not exceed a certain value represents the gap width G that can minimize the weight of the heat exchanger. ing. Therefore, data when the gap width G is optimized can be handled as a suitable lower limit value.
  • Table 6 the smallest value of the gap width G is 0.16 mm, and the number of passes N at that time is 8.
  • the inner diameter ⁇ in of the outer tube when the gap width G is 0 mm is larger than the inner diameter ⁇ in of the outer tube when the gap width G is 0.4 mm.
  • the wall thickness of the detector tube is constant at 0.68 mm. However, when the detector tube does not exist, it is necessary to increase the wall thickness of the inner smooth tube in order to increase the corrosion resistance.
  • the heat exchanger of the present invention can be used for devices such as a heat pump type hot water heater and a hot water heater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

This heat exchanger (100) is provided with multiple heat exchange segments (10). The heat exchange segments (10) are configured from an inner tube assembly (26), which comprises two inner tubes (24), and an outer tube (28). The gap width G expressed by ((Φin / 2) - Φout), i.e., the difference between half of the inner diameter (Φin) of the outer tube (28), and the outer diameter (Φout) of the inner tube (24), fulfills 0 < G ≦ 0.8 (unit: mm). The pass number N representing the number of heat exchange segments (10), and the inner diameter Φin (unit: mm) of the outer tube (28), satisfy one of the relations (1) to (5) below. (1) N=4 and 8.20 ≦ Φin ≦ 9.50, (2) N=5 and 7.58 ≦ Φin ≦ 8.90, (3) N=6 and 7.14 ≦ Φin ≦ 8.50, (4) N=7 and 6.78 ≦ Φin ≦ 8.20, and (5) N=8 and 6.52 ≦ Φin ≦ 7.90.

Description

熱交換器及びそれを用いたヒートポンプHeat exchanger and heat pump using the same
 本発明は、熱交換器及びそれを用いたヒートポンプに関する。 The present invention relates to a heat exchanger and a heat pump using the heat exchanger.
 2種類の流体(例えば、水と冷媒、空気と冷媒)の間で熱交換を行うための熱交換器は、従来から広く使用されている。 A heat exchanger for exchanging heat between two types of fluids (for example, water and refrigerant, air and refrigerant) has been widely used.
 例えば、特許文献1には、内管及び外管を備えた二重管式熱交換器が記載されている。特許文献1の図6に記載されているように、特許文献1の熱交換器は、2本の二重管と、ヘッダとを備えている。ヘッダによって2本の二重管が並列に接続されている。二重管は、それぞれ、1つの外管及び2つの内管で構成されている。 For example, Patent Document 1 describes a double-tube heat exchanger having an inner tube and an outer tube. As described in FIG. 6 of Patent Document 1, the heat exchanger of Patent Document 1 includes two double tubes and a header. Two double pipes are connected in parallel by the header. Each double pipe is composed of one outer pipe and two inner pipes.
 特許文献2には、矩形の流路を有する筺体と、筺体の内部の流路に配置された伝熱管とを備えた熱交換器が記載されている。特許文献2に記載された熱交換器は、一方の流体の流路に他方の流体の流路を有する管が配置された構造を有する点で特許文献1に記載された熱交換器と共通している。 Patent Document 2 describes a heat exchanger including a casing having a rectangular flow path and a heat transfer tube disposed in a flow path inside the casing. The heat exchanger described in Patent Document 2 is common to the heat exchanger described in Patent Document 1 in that it has a structure in which a pipe having a flow path of the other fluid is arranged in the flow path of one fluid. ing.
 本明細書では、一方の流体の流路に他方の流体の流路が配置された構造を有する熱交換器を「二重流路式熱交換器」と称する。 In the present specification, a heat exchanger having a structure in which the flow path of one fluid is arranged in the flow path of one fluid is referred to as a “double flow heat exchanger”.
特許第4414197号明細書Patent No. 4414197 特開2005-24109号公報JP 2005-24109 A
 特許文献1及び2に記載された熱交換器は、銅、ステンレス等の金属で作られているため、非常に重い。そのため、より軽量な二重流路式熱交換器が望まれている。 The heat exchangers described in Patent Documents 1 and 2 are very heavy because they are made of a metal such as copper or stainless steel. Therefore, a lighter double flow path heat exchanger is desired.
 上記事情に鑑み、本発明は、二重流路式熱交換器を軽量化するための技術を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a technique for reducing the weight of a double-channel heat exchanger.
 すなわち、本開示は、
 第一流体と第二流体とを熱交換させる熱交換器であって、
 第一流路及び第二流路をそれぞれ有する複数の熱交換セグメントと、
 前記第一流路に前記第一流体を導き、前記第二流路から前記第二流体を集めるように前記複数の熱交換セグメントの一端部に設けられた第一ヘッダと、
 前記第一流路から前記第一流体を集め、前記第二流路に前記第二流体を導くように前記複数の熱交換セグメントの他端部に設けられた第二ヘッダと、
 を備え、
 前記熱交換セグメントが、(i)前記第一流路をそれぞれ有する2本の内管を含み、前記2本の内管が螺旋状に捻られることによって形成された内管集合体と、(ii)自身の内周面と前記内管集合体の外周面との間に前記第二流路が形成されるように、前記内管集合体を収容している外装体とによって構成され、
 前記第一ヘッダと前記第二ヘッダとの間に配置された前記熱交換セグメントの数を表すパス数Nが4~8であり、
 前記外装体の内径Φinの半分と前記内管の外径Φoutとの差((Φin/2)-Φout)で表されるギャップの広さGが0<G≦0.8(単位:mm)を満たし、
 前記パス数Nと前記外装体の内径Φin(単位:mm)とが下記の関係(1)~(5)のいずれかを満たす、熱交換器を提供する。
 (1)N=4であり、8.20≦Φin≦9.50
 (2)N=5であり、7.58≦Φin≦8.90
 (3)N=6であり、7.14≦Φin≦8.50
 (4)N=7であり、6.78≦Φin≦8.20
 (5)N=8であり、6.52≦Φin≦7.90
That is, this disclosure
A heat exchanger for exchanging heat between the first fluid and the second fluid,
A plurality of heat exchange segments each having a first flow path and a second flow path;
A first header provided at one end of the plurality of heat exchange segments to guide the first fluid to the first flow path and collect the second fluid from the second flow path;
A second header provided at the other end of the plurality of heat exchange segments so as to collect the first fluid from the first flow path and guide the second fluid to the second flow path;
With
The heat exchange segment includes (i) two inner pipes each having the first flow path, and an inner pipe assembly formed by twisting the two inner pipes in a spiral shape; and (ii) It is constituted by an exterior body that houses the inner pipe assembly so that the second flow path is formed between the inner peripheral surface of the inner pipe and the outer peripheral surface of the inner pipe assembly.
The number of paths N representing the number of the heat exchange segments arranged between the first header and the second header is 4 to 8,
The gap G expressed by the difference between the half of the inner diameter Φin of the outer body and the outer diameter Φout of the inner tube ((Φin / 2) −Φout) is 0 <G ≦ 0.8 (unit: mm) The filling,
Provided is a heat exchanger in which the number of passes N and the inner diameter Φin (unit: mm) of the exterior body satisfy any of the following relationships (1) to (5).
(1) N = 4, 8.20 ≦ Φin ≦ 9.50
(2) N = 5 and 7.58 ≦ Φin ≦ 8.90
(3) N = 6 and 7.14 ≦ Φin ≦ 8.50
(4) N = 7 and 6.78 ≦ Φin ≦ 8.20
(5) N = 8, 6.52 ≦ Φin ≦ 7.90
 本開示によれば、外装体の内径Φin、ギャップの広さG及びパス数Nの関係を適切に定めることにより、従来の二重流路式熱交換器と同等の熱交換能力を有しているにもかかわらず、軽量化された熱交換器を提供できる。 According to the present disclosure, by appropriately determining the relationship between the inner diameter Φin of the exterior body, the gap width G, and the number of passes N, the heat exchange capacity equivalent to that of a conventional double-channel heat exchanger is provided. In spite of this, a light weight heat exchanger can be provided.
本発明の一実施形態に係る熱交換器の概略平面図The schematic plan view of the heat exchanger which concerns on one Embodiment of this invention. 図1に示す熱交換器に用いられた熱交換セグメントの断面図Sectional drawing of the heat exchange segment used for the heat exchanger shown in FIG. 内管集合体の概略図Schematic diagram of inner tube assembly ヒートポンプ給湯機の構成図Configuration of heat pump water heater シミュレーションの結果を示すグラフGraph showing simulation results シミュレーションの結果を示す別のグラフAnother graph showing the results of the simulation シミュレーションの結果を示すさらに別のグラフYet another graph showing simulation results シミュレーションの結果を示すさらに別のグラフYet another graph showing simulation results
 特許文献1の熱交換器は、中央部分に大きい空間を有しているので、熱交換能力の割には大きい寸法を有する(図3等参照)。特許文献1の熱交換器の寸法は、例えば、コーナー部分の曲率半径に大きく左右される。コーナー部分の曲率半径を小さくすればするほど、全体の寸法を小さくすることができる。しかし、コーナー部分の曲率半径には、二重管の太さ等に応じて、必然的な限界が存在する。そのため、二重管の曲げ形状の工夫によって小型化を進めることは不可能に近い。 Since the heat exchanger of Patent Document 1 has a large space in the central portion, it has a large size for the heat exchange capacity (see FIG. 3 and the like). The dimensions of the heat exchanger of Patent Document 1 are greatly affected by, for example, the radius of curvature of the corner portion. The smaller the radius of curvature of the corner portion, the smaller the overall dimensions. However, the radius of curvature of the corner portion has an inevitable limit depending on the thickness of the double tube and the like. Therefore, it is almost impossible to reduce the size by devising the bent shape of the double pipe.
 本発明者らは、熱交換能力を一定の値に保持しつつ、二重流路式熱交換器の流路の数(特許文献1の二重管の数に相当する)、外管の内径、外管と内管との間のギャップの広さ等を変化させたとき、熱交換器の重量がどのように変化するのかコンピュータシミュレーションで調べた。その結果、流路の数、外管の内径及びギャップの広さが特定の値をとるとき、熱交換器の重量を軽減できることを見出した。こうした知見に基づき、本発明者らは、以下を開示する。 The present inventors have maintained the heat exchange capacity at a constant value, the number of channels of the double channel heat exchanger (corresponding to the number of double tubes of Patent Document 1), the inner diameter of the outer tube When the width of the gap between the outer tube and the inner tube was changed, how the weight of the heat exchanger changed was examined by computer simulation. As a result, it has been found that the weight of the heat exchanger can be reduced when the number of flow paths, the inner diameter of the outer tube, and the width of the gap take specific values. Based on these findings, the present inventors disclose the following.
 本開示の第1態様は、
 第一流体と第二流体とを熱交換させる熱交換器であって、
 第一流路及び第二流路をそれぞれ有する複数の熱交換セグメントと、
 前記第一流路に前記第一流体を導き、前記第二流路から前記第二流体を集めるように前記複数の熱交換セグメントの一端部に設けられた第一ヘッダと、
 前記第一流路から前記第一流体を集め、前記第二流路に前記第二流体を導くように前記複数の熱交換セグメントの他端部に設けられた第二ヘッダと、
 を備え、
 前記熱交換セグメントが、(i)前記第一流路をそれぞれ有する2本の内管を含み、前記2本の内管が螺旋状に捻られることによって形成された内管集合体と、(ii)自身の内周面と前記内管集合体の外周面との間に前記第二流路が形成されるように、前記内管集合体を収容している外装体とによって構成され、
 前記第一ヘッダと前記第二ヘッダとの間に配置された前記熱交換セグメントの数を表すパス数Nが4~8であり、
 前記外装体の内径Φinの半分と前記内管の外径Φoutとの差((Φin/2)-Φout)で表されるギャップの広さGが0<G≦0.8(単位:mm)を満たし、
 前記パス数Nと前記外装体の内径Φin(単位:mm)とが下記の関係(1)~(5)のいずれかを満たす、熱交換器を提供する。
 (1)N=4であり、8.20≦Φin≦9.50
 (2)N=5であり、7.58≦Φin≦8.90
 (3)N=6であり、7.14≦Φin≦8.50
 (4)N=7であり、6.78≦Φin≦8.20
 (5)N=8であり、6.52≦Φin≦7.90
The first aspect of the present disclosure is:
A heat exchanger for exchanging heat between the first fluid and the second fluid,
A plurality of heat exchange segments each having a first flow path and a second flow path;
A first header provided at one end of the plurality of heat exchange segments to guide the first fluid to the first flow path and collect the second fluid from the second flow path;
A second header provided at the other end of the plurality of heat exchange segments so as to collect the first fluid from the first flow path and guide the second fluid to the second flow path;
With
The heat exchange segment includes (i) two inner pipes each having the first flow path, and an inner pipe assembly formed by twisting the two inner pipes in a spiral shape; and (ii) It is constituted by an exterior body that houses the inner pipe assembly so that the second flow path is formed between the inner peripheral surface of the inner pipe and the outer peripheral surface of the inner pipe assembly.
The number of paths N representing the number of the heat exchange segments arranged between the first header and the second header is 4 to 8,
The gap width G expressed by the difference between the half of the inner diameter Φin of the exterior body and the outer diameter Φout of the inner tube ((Φin / 2) −Φout) is 0 <G ≦ 0.8 (unit: mm) The filling,
Provided is a heat exchanger in which the number of passes N and the inner diameter Φin (unit: mm) of the exterior body satisfy any of the following relationships (1) to (5).
(1) N = 4, 8.20 ≦ Φin ≦ 9.50
(2) N = 5 and 7.58 ≦ Φin ≦ 8.90
(3) N = 6 and 7.14 ≦ Φin ≦ 8.50
(4) N = 7 and 6.78 ≦ Φin ≦ 8.20
(5) N = 8, 6.52 ≦ Φin ≦ 7.90
 本開示の第2態様は、第1態様に加え、前記ギャップの広さGが0.16≦G≦0.8を満たす、熱交換器を提供する。これにより、外装体の中に内管集合体をスムーズに入れることができる。 The second aspect of the present disclosure provides, in addition to the first aspect, a heat exchanger in which the gap width G satisfies 0.16 ≦ G ≦ 0.8. Thereby, an inner pipe assembly can be smoothly put in an exterior body.
 本開示の第3態様は、第1又は第2態様に加え、前記内管及び前記外装体がそれぞれ銅管で構成されている、熱交換器を提供する。これにより、第一流体と第二流体との間の熱交換を効率的に行うことができる。 The third aspect of the present disclosure provides a heat exchanger in which, in addition to the first or second aspect, the inner tube and the exterior body are each formed of a copper tube. Thereby, heat exchange between the first fluid and the second fluid can be efficiently performed.
 本開示の第4態様は、第1又は第2態様に加え、前記内管が銅管で構成されており、前記外装体が樹脂で作られている、熱交換器を提供する。外装体が樹脂で作られていると、より軽量な熱交換器を提供できる可能性がある。 The fourth aspect of the present disclosure provides a heat exchanger in which, in addition to the first or second aspect, the inner tube is made of a copper tube, and the exterior body is made of resin. If the exterior body is made of resin, there is a possibility that a lighter heat exchanger can be provided.
 本開示の第5態様は、第1~第4態様のいずれか1つに加え、前記内管が、内面平滑管と、前記内面平滑管の外側に設けられた内面溝付き管とで構成された漏洩検知管である、熱交換器を提供する。漏洩検知管によれば、万が一、内面平滑管が破損したとしても、第一流体が第二流路に流れ出すことを防止できる。 According to a fifth aspect of the present disclosure, in addition to any one of the first to fourth aspects, the inner tube includes an inner surface smooth tube and an inner grooved tube provided outside the inner surface smooth tube. A heat exchanger that is a leak detection tube is provided. According to the leak detection tube, even if the inner surface smooth tube is damaged, the first fluid can be prevented from flowing into the second flow path.
 本開示の第6態様は、第1~第5態様のいずれか1つに加え、前記第一流体が二酸化炭素であり、前記第二流体が水である、熱交換器を提供する。二酸化炭素を冷媒として使用すると、水を沸点に近い温度まで加熱することができる。 The sixth aspect of the present disclosure provides the heat exchanger according to any one of the first to fifth aspects, in which the first fluid is carbon dioxide and the second fluid is water. When carbon dioxide is used as a refrigerant, water can be heated to a temperature close to the boiling point.
 本開示の第7態様は、
 冷媒を圧縮する圧縮機と、
 第1~第6態様のいずれか1つの熱交換器で構成され、圧縮された冷媒を冷却する放熱器と、
 冷却された冷媒を膨張させる膨張機構と、
 膨張した冷媒を蒸発させる蒸発器と、
 前記放熱器に水を循環させる水回路と、
 を備えた、ヒートポンプを提供する。
The seventh aspect of the present disclosure is:
A compressor for compressing the refrigerant;
A heat radiator configured by any one of the first to sixth heat exchangers for cooling the compressed refrigerant;
An expansion mechanism for expanding the cooled refrigerant;
An evaporator for evaporating the expanded refrigerant;
A water circuit for circulating water through the radiator;
A heat pump is provided.
 第1~第6態様のいずれか1つの熱交換器を使用することによって、ヒートポンプの効率を高めることができる。 The heat pump efficiency can be increased by using any one of the first to sixth heat exchangers.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の実施形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by the following embodiment.
 図1に示すように、本実施形態の熱交換器100は、複数の熱交換セグメント10、第一ヘッダ16及び第二ヘッダ22を備えている。第一ヘッダ16及び第二ヘッダ22は、それぞれ、複数の熱交換セグメント10の一端部及び他端部に設けられている。 As shown in FIG. 1, the heat exchanger 100 of this embodiment includes a plurality of heat exchange segments 10, a first header 16, and a second header 22. The first header 16 and the second header 22 are provided at one end and the other end of the plurality of heat exchange segments 10, respectively.
 図2に示すように、熱交換セグメント10は、内管集合体26及び外管28(外装体)によって構成されている。内管集合体26は、2本の内管24を含む。2本の内管24は、それぞれ、第一流路24hを有する。図3に示すように、これら2本の内管24が螺旋状に捻られることによって、内管集合体26が形成されている。内管集合体26は、外管28の中に配置されている。これにより、外管28の内周面と内管集合体26の外周面との間に第二流路28hが形成されている。第一流路24hの断面形状及び第二流路28hの断面形状は、典型的には円形である。 As shown in FIG. 2, the heat exchange segment 10 is composed of an inner tube assembly 26 and an outer tube 28 (exterior body). The inner tube assembly 26 includes two inner tubes 24. The two inner tubes 24 each have a first flow path 24h. As shown in FIG. 3, the inner tube assembly 26 is formed by twisting these two inner tubes 24 in a spiral shape. The inner tube assembly 26 is disposed in the outer tube 28. As a result, a second flow path 28 h is formed between the inner peripheral surface of the outer tube 28 and the outer peripheral surface of the inner tube assembly 26. The cross-sectional shape of the first flow path 24h and the cross-sectional shape of the second flow path 28h are typically circular.
 内管集合体26に関して、螺旋ピッチ及び螺旋角は特に限定されない。螺旋ピッチは、例えば、20~65mmの範囲に調整される。螺旋角は、例えば、13~26°の範囲に調整される。螺旋角はある程度大きい方が望ましいが、内管24の外径に応じて加工限界が存在する。図3に示すように、「螺旋ピッチ」とは、捻られた内管24の1周期分の長さを意味する。「螺旋角」は、以下のように定義される角度である。内管集合体26を平面視したとき、内管集合体26の中心線L1と、内管集合体26の腹の位置における2つの内管24の接点Pとを定義する。さらに、接点Pを通るように内管24の接線L2を定義する。中心線L1と接線L2とのなす角度を「螺旋角」と定義する。 Regarding the inner tube assembly 26, the helical pitch and the helical angle are not particularly limited. The spiral pitch is adjusted to a range of 20 to 65 mm, for example. The spiral angle is adjusted to a range of 13 to 26 °, for example. Although it is desirable that the spiral angle is large to some extent, there is a processing limit depending on the outer diameter of the inner tube 24. As shown in FIG. 3, “spiral pitch” means the length of one cycle of the twisted inner tube 24. “Helix angle” is an angle defined as follows. When the inner tube assembly 26 is viewed in plan, the center line L 1 of the inner tube assembly 26 and the contact point P of the two inner tubes 24 at the antinode position of the inner tube assembly 26 are defined. Further, a tangent line L 2 of the inner tube 24 is defined so as to pass through the contact point P. An angle formed by the center line L 1 and the tangent line L 2 is defined as a “spiral angle”.
 図1に示すように、第一ヘッダ16は、出口ヘッダ12及び入口ヘッダ14で構成されている。第一ヘッダ16は、第二流路28hから第二流体を集め、第一流路24hに第一流体を導く役割を担う。第二ヘッダ22は、入口ヘッダ18及び出口ヘッダ20で構成されている。第二ヘッダ22は、第二流路28hに第二流体を導き、第一流路24hから第一流体を集める役割を担う。第一流路24hに第一流体を流しながら第二流路28hに第二流体を流すと、第一流体と第二流体との間で熱交換が行われる。 As shown in FIG. 1, the first header 16 includes an exit header 12 and an entrance header 14. The first header 16 serves to collect the second fluid from the second flow path 28h and guide the first fluid to the first flow path 24h. The second header 22 includes an inlet header 18 and an outlet header 20. The second header 22 guides the second fluid to the second flow path 28h and collects the first fluid from the first flow path 24h. When the second fluid is caused to flow through the second passage 28h while the first fluid is caused to flow through the first passage 24h, heat exchange is performed between the first fluid and the second fluid.
 第一流体の例は二酸化炭素などの冷媒であり、第二流体の例は水である。二酸化炭素は、GWP(Global Warming Potential)の低い冷媒として、ヒートポンプに好適である。二酸化炭素を冷媒として使用すると、水を沸点に近い温度まで加熱することができる。ただし、熱交換するべき2種類の流体はこれらに限定されない。水に代えて、油、ブラインなどを第二流体として使用できる。また、冷媒として、ハイドロフルオロカーボンなどのフッ素冷媒も使用できる。 An example of the first fluid is a refrigerant such as carbon dioxide, and an example of the second fluid is water. Carbon dioxide is suitable for a heat pump as a refrigerant having a low GWP (Global Warming Potential). When carbon dioxide is used as a refrigerant, water can be heated to a temperature close to the boiling point. However, the two types of fluids to be heat-exchanged are not limited to these. Instead of water, oil, brine, etc. can be used as the second fluid. In addition, a fluorine refrigerant such as hydrofluorocarbon can be used as the refrigerant.
 第一ヘッダ16及び第二ヘッダ22の詳細な構造は、例えば、特許文献1(図6)に記載されている。 The detailed structure of the first header 16 and the second header 22 is described in, for example, Patent Document 1 (FIG. 6).
 本実施形態において、内管24及び外管28は、それぞれ、銅管で構成されている。これにより、第一流体と第二流体との間の熱交換を効率的に行うことができる。 In the present embodiment, the inner tube 24 and the outer tube 28 are each formed of a copper tube. Thereby, heat exchange between the first fluid and the second fluid can be efficiently performed.
 第二流路28hは、管以外の形状を有する部材によって形成されていてもよい。そのような部材は、金属で作られていてもよいし、金属以外の材料で作られていてもよい。例えば、内管24が銅管で作られており、外管28に相当する部材(外装体)が樹脂で作られていてもよい。外管28に相当する部材が樹脂で作られていると、より軽量な熱交換器を提供できる可能性がある。 The second flow path 28h may be formed of a member having a shape other than a pipe. Such a member may be made of metal or may be made of a material other than metal. For example, the inner tube 24 may be made of a copper tube, and a member (exterior body) corresponding to the outer tube 28 may be made of resin. If the member corresponding to the outer tube 28 is made of resin, there is a possibility that a lighter heat exchanger can be provided.
 外管28に相当する部材は、例えば、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、液晶ポリマー、ポリプロピレンなどの樹脂で作られていてもよい。これらの樹脂(熱可塑性樹脂)は、優れた耐熱性及び化学的耐久性を有しており、水に触れても劣化しにくい。外管28は、また、ガラスフィラーなどの強化材を含む樹脂で作られていてもよい。 The member corresponding to the outer tube 28 is made of, for example, a resin such as polyphenylene sulfide, polyether ether ketone, polytetrafluoroethylene, polysulfone, polyether sulfone, polyarylate, polyamideimide, polyetherimide, liquid crystal polymer, or polypropylene. It may be done. These resins (thermoplastic resins) have excellent heat resistance and chemical durability, and do not easily deteriorate even when exposed to water. The outer tube 28 may also be made of a resin containing a reinforcing material such as a glass filler.
 図2に示すように、内管24は、内面平滑管32と、内面平滑管32の外側に設けられた内面溝付き管30とで構成された漏洩検知管である。内面平滑管32の外径は、内面溝付き管30の内径に等しい。漏洩検知管によれば、万が一、内面平滑管32が破損したとしても、第一流体が第二流路28hに流れ出すことを防止できる。ただし、内管24が漏洩検知管であることは必須ではない。内管24は、内面平滑管32のみで構成されていてもよい。また、内管24の表面にディンプル(凹凸)が形成されていてもよい。そのようなディンプルは、内管24の表面における熱伝達率を向上させる。 As shown in FIG. 2, the inner tube 24 is a leak detection tube composed of an inner surface smooth tube 32 and an inner surface grooved tube 30 provided outside the inner surface smooth tube 32. The outer diameter of the inner smooth tube 32 is equal to the inner diameter of the inner grooved tube 30. According to the leak detection tube, even if the inner surface smooth tube 32 is damaged, the first fluid can be prevented from flowing into the second flow path 28h. However, it is not essential that the inner tube 24 is a leak detection tube. The inner tube 24 may be composed only of the inner smooth tube 32. Further, dimples (unevenness) may be formed on the surface of the inner tube 24. Such dimples improve the heat transfer coefficient at the surface of the inner tube 24.
 図1に示すように、本実施形態において、第一ヘッダ16と第二ヘッダ22との間に配置された熱交換セグメント10の数を表すパス数Nは4である。外管28の内径及び内管24の外径に応じて、パス数Nは、4~8の範囲で適宜変更されうる。 As shown in FIG. 1, in this embodiment, the number of passes N representing the number of heat exchange segments 10 arranged between the first header 16 and the second header 22 is four. Depending on the inner diameter of the outer tube 28 and the outer diameter of the inner tube 24, the number of passes N can be appropriately changed within the range of 4-8.
 特許文献1(特許第4414197号明細書)の図6に記載されているように、従来の二重流路式熱交換器のパス数Nは、例えば2である。パス数Nを増やすと、パス数に比例して流路面積が増大するので、圧力損失は大幅に低下する。しかし、流体の流速が下がることによって熱伝達率も低下する。熱伝達率の低下による熱交換能力の低下を補償するために、1パスあたりの流路の長さを適切に設計する必要がある。パス数Nを2倍に増やしても、1パスあたりの長さを半分にすることはできない。そのため、単純にパス数を増やしただけでは、二重流路式熱交換器の重量を軽減する効果は得られない。 As described in FIG. 6 of Patent Document 1 (Japanese Patent No. 4414197), the number of passes N of the conventional double-channel heat exchanger is, for example, two. When the number of passes N is increased, the flow path area increases in proportion to the number of passes, so that the pressure loss is greatly reduced. However, the heat transfer rate decreases as the fluid flow rate decreases. In order to compensate for a decrease in heat exchange capacity due to a decrease in heat transfer coefficient, it is necessary to appropriately design the length of the flow path per pass. Even if the number of passes N is doubled, the length per pass cannot be halved. Therefore, the effect of reducing the weight of the double flow path heat exchanger cannot be obtained by simply increasing the number of passes.
 本発明者らは、流路の数(パス数)、外管の内径及びギャップの広さの関係をコンピュータシミュレーションによって詳しく調べた。その結果、これらのパラメータが特定の値をとるとき、従来の二重流路式熱交換器と同等の熱交換能力を有しているにもかかわらず、軽量化された熱交換器を提供できることを突き止めた。 The present inventors examined in detail the relationship between the number of flow paths (number of passes), the inner diameter of the outer tube, and the width of the gap by computer simulation. As a result, when these parameters take specific values, it is possible to provide a heat exchanger that is reduced in weight even though it has a heat exchange capacity equivalent to that of a conventional double-channel heat exchanger. I found out.
 具体的に、本実施形態の熱交換器100は、下記の関係を満たす。まず、パス数Nは、4~8の範囲にある。外管28の内径Φinは、6.52~9.50mmの範囲にある。外管28の内径Φinの半分と内管24の外径Φoutとの差((Φin/2)-Φout)で表されるギャップの広さGが0<G≦0.8(単位:mm)を満たす。さらに、パス数Nと外管28の内径Φin(単位:mm)とが下記の関係(1)~(5)のいずれかを満たす。図2から理解できるように、内管集合体26の外径は、内管24の外径Φoutの2倍に等しい。
 (1)N=4であり、8.20≦Φin≦9.50
 (2)N=5であり、7.58≦Φin≦8.90
 (3)N=6であり、7.14≦Φin≦8.50
 (4)N=7であり、6.78≦Φin≦8.20
 (5)N=8であり、6.52≦Φin≦7.90
Specifically, the heat exchanger 100 of the present embodiment satisfies the following relationship. First, the number of passes N is in the range of 4-8. The inner diameter Φin of the outer tube 28 is in the range of 6.52 to 9.50 mm. The gap G expressed by the difference between the half of the inner diameter Φin of the outer tube 28 and the outer diameter Φout of the inner tube 24 ((Φin / 2) −Φout) is 0 <G ≦ 0.8 (unit: mm) Meet. Further, the number of passes N and the inner diameter Φin (unit: mm) of the outer tube 28 satisfy any of the following relationships (1) to (5). As can be understood from FIG. 2, the outer diameter of the inner tube assembly 26 is equal to twice the outer diameter Φout of the inner tube 24.
(1) N = 4, 8.20 ≦ Φin ≦ 9.50
(2) N = 5 and 7.58 ≦ Φin ≦ 8.90
(3) N = 6 and 7.14 ≦ Φin ≦ 8.50
(4) N = 7 and 6.78 ≦ Φin ≦ 8.20
(5) N = 8, 6.52 ≦ Φin ≦ 7.90
 パス数Nが増えれば増えるほど、ロウ付け箇所が増えたり、ヘッダ16及び22の構造が複雑になったりする。パス数Nが8を超えると、たとえ軽量化を達成できたとしても量産が困難である。また、パス数Nが大きすぎると、熱交換セグメント10のそれぞれに均一に第一流体及び第二流体を流すことが困難である。従って、パス数Nは、4~8の範囲にあることが望ましい。 As the number of passes N increases, the number of brazing points increases and the structure of the headers 16 and 22 becomes complicated. If the number of passes N exceeds 8, even if weight reduction can be achieved, mass production is difficult. If the number of passes N is too large, it is difficult to flow the first fluid and the second fluid uniformly through each of the heat exchange segments 10. Therefore, the number of passes N is desirably in the range of 4-8.
 ギャップの広さGがゼロのとき、外管28の中に内管集合体26を入れることができない。従って、ギャップの広さGがゼロより大きいことが不可欠である。ギャップの広さGは、0.16mm以上であることが望ましい。他方、ギャップの広さGが0.8mmを超えると、内管24の表面における熱伝達率が下がり、熱交換性能の低下が顕在化するおそれがある。従って、ギャップの広さGの上限値は0.8mmであることが望ましい。 When the gap width G is zero, the inner tube assembly 26 cannot be inserted into the outer tube 28. It is therefore essential that the gap width G is greater than zero. The gap width G is preferably 0.16 mm or more. On the other hand, if the gap width G exceeds 0.8 mm, the heat transfer coefficient on the surface of the inner tube 24 is lowered, and there is a possibility that the deterioration of the heat exchange performance becomes obvious. Therefore, the upper limit value of the gap width G is preferably 0.8 mm.
 外管28の内径Φin及びギャップの広さGが決まると、内管24の外径Φoutが決まる。熱交換器100の軽量化は、外管28の内径Φin及び/又は内管24の外径Φoutを小さくすること、更には、外管28の肉厚及び/又は内管24の肉厚を減らすことに起因して達成されうる。ただし、安全性を考慮して、内管24及び外管28は、それぞれ、一定の肉厚を必要とする。耐腐食性を考慮して、検知管30の肉厚(溝が無い部分の厚み)は、例えば、0.5~0.7mmの範囲に調整されている。同様の観点から、外管28の肉厚は、例えば、0.5~0.7mmの範囲に調整されている。内面平滑管32の肉厚は、例えば、0.2~0.4mmの範囲に調整されている。なお、内面平滑管32(冷媒管)に関して言えば、冷媒(第一流体)の圧力に耐えうる厚みが要求される。内面平滑管32の厚みが過剰な場合、熱交換器100の重量、コスト、冷媒の圧力損失などに影響が出る。従って、内面平滑管32の厚みを、内面平滑管32自身の外径の例えば12~20%(望ましくは12~16%)の範囲に定めることができる。 When the inner diameter Φin of the outer tube 28 and the gap width G are determined, the outer diameter Φout of the inner tube 24 is determined. The weight reduction of the heat exchanger 100 can reduce the inner diameter Φin of the outer tube 28 and / or the outer diameter Φout of the inner tube 24, and further reduce the thickness of the outer tube 28 and / or the thickness of the inner tube 24. Can be achieved due to that. However, in consideration of safety, the inner tube 24 and the outer tube 28 each require a certain thickness. Considering the corrosion resistance, the thickness of the detection tube 30 (the thickness of the portion without the groove) is adjusted to a range of 0.5 to 0.7 mm, for example. From the same viewpoint, the thickness of the outer tube 28 is adjusted to a range of 0.5 to 0.7 mm, for example. The wall thickness of the inner smooth tube 32 is adjusted to a range of 0.2 to 0.4 mm, for example. As for the inner smooth tube 32 (refrigerant tube), a thickness that can withstand the pressure of the refrigerant (first fluid) is required. If the thickness of the inner smooth tube 32 is excessive, the weight, cost, refrigerant pressure loss, etc. of the heat exchanger 100 are affected. Therefore, the thickness of the inner surface smooth tube 32 can be set in a range of, for example, 12 to 20% (preferably 12 to 16%) of the outer diameter of the inner surface smooth tube 32 itself.
 熱交換器100の熱交換能力は特に限定されないが、例えば、4.5~6.0kWの範囲にある。熱交換器100がこのような大きさの熱交換能力を有していると、熱交換器100を一般家庭用のヒートポンプに好適に使用できる。もちろん、これ以上の熱交換能力が要求される場合には、2台の熱交換器100を並列で使用することができる。 The heat exchange capacity of the heat exchanger 100 is not particularly limited, but is, for example, in the range of 4.5 to 6.0 kW. When the heat exchanger 100 has such a heat exchange capacity, the heat exchanger 100 can be suitably used for a heat pump for general households. Of course, when more heat exchange capability is required, two heat exchangers 100 can be used in parallel.
 図1に示すように、本実施形態において、熱交換セグメント10は曲げられていない。パス数Nにもよるが、熱交換セグメント10は、2~5メートルの長さを有する。従って、本実施形態の熱交換器100において、熱交換セグメント10は、渦状に曲げられていてもよい。熱交換セグメント10に細い管を使用することによって曲げアールを小さくすることができ、デッドスペースを減らせる可能性がある。 As shown in FIG. 1, in this embodiment, the heat exchange segment 10 is not bent. Depending on the number of passes N, the heat exchange segment 10 has a length of 2-5 meters. Therefore, in the heat exchanger 100 of the present embodiment, the heat exchange segment 10 may be bent in a spiral shape. By using a thin tube for the heat exchange segment 10, the bending radius can be reduced, and the dead space may be reduced.
 次に、熱交換器100の用途を説明する。図4は、熱交換器100を採用できるヒートポンプ給湯機200の構成図である。 Next, the use of the heat exchanger 100 will be described. FIG. 4 is a configuration diagram of a heat pump water heater 200 that can employ the heat exchanger 100.
 ヒートポンプ給湯機200は、ヒートポンプユニット201及びタンクユニット203を備えている。ヒートポンプユニット201で作られた湯がタンクユニット203に貯められる。タンクユニット203から給湯栓204に湯が供給される。ヒートポンプユニット201は、冷媒を圧縮する圧縮機205、冷媒を冷却する放熱器207、冷媒を膨張させる膨張機構209、冷媒を蒸発させる蒸発器211及びこれらの機器をこの順番で接続している冷媒管213を備えている。膨張機構209は、典型的には膨張弁である。膨張弁に代えて、冷媒の膨張エネルギーを回収可能な容積式膨張機を使用してもよい。放熱器207として、熱交換器100を使用できる。タンクユニット203は、貯湯タンク215及び水回路217を備えている。水回路217は、放熱器207に水を循環させる役割を担う。 The heat pump water heater 200 includes a heat pump unit 201 and a tank unit 203. Hot water produced by the heat pump unit 201 is stored in the tank unit 203. Hot water is supplied from the tank unit 203 to the hot-water tap 204. The heat pump unit 201 includes a compressor 205 that compresses the refrigerant, a radiator 207 that cools the refrigerant, an expansion mechanism 209 that expands the refrigerant, an evaporator 211 that evaporates the refrigerant, and a refrigerant pipe that connects these devices in this order. 213. The expansion mechanism 209 is typically an expansion valve. Instead of the expansion valve, a positive displacement expander that can recover the expansion energy of the refrigerant may be used. The heat exchanger 100 can be used as the radiator 207. The tank unit 203 includes a hot water storage tank 215 and a water circuit 217. The water circuit 217 plays a role of circulating water through the radiator 207.
 図1~3を参照して説明した熱交換器を対象として、外管の内径Φinを7.06mm又は8.6mmに固定し、パス数Nを変化させたときの重量をコンピュータシミュレーションで計算した。ギャップの広さGは0.4mmで固定した。参照例として、パス数Nが2、外管の内径Φinが10.8mmの熱交換器の計算結果を準備した。熱交換能力を参照例の値(約4.7kW)に維持しつつ、パス数Nを変化させた。すなわち、参照例と同じ熱交換能力が発揮されるように、熱交換セグメントの長さ(外管の長さ)を設定した。シミュレーションの条件は、以下の通りである。 For the heat exchanger described with reference to FIGS. 1 to 3, the inner diameter Φin of the outer tube was fixed to 7.06 mm or 8.6 mm, and the weight when the number of passes N was changed was calculated by computer simulation. . The gap width G was fixed at 0.4 mm. As a reference example, a calculation result of a heat exchanger in which the number of passes N is 2 and the inner diameter Φin of the outer tube is 10.8 mm was prepared. The number of passes N was changed while maintaining the heat exchange capacity at the value of the reference example (about 4.7 kW). That is, the length of the heat exchange segment (the length of the outer tube) was set so that the same heat exchange capability as in the reference example was exhibited. The simulation conditions are as follows.
解析用ソフトウェア:REFPROP Version7.0
水の流量:1.4kg/分
水の温度:17℃
冷媒の種類:CO2
冷媒の温度(入口):87℃
冷媒の温度(出口):20℃
冷媒の圧力:9.6MPa
外管及び内管の材料:銅
Analysis software: REFPROP Version 7.0
Water flow rate: 1.4 kg / min Water temperature: 17 ° C
Refrigerant type: CO 2
Refrigerant temperature (inlet): 87 ° C
Refrigerant temperature (outlet): 20 ° C
Refrigerant pressure: 9.6 MPa
Material of outer tube and inner tube: Copper
 結果を表1及び表2に示す。表1は、Φin=7.06mmの結果である。表2は、Φin=8.6mmの結果である。 Results are shown in Tables 1 and 2. Table 1 shows the results for Φin = 7.06 mm. Table 2 shows the results for Φin = 8.6 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の合計重量の項目に示すように、Φin=7.06mmのとき、8パスの熱交換器だけが参照例よりも軽かった。表2の合計重量の項目に示すように、Φin=8.6mmのとき、4パスの熱交換器だけが参照例よりも軽かった。 As shown in the item of total weight in Table 1, when Φin = 7.06 mm, only the 8-pass heat exchanger was lighter than the reference example. As shown in the item of total weight in Table 2, when Φin = 8.6 mm, only the 4-pass heat exchanger was lighter than the reference example.
 次に、ギャップの広さGを0.4mmに固定し、外管の内径Φinとパス数Nとの様々な組み合わせを調べた。そして、参照例よりも軽い熱交換器における外管の内径Φinとパス数Nとの組み合わせをピックアップした。その結果を表3に示す。 Next, the gap width G was fixed to 0.4 mm, and various combinations of the inner diameter Φin of the outer tube and the number of passes N were examined. Then, a combination of the inner diameter Φin of the outer tube and the number of passes N in the heat exchanger lighter than the reference example was picked up. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果を図5及び図6のグラフに示す。図5のグラフは、横軸がパス数Nを表し、縦軸が重量を表している。図5において、一番左の印が参照例に対応している。図6のグラフは、横軸が外管の内径Φinを表し、縦軸がパス数Nを表している。図6に示すように、参照例と同等の熱交換能力を維持しつつ軽量化を図るためには、パス数Nに応じて外管の内径Φinを適切に選択する必要がある。 The results of Table 3 are shown in the graphs of FIGS. In the graph of FIG. 5, the horizontal axis represents the number of passes N, and the vertical axis represents the weight. In FIG. 5, the leftmost mark corresponds to the reference example. In the graph of FIG. 6, the horizontal axis represents the inner diameter Φin of the outer tube, and the vertical axis represents the number of passes N. As shown in FIG. 6, in order to reduce the weight while maintaining the heat exchange capability equivalent to that of the reference example, it is necessary to appropriately select the inner diameter Φin of the outer tube according to the number of passes N.
 表3及び図5に示すように、ギャップの広さGが0.4mmのとき、Φin=6.82mm及び9パスの条件で熱交換器の重量が最小になった。ただし、パス数Nが8を超えると、生産性の低下が懸念される。 As shown in Table 3 and FIG. 5, when the gap width G was 0.4 mm, the weight of the heat exchanger was minimized under the conditions of Φin = 6.82 mm and 9 passes. However, when the number of passes N exceeds 8, there is a concern that the productivity is lowered.
 次に、(a)ギャップの広さGが0.8mmのとき、(b)ギャップの広さGが0mmのとき、(c)ギャップの広さGを最適化したときの各条件のもとで、外管の内径Φinとパス数Nとの様々な組み合わせを調べた。(a)の場合の結果を表4に示す。(b)の場合の結果を表5に示す。(c)の場合の結果を表6に示す。さらに、表3~6の結果を図7のグラフに示す。 Next, (a) When the gap width G is 0.8 mm, (b) When the gap width G is 0 mm, (c) Under the conditions when the gap width G is optimized Thus, various combinations of the inner diameter Φin of the outer tube and the number of passes N were examined. Table 4 shows the results in the case of (a). The results in the case of (b) are shown in Table 5. The results in the case of (c) are shown in Table 6. Further, the results of Tables 3 to 6 are shown in the graph of FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 ギャップの広さGが0.8mmを超えると、内管の表面における熱伝達率が下がり、熱交換性能の低下が顕在化するおそれがある。そのため、0.8mmを超える範囲についてはシミュレーションを行っていない。他方、ギャップの広さGの下限値は特に限定されないが、表6に示すように、ギャップの広さGを最適化すると、参照例に比べて、熱交換器の重量を最大限に減らすことができる。 When the gap width G exceeds 0.8 mm, the heat transfer coefficient on the surface of the inner tube is lowered, and there is a possibility that the deterioration of the heat exchange performance becomes obvious. Therefore, no simulation is performed for a range exceeding 0.8 mm. On the other hand, the lower limit value of the gap width G is not particularly limited. However, as shown in Table 6, when the gap width G is optimized, the weight of the heat exchanger is reduced to the maximum as compared with the reference example. Can do.
 すなわち、第二流体(水)の圧力損失が一定の値を超えない範囲でギャップの広さGを最適化したときのデータは、熱交換器の重量を最小化できるギャップの広さGを表している。従って、ギャップの広さGを最適化したときのデータを好適な下限値として取り扱うことができる。なお、表6において、ギャップの広さGの最も小さい値は、0.16mmであり、そのときのパス数Nは8である。 That is, the data when the gap width G is optimized in a range where the pressure loss of the second fluid (water) does not exceed a certain value represents the gap width G that can minimize the weight of the heat exchanger. ing. Therefore, data when the gap width G is optimized can be handled as a suitable lower limit value. In Table 6, the smallest value of the gap width G is 0.16 mm, and the number of passes N at that time is 8.
 ギャップの広さGが0mmのときのデータから理解できるように、ギャップの広さGが0mmに近づくと、水側の圧力損失を抑制する必要が生じるため、外管の内径Φinを増やす必要がある。その結果、ギャップの広さGが0mmのときの外管の内径Φinは、ギャップの広さGが0.4mmのときの外管の内径Φinよりも大きい。 As can be understood from the data when the gap width G is 0 mm, when the gap width G approaches 0 mm, it is necessary to suppress the pressure loss on the water side, so it is necessary to increase the inner diameter Φin of the outer tube. is there. As a result, the inner diameter Φin of the outer tube when the gap width G is 0 mm is larger than the inner diameter Φin of the outer tube when the gap width G is 0.4 mm.
 図7に示すように、N=4のとき、8.20≦Φin≦9.50を満たせば、参照例と同等の熱交換能力を維持しつつ、二重流路式熱交換器の重量を軽減できる。同様に、N=5のとき7.58≦Φin≦8.90、N=6のとき7.14≦Φin≦8.50、N=7のとき、6.78≦Φin≦8.20、N=8のとき6.52≦Φin≦7.90を満たすことにより、二重流路式熱交換器の重量を低減できる。 As shown in FIG. 7, when N = 4, if 8.20 ≦ Φin ≦ 9.50 is satisfied, the weight of the double-channel heat exchanger is reduced while maintaining the heat exchange capability equivalent to that of the reference example. Can be reduced. Similarly, when N = 5, 7.58 ≦ Φin ≦ 8.90, when N = 6, 7.14 ≦ Φin ≦ 8.50, when N = 7, 6.78 ≦ Φin ≦ 8.20, N By satisfying 6.52 ≦ Φin ≦ 7.90 when = 8, the weight of the double-channel heat exchanger can be reduced.
 なお、本シミュレーションにおいて、検知管と内管とが一体の管として取り扱われているので、検知管の存在は、シミュレーションの結果に影響を及ぼさない。検知管の肉厚は0.68mmで一定であるが、検知管が存在しない場合、耐腐食性を高めるために内面平滑管の肉厚を増やす必要がある。 In this simulation, since the detection tube and the inner tube are handled as an integral tube, the presence of the detection tube does not affect the result of the simulation. The wall thickness of the detector tube is constant at 0.68 mm. However, when the detector tube does not exist, it is necessary to increase the wall thickness of the inner smooth tube in order to increase the corrosion resistance.
 次に、ガラスフィラーを30重量%の割合で含むポリフェニレンサルファイド(PPS)へと外管の材料を変更し、表3の結果を得たシミュレーションと同じシミュレーションを実施した。結果を表7及び図8に示す。表3及び図5と同じように、表7の最も左の列及び図8の一番左の印は、参照例に対応している。 Next, the material of the outer tube was changed to polyphenylene sulfide (PPS) containing glass filler at a ratio of 30% by weight, and the same simulation as that obtained in Table 3 was performed. The results are shown in Table 7 and FIG. As in Table 3 and FIG. 5, the leftmost column in Table 7 and the leftmost mark in FIG. 8 correspond to reference examples.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7及び図8に示すように、樹脂製の外管を用いた場合においても、銅製の外管を用いた場合と同じように、Φin=6.82mm及び9パスの条件で熱交換器の重量が最小になった。図8のグラフは、図5のグラフと同じ傾向を示した。このことは、銅製の外管を用いた熱交換器に関して導き出された結論(図7参照)が樹脂製の外管を用いた熱交換器にもあてはまることを意味している。 As shown in Table 7 and FIG. 8, even when a resin outer tube is used, the heat exchanger is used under the conditions of Φin = 6.82 mm and 9 passes as in the case of using a copper outer tube. Weight is minimized. The graph of FIG. 8 showed the same tendency as the graph of FIG. This means that the conclusion derived with respect to the heat exchanger using the copper outer tube (see FIG. 7) also applies to the heat exchanger using the resin outer tube.
 本発明の熱交換器は、ヒートポンプ式給湯機、温水暖房装置などの機器に使用できる。 The heat exchanger of the present invention can be used for devices such as a heat pump type hot water heater and a hot water heater.

Claims (7)

  1.  第一流体と第二流体とを熱交換させる熱交換器であって、
     第一流路及び第二流路をそれぞれ有する複数の熱交換セグメントと、
     前記第一流路に前記第一流体を導き、前記第二流路から前記第二流体を集めるように前記複数の熱交換セグメントの一端部に設けられた第一ヘッダと、
     前記第一流路から前記第一流体を集め、前記第二流路に前記第二流体を導くように前記複数の熱交換セグメントの他端部に設けられた第二ヘッダと、
     を備え、
     前記熱交換セグメントが、(i)前記第一流路をそれぞれ有する2本の内管を含み、前記2本の内管が螺旋状に捻られることによって形成された内管集合体と、(ii)自身の内周面と前記内管集合体の外周面との間に前記第二流路が形成されるように、前記内管集合体を収容している外装体とによって構成され、
     前記第一ヘッダと前記第二ヘッダとの間に配置された前記熱交換セグメントの数を表すパス数Nが4~8であり、
     前記外装体の内径Φinの半分と前記内管の外径Φoutとの差((Φin/2)-Φout)で表されるギャップの広さGが0<G≦0.8(単位:mm)を満たし、
     前記パス数Nと前記外装体の内径Φin(単位:mm)とが下記の関係(1)~(5)のいずれかを満たす、熱交換器。
     (1)N=4であり、8.20≦Φin≦9.50
     (2)N=5であり、7.58≦Φin≦8.90
     (3)N=6であり、7.14≦Φin≦8.50
     (4)N=7であり、6.78≦Φin≦8.20
     (5)N=8であり、6.52≦Φin≦7.90
    A heat exchanger for exchanging heat between the first fluid and the second fluid,
    A plurality of heat exchange segments each having a first flow path and a second flow path;
    A first header provided at one end of the plurality of heat exchange segments to guide the first fluid to the first flow path and collect the second fluid from the second flow path;
    A second header provided at the other end of the plurality of heat exchange segments so as to collect the first fluid from the first flow path and guide the second fluid to the second flow path;
    With
    The heat exchange segment includes (i) two inner pipes each having the first flow path, and an inner pipe assembly formed by twisting the two inner pipes in a spiral shape; and (ii) It is constituted by an exterior body that houses the inner pipe assembly so that the second flow path is formed between the inner peripheral surface of the inner pipe and the outer peripheral surface of the inner pipe assembly.
    The number of paths N representing the number of the heat exchange segments arranged between the first header and the second header is 4 to 8,
    The gap G expressed by the difference between the half of the inner diameter Φin of the outer body and the outer diameter Φout of the inner tube ((Φin / 2) −Φout) is 0 <G ≦ 0.8 (unit: mm) The filling,
    A heat exchanger in which the number of passes N and the inner diameter Φin (unit: mm) of the exterior body satisfy any of the following relationships (1) to (5).
    (1) N = 4, 8.20 ≦ Φin ≦ 9.50
    (2) N = 5 and 7.58 ≦ Φin ≦ 8.90
    (3) N = 6 and 7.14 ≦ Φin ≦ 8.50
    (4) N = 7 and 6.78 ≦ Φin ≦ 8.20
    (5) N = 8, 6.52 ≦ Φin ≦ 7.90
  2.  前記ギャップの広さGが0.16≦G≦0.8を満たす、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the gap width G satisfies 0.16 ≦ G ≦ 0.8.
  3.  前記内管及び前記外装体がそれぞれ銅管で構成されている、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein each of the inner tube and the outer body is made of a copper tube.
  4.  前記内管が銅管で構成されており、前記外装体が樹脂で作られている、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the inner tube is made of a copper tube, and the exterior body is made of a resin.
  5.  前記内管が、内面平滑管と、前記内面平滑管の外側に設けられた内面溝付き管とで構成された漏洩検知管である、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the inner tube is a leak detection tube composed of an inner surface smooth tube and an inner grooved tube provided outside the inner surface smooth tube.
  6.  前記第一流体が二酸化炭素であり、前記第二流体が水である、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the first fluid is carbon dioxide and the second fluid is water.
  7.  冷媒を圧縮する圧縮機と、
     請求項1に記載された熱交換器で構成され、圧縮された冷媒を冷却する放熱器と、
     冷却された冷媒を膨張させる膨張機構と、
     膨張した冷媒を蒸発させる蒸発器と、
     前記放熱器に水を循環させる水回路と、
     を備えた、ヒートポンプ。
    A compressor for compressing the refrigerant;
    A heat radiator configured to cool the compressed refrigerant composed of the heat exchanger according to claim 1;
    An expansion mechanism for expanding the cooled refrigerant;
    An evaporator for evaporating the expanded refrigerant;
    A water circuit for circulating water through the radiator;
    With a heat pump.
PCT/JP2012/004636 2011-07-22 2012-07-20 Heat exchanger and heat pump using same WO2013014899A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013525578A JP6037235B2 (en) 2011-07-22 2012-07-20 Heat exchanger and heat pump using the same
CN201280024474.9A CN103562665B (en) 2011-07-22 2012-07-20 Heat exchanger and employ the heat pump of this heat exchanger
EP12818246.6A EP2735832B1 (en) 2011-07-22 2012-07-20 Heat exchanger and heat pump using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011160927 2011-07-22
JP2011-160927 2011-07-22

Publications (1)

Publication Number Publication Date
WO2013014899A1 true WO2013014899A1 (en) 2013-01-31

Family

ID=47600770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004636 WO2013014899A1 (en) 2011-07-22 2012-07-20 Heat exchanger and heat pump using same

Country Status (4)

Country Link
EP (1) EP2735832B1 (en)
JP (1) JP6037235B2 (en)
CN (1) CN103562665B (en)
WO (1) WO2013014899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023113A (en) * 2014-07-23 2016-02-08 日野自動車株式会社 Ozone generator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106168451A (en) * 2016-08-27 2016-11-30 山东绿泉空调科技有限公司 Efficient capillary double-tube heat exchanger
CN109689548B (en) * 2016-10-20 2020-07-31 日高精机株式会社 Device for conveying fin forming body for heat exchanger
NO345004B1 (en) * 2018-08-20 2020-08-17 Teknotherm Marine As Norway Evaporator and refrigeration system with evaporator
US11255614B2 (en) * 2019-07-29 2022-02-22 Hamilton Sundstrand Corporation Heat exchanger with barrier passages

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360974A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Heat exchanging device and heat pump water heater
JP2005024109A (en) 2003-06-30 2005-01-27 Hitachi Cable Ltd Heat exchanger
JP2005147567A (en) * 2003-11-18 2005-06-09 Toyo Radiator Co Ltd Double pipe type heat exchanger
JP2007139284A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump hot water supply device using the same
JP2008057859A (en) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump hot water supply device using the same
JP2008274426A (en) * 2007-03-31 2008-11-13 Kobelco & Materials Copper Tube Inc Copper alloy member and heat exchanger
JP2009210232A (en) * 2008-03-06 2009-09-17 Panasonic Corp Heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3811123B2 (en) * 2002-12-10 2006-08-16 松下電器産業株式会社 Double tube heat exchanger
JP2008164245A (en) * 2006-12-28 2008-07-17 Kobelco & Materials Copper Tube Inc Heat exchanger
JP2009216315A (en) * 2008-03-11 2009-09-24 Showa Denko Kk Heat exchanger
EP2445356B1 (en) * 2009-06-26 2017-04-19 Carrier Corporation Semi-frozen product dispensing apparatus
JP2011085274A (en) * 2009-10-13 2011-04-28 Panasonic Corp Heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360974A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Heat exchanging device and heat pump water heater
JP2005024109A (en) 2003-06-30 2005-01-27 Hitachi Cable Ltd Heat exchanger
JP2005147567A (en) * 2003-11-18 2005-06-09 Toyo Radiator Co Ltd Double pipe type heat exchanger
JP4414197B2 (en) 2003-11-18 2010-02-10 株式会社ティラド Double tube heat exchanger
JP2007139284A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump hot water supply device using the same
JP2008057859A (en) * 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd Heat exchanger and heat pump hot water supply device using the same
JP2008274426A (en) * 2007-03-31 2008-11-13 Kobelco & Materials Copper Tube Inc Copper alloy member and heat exchanger
JP2009210232A (en) * 2008-03-06 2009-09-17 Panasonic Corp Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023113A (en) * 2014-07-23 2016-02-08 日野自動車株式会社 Ozone generator

Also Published As

Publication number Publication date
CN103562665A (en) 2014-02-05
JP6037235B2 (en) 2016-12-07
EP2735832B1 (en) 2020-02-05
EP2735832A4 (en) 2015-04-08
JPWO2013014899A1 (en) 2015-02-23
CN103562665B (en) 2015-10-21
EP2735832A1 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP6037235B2 (en) Heat exchanger and heat pump using the same
US11703286B2 (en) Fluid coolers, heat exchangers, seal assemblies and systems including fluid coolers or heat exchangers and related methods
WO2010089957A1 (en) Heat exchanger
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP4572662B2 (en) Heat exchanger
CN115046419A (en) Turbulator in reinforced pipe
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
JP2009264644A (en) Heat exchanger
US20160341481A1 (en) Submersible heat exchanger and methods of operating and assembling same
JP2006207936A (en) Heat exchanger
JP2007218461A (en) Double tube type heat exchanger
JP2010096372A (en) Internal heat exchanger for carbon dioxide refrigerant
JP5548957B2 (en) Heat exchanger and heat pump water heater using the same
JP2010255856A (en) Heat exchanger and heat pump water heater using the same
JP3966260B2 (en) Heat pump water heater
JP2010112565A (en) Heat exchanger
JP2003343995A (en) Heat transfer tube
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP2010255857A (en) Heat exchanger and heat pump water heater using the same
JP2013088045A (en) Heat exchanger and heat pump type water heater using the same
JP4948136B2 (en) Heat transfer tube and radiator
JP2009139026A (en) Heat exchanger
JP2010078171A (en) Internal heat exchanger
JP2010032183A (en) Heat exchanger
JP2012180990A (en) Heat transfer tube for refrigerant, heat exchanger using the same, and method for designing heat transfer tube for refrigerant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12818246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525578

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012818246

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE