JP2008274426A - Copper alloy member and heat exchanger - Google Patents

Copper alloy member and heat exchanger Download PDF

Info

Publication number
JP2008274426A
JP2008274426A JP2008094307A JP2008094307A JP2008274426A JP 2008274426 A JP2008274426 A JP 2008274426A JP 2008094307 A JP2008094307 A JP 2008094307A JP 2008094307 A JP2008094307 A JP 2008094307A JP 2008274426 A JP2008274426 A JP 2008274426A
Authority
JP
Japan
Prior art keywords
water
pipe
heat exchanger
refrigerant
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008094307A
Other languages
Japanese (ja)
Other versions
JP4921410B2 (en
Inventor
Tetsuo Hosoki
哲郎 細木
Takashi Shirai
崇 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2008094307A priority Critical patent/JP4921410B2/en
Publication of JP2008274426A publication Critical patent/JP2008274426A/en
Application granted granted Critical
Publication of JP4921410B2 publication Critical patent/JP4921410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy member with a function of inhibiting the deposition of scale, which makes a scale containing calcium carbonate as a main component hardly deposit thereon, and makes the scale not to deposit on a part contacting with water, does not lower a heat exchange performance in a process of being used and does not cause a pitting corrosion that is rarely formed though depending on a quality of the water, even when used in a heat exchanger that indirectly or directly heats the water, and to provide the heat exchanger which incorporates the member. <P>SOLUTION: The copper alloy member includes Co in a parent phase as a solid solution, a simple substance and/or a compound in an amount of 0.02 to 0.5 mass% (in terms of Co in the case of compound), P in a parent phase as a solid solution, a simple substance and/or a compound in an amount of 0.005 to 0.2 mass% (in terms of P in the case of compound), and the balance Cu with unavoidable impurities; and has a remaining carbon in an amount of 10 mg/m<SP>2</SP>or less on the surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭酸カルシウムを主成分とするスケールの抑制機能を有する銅合金部材及びそれを組み込んだ熱交換器に関し、特に、遊離炭酸を多く含む地下水等が使用される場合に冷水部で生じ易いI型孔食及び残留塩素を0.5mg/L以上含む水道水等で50℃以上の温水部に生じ易いII型孔食を生じにくくする銅合金部材及び熱交換器に関する。   TECHNICAL FIELD The present invention relates to a copper alloy member having a function of suppressing scale mainly composed of calcium carbonate and a heat exchanger incorporating the member, and particularly easily occurs in a cold water section when groundwater containing a large amount of free carbonic acid is used. The present invention relates to a copper alloy member and a heat exchanger that make it difficult to produce type II pitting corrosion that tends to occur in hot water portions of 50 ° C. or higher with tap water and the like containing 0.5 mg / L or more of residual type I pitting corrosion and residual chlorine.

近時、超臨界状態の二酸化炭素冷媒又はフロン系冷媒により水が加熱される熱交換器が実用化され、給湯及び床暖房等の用途に多用されるようになってきた。このような熱交換器を構成する部材として、冷媒の圧力が極めて高くなるために、必要な強度及び熱効率を維持するために、必要な熱伝導性を兼ね備えていることから、銅又は銅合金部材が使用されている。   Recently, heat exchangers in which water is heated by a supercritical carbon dioxide refrigerant or a chlorofluorocarbon refrigerant have been put into practical use and have been widely used for applications such as hot water supply and floor heating. As a member constituting such a heat exchanger, since the pressure of the refrigerant becomes extremely high, in order to maintain necessary strength and thermal efficiency, it has necessary thermal conductivity, so a copper or copper alloy member Is used.

このような熱交換器は設置スペースが限定されることが多く、限られた体積でできるだけ高温の水が得られるように、例えば貯湯式給湯器ヒートポンプシステムでは、加熱される水の流速は一般に1L/分と小さく設計されている。水の流速が小さいことから、熱交換器の水と接触する部分に炭酸カルシウム又はこれを主体とするスケールが付着しやすい。炭酸カルシウムの水への溶解度は水温が高いほど低下するため、水温が高くなる部分において炭酸カルシウムが特に析出しやすい。このため、水温が高温になる部分ほどスケール付着が発生しやすくなる。また、一旦スケールが付着した部分では、付着したスケールの温度が高いことと、水の流速が小さいこと等から、スケールの更に一層の付着が進み、スケールが厚く成長してしまう。このように形成されたスケールにより、熱交換効率の低下、水通路の断面積減少による流通水量の低下、ポンプ圧の上昇及びポンプの消費電力増大等の問題が発生し、その改善が求められている。   In such a heat exchanger, the installation space is often limited. For example, in a hot water storage water heater heat pump system, the flow rate of heated water is generally 1 L so that water having a limited volume can be obtained. Designed as small as / min. Since the flow rate of water is small, calcium carbonate or a scale mainly composed of this tends to adhere to the portion of the heat exchanger that comes into contact with water. Since the solubility of calcium carbonate in water decreases as the water temperature increases, calcium carbonate is particularly likely to precipitate at portions where the water temperature increases. For this reason, scale adhesion tends to occur as the temperature of the water becomes higher. Further, in the portion where the scale is once adhered, the scale is further adhered due to the high temperature of the adhered scale and the low flow rate of water, and the scale grows thick. The scale formed in this way causes problems such as a decrease in heat exchange efficiency, a decrease in the amount of circulating water due to a decrease in the cross-sectional area of the water passage, an increase in pump pressure, and an increase in power consumption of the pump. Yes.

水を冷却媒体又は加熱媒体として循環して使用する熱交換器においては、カルシウム系スケールの防止のため、マレイン酸、アクリル酸、又はイタコン酸等を重合したカルボキシル基を有する重合体等のスケール防止剤が循環水に添加されている。   In heat exchangers that circulate and use water as a cooling medium or heating medium, prevent scales such as polymers with carboxyl groups polymerized with maleic acid, acrylic acid, or itaconic acid to prevent calcium-based scales. The agent is added to the circulating water.

一方、飲用又は風呂用の給湯水を加熱する熱交換器等においては、その性質上、スケール防止剤を添加することができない。スケール防止剤の添加以外の熱交換器におけるスケール付着防止方法として、熱交換器内面へフロロシリコン又はフッ素樹脂を被覆したり(特許文献1)、二重管式熱交換器において、外管の曲げ半径をこの外管の内径の3倍以上とすることによりスケールによる管の閉塞までの期間を延長させたり(特許文献2)、冷却水が通流する管内にねじり板を回転自在に設け、このねじり板により形成される乱流によりスケールの付着を防止したり(特許文献3)、水系流体として冷却水を循環させる循環路を形成する配管に、前記配管の少なくとも一部に磁場を形成する磁気処理部を設けると共に、前記冷却水に磁性体を添加したり(特許文献4)、内部に冷媒用流路が形成された内管と、内管の外側に設けられ、内管との間に水用流路が形成された外管とを有し、渦巻状に曲成された2重管式熱交換器において、水用流路を水が内側に向かって渦巻状に流通するように形成された内巻き2重管を有する熱交換ユニットと、水用流路を水が外側に向かって渦巻状に流通するように形成された外巻き2重管を有する熱交換ユニットとが交互に積層されており、水の出口側の熱交換ユニットには外巻き2重管が設けられた構造としたり(特許文献5)、銅又は銅合金製基材からなる部分と、前記部分の少なくとも使用時に水と接しうる面に親水性被膜を形成したり(特許文献6)、流路出側近傍の高温部位における流路断面積を大きくしてスケールがいくらか溜まっても給湯機能を損なわないようにしたり(特許文献7)、磁気処理によりスケールの付着を防止する等、種々の方法が提案されている。   On the other hand, in a heat exchanger or the like for heating hot water for drinking or bathing, a scale inhibitor cannot be added due to its nature. As a method of preventing scale adhesion in heat exchangers other than the addition of scale inhibitors, the inner surface of the heat exchanger is coated with fluorosilicone or fluororesin (Patent Document 1), or the outer tube is bent in a double-tube heat exchanger. By setting the radius to 3 times or more of the inner diameter of the outer tube, the period until the tube is blocked by the scale is extended (Patent Document 2), or a torsion plate is rotatably provided in the tube through which the cooling water flows. Magnetism that prevents the scale from adhering to the turbulent flow formed by the twisted plate (Patent Document 3) or forms a magnetic field in at least a part of the pipe in a pipe that forms a circulation path for circulating cooling water as an aqueous fluid. In addition to providing a treatment unit, a magnetic substance is added to the cooling water (Patent Document 4), an inner pipe having a refrigerant flow passage formed therein, and an outer pipe provided between the inner pipe and the inner pipe. Water channel is formed In a double-tube heat exchanger that is formed in a spiral shape and has an outer tube, an inner-wound double tube that is formed so that water flows in a spiral shape in the water flow path. And a heat exchange unit having an outer-wound double pipe formed so that water flows in a spiral shape in the water flow path to the outside. The heat exchange unit on the side has a structure in which an externally wound double tube is provided (Patent Document 5), or a portion made of a copper or copper alloy base material and at least a surface that can come into contact with water during use is hydrophilic. Forming a heat-resistant coating (Patent Document 6), enlarging the cross-sectional area of the flow path at a high-temperature region near the flow path outlet side to prevent the hot water supply function from being impaired even if some scale accumulates (Patent Document 7), Various methods have been proposed, such as prevention of scale adhesion by treatment. To have.

また、特許文献8には、内部に第1流体用流路を形成する内管と、この内管の外側に設けられ、内管との間に第2流体用流路を形成する外管とを有し、第1流体用流路と第2流体用流路との境界面に漏洩検知溝が設けられた2重管式の熱交換器において、内管を流れる第1流体が冷媒で、外管を流れる第2流体が水である熱交換器であって、冷媒用流路の断面積に対する水用流路の断面積の割合が3.5乃至24.5となるように形成されている熱交換器が提案されて(請求項3)おり、実用化されている。更に、特許文献8に記載の熱交換器においては、冷媒用流路の断面積に対する水用流路の断面積の割合を特定することによって、熱交換性能を維持しつつ、スケールによって外管が閉塞するまでの耐用年数を延ばすことができることが開示されている。   Further, Patent Document 8 discloses an inner tube that forms a first fluid channel inside, and an outer tube that is provided outside the inner tube and forms a second fluid channel between the inner tube and the inner tube. And the first fluid flowing through the inner tube is a refrigerant in a double-pipe heat exchanger in which a leakage detection groove is provided at the boundary surface between the first fluid channel and the second fluid channel, A heat exchanger in which the second fluid flowing in the outer pipe is water, and the ratio of the cross-sectional area of the water flow path to the cross-sectional area of the refrigerant flow path is 3.5 to 24.5. A heat exchanger has been proposed (Claim 3) and put into practical use. Furthermore, in the heat exchanger described in Patent Document 8, by specifying the ratio of the cross-sectional area of the water flow path to the cross-sectional area of the refrigerant flow path, the outer tube is attached by the scale while maintaining the heat exchange performance. It has been disclosed that the service life until closure can be extended.

他方、全国の水道水でまちまちである水質溶解成分の構成によっては、水温15℃程度以下の低温部で遊離炭酸15mg/L以上であるときに水流部分の内表面に残留した潤滑油に由来する残留炭素量が5mg/m以上あると生じ易くなるI型孔食、及び、水温50℃以上の温水で残留塩素が0.5mg/L以上である場合に生じ易くなるII型孔食が、りん脱酸銅部材及び銅合金部材の種類によって稀に発生し、温水又は冷媒を漏洩させて問題となることがある。 On the other hand, depending on the composition of the water-soluble component that varies in tap water nationwide, it is derived from the lubricating oil remaining on the inner surface of the water flow portion when the water temperature is 15 mg / L or more at a low temperature portion of about 15 ° C. or less. Type I pitting corrosion that tends to occur when the amount of residual carbon is 5 mg / m 2 or more, and Type II pitting corrosion that tends to occur when residual chlorine is 0.5 mg / L or more in warm water at a water temperature of 50 ° C. or more, Rarely occurs depending on the type of the phosphorous deoxidized copper member and the copper alloy member, which may cause problems due to leakage of hot water or refrigerant.

このような問題に対しては、銅合金部材にZr,P,Sn,又はAg等の元素を添加することにより、耐孔食性を向上させた銅合金部材が提案されており、一部実用化されている(特許文献9及び10)。   For such a problem, a copper alloy member having improved pitting corrosion resistance by adding an element such as Zr, P, Sn, or Ag to the copper alloy member has been proposed, and partly put into practical use. (Patent Documents 9 and 10).

特開昭61−149794号公報JP-A 61-149794 特開2005−69620号公報JP 2005-69620 A 実開平2−109190号公報Japanese Utility Model Publication No. 2-109190 特開2005−238023号公報Japanese Patent Application Laid-Open No. 2005-238023 特開2005−147569号公報JP 2005-147469 A 特開2002−98496号公報JP 2002-98496 A 特開2002−147569号公報JP 2002-147469 A 特開2005−69620号公報JP 2005-69620 A 特許第3374398号公報Japanese Patent No. 3374398 特開平6−184669号公報JP-A-6-184669

しかしながら、特許文献1に記載の発明は、それなりの厚さを有する皮膜が形成されるので、熱伝導率の低下を招きかねない。特許文献2に記載の発明は、スケール付着を積極的に防止するものでなく、スケールが付着することを前提として熱交換器の使用可能期間の延長を図るものである。実際には、特許文献2に記載の従来技術においては、水温が高くなる部分に炭酸カルシウムを主体とするスケールの付着が避けられず、それによる熱交換性能の低下及び流通水量の低下等を防止することは難しい。また、特許文献3に記載の発明は管内に回転可能なねじり板を設置するものであるが、二重管式冷媒管、管に曲がり部がある場合、管の内径が小さい場合には適用できず、実際的ではない。特許文献4に記載の従来技術は水中に亜鉛等の金属イオンが溶出し汚染されるため、水が人体に接触するような使用目的には適さない。特許文献5に記載の発明は熱交換器出側で銅管の直線部を長くすることにより、水中に浮遊するスケールの沈積を抑制することができるが、銅管壁へのスケール析出については抑制できず、効果が不十分である。特許文献6に記載の発明は水温が比較的低温では、親水性皮膜による局所的な高温部をなくす効果が表れやすいが、高温の水では全体的にスケール生成温度になるため、効果が不十分である。特許文献7及び8に記載の発明は水温が高温になる部位での熱交換率を犠牲にしてしまい、流路断面積を広げない場合と同等の熱交換率を確保するためには更に流路長さを取らなければならなくなり、機器のコンパクト化や設計の自由度を阻害していた。   However, the invention described in Patent Document 1 may cause a decrease in thermal conductivity because a film having an appropriate thickness is formed. The invention described in Patent Document 2 does not actively prevent scale adhesion, and is intended to extend the usable period of the heat exchanger on the assumption that the scale adheres. Actually, in the prior art described in Patent Document 2, it is inevitable that the scale mainly composed of calcium carbonate adheres to the part where the water temperature is high, thereby preventing a decrease in heat exchange performance and a decrease in the amount of circulating water. Difficult to do. In addition, the invention described in Patent Document 3 installs a rotatable torsion plate in the pipe, but can be applied to a double pipe refrigerant pipe, a pipe having a bent portion, or a small inner diameter of the pipe. Not practical. The prior art described in Patent Document 4 is not suitable for the purpose of use in which water comes into contact with the human body because metal ions such as zinc are eluted and contaminated in water. The invention described in Patent Document 5 can suppress sedimentation of scale floating in the water by lengthening the straight portion of the copper tube on the outlet side of the heat exchanger, but suppresses the scale deposition on the copper tube wall. It cannot be done and the effect is insufficient. In the invention described in Patent Document 6, the effect of eliminating the local high-temperature portion due to the hydrophilic film tends to appear when the water temperature is relatively low, but the effect is insufficient because the high-temperature water becomes the scale generation temperature as a whole. It is. The inventions described in Patent Documents 7 and 8 sacrifice the heat exchange rate at the site where the water temperature is high, and in order to ensure a heat exchange rate equivalent to the case where the cross-sectional area of the flow channel is not widened, further flow channels. The length had to be taken, which hindered the downsizing of the equipment and the freedom of design.

また、磁気処理による方法は熱交換器の一部に強力な磁石を設置し、管内の水に磁力を作用させることにより、スケール付着を防止しようとするものであるが、強磁場を発生させる磁石そのものが高価である、熱交換器筐体の限られたスペースに磁石を組み込むことが難しい等の問題点がある。   In addition, the magnetic processing method is to install a strong magnet in a part of the heat exchanger and try to prevent the adhesion of scale by applying a magnetic force to the water in the tube. There are problems such as being expensive and difficult to incorporate magnets in a limited space of the heat exchanger housing.

特許文献9及び10に記載の従来技術は、水質及び使用環境によって形態が異なるI型孔食及びII型孔食のうち、II型孔食に対応したものであるが、近年の自然環境保護意識の高まりから地下水を使用する家庭が増えており、I型孔食が発生する虞がある環境での使用機会も増加している。これらの銅合金材は、りん脱酸銅部材と同様の方法で製造されるものであり、その表面に残留する残留炭素が影響するI型孔食を防止できるには至っておらず、依然として問題を残していた。   The conventional techniques described in Patent Documents 9 and 10 correspond to type II pitting corrosion among type I pitting corrosion and type II pitting corrosion, which have different forms depending on the water quality and use environment. The number of households that use groundwater is increasing due to the rise in the number of people, and there are increasing opportunities for use in environments where there is a risk of I-type pitting corrosion. These copper alloy materials are manufactured by the same method as the phosphorous deoxidized copper member, and have not yet been able to prevent type I pitting corrosion due to residual carbon remaining on the surface, and still have problems. I left it.

本発明はかかる問題点に鑑みてなされたものであって、炭酸カルシウムを主成分とするスケールが付着しにくく、水が間接的に又は直接加熱される熱交換器においても、水が接触する部分にスケールが付着せず、使用の過程で熱交換性能が低下せず、水質によって稀に発生する孔食が発生しないスケール付着抑制機能を有した銅合金部材及びそれを組み込んだ熱交換器を提供することを目的とする。   The present invention has been made in view of such a problem, and a scale in which calcium carbonate as a main component hardly adheres, and even in a heat exchanger in which water is indirectly or directly heated, a portion in contact with water Provides a copper alloy member with a scale adhesion control function that does not cause scale adhesion, does not deteriorate heat exchange performance during use, and does not generate pitting corrosion that occurs rarely due to water quality, and a heat exchanger incorporating the copper alloy member The purpose is to do.

また、本発明の他の目的は、特に、遊離炭酸を多く含む地下水等が使用される場合に冷水部で生じ易いI型孔食及び残留塩素を0.5mg/L以上含む水道水等で50℃以上の温水部に生じ易いII型孔食が生じにくい銅合金部材及びそれを組み込んだ熱交換器を提供することにある。   In addition, another object of the present invention is 50 for tap water containing 0.5 mg / L or more of type I pitting corrosion and residual chlorine, which is likely to occur in a cold water part, especially when groundwater containing a large amount of free carbonic acid is used. An object of the present invention is to provide a copper alloy member that is less likely to cause type II pitting corrosion that is likely to occur in a hot water portion at or above ° C. and a heat exchanger incorporating the copper alloy member.

更に、本発明の他の目的は、冷媒が流れる冷媒管と、水が流れる水流路とを有し、冷媒管内の冷媒により水流路の水を加熱する熱交換器において、水温が高温になる部位での熱交換率を低下させることなく、スケール付着抑制機能を有した熱交換器を提供することにある。   Still another object of the present invention is to provide a heat exchanger that has a refrigerant pipe through which a refrigerant flows and a water passage through which water flows, and heats the water in the water passage by the refrigerant in the refrigerant pipe. An object of the present invention is to provide a heat exchanger having a function of suppressing the adhesion of scale without lowering the heat exchange rate.

本発明に係る銅合金部材は、Coを、母相中に固溶体、単体及び/又は化合物として、0.02乃至0.5質量%(化合物の場合はCo換算値)含有し、Pを、母相中に固溶体、単体及び/又は化合物として、0.005乃至0.2質量%(化合物の場合はP換算値)含有し、残部がCuと不可避的不純物からなり、表面の残留炭素量が10mg/m以下であることを特徴とする。 The copper alloy member according to the present invention contains Co as a solid solution, a simple substance and / or a compound in the matrix phase in an amount of 0.02 to 0.5% by mass (in the case of a compound, Co equivalent value), and P is a matrix. The solution contains 0.005 to 0.2% by mass (in terms of P in the case of a compound) as a solid solution, a simple substance and / or a compound, the balance is made of Cu and inevitable impurities, and the amount of residual carbon on the surface is 10 mg. / M 2 or less.

銅合金中にCo及びPを含有することにより、銅合金材の表面へのスケールの付着を抑制することができる。このCo及びPは固溶体、単体又は化合物として銅合金母相中に存在するものであるが、Co及びPの化合物には、CoP等のCo−P化合物、Cu−Co−P化合物、若しくはこれらの酸化物、その他添加される元素とCo若しくはPとが形成する化合物、若しくはこれらの酸化物、複合酸化物等がある。しかし、Co及びPの化合物はこれらの種類に限らず、析出物の形で母相に存在するものであれば、いずれの形態でもスケール付着防止に寄与することができる。また、析出物でなく、母相中に固溶している状態と、Co単体で存在している場合でも、スケール付着防止に寄与する。しかし、Co及びPの化合物は、析出物の状態で表面近傍に濃化しているほうがより効果的である。 By containing Co and P in the copper alloy, it is possible to suppress the adhesion of scale to the surface of the copper alloy material. The Co and P are present in the copper alloy matrix as a solid solution, a simple substance, or a compound. The Co and P compounds include a Co—P compound such as Co 2 P, a Cu—Co—P compound, or These oxides, other compounds formed by added elements and Co or P, oxides thereof, composite oxides, and the like can be given. However, the Co and P compounds are not limited to these types, and any form that contributes to prevention of scale adhesion can be used as long as it exists in the matrix in the form of precipitates. Moreover, it contributes to prevention of scale adhesion even when it is not a precipitate but in a solid solution state in the matrix and when it is present as Co alone. However, the Co and P compounds are more effective when concentrated in the vicinity of the surface in the form of precipitates.

この銅合金部材は、更に、Zrを、母相中に固溶体、単体及び/又は化合物として、0.005乃至0.3質量%(化合物の場合はZr換算値)含有することが好ましい。   This copper alloy member preferably further contains 0.005 to 0.3% by mass (in the case of a compound, Zr equivalent value) of Zr as a solid solution, a simple substance and / or a compound in the matrix phase.

更に、Snを0.03乃至3.0質量%含有し、平均結晶粒径が30μm以下であることが好ましい。   Furthermore, it is preferable that Sn is contained in an amount of 0.03 to 3.0% by mass and the average crystal grain size is 30 μm or less.

更に、Znを0.03乃至5.0質量%含有することが好ましい。   Further, it is preferable to contain 0.03 to 5.0% by mass of Zn.

更に、Ni:0.005乃至0.2質量%、Mg:0.005乃至0.2質量%、Fe:0.005乃至0.2質量%からなる群から選択された少なくとも1種以上の元素を総計0.005乃至0.5質量%含有し、平均結晶粒径が10μm以下であることが好ましい。   Furthermore, at least one element selected from the group consisting of Ni: 0.005 to 0.2 mass%, Mg: 0.005 to 0.2 mass%, and Fe: 0.005 to 0.2 mass% Is preferably 0.005 to 0.5 mass% in total, and the average crystal grain size is preferably 10 μm or less.

本発明に係る熱交換器は、水が流通する水流路と、冷媒が流通する冷媒管とを有し、前記冷媒管内の冷媒により前記水流路の水を加熱する熱交換器において、水と接触する前記水流路及び/又は前記冷媒管の少なくとも一部が前述の銅合金部材で構成されていることを特徴とする。   A heat exchanger according to the present invention has a water flow path through which water flows and a refrigerant pipe through which a refrigerant flows, and is in contact with water in a heat exchanger that heats water in the water flow path with the refrigerant in the refrigerant pipe. The water flow path and / or at least a part of the refrigerant pipe is made of the copper alloy member described above.

本発明に係る他の熱交換器は、前記水流路の流路断面積をA、前記冷媒管の流路断面積をBとするとき、前記水流路断面積の前記冷媒管流路断面積に対する比A/Bが1.0乃至12.3であることを特徴とする。   In another heat exchanger according to the present invention, when the channel cross-sectional area of the water channel is A and the channel cross-sectional area of the refrigerant tube is B, the water channel cross-sectional area is relative to the refrigerant tube channel cross-sectional area. The ratio A / B is 1.0 to 12.3.

更に、前記水流路断面積の前記冷媒管流路断面積に対する比A/Bが1.0乃至3.5であることが好ましい。   Furthermore, it is preferable that a ratio A / B of the water channel cross-sectional area to the refrigerant pipe channel cross-sectional area is 1.0 to 3.5.

この本発明の熱交換器において、前記水流路は、例えば,水流管である。そして、前記冷媒管が、前記水流管の内部に配置されていることが好ましい。また、前記水流管が、内面溝付管であることが好ましい。   In the heat exchanger according to the present invention, the water flow path is, for example, a water flow pipe. And it is preferable that the said refrigerant | coolant pipe | tube is arrange | positioned inside the said water flow pipe | tube. Moreover, it is preferable that the said water flow pipe is an internal grooved pipe.

また、前記冷媒管が、その外面を前記水が流れる大径管と、前記大径管内に配置され内部を前記冷媒が通流する小径管とを有するように構成することができる。そして、前記大径管と前記小径管との間に、前記水又は前記冷媒の漏洩を検知する検知部が設けられていることが好ましい。更に、前記小径管の内面に管軸方向に平行又はねじれ角を有する複数の溝が形成されていることが好ましい。更にまた、前記冷媒管における大径管の外表面の少なくとも一部にフィンが形成されていることが好ましい。   In addition, the refrigerant pipe can be configured to have a large-diameter pipe through which the water flows on the outer surface and a small-diameter pipe that is disposed in the large-diameter pipe and through which the refrigerant flows. And it is preferable that the detection part which detects the leakage of the said water or the said refrigerant | coolant is provided between the said large diameter pipe | tube and the said small diameter pipe | tube. Furthermore, it is preferable that a plurality of grooves having parallel or twist angles in the tube axis direction are formed on the inner surface of the small diameter tube. Furthermore, it is preferable that fins are formed on at least a part of the outer surface of the large-diameter pipe in the refrigerant pipe.

本発明によれば、カルシウム硬度が高く高温の水に接触したり、又は自らが高温になる銅合金部材において、炭酸カルシウムを主成分としたスケールの付着を抑制することができる。また、これを水流部又は冷媒管外面に用いた熱交換器とすることで、水温が80℃以上になる部位でより多く発生し、水流部又は冷媒管外面に炭酸カルシウムスケールが付着することによる熱交換効率の低下、熱交換性能の低下、流通水量の低下、ポンプ圧の上昇及びポンプの消費電力増大等の問題が発生することを防止することができ、省エネルギーに貢献する熱交換器を提供することができる。また、前記銅合金部材は、そのまま使用することで表面に炭酸カルシウムスケールの付着を抑制する機能を有しているので、熱交換器に組み込むための特殊な処理は不要であり、実用性が優れている。   ADVANTAGE OF THE INVENTION According to this invention, the adhesion of the scale which has calcium carbonate as a main component can be suppressed in the copper alloy member with high calcium hardness which contacts high temperature water, or self becomes high temperature. In addition, by making this a heat exchanger used for the water flow part or the outer surface of the refrigerant pipe, more water is generated at the site where the water temperature becomes 80 ° C. or more, and the calcium carbonate scale adheres to the water flow part or the outer surface of the refrigerant pipe. Providing a heat exchanger that contributes to energy saving by preventing problems such as reduced heat exchange efficiency, reduced heat exchange performance, reduced circulating water volume, increased pump pressure, and increased pump power consumption. can do. In addition, the copper alloy member has a function of suppressing the adhesion of calcium carbonate scale to the surface when used as it is, so no special treatment for incorporation into a heat exchanger is required, and the practicality is excellent. ing.

また、遊離炭酸を多く含む地下水等が使用される場合に、冷水部で生じ易いI型孔食及び残留塩素を0.5mg/L以上含む水道水等で50℃以上の温水部に生じ易いII型孔食を生じにくくすることができる。このため、本発明の銅合金部材は、汎用性が極めて高い。   In addition, when groundwater containing a large amount of free carbonic acid is used, type I pitting corrosion that tends to occur in the cold water part and tap water that contains 0.5 mg / L or more of residual chlorine is likely to occur in hot water parts of 50 ° C. or higher II. Mold pitting corrosion can be made difficult to occur. For this reason, the copper alloy member of the present invention is extremely versatile.

更に、本発明の熱交換器によれば、冷媒が流れる冷媒管と、水が流れる水流路とを有し、冷媒管内の冷媒により水流路の水を加熱する熱交換器において、水温が高温になる部位での熱交換率を低下させることなく、スケール付着抑制機能を有した熱交換器が得られる。更に、水流路の流路断面積と冷媒が流れる冷媒管の流路断面積との関係を特定することで、この熱交換器が組み込まれる機器のコンパクト化に有利であると共に、設計の自由度を高めることが可能である。   Furthermore, according to the heat exchanger of the present invention, in the heat exchanger that has the refrigerant pipe through which the refrigerant flows and the water flow path through which water flows, and heats the water in the water flow path with the refrigerant in the refrigerant pipe, the water temperature is high. Thus, a heat exchanger having a function of suppressing the adhesion of scale can be obtained without reducing the heat exchange rate at the site. Furthermore, by specifying the relationship between the flow path cross-sectional area of the water flow path and the flow path cross-sectional area of the refrigerant pipe through which the refrigerant flows, it is advantageous for downsizing the equipment in which this heat exchanger is incorporated and the degree of freedom in design. It is possible to increase.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

炭酸カルシウムスケールはCa(HCO→CO+HO+CaCOの反応によって生成するが、この反応は水温が高いほど速やかに進行する。スケールが銅管に付着する機構としては、生成したCaCO微粒子が銅管壁に付着し、それが核となって、スケールが成長すると考えられる。従って、CaCO微粒子が銅管壁に付着することを防止すれば、スケール付着を抑制することができることになる。CaCOの表面は負に帯電していることが知られている。これに対し、銅の表面に存在するCuOは正に帯電しており、互いに引力が作用して、結果的に銅部材表面にCaCOスケールが付着し、堆積する。 The calcium carbonate scale is generated by a reaction of Ca (HCO 3 ) 2 → CO 2 + H 2 O + CaCO 3 , and this reaction proceeds more rapidly as the water temperature is higher. As a mechanism for the scale to adhere to the copper pipe, the generated CaCO 3 fine particles adhere to the copper pipe wall, and it is considered that the scale grows as a nucleus. Therefore, if the CaCO 3 fine particles are prevented from adhering to the copper tube wall, the scale adhesion can be suppressed. It is known that the surface of CaCO 3 is negatively charged. On the other hand, Cu 2 O present on the surface of copper is positively charged, and attractive force acts on each other, and as a result, CaCO 3 scale adheres to and accumulates on the surface of the copper member.

これに対し、本願発明者は、Zrを銅母材中に含有させたときに生成するあらゆる析出物がCaCOスケールと同じ負に帯電し、これを含有した銅合金には、CaCO微粒子が付着せず、スケールが堆積しないことを見出した。 On the other hand, the inventor of the present application is that any precipitate generated when Zr is contained in the copper base material is negatively charged as in the CaCO 3 scale, and the copper alloy containing this contains CaCO 3 fine particles. It was found that it did not adhere and no scale was deposited.

また、水温が50乃至90℃の高温領域において、残留塩素を例えば1ppm以上含んだ水質で生じ易いII型孔食に対して有効な添加元素であるSnを添加し、これを適量の酸素を含んだ不活性ガス又は還元ガス雰囲気中で熱処理することにより、添加元素の酸化物を適正に表面に濃化させ、耐スケール性と耐孔食性を同時に持たせることができることを見出した。   In addition, Sn, which is an effective additive element for type II pitting corrosion, which is likely to occur in water quality containing, for example, 1 ppm or more of residual chlorine in a high temperature region where the water temperature is 50 to 90 ° C., contains an appropriate amount of oxygen. However, it has been found that, by heat treatment in an inert gas or reducing gas atmosphere, the oxide of the additive element can be properly concentrated on the surface, and both scale resistance and pitting corrosion resistance can be provided at the same time.

一方、市場で汎用的に使用されることが多いりん脱酸銅部材の場合、水温15℃以下の低温状態で遊離炭酸を15mg/L以上含んだ水に接触したときに、その表面に付着している残留炭素量が5.0mg/mを超えていると、I型孔食が発生し易いといわれている。本発明の銅合金部材表面においては、その表面に残留炭素量が10.0mg/m以上付着していると、銅のI型孔食を発生させる可能性が高くなることが分かった。前記銅合金部材は、その適切な添加元素の深さ方向分布を有することにより、II型孔食に対し、優れた耐孔食性を有するが、前記I型孔食に対しては不十分であり、表面残留炭素量を10.0mg/m以下にすることが好ましい。 On the other hand, in the case of a phosphorous deoxidized copper member that is often used in the market, it adheres to the surface when it comes into contact with water containing 15 mg / L or more of free carbonic acid at a low temperature of 15 ° C. or less. If the amount of residual carbon exceeds 5.0 mg / m 2 , it is said that type I pitting corrosion is likely to occur. On the surface of the copper alloy member of the present invention, it has been found that if the amount of carbon remaining on the surface is 10.0 mg / m 2 or more, the possibility of generating copper I-type pitting corrosion increases. The copper alloy member has excellent pitting corrosion resistance against type II pitting corrosion by having a distribution in the depth direction of the appropriate additive element, but is insufficient for the type I pitting corrosion. The surface residual carbon amount is preferably 10.0 mg / m 2 or less.

表面に残留した加工用潤滑油分が主に焼鈍工程又は熱処理工程で焼きついて残留炭素を生成するが、残留炭素量が規定量以下であるような表面を有する銅合金部材を製造する方法としては、必ずしもこれに限ったものではない。即ち、所定の酸素を混合した不活性ガス又は還元性ガス雰囲気中で焼鈍若しくはこれに類する熱処理を施す方法、水素雰囲気中で焼鈍若しくはこれに類する熱処理を施す方法、有機溶剤若しくは脱脂洗浄剤等で油分を洗浄した後に通常の焼鈍工程を実施する方法、又は、誘導加熱焼鈍若しくは通電加熱焼鈍のように比較的短時間で部材温度が焼鈍温度に到達する方法等、種々の方法が適用可能である。   As a method for producing a copper alloy member having a surface whose residual carbon amount is not more than a specified amount, the processing lubricating oil remaining on the surface is burned mainly in the annealing process or heat treatment process to generate residual carbon. However, this is not necessarily the case. That is, a method of performing annealing or similar heat treatment in an inert gas or reducing gas atmosphere mixed with predetermined oxygen, a method of performing annealing or similar heat treatment in a hydrogen atmosphere, an organic solvent or a degreasing cleaner, etc. Various methods such as a method of performing a normal annealing process after washing the oil, or a method in which the member temperature reaches the annealing temperature in a relatively short time, such as induction heating annealing or electric heating annealing, can be applied. .

前記スケール付着防止機能を更に効果的に得るためには、添加元素をより多く含有させればよいが、これに伴う素材の強度上昇により、特に管材では押出し工程における力量不足と、抽伸工程における抽伸破断など、設備の付加増大による不具合が頻発するようになる。なるべく少ない添加元素量で効果的な機能を得るには、焼鈍又は熱処理工程時の雰囲気中に10乃至200ppmの酸素を混合して処理するとより良い。微量酸素の存在下で高温に曝すことにより、銅母材の過剰な酸化を抑えつつ、母材表面近傍に酸素が侵入し、添加元素が酸化され、内部酸化が起こる。これにより、母材表面層に金属状態の添加元素が欠乏するため、材料内部から添加元素が拡散し、この添加元素の拡散が継続して添加元素が表面に濃化してくる。この濃化した添加元素がスケール付着防止機能を有するので、添加量のわりに大きな効果を得ることができる。   In order to obtain the scale adhesion preventing function more effectively, it is sufficient to contain more additive elements. However, due to the accompanying increase in the strength of the raw material, particularly in the case of pipe materials, there is a lack of strength in the extrusion process, and drawing in the drawing process. Failures due to additional equipment such as breakage occur frequently. In order to obtain an effective function with as little additive element amount as possible, it is better to mix and process 10 to 200 ppm of oxygen in the atmosphere during the annealing or heat treatment process. By exposing to a high temperature in the presence of a small amount of oxygen, oxygen enters into the vicinity of the surface of the base material while suppressing excessive oxidation of the copper base material, the added elements are oxidized, and internal oxidation occurs. Thereby, since the additive element in the metallic state is deficient in the surface layer of the base material, the additive element is diffused from the inside of the material, and the diffusion of the additive element is continued and the additive element is concentrated on the surface. Since the concentrated additive element has a function of preventing scale adhesion, a great effect can be obtained instead of the addition amount.

以下、本発明の銅合金部材の組成限定理由について詳細に説明する。   Hereinafter, the reasons for limiting the composition of the copper alloy member of the present invention will be described in detail.

「Co:母相中に固溶体、単体及び/又は化合物として、0.02乃至0.5質量%(化合物の場合はCo換算値)含有」
Coは燐化物を形成してスケール付着防止効果を発揮する。また、それ自身は銅に固溶して強度、耐力を向上させる。Co含有量が0.02質量%未満では、スケール付着防止効果が得られない。また、Co含有量が0.5質量%を超えると、析出物粗大化又は晶出物発生が起き易く、延性が低下する。
“Co: 0.02 to 0.5% by mass (in the case of a compound, Co equivalent value) as a solid solution, a simple substance and / or a compound”
Co forms a phosphide and exhibits a scale adhesion preventing effect. In addition, it itself dissolves in copper to improve strength and proof stress. When the Co content is less than 0.02% by mass, the scale adhesion preventing effect cannot be obtained. On the other hand, if the Co content exceeds 0.5% by mass, coarsening of precipitates or generation of crystallized matter is likely to occur, and ductility is lowered.

「P:母相中に固溶体、単体及び/又は化合物として、0.005乃至0.2質量%(化合物の場合はP換算値)含有」
Pは前記燐化物を形成させるために必要な元素である。P含有量が0.005質量%未満では、スケール付着防止に有効な燐化物が十分得られない。逆に、P含有量が0.2質量%を超えると、粗大晶出物形成により、延性が低下し易くなる。
“P: 0.005 to 0.2% by mass (in the case of a compound, converted to P) as a solid solution, a simple substance and / or a compound”
P is an element necessary for forming the phosphide. When the P content is less than 0.005% by mass, a phosphide effective for preventing scale adhesion cannot be obtained sufficiently. On the other hand, if the P content exceeds 0.2% by mass, the ductility tends to decrease due to the formation of coarse crystals.

「残留炭素量が10mg/m以下」
本発明の銅合金部材がI型孔食条件の水流中で使用される場合においては、その表面に付着した残留炭素量が10.0mg/mを超えるとI型孔食を生じやすくなる。残留炭素の付着量が少ないほど、I型孔食を生じる可能性は低くなり、5.0mg/mより少なければより好ましく、2.0mg/mより少なければ更に好ましい。
“Residual carbon content is 10 mg / m 2 or less”
When the copper alloy member of the present invention is used in a stream of I-type pitting corrosion, if the amount of residual carbon adhering to the surface exceeds 10.0 mg / m 2 , I-type pitting is likely to occur. The smaller the amount of residual carbon attached, the lower the possibility of causing type I pitting corrosion, more preferably less than 5.0 mg / m 2 and even more preferably less than 2.0 mg / m 2 .

「Zr:母相中に固溶体、単体及び/又は化合物として、0.005乃至0.3質量%(化合物の場合はZr換算値)含有」
Zrはスケール付着防止効果があり、Co−Pのみの場合より更にスケール付着防止効果を向上させることができる。また、Zrは少量添加でもCo−Pと同様な効果を発現し、Co−Pの量を多くすることによる延性低下を防止するのに有効である。更には、Zrは孔食防止及び強度向上に効果を有する。Zr含有量が0.005質量%未満では、上述のスケール付着防止効果,延性低下防止効果、孔食防止効果及び強度向上効果が小さい。Zrが0.3質量%を超えると、粗大晶出物が出るので延性が低下する。
“Zr: 0.005 to 0.3% by mass (in the case of a compound, converted to Zr) as a solid solution, simple substance and / or compound in the matrix”
Zr has an effect of preventing scale adhesion, and the effect of preventing scale adhesion can be further improved as compared with the case of using only Co-P. Further, Zr exhibits the same effect as Co—P even when added in a small amount, and is effective in preventing the ductility from being reduced by increasing the amount of Co—P. Furthermore, Zr is effective in preventing pitting corrosion and improving strength. When the Zr content is less than 0.005% by mass, the above-mentioned scale adhesion preventing effect, ductility reduction preventing effect, pitting corrosion preventing effect and strength improving effect are small. When Zr exceeds 0.3% by mass, a coarse crystallized product is produced and ductility is lowered.

Zrの化合物には、CuZr等のCu−Zr化合物、ZrP、ZrP等のP−Zr化合物、ZrO等のZr酸化物、ZrCu等のZr−CuーO複合酸化物等があるが、Zrの化合物はこれに限らず、析出物の形で母相に存在するものであればいずれの形態でもスケール付着防止に寄与することができる。また、析出物でなく母相中に固溶している状態と、Zr単体で存在している場合でもスケール付着防止に寄与する。しかし、Zrは析出物の状態で表面近傍に濃化しているほうがより効果的である。 The compounds of Zr, Cu-Zr compound such as Cu 3 Zr, ZrP 3, P -Zr compounds such ZrP, Zr oxides such ZrO 3, ZrCu 3 O 4 ZrCu over O composite oxides such like However, the Zr compound is not limited to this, and any form that contributes to the prevention of scale adhesion can be used as long as it is present in the matrix in the form of precipitates. In addition, it contributes to the prevention of scale adhesion even when it is dissolved in the matrix rather than the precipitate and when it is present as Zr alone. However, it is more effective that Zr is concentrated near the surface in the form of precipitates.

「Sn:0.03乃至3.0質量%」
Snは銅合金部材に耐II型孔食性を付与する。Snは、機械的性質における伸びの増加、強度向上、及び900℃までの高温域での結晶粒粗大化防止に効果を有する。Sn含有量が0.03質量%を下回ると耐II型孔食性及びその他の効果が不十分となる。Sn含有量が3.0質量%を超えると、機械的性質の変化に伴い、曲げ加工時にしわが出るようになる。更に、加工硬化が大きくなり、管の場合における圧延マンドレル及び抽伸プラグ/ダイスの磨耗、破損、並びに溝付プラグの欠損が多くなる。また、Snが過剰であると、熱伝導率も低下する。
“Sn: 0.03 to 3.0 mass%”
Sn imparts type II pitting resistance to copper alloy members. Sn has an effect of increasing elongation in mechanical properties, improving strength, and preventing crystal grain coarsening at high temperatures up to 900 ° C. If the Sn content is less than 0.03% by mass, the type II pitting resistance and other effects become insufficient. When the Sn content exceeds 3.0% by mass, wrinkles appear during bending due to changes in mechanical properties. In addition, work hardening is increased and wear and breakage of rolling mandrels and drawing plugs / dies in the case of pipes and loss of grooved plugs are increased. Moreover, when Sn is excessive, thermal conductivity will also fall.

「平均結晶粒径が30μm以下」
Snの添加により結晶粒粗大化を抑制できる。平均結晶粒径が30μmを超える場合、銅合金部材の降伏比が低下する。この降伏比が低下すると、破壊強度に対し耐力値が低くなり、塑性変形が起こりやすくなる。また、結晶粒界に集まりやすいPの影響で、表面におけるPの不均一な状態が形成されるので、耐食性にも影響が出始める。
“Average grain size is 30 μm or less”
Addition of Sn can suppress grain coarsening. When the average crystal grain size exceeds 30 μm, the yield ratio of the copper alloy member decreases. When the yield ratio is lowered, the yield strength value is reduced with respect to the fracture strength, and plastic deformation is likely to occur. In addition, due to the influence of P that tends to gather at the crystal grain boundaries, a non-uniform state of P on the surface is formed, and thus corrosion resistance begins to be affected.

「Zn:0.03乃至5.0質量%」
Znは、各種元素を含有することにより加工性が低下する虞がある本発明の銅合金部材に対し、優れた加工性を付与する。銅合金部材の母相に固溶することにより、その強度を向上させる元素である。また、Znは加工工具(プラグ、マンドレル、ダイス等)の磨耗抑制の効果がある。本発明の銅合金部材は、硬い燐化物と加工硬化しやすいSnが多く、工具磨耗が生じやすいので、Znを添加することが好ましい。Znが0.03質量%未満ではその効果が小さい。Zn含有量が5.0質量%を超えると、水環境での使用中に耐食性が低下し始め、脱亜鉛腐食性、及び応力腐食割れ感受性に影響が出始める。なお、Zn含有量が多くなるほど、銅合金管が加工硬化しやすくなるので、特に銅合金管を加工する場合、りん脱酸銅に比べて焼鈍回数が増加し、加工コストの上昇を招く。
“Zn: 0.03 to 5.0 mass%”
Zn imparts excellent workability to the copper alloy member of the present invention in which workability may be reduced by containing various elements. It is an element that improves its strength by dissolving in the parent phase of the copper alloy member. Further, Zn has an effect of suppressing wear of processing tools (plugs, mandrels, dies, etc.). Since the copper alloy member of the present invention has a large amount of hard phosphide and Sn that is easy to work harden, and tool wear tends to occur, it is preferable to add Zn. The effect is small when Zn is less than 0.03% by mass. If the Zn content exceeds 5.0% by mass, the corrosion resistance starts to deteriorate during use in an aqueous environment, and the dezincification corrosion resistance and stress corrosion cracking susceptibility begin to be affected. Note that, as the Zn content increases, the copper alloy tube is more easily work-hardened. Therefore, particularly when processing a copper alloy tube, the number of annealing increases as compared with phosphorous-deoxidized copper, resulting in an increase in processing cost.

「Ni、Mg、及びFeからなる群から選択された少なくとも1種:個別に0.005乃至0.2質量%、総計で0.005乃至0.5質量%」
Ni、Mg、及びFeは、固溶又は燐化物を形成して、銅合金部材の強度及び耐熱性向上に寄与する。各元素の含有量が個別に(従って、総計でも)0.005質量%未満の場合、その効果が不十分である。また、各元素の含有量が個別に0.2質量%を超えるか、又は総計で0.5質量%を超える場合、析出物が粗大化し、曲げ加工性が低下する。よって,Ni、Mg、及びFeは、個別に0.2質量%以下,総量で0.5質量%以下とする。
“At least one selected from the group consisting of Ni, Mg, and Fe: 0.005 to 0.2 mass% individually, and 0.005 to 0.5 mass% in total”
Ni, Mg, and Fe form a solid solution or phosphide and contribute to improving the strength and heat resistance of the copper alloy member. If the content of each element is less than 0.005% by mass individually (and therefore in total), the effect is insufficient. Moreover, when content of each element exceeds 0.2 mass% individually, or exceeds 0.5 mass% in total, a precipitate will coarsen and bending workability will fall. Therefore, Ni, Mg, and Fe are individually 0.2% by mass or less and the total amount is 0.5% by mass or less.

「平均結晶粒径:10μm以下」
銅合金部材の平均結晶粒径が10μmを超える場合、降伏比が低下する。降伏比が低下すると、破壊強度に対し耐力値が低くなり、塑性変形が起こりやすくなる。銅合金部材の平均結晶粒径が30μmを超えなければ、耐食性には影響しないので、平均結晶粒径が10μm以下であれば、降伏比及び耐食性が良好である。
“Average crystal grain size: 10 μm or less”
When the average crystal grain size of the copper alloy member exceeds 10 μm, the yield ratio decreases. When the yield ratio decreases, the proof stress value is low with respect to the fracture strength, and plastic deformation easily occurs. Since the corrosion resistance is not affected unless the average crystal grain size of the copper alloy member exceeds 30 μm, the yield ratio and the corrosion resistance are good if the average crystal grain size is 10 μm or less.

このような部材を、例えば、COを冷媒に用いたヒートポンプ式給湯器用水熱交換器に使用することができる。COを冷媒に使用したヒートポンプ式給湯器(エコキュート(登録商標))用水熱交換器は、電気料金の安価な夜間電力を利用して夜間に80乃至90℃の高温の水を炊き上げ、貯湯タンクに貯めるため、従来のガス給湯器及び瞬間湯沸かし器よりも水温は格段に高い。前記CO冷媒ヒートポンプ式給湯器用水熱交換器は、水質によってはカルシウム等の硬度成分と炭酸成分との反応により高い水温で生成される炭酸カルシウムスケールが管壁に付着する。これが継続され、水流部の流路が閉塞したり、圧力損失が上昇する場合などがある。前記部材を使用することで、炭酸カルシウムスケールによる詰まりや圧力損失が上昇する問題に対して、炭酸カルシウムスケールの付着を抑制するので、前記詰まりや圧力損失の上昇を抑えることができる。 Such a member can be used for, for example, a water heat exchanger for a heat pump water heater using CO 2 as a refrigerant. Water heat exchangers for heat pump water heaters (EcoCute (registered trademark)) that use CO 2 as a refrigerant, cook hot water at 80 to 90 ° C at night using low-cost electricity at night, and store hot water Since it is stored in the tank, the water temperature is much higher than the conventional gas water heater and instantaneous water heater. In the water heat exchanger for a CO 2 refrigerant heat pump type hot water heater, a calcium carbonate scale generated at a high water temperature is attached to the pipe wall by a reaction between a hardness component such as calcium and a carbonic acid component depending on the water quality. This is continued, and the flow path of the water flow section may be blocked or the pressure loss may increase. By using the member, since the adhesion of the calcium carbonate scale is suppressed with respect to the problem of clogging due to the calcium carbonate scale and an increase in pressure loss, the clogging and the increase in pressure loss can be suppressed.

熱交換器の形態は、例えば、熱交換部分の水流路を構成する部材が管で(水流管)その外面に冷媒管を1本以上巻きつけて前記水流管の内面と外面とで熱交換する熱交換器(図1)、前記水流管の内部に冷媒管が存在し、水を前記冷媒管で直接加熱する熱交換器(図2)、その内部に複雑な経路を有した箱型筐体の水流部と、前記箱型筐体に巻きつけるなどして接触させた冷媒管とで、水流部の内面と外面で熱交換する熱交換器(図3)、前記箱型筐体内部に有する複雑な経路に沿って冷媒管を1本以上はわせ、水を直接加熱する熱交換器等、冷媒が流れる流路と水が流れる流路とが熱交換する熱交換器であれば本発明を適用可能である。   In the form of the heat exchanger, for example, a member constituting the water flow path of the heat exchange portion is a tube (water flow tube). One or more refrigerant tubes are wound around the outer surface, and heat exchange is performed between the inner surface and the outer surface of the water flow tube. A heat exchanger (FIG. 1), a heat exchanger (FIG. 2) in which a refrigerant pipe is present inside the water flow pipe and water is directly heated by the refrigerant pipe, and a box-shaped housing having a complicated path therein A heat exchanger (FIG. 3) for exchanging heat between the inner surface and the outer surface of the water flow portion between the water flow portion of the water flow portion and the refrigerant pipe that is brought into contact with the box-shaped housing, for example. If the heat exchanger such as a heat exchanger that directly heats water by causing one or more refrigerant pipes along a complicated path to exchange heat with the flow path through which the refrigerant flows and the flow path through which the water flows is used, the present invention is used. Applicable.

また、水流部を構成する部材が管である場合、その水流管内面に多数の溝を形成した内面溝付管とすることができる。内面溝付管にすることで、水流部を流通する水と水流管の外面との熱交換効率を向上させることができる(図4)。その溝形状は特に限られたものではなく、所望の特性に応じて管の断面形状におけるフィン高さ、溝数、底肉厚、山頂角、捩れ角、捩れ溝、ストレート溝、交叉溝、及び刻み溝等、任意の形態とすることができる。   Moreover, when the member which comprises a water flow part is a pipe | tube, it can be set as the inner surface grooved pipe | tube which formed many groove | channels in the water flow pipe inner surface. By using the inner grooved tube, the efficiency of heat exchange between the water flowing through the water flow portion and the outer surface of the water flow tube can be improved (FIG. 4). The groove shape is not particularly limited, and the fin height, the number of grooves, the bottom wall thickness, the peak angle, the twist angle, the twist groove, the straight groove, the cross groove, and It can be in any form such as a cut groove.

水流管を内面溝付管にすることは、CO冷媒ヒートポンプ式給湯器の普及が始まる当初から考えられていたが、スケールが付着し易い形態となってしまうことと、スケール付着による熱交換性能の低下が著しくなること等からこれまで実用化できなかった。しかし、本発明により、素材表面へのスケールの付着を抑制することが可能になったことにより、設計の自由度が増し、熱交換器の性能向上の大胆な発想の転換が可能になった。水流管を内面溝付管とすることは、本発明により初めて可能となる。 It was considered from the beginning that the CO 2 refrigerant heat pump water heater started to spread, but the heat flow performance due to the scale adherence and the heat exchange performance due to the scale adherence were considered to make the water flow pipe into an internally grooved pipe. It has been impossible to put it to practical use because of a significant decrease in the above. However, the present invention has made it possible to suppress the adhesion of scales to the surface of the material, thereby increasing the degree of freedom in design and making it possible to change the bold idea of improving the performance of the heat exchanger. It is possible for the first time that the water flow pipe is an internally grooved pipe.

図2の場合、冷媒として超臨界のCO等を使用する場合、冷媒管内にCOを流通させ、水流管内(冷媒管の外側の領域)に水を流通させることが通常行われるが、これに拘らず、水流管内の水と冷媒管内の冷媒を逆にしても良い。また、伝熱量を大きくするには、冷媒管の数を2本以上とすること、水流管内を流れる水と小径管内を流れる冷媒の流れの向きを逆向き(対向流)にすることが望ましい。また、冷媒管を、大径管と、前記大径管の内部に配置される小径管とからなる二重管とし、更に前記大径管と前記小径管との間に、大径管外部を流通する水又は小径管内部を流通する冷媒の漏洩を検知する構造を設けることもできる(図5(a)、(b)、(c))。更に、小径管の内面に管軸方向に平行又はねじれ角を有する複数の溝を形成しても良い(図5(d))。 In the case of FIG. 2, when supercritical CO 2 or the like is used as the refrigerant, it is usually performed that CO 2 is circulated in the refrigerant pipe and water is circulated in the water flow pipe (region outside the refrigerant pipe). Regardless, the water in the water flow pipe and the refrigerant in the refrigerant pipe may be reversed. In order to increase the amount of heat transfer, it is desirable that the number of refrigerant tubes be two or more, and the direction of the flow of water flowing in the water flow tube and the flow of refrigerant flowing in the small diameter tube be reversed (opposite flow). In addition, the refrigerant pipe is a double pipe composed of a large diameter pipe and a small diameter pipe disposed inside the large diameter pipe, and further, the outside of the large diameter pipe is provided between the large diameter pipe and the small diameter pipe. It is also possible to provide a structure for detecting leakage of flowing water or refrigerant flowing through the small-diameter pipe (FIGS. 5A, 5B, and 5C). Further, a plurality of grooves having a parallel or twist angle in the tube axis direction may be formed on the inner surface of the small diameter tube (FIG. 5D).

即ち、図5(a)、(b)に示すように、この伝熱管1は、大径管2の内部に4本の小径管3を配置したものであり、各小径管3は、図5(c)に示すように、外管4の内面に断面三角形の凹凸を形成し、その内側に内管5を嵌合したものである。このため、外管4と内管5との間に空間部6が形成されている。このため、外管、又は内管に腐食等による穴が発生した場合、外管の外側、外側流路7又は内管内を流れる流体が空間部6に漏れてくる。この漏れが、空間部6を通って管軸方向に流れ、熱交換器の外側に出たところで流体の漏洩を検知することができる。図5(d)は内管5の内面に、溝を形成したものである。   That is, as shown in FIGS. 5 (a) and 5 (b), this heat transfer tube 1 has four small diameter tubes 3 arranged inside a large diameter tube 2, and each small diameter tube 3 is shown in FIG. As shown in (c), the inner surface of the outer tube 4 is formed with irregularities having a triangular cross section, and the inner tube 5 is fitted inside thereof. For this reason, a space 6 is formed between the outer tube 4 and the inner tube 5. For this reason, when a hole due to corrosion or the like occurs in the outer tube or the inner tube, the fluid flowing outside the outer tube, the outer flow path 7 or the inner tube leaks into the space 6. This leakage flows in the tube axis direction through the space 6 and can be detected when it leaks outside the heat exchanger. FIG. 5D shows a case where a groove is formed on the inner surface of the inner tube 5.

水流管の内側に直線状/螺旋状等の溝を設けることができる。また、冷媒管の内側に直線状/螺旋状等の溝を設けるか(図5(e)乃至(g))、小径管の外側に直線状又は螺旋状のフィンを設けるか(図6)、水流管及び/又は冷媒管をコルゲート管にする等の方法により、管内の面積を増加させ、また管内の流体の流れを乱すことにより熱伝達を促進させても良い。腐食等により冷媒管内が破れた場合は、管内の流体が水流管内の流体と混じり合うことから、これを避けるには冷媒管を検知構造を有する二重構造とすることが望ましい。また、このような熱交換器は、スペース節約のため、螺旋状又は渦巻状等に巻回してもよい。   A straight / spiral groove may be provided inside the water flow tube. Also, whether a straight / spiral groove or the like is provided inside the refrigerant pipe (FIGS. 5E to 5G), or a linear or spiral fin is provided outside the small-diameter pipe (FIG. 6), Heat transfer may be promoted by increasing the area in the pipe by disturbing the flow of the fluid in the pipe by a method such as making the water flow pipe and / or the refrigerant pipe a corrugated pipe. When the inside of the refrigerant pipe is torn due to corrosion or the like, the fluid in the pipe mixes with the fluid in the water flow pipe. Therefore, in order to avoid this, it is desirable that the refrigerant pipe has a double structure having a detection structure. Further, such a heat exchanger may be wound in a spiral shape or a spiral shape to save space.

図7は、バッフルスペーサー、図8は、インナー材、図9は、インナー材、図10は、バッフルリング、図11は、バッフルリング及びスペーサー、図12は、コルゲート加工したものを示す。   FIG. 7 shows a baffle spacer, FIG. 8 shows an inner material, FIG. 9 shows an inner material, FIG. 10 shows a baffle ring, FIG. 11 shows a baffle ring and a spacer, and FIG.

図1の構成に類似した熱交換器としては、また、例えば、水流管の外側に設けた溝に冷媒管が嵌合されているもの(図13)、水流管の外側に冷媒管がろう付けされているもの等がある。冷媒として超臨界のCO等を使用する場合、冷媒管内にCOを流通させ、水流管内に水を流通させることが通常行われるが、これに拘らず水流管内と冷媒管内の冷媒を逆にしても良い。また、伝熱量を大きくするには、冷媒管の数を2本以上とすること、水流管内を流れる媒体と冷媒管内を流れる媒体の流れの向きを逆向き(対向流)にすることが望ましい。また、冷媒管の内側及び/又は水流管の内側に直線状又は螺旋状等の溝を設ける等の方法により管内の面積を増加させ、また管内の流体の流れを乱すことにより熱伝達を促進させても良い。また、水流管の外側に螺旋状に配置して水流管と冷媒管の接触長さを長くし、伝熱面積を増大させても良い。また、このような熱交換器はスペース節約のため、螺旋状、渦巻状等に巻回してもよい。 As a heat exchanger similar to the configuration of FIG. 1, for example, a refrigerant pipe is fitted in a groove provided outside the water flow pipe (FIG. 13), and the refrigerant pipe is brazed to the outside of the water flow pipe. There are things that have been. When supercritical CO 2 or the like is used as the refrigerant, it is usually performed that CO 2 is circulated in the refrigerant pipe and water is circulated in the water pipe. However, the refrigerant in the water pipe and the refrigerant pipe are reversed regardless of this. May be. In order to increase the amount of heat transfer, it is desirable that the number of refrigerant pipes be two or more, and the flow direction of the medium flowing in the water flow pipe and the flow direction of the medium flowing in the refrigerant pipe be reversed (opposite flow). Also, the area inside the pipe is increased by a method such as providing a linear or spiral groove inside the refrigerant pipe and / or inside the water flow pipe, and heat transfer is promoted by disturbing the fluid flow in the pipe. May be. Moreover, it arrange | positions helically on the outer side of a water flow pipe, the contact length of a water flow pipe and a refrigerant pipe may be lengthened, and a heat transfer area may be increased. Further, such a heat exchanger may be wound in a spiral shape, a spiral shape or the like in order to save space.

また、このような熱交換器において、水流路の流路断面積Aの冷媒管の流路断面積Bに対する比A/Bを1.0乃至12.3とすることで、水温が高温になる部位での熱交換率を低下させることなく、スケール付着抑制機能を有した熱交換器が得られる。更に、水流路の流路断面積が冷媒の流路断面積に対して特定されるため、この熱交換器が組み込まれる機器のコンパクト化に有利であると共に、設計の自由度を高めることが可能である。A/Bが1.0未満であると、水流管の流路断面積Aが小さいため、水流管内を流れる水の平均流速が増加して圧力損失が増加する。更に、水流管内面又は冷媒管外面に炭酸カルシウムを主成分とするスケールが付着すると、水流管内を流れる水の平均流速が一層増加して圧力損失が増加する。A/Bが12.3を超えると、単位長さあたりの熱流量が減少するため、伝熱性能が低下する。従って、水流路の流路断面積Aの冷媒管の流路断面積Bに対する比A/Bは1.0乃至12.3である。また、更に高い熱交換性能を得るためには、水流路の流路断面積Aの冷媒管の流路断面積Bに対する比A/Bは1.0乃至3.5であることが好ましい。   Further, in such a heat exchanger, the water temperature becomes high by setting the ratio A / B of the flow passage cross-sectional area A of the water flow passage to the flow passage cross-sectional area B of the refrigerant pipe to 1.0 to 12.3. A heat exchanger having a function of suppressing scale adhesion can be obtained without reducing the heat exchange rate at the site. Furthermore, since the cross-sectional area of the water flow path is specified with respect to the flow-path cross-sectional area of the refrigerant, it is advantageous for downsizing the equipment in which this heat exchanger is incorporated, and the degree of freedom in design can be increased. It is. When A / B is less than 1.0, the flow passage cross-sectional area A of the water flow pipe is small, so that the average flow velocity of the water flowing in the water flow pipe increases and the pressure loss increases. Further, when a scale mainly composed of calcium carbonate adheres to the inner surface of the water pipe or the outer surface of the refrigerant pipe, the average flow velocity of the water flowing in the water pipe further increases and the pressure loss increases. When A / B exceeds 12.3, the heat flow per unit length decreases, so the heat transfer performance decreases. Therefore, the ratio A / B of the channel cross-sectional area A of the water channel to the channel cross-sectional area B of the refrigerant pipe is 1.0 to 12.3. In order to obtain higher heat exchange performance, the ratio A / B of the channel cross-sectional area A of the water channel to the channel cross-sectional area B of the refrigerant pipe is preferably 1.0 to 3.5.

本発明の銅合金管は、特にCOを冷媒に使用してより高温の水を得ようとするヒートポンプ式給湯器用水熱交換器に使用することにより、その効果を発揮できるが、本発明の銅合金管における用途はこれに限ったものではなく、ガスバーナー加熱方式のガス給湯器又は風呂釜、及び追炊き用熱交換器の他、ボイラー用配管、及び温水器等、比較的水温が高い給湯用配管等にも適用可能である。 The copper alloy tube of the present invention can exert its effect by using it in a water heat exchanger for a heat pump type hot water heater that seeks to obtain higher temperature water using CO 2 as a refrigerant. The use in copper alloy pipes is not limited to this, but the water temperature is relatively high, such as gas water heaters or baths with gas burner heating, and heat exchangers for additional cooking, as well as boiler piping and water heaters. It can also be applied to piping for hot water supply.

本発明の銅合金部材は、その製造方法において、板材の場合は、溶解、鋳造、熱間圧延、冷間圧延、レベリング、焼鈍及び巻取り(コイル材)の工程により製造され、又は最終的に定尺切断される。管材の場合は、溶解、鋳造、熱間押出し、冷間圧延、冷間引抜き及び整直切断(直管材)されるか、又は巻取り(長尺コイル材)され、その後、焼鈍を経て梱包される。その間、所望の元素分布を得るためには、適切な焼鈍処理を行う。   In the manufacturing method, the copper alloy member of the present invention, in the case of a plate material, is manufactured by a process of melting, casting, hot rolling, cold rolling, leveling, annealing and winding (coil material), or finally. It is cut to a standard length. In the case of tube material, it is melted, cast, hot extruded, cold rolled, cold drawn and straight cut (straight tube material) or wound (long coil material) and then packed through annealing. The Meanwhile, in order to obtain a desired element distribution, an appropriate annealing treatment is performed.

焼鈍工程の間、内面又は外面の所望の特性を持たせたい側の表面に接触させる雰囲気を、5乃至200ppmの酸素を含む不活性ガス又は還元性ガスとし、焼鈍温度を550乃至700℃とし、加熱時間を10乃至200分で調整することにより、所望の特性を有する表面の添加元素分布が得られる。炉内露天点は5乃至15℃で調整することが望ましい。   During the annealing process, the atmosphere to be brought into contact with the surface on the inner surface or the outer surface on which the desired characteristics are desired is an inert gas or reducing gas containing 5 to 200 ppm of oxygen, and the annealing temperature is 550 to 700 ° C., By adjusting the heating time from 10 to 200 minutes, a surface additive element distribution having desired characteristics can be obtained. It is desirable to adjust the open-air point in the furnace at 5 to 15 ° C.

以下、本発明の実施例の特性について、本発明の範囲から外れる比較例と対比して本発明の効果について説明する。以下、実施例比較例の銅合金部材は、管材であるが、板材でも、その特性は基本的には同一である。   Hereinafter, the effects of the present invention will be described with respect to the characteristics of the examples of the present invention in comparison with comparative examples that are out of the scope of the present invention. Hereinafter, although the copper alloy member of an Example comparative example is a pipe material, the characteristic is fundamentally the same also with a board | plate material.

(残留炭素付着量測定方法)
銅部材への残留炭素付着量測定方法は以下の方法によった。本実施例における評価では銅合金管の状態で内表面について評価するので、銅合金管内表面に付着した残留炭素量を測定した。へキサンにて管内面の油分を抽出し、その後アセトンで管の内外面を洗浄し、乾燥させた。次に、管内面に塩酸と硝酸(1+1)の混酸を添加し、付着している炭素を抽出した。石英製ろ紙を用い、抽出した混酸を吸引ろ過し、炭素をろ紙上に捕集した。そして、80℃に設定してある乾燥機にろ紙を入れ、乾燥させた。乾燥後、デシケーター中で冷却した。炭素の定量は、燃焼赤外線吸収法により炭素・硫黄同時分析装置:堀場製作所製EMIA−610型(燃焼温度:1200℃、時間:100秒)により行った。
(Residual carbon adhesion measurement method)
The method for measuring the amount of residual carbon adhered to the copper member was as follows. In the evaluation in this example, since the inner surface was evaluated in the state of the copper alloy tube, the amount of residual carbon adhering to the inner surface of the copper alloy tube was measured. The oil on the inner surface of the tube was extracted with hexane, and then the inner and outer surfaces of the tube were washed with acetone and dried. Next, a mixed acid of hydrochloric acid and nitric acid (1 + 1) was added to the inner surface of the tube to extract the adhering carbon. The extracted mixed acid was suction filtered using quartz filter paper, and carbon was collected on the filter paper. And the filter paper was put into the dryer set to 80 degreeC, and it was made to dry. After drying, it was cooled in a desiccator. Carbon was quantified by a combustion infrared absorption method using a carbon / sulfur simultaneous analyzer: EMIA-610 type (combustion temperature: 1200 ° C., time: 100 seconds) manufactured by Horiba, Ltd.

(スケール付着評価方法)
スケール付着量の評価方法は以下のとおりである。NaHCO(0.018mol/L)とCaCl・2HO(0.009mol/L)の混合水溶液を20℃で調製し、Ca(HCOを含むスケール生成溶液とした。評価用部材の標準寸法として、板の場合幅60mm×長さ50mm×板厚0.5mmに調整したものを、管の場合外径9.52mm×長さ50mm×肉厚0.5mmのものをそれぞれ作製した。これにより、板材であっても、管材であっても、スケール生成溶液に接触する評価用部材の表面積を約6.0×10mmに統一することができる。前記スケール生成溶液100mlに前記作製した評価用部材を浸漬し、90℃まで昇温した。この操作を各サンプルにつき、その都度、新しいスケール生成液を用いて5回繰り返した。その後、液から取り出し、水洗乾燥後、秤量し、スケール付着前後の重量から、スケール付着量を算出した。評価用部材と同様に作製したりん脱酸銅管についても評価し、前記りん脱酸銅管のスケール付着量を基準として各材を比較評価した。
(Scale adhesion evaluation method)
The evaluation method of the amount of scale adhesion is as follows. A mixed aqueous solution of NaHCO 3 (0.018 mol / L) and CaCl 2 .2H 2 O (0.009 mol / L) was prepared at 20 ° C. to obtain a scale generation solution containing Ca (HCO 3 ) 2 . As the standard dimensions of the evaluation member, a plate adjusted to a width of 60 mm × a length of 50 mm × a plate thickness of 0.5 mm, and a tube having an outer diameter of 9.52 mm × a length of 50 mm × a thickness of 0.5 mm Each was produced. Thereby, the surface area of the member for evaluation which contacts a scale production | generation solution can be unified to about 6.0 * 10 < 3 > mm < 2 >, even if it is a board | plate material or a pipe material. The prepared member for evaluation was immersed in 100 ml of the scale generation solution, and the temperature was raised to 90 ° C. This operation was repeated 5 times for each sample using a new scale production solution. Then, it took out from the liquid, washed and dried, weighed, and calculated the amount of scale adhesion from the weight before and after the scale adhesion. The phosphorous deoxidized copper pipe produced in the same manner as the evaluation member was also evaluated, and the respective materials were compared and evaluated based on the amount of scale attached to the phosphorous deoxidized copper pipe.

前記りん脱酸銅の半分以下のスケール付着量であった場合を「○」と判定した。請求項1の構成の銅合金部材においては、スケール付着試験の結果が「○」となる。   The case where the amount of scale adhered was less than half that of the phosphorous deoxidized copper was judged as “◯”. In the copper alloy member having the structure according to claim 1, the result of the scale adhesion test is “◯”.

また、スケール付着試験におけるスケール付着量が前記りん脱酸銅の5/12以下であった場合を「◎」とした。   In addition, the case where the scale adhesion amount in the scale adhesion test was 5/12 or less of the phosphorous-deoxidized copper was designated as “◎”.

(I型孔食評価方法)
I型孔食評価方法は、りん脱酸銅管においてI型孔食の頻繁に発生する地区の地下水の水流を利用したフィールドテストを12ヶ月間行った。使用した水質成分の分析結果を下記表1に示す。評価材は外径12.7mm×肉厚0.71mm×長さ1mの銅合金管を使用した。1日に30分間だけ評価材に通水させ、それ以外は管内に水を滞留させたまま停止させるよう電磁バルブで制御した。管内流速は0.2m/秒となるよう流量計で調整した。
(Type I pitting corrosion evaluation method)
In the type I pitting corrosion evaluation method, a field test using a groundwater flow in a region where type I pitting corrosion frequently occurs in a phosphorus-deoxidized copper pipe was conducted for 12 months. The analysis results of the water quality components used are shown in Table 1 below. The evaluation material used was a copper alloy tube having an outer diameter of 12.7 mm, a thickness of 0.71 mm, and a length of 1 m. The evaluation material was controlled by an electromagnetic valve so that water was allowed to pass through the evaluation material only for 30 minutes per day, and the rest was retained while the water remained in the pipe. The flow rate in the tube was adjusted with a flow meter so as to be 0.2 m / sec.

併行してりん脱酸銅管を用いて評価し、12ヶ月経過後の調査の結果、最大孔食深さがりん脱酸銅管の半分以上であれば「×」、半分未満であれば「○」とした。最大孔食深さ評価は、12ヵ月経過後の銅合金管又はりん脱酸銅管を抜き取って管軸方向に半割し、内表面を酸洗浄した後に内表面を目視又は実体顕微鏡を使用して観察して確認される最も腐食の深そうなものを選んで断面観察し、腐食孔の底部と管外表面の残肉厚を、管の元肉厚(0.71mm)から差し引いた値とした。   At the same time, it was evaluated using a phosphorous deoxidized copper tube. As a result of the investigation after 12 months, "X" was obtained when the maximum pitting depth was more than half of the phosphorous deoxidized copper tube, and "○" " To evaluate the maximum pitting corrosion depth, the copper alloy tube or phosphorous-deoxidized copper tube after 12 months has been extracted and divided in the axial direction of the tube, and the inner surface is acid cleaned and then the inner surface is observed visually or using a stereomicroscope. The cross-section of the most corroded part that is observed and confirmed is observed, and the remaining thickness of the bottom of the corrosion hole and the outer surface of the pipe is subtracted from the original thickness of the pipe (0.71 mm) did.

Figure 2008274426
Figure 2008274426

(II型孔食評価方法)
前記の評価部材を用いて、II型孔食再現条件に調整された評価水を管内に通水することでII型孔食の発生状況を確認することによった。図14の流水試験装置を用い、下記表2に示す試験水をメインタンク内で60℃に加温し、1日に30分間だけ評価材に通水させ、それ以外は管内に水を滞留させたまま停止させた。管内流速は0.2m/秒となるように、流量計で調整した。pHと残留塩素を常時測定し、定量ポンプにより次亜塩素酸ナトリウムで残留塩素添加及び希硫酸でpHを調整した。循環して使用する試験水は1ヶ月に1回更液を実施し、12ヶ月まで試験を継続して供試材の腐食状況を調べた。併行してりん脱酸銅管を用いて評価した。12ヶ月経過後の調査の結果、最大孔食深さがりん脱酸銅管の半分以上であれば「××」、半分未満であれば「×」、1/3以下であれば「△」、1/4以下であれば「○」とした。最大孔食深さ評価は、12ヵ月経過後の銅合金管又はりん脱酸銅管を抜き取って管軸方向に半割し、内表面を酸洗浄した後に内表面を目視又は実体顕微鏡を使用して観察して確認される最も腐食の深そうなものを選んで断面観察し、腐食孔の底部と管外表面の残肉厚を、管の元肉厚(0.71mm)から差し引いた値とした。
(Type II pitting corrosion evaluation method)
It was based on checking the generation | occurrence | production situation of II type pitting corrosion by allowing the evaluation water adjusted to II type pitting corrosion reproduction conditions to flow in a pipe | tube using the said evaluation member. Using the running water test apparatus shown in FIG. 14, the test water shown in Table 2 below is heated to 60 ° C. in the main tank and allowed to pass through the evaluation material for 30 minutes a day, and otherwise, water is retained in the pipe. I stopped it. The flow rate in the tube was adjusted with a flow meter so as to be 0.2 m / sec. The pH and residual chlorine were constantly measured, and residual chlorine was added with sodium hypochlorite and the pH was adjusted with dilute sulfuric acid by a metering pump. The test water to be circulated was renewed once a month, and the test was continued until 12 months to examine the corrosion status of the specimen. In parallel, a phosphorus-deoxidized copper tube was used for evaluation. As a result of investigation after 12 months, "XX" if the maximum pitting depth is more than half of the phosphorous deoxidized copper tube, "X" if less than half, "△" if less than 1/3, If it was 1/4 or less, it was set as “◯”. To evaluate the maximum pitting corrosion depth, the copper alloy tube or phosphorous-deoxidized copper tube after 12 months has been extracted and divided in the axial direction of the tube, and the inner surface is acid cleaned and then the inner surface is observed visually or using a stereomicroscope. The cross-section of the most corroded part that is observed and confirmed is observed, and the remaining thickness of the bottom of the corrosion hole and the outer surface of the pipe is subtracted from the original thickness of the pipe (0.71 mm) did.

Figure 2008274426
Figure 2008274426

(降伏比評価)
降伏比の評価は、外径9.52mm×肉厚0.8mm×長さ300mmの評価対象の銅合金管について引張試験を行い、引張強さ及び耐力を測定することによって行った。引張試験の結果、耐力の引張強さに対する比を降伏比とし、降伏比が0.40以上であれば「◎」、0.30以上0.40未満であれば「○」、0.30未満であれば「×」とした。
(Yield ratio evaluation)
The yield ratio was evaluated by conducting a tensile test on a copper alloy tube to be evaluated having an outer diameter of 9.52 mm, a thickness of 0.8 mm, and a length of 300 mm, and measuring the tensile strength and the yield strength. As a result of the tensile test, the ratio of the yield strength to the tensile strength is defined as the yield ratio. If the yield ratio is 0.40 or more, “◎”, if it is 0.30 or more and less than 0.40, “◯”, less than 0.30. Then, it was set as “x”.

(曲げ加工評価)
曲げ加工性の評価は、ヘアピン曲げ加工用パイプベンダー(図15)を使用してヘアピン曲げ加工することによった。同じ寸法のりん脱酸銅管でマンドレル21の外径及びマンドレルの前後位置を調整して固定し、クランプ22の強度を調整することにより、ヘアピン曲げ内側に曲げしわの発生しないことを確認した後、評価対象の銅合金管について曲げ加工を実施した。
(Bending evaluation)
The evaluation of the bending workability was based on the hairpin bending process using a pipe bender for hairpin bending process (FIG. 15). After adjusting the outer diameter of the mandrel 21 and the front / rear position of the mandrel with the same size phosphorous deoxidized copper pipe and adjusting the strength of the clamp 22 to confirm that no bending wrinkles occur inside the hairpin bend The copper alloy pipe to be evaluated was bent.

マンドレルの前後位置を変更せずクランプによる挟み付け強度を変えても曲げしわが無くなくならなければ不良、クランプの調整により曲げしわの発生が無く、曲げられた場合は良好と判定した。   If the bending wrinkle does not disappear even if the clamping strength is changed without changing the mandrel front and back position, it is judged that the bending is not defective.

曲げ加工性評価には、内面溝付管転造加工評価において作製される外径が7mmの内面溝付管を供試材として用い、ヘアピン曲げの曲げピッチ23を21.0mmとした。   In the bending workability evaluation, an inner grooved tube having an outer diameter of 7 mm produced in the inner grooved tube rolling process evaluation was used as a test material, and the bending pitch 23 of hairpin bending was set to 21.0 mm.

(内面溝付管転造加工評価)
外径10.0mm×肉厚0.37mmの内面平滑素管を誘導加熱炉で焼鈍した後、超硬工具鋼製溝付プラグを用い、プラグ/ダイス縮径、その後の転造加工と、その後のプラグ無し/ダイス縮径により、外径7mm,溝底肉厚0.25mm,溝数65,フィン高さ0.23mm,ねじれ角35°,山頂角22°,溝底R0.04mmの内面溝付管を製作した。
(Inner grooved tube rolling process evaluation)
After annealing an inner smooth element tube with an outer diameter of 10.0 mm and a wall thickness of 0.37 mm in an induction heating furnace, using a carbide tool steel grooved plug, plug / die reduction, and subsequent rolling process, No plug / Dies reduced diameter, outer diameter 7mm, groove bottom thickness 0.25mm, number of grooves 65, fin height 0.23mm, helix angle 35 °, peak angle 22 °, groove bottom R0.04mm inner groove A tube was made.

連続転造加工中に溝プラグの欠損が生じると、管材料が破断することで発覚する。1コイルを転造するのに約4300mの長さを連続して転造加工し、最大5コイルまで同じ溝付プラグで連続して転造加工した。1コイルだけ転造加工できた(2コイル目で破断又はプラグ欠損発見)場合を「△」、3コイルまで転造加工できた場合を「○」、5コイルまで転造できた場合を「◎」とした。   When the groove plug is broken during the continuous rolling process, it is detected by the fracture of the pipe material. In order to roll one coil, a length of about 4300 m was continuously rolled, and up to 5 coils were continuously rolled with the same grooved plug. “△” indicates that only one coil has been rolled (breakage or plug defect found in the second coil), “○” indicates that it has been rolled to 3 coils, and “◎” indicates that it has been rolled to 5 coils. "

(脱亜鉛腐食評価試験)(JBMA T303,日本伸銅協会技術標準−黄銅棒の脱亜鉛試験方法)
試験水溶液には炭酸水素ナトリウム0.40g及び塩化ナトリウム29.22gを水に溶かし、1000mlとしたものを用いた。N:O:CO=[70±1.5]:[20±1.0]:[10±0.5]に混合したガスで飽和させた水溶液に白金電極と電極用試料をセットし、電流密度1.0mA/cmにて24時間定電流電解した。また、試験中、混合ガスは飽和状態を維持するため連続注入した。水溶液は恒温槽にて60±2℃に維持した。24時間の定電流電解後、試料を断面観察し、最大侵食深さ(=脱亜鉛深さ+溶解腐食深さ)を測定した。比較として測定したりん脱酸銅は、溶解腐食のみの作用で最大侵食深さ10μmであった。供試材において、最大侵食深さ15μm以上となったものを脱亜鉛腐食の影響ありとして「×」と判定した。
(Dezincification corrosion evaluation test) (JBMA T303, Japan Copper and Brass Association Technical Standard-Dezincification test method for brass bars)
As the test aqueous solution, a solution prepared by dissolving 0.40 g of sodium hydrogen carbonate and 29.22 g of sodium chloride in water to make 1000 ml was used. A platinum electrode and an electrode sample are set in an aqueous solution saturated with a gas mixed with N 2 : O 2 : CO 2 = [70 ± 1.5]: [20 ± 1.0]: [10 ± 0.5]. Then, constant current electrolysis was performed at a current density of 1.0 mA / cm 2 for 24 hours. During the test, the mixed gas was continuously injected to maintain a saturated state. The aqueous solution was maintained at 60 ± 2 ° C. in a thermostatic bath. After constant current electrolysis for 24 hours, the sample was observed in cross section, and the maximum erosion depth (= dezincing depth + dissolution corrosion depth) was measured. Phosphorus deoxidized copper measured as a comparison had a maximum erosion depth of 10 μm due to the action of only melt corrosion. Of the specimens, those having a maximum erosion depth of 15 μm or more were judged as “x” because of the influence of dezincification corrosion.

(第1の実施例)
この第1実施例は、Co,P,Zr,Snを単独で又は複合添加する場合であり、その組成と特性試験結果を下記表3(表3−1,3−2,3−3)に示す。
(First embodiment)
In this first example, Co, P, Zr, and Sn are added singly or in combination, and the composition and characteristic test results are shown in Table 3 (Tables 3-1, 3-2, and 3-3) below. Show.

Figure 2008274426
Figure 2008274426

Figure 2008274426
Figure 2008274426

Figure 2008274426
Figure 2008274426

以下の方法により、本発明の実施例及び本発明の範囲から外れる比較例について、スケール付着試験、I型/II型孔食試験、引張試験、及び曲げ加工試験を実施し、その特性を上記表3に示した。   A scale adhesion test, a type I / type II pitting corrosion test, a tensile test, and a bending work test were carried out for the examples of the present invention and comparative examples outside the scope of the present invention by the following methods. It was shown in 3.

Co、Zr、Snは純金属のペレット、Pの添加は15質量%Pの銅合金ペレットを、夫々鋳造工程において添加し、熱間押出し及び冷間圧延を経て各種試験用に冷間抽伸工程を繰り返し、所定の寸法になったものを焼鈍し、所定の長さに切断して供試材を作製した。   Co, Zr, and Sn are pure metal pellets, and P is added by 15% by mass P copper alloy pellets in the casting process, followed by hot drawing and cold rolling, and a cold drawing process for various tests. Repeatedly, a sample having a predetermined size was annealed and cut into a predetermined length to prepare a specimen.

残留炭素の付着量は、最終寸法まで冷間抽伸工程を経た銅合金管の内面をアセトン及びヘキサンで洗浄してから焼鈍したものを標準とし、これより残留炭素量を増やす場合は内面に抽伸油と同じ組成の油を塗布してから焼鈍して調整した。   The amount of residual carbon attached is standard after the cold drawing process of the copper alloy tube to the final dimension is cleaned with acetone and hexane and then annealed. After applying an oil having the same composition as in Example 1, annealing was performed.

表3に示すNo.2及び3は請求項1を満たす実施例である。表中の下線が引いてある項目は、本発明請求項1の範囲外の数値であることを示す。No.61は、りん脱酸銅管(JIS H3300 C1220−T)焼鈍材であり、スケール付着評価試験、I型/II型孔食試験における比較材として基準値を決めるのに用いられた。   No. shown in Table 3 Examples 2 and 3 satisfy the first aspect. Items underlined in the table indicate numerical values outside the scope of claim 1 of the present invention. No. 61 is a phosphorus deoxidized copper pipe (JIS H3300 C1220-T) annealed material, which was used to determine a reference value as a comparative material in the scale adhesion evaluation test and the I type / II type pitting corrosion test.

なお、No.21,45,49,53,57は結晶粒の調整ができなかった。No.61は微量のPのみでは効果がなかった。   In addition, No. No. 21, 45, 49, 53, 57 could not adjust the crystal grains. No. 61 was not effective with only a small amount of P.

実施例No.2及び3はいずれも、Coの含有量が請求の範囲内であり、耐スケール付着性及び管の曲げ加工性が優れた特性を示した。比較例No.1は、Coの含有量が請求の範囲を下回っており、CoとPとの化合物が少なく、スケール付着量が多かった。比較例No.4はCoの含有量が多く、スケールの付着量は少ないが、粗大晶出物が生成し、延性が低下し、曲げ加工性が低下した。   Example No. In both 2 and 3, the content of Co was within the scope of the claims, and the adhesion to scale and the bending workability of the tube were excellent. Comparative Example No. In No. 1, the Co content was below the claimed range, the compound of Co and P was small, and the amount of scale adhesion was large. Comparative Example No. No. 4 had a large Co content and a small amount of scale adhered, but a coarse crystallized product was formed, the ductility was lowered, and the bending workability was lowered.

実施例No.5乃至7はいずれも、Co及びPの含有量が請求の範囲内であり、耐スケール付着性、管の曲げ加工性、及び耐I型孔食性が優れた特性を示した。比較例8は、残留炭素量が多すぎるため、I型孔食がDHPの半分を超えた。比較例No.9はZrの含有量が請求項2の範囲を下回っており、II型孔食に対する耐食性を維持できなかった。これに対し、実施例No.10,11はZr含有量が請求項2を満足するため、スケール付着量が低下した。比較例No.12はZrの含有量が請求項2の範囲を超えているので、粗大晶出物が生成し、延性が低下して曲げ加工性が低下した。   Example No. In all of Nos. 5 to 7, the contents of Co and P were within the scope of the claims, and exhibited excellent properties of scale adhesion resistance, pipe bending workability, and I-type pitting corrosion resistance. In Comparative Example 8, since the amount of residual carbon was too much, the type I pitting corrosion exceeded half of DHP. Comparative Example No. No. 9 had a Zr content lower than the range of claim 2 and could not maintain the corrosion resistance against type II pitting corrosion. On the other hand, Example No. Nos. 10 and 11 had a Zr content satisfying claim 2, and the scale adhesion amount was reduced. Comparative Example No. In No. 12, since the content of Zr exceeds the range of claim 2, a coarse crystallized product was generated, the ductility was lowered and the bending workability was lowered.

実施例No.13乃至15はいずれも、Co,P及びZrの含有量が本発明の範囲内であり、本発明の請求項1を満足する銅合金部材の優れた耐スケール付着性を更に優れたものにし、且つ曲げ加工性及び耐II型孔食性が優れた特性を示した。比較例No.16は残留炭素量が多く、I型孔食深さが比較材DHPの半分を超えた。比較例17はSnの含有量が少なく、耐II型腐食の効果がなかった。実施例18,19は請求項3を満足するので、耐II型腐食性も優れていた。比較例20は加工硬化に伴い、曲げ加工時の工具破損が生じた。比較例21は結晶粒の調整ができなかった。比較例24は結晶粒の粗大化に伴うPの偏析により、耐II型孔食性が低下した。比較例25は請求項2を満足せず。Snの含有量が少ないため、耐II型孔食性が低い。比較例28は請求項2を満足せず、加工硬化で曲げ加工時に工具破損が生じた。比較例29は請求項3まで満足するが、請求項5は満足しないので、請求項5の元素添加による強度向上効果がない。比較例32は請求項3まで満足するが、粗大晶出物が生成し、伸びが出ず、曲げ加工性が劣化した。   Example No. In any of 13 to 15, the contents of Co, P and Zr are within the scope of the present invention, and the excellent scale adhesion resistance of the copper alloy member satisfying claim 1 of the present invention is further improved. In addition, it showed excellent bending workability and type II pitting corrosion resistance. Comparative Example No. No. 16 had a large amount of residual carbon, and the I-type pitting depth exceeded half of the comparative material DHP. In Comparative Example 17, the content of Sn was small and there was no effect of type II corrosion resistance. Since Examples 18 and 19 satisfied Claim 3, the type II corrosion resistance was also excellent. In Comparative Example 20, tool breakage occurred during bending with work hardening. In Comparative Example 21, the crystal grains could not be adjusted. In Comparative Example 24, the type II pitting corrosion resistance decreased due to segregation of P accompanying the coarsening of crystal grains. Comparative Example 25 does not satisfy claim 2. Since the Sn content is small, the type II pitting resistance is low. Comparative Example 28 did not satisfy claim 2, and tool breakage occurred during bending by work hardening. The comparative example 29 is satisfied up to claim 3, but is not satisfied with claim 5. Therefore, there is no strength improvement effect by adding the element of claim 5. Comparative Example 32 was satisfied up to claim 3, but a coarse crystallized product was produced, elongation did not occur, and bending workability deteriorated.

これに対し、各請求項の実施例は、その請求項で含有する元素の添加効果が得られた。その他の実施例及び比較例は、上記各実施例及び比較例の組み合わせである。   On the other hand, the effect of adding the element contained in the claim was obtained in the example of each claim. Other examples and comparative examples are combinations of the above examples and comparative examples.

(第2の実施例)
この第2の実施例は、請求項4に示すように,Znを含有するものである。下記表4は第2実施例の銅合金管の組成を示す。以下の方法により、請求項4に示す要件を満たすものと満たさないものとで、溝付管転造加工性評価及び脱亜鉛腐食評価試験を実施した。
Znの純金属ペレットを鋳造工程において添加し、熱間押出し及び冷間圧延を経て、各種試験用に冷間抽伸工程を繰り返し、所定の寸法になったものを焼鈍し、所定の長さに切断して作製した。
(Second embodiment)
As shown in claim 4, the second embodiment contains Zn. Table 4 below shows the composition of the copper alloy tube of the second embodiment. According to the following methods, the grooved tube rolling processability evaluation and the dezincification corrosion evaluation test were performed with and without the requirements shown in claim 4.
Add pure metal pellets of Zn in the casting process, go through hot extrusion and cold rolling, repeat the cold drawing process for various tests, anneal to a predetermined size, cut to a predetermined length And produced.

Figure 2008274426
Figure 2008274426

上記表4に示す実施例No.64乃至67は本発明の請求項4を満たす実施例である。表4中の下線が引いてある項目は、本発明の請求項4の範囲外の数値であることを示す。比較例No.69は、りん脱酸銅管(JIS H3300 C1220−T)の焼鈍材であり、スケール付着評価試験、I型/II型孔食試験における比較材として基準値を決めるのに用いられた。   Example No. shown in Table 4 above. Reference numerals 64 to 67 are embodiments that satisfy claim 4 of the present invention. Items underlined in Table 4 indicate numerical values outside the scope of claim 4 of the present invention. Comparative Example No. 69 is an annealed material of a phosphorus deoxidized copper pipe (JIS H3300 C1220-T), and was used to determine a reference value as a comparative material in a scale adhesion evaluation test and a type I / type II pitting corrosion test.

Znを添加していない比較例No.62及びZnの含有量が請求の範囲に満たない比較例No.63は、他の元素の影響で溝転造加工時の溝付プラグの摩擦が大きくなり、1コイル目を終えて、2コイル目の途中で管が破断した。また、溝プラグに欠損が生じていた。   Comparative Example No. with no added Zn Comparative Example No. 62 with Zn content of less than the claims. In No. 63, friction of the grooved plug at the time of groove rolling was increased due to the influence of other elements, and the first coil was finished and the tube broke in the middle of the second coil. In addition, the groove plug was deficient.

Znを微量添加した実施例No.64及び65は、その効果で3コイル目まで連続して転造でき、4コイル目途中で管が破断した。更に実施例No.66乃至68では更にZnを添加し、5コイル目を終えて破断を生じなかった。しかし,比較例No.68は、Znの含有量が多かったため、脱亜鉛腐食評価において脱亜鉛腐食の兆候が認められ、本発明用途においては実用的でないと判断された。   Example No. with a small amount of Zn added. 64 and 65 could be rolled continuously up to the third coil due to the effect, and the tube broke in the middle of the fourth coil. Furthermore, Example No. In Nos. 66 to 68, Zn was further added, and the fifth coil was finished and no fracture occurred. However, Comparative Example No. No. 68 had a large Zn content, and therefore, a sign of dezincification corrosion was observed in the dezincification corrosion evaluation, and it was judged to be impractical for use in the present invention.

(第3の実施例)
次に、本発明の熱交換器の耐久性の効果を実証する実施例を本発明の範囲から外れる比較例と比較して説明する。
(1)二重管式熱交換器の形態
水流管:外径12.7mm、肉厚0.8mm、長さ8m
冷媒管:検知構造2重管、2本水管内に挿入
外管:外径5.5mm、底肉厚0.5mm、山高さ0.25mm、山数50
内管:外径4.0mm、肉厚0.5mm
構造:ドラム巻きタイプ
図16はこの二重管式熱交換器の概略図を示す。
(2)実施例と比較例
実施例:水流管及び冷媒管の外管に表3の実施例30の組成の銅合金管を使用した。
比較例:全てりん脱酸銅(H3300 C1220−T)
(3)試験条件
水流量:1.0リットル/分
冷媒流量:1.3kg/分
水入り側温度:20℃
水出側温度 :85℃
(4)試験の評価方法
実施例及び比較材の熱交換器について、試験期間前後で熱交換器の圧力損失を測定した。試験後の圧力損失が試験期間前の圧力損失と比較して倍になったものを不良品、ならなかったものを良品とした。
(5−1)試験条件と結果(スケール付着性評価)
試験水中のCaCO濃度:800CaCOmg/リットル
試験時間:350時間
(Third embodiment)
Next, an example demonstrating the durability effect of the heat exchanger of the present invention will be described in comparison with a comparative example that is out of the scope of the present invention.
(1) Form of double tube heat exchanger Water flow tube: outer diameter 12.7 mm, wall thickness 0.8 mm, length 8 m
Refrigerant tube: detection structure double tube, inserted into two water tubes Outer tube: outer diameter 5.5mm, bottom thickness 0.5mm, peak height 0.25mm, number of peaks 50
Inner tube: Outer diameter 4.0mm, wall thickness 0.5mm
Structure: Drum winding type FIG. 16 shows a schematic view of this double tube heat exchanger.
(2) Examples and Comparative Examples: Copper alloy tubes having the composition of Example 30 in Table 3 were used as outer tubes of water flow tubes and refrigerant tubes.
Comparative Example: All phosphorus deoxidized copper (H3300 C1220-T)
(3) Test conditions Water flow rate: 1.0 liter / min Refrigerant flow rate: 1.3 kg / min Water side temperature: 20 ° C
Water temperature: 85 ° C
(4) Evaluation method of test About the heat exchanger of an Example and a comparative material, the pressure loss of the heat exchanger was measured before and after the test period. A product in which the pressure loss after the test was doubled compared with the pressure loss before the test period was regarded as a defective product, and a product that did not become a good product.
(5-1) Test conditions and results (scale adhesion evaluation)
CaCO 3 concentration of the test water: 800CaCO 3 mg / liter test time: 350 hours

Figure 2008274426
Figure 2008274426

実施例70及び71はスケールの付着が進まず、圧力損失が大きく上昇しなかった。スケールの溜まり易いと考えられる内面溝付管においても、圧力損失の上昇は深刻なほどではなかった。これに対し、比較例72及び73は、スケール付着防止効果がなく、350時間の試験期間を経て圧力損失は倍以上に上昇した。水流管が内面溝付管である比較例73は圧力損失が大きく上昇した。   In Examples 70 and 71, scale adhesion did not progress and the pressure loss did not increase significantly. The increase in pressure loss was not serious even in the internally grooved tube, which was thought to be prone to scale accumulation. On the other hand, Comparative Examples 72 and 73 did not have an effect of preventing scale adhesion, and the pressure loss increased more than doubled after a 350-hour test period. In Comparative Example 73, in which the water flow tube was an internally grooved tube, the pressure loss increased significantly.

(5−2)試験条件と結果(耐I型孔食性評価)
稼動条件:第1実施例と同じフィールドテストによる
試験水:表1の地下水(第1実施例)
試験時間:12ヶ月
評価方法:断面観察による最大腐食深さ
(5-2) Test conditions and results (I-type pitting corrosion resistance evaluation)
Operating conditions: Test water by the same field test as in the first example: Ground water in Table 1 (first example)
Test time: 12 months Evaluation method: Maximum corrosion depth by cross-sectional observation

Figure 2008274426
Figure 2008274426

実施例70及び71は内表面の残留炭素量が少ないのでI型孔食の進行が少なかった。これに対し,比較例72及び73は、そもそも耐孔食性を有さないりん脱酸銅で、且つその残留炭素付着量が臨界値5mg/mを超えているので、孔食の進行が大きかった。 In Examples 70 and 71, since the amount of residual carbon on the inner surface was small, the progression of type I pitting corrosion was small. On the other hand, Comparative Examples 72 and 73 are phosphorous deoxidized copper which does not have pitting corrosion resistance in the first place, and since the residual carbon adhesion amount exceeds a critical value of 5 mg / m 2 , the progress of pitting corrosion is large. It was.

(5−3)試験条件と結果(耐II型孔食性評価)
稼動条件:第1実施例と同じ流水試験による
試験水:表2の試験水(第1実施例)
試験時間:12ヶ月
評価方法:断面観察による最大腐食深さ
(5-3) Test conditions and results (type II pitting corrosion resistance evaluation)
Operating conditions: The same running water test as in the first example Test water: Test water in Table 2 (first example)
Test time: 12 months Evaluation method: Maximum corrosion depth by cross-sectional observation

Figure 2008274426
Figure 2008274426

実施例70及び71は合金の組成が耐II型孔食性を有しており、II型孔食の進行が少なかった。比較例72及び73は、耐孔食性を有しておらず、孔食の進行が大きかった。   In Examples 70 and 71, the alloy composition had type II pitting corrosion resistance, and the progression of type II pitting corrosion was small. Comparative Examples 72 and 73 did not have pitting corrosion resistance, and the progress of pitting corrosion was large.

(第4の実施例)
次に、本発明の水流管及び冷媒管の構成からなる熱交換器において、熱交換性能及び耐久性の効果を実証する実施例を本発明の範囲から外れる比較例と比較して説明する。
(1)二重管式熱交換器の形態
水流管:外径12.7mm、肉厚0.8mm、長さ8m、流路断面積A
冷媒管:検知構造2重管、1本水管内に挿入
外管:底肉厚0.5mm、山高さ0.25mm、山数50
内管:肉厚0.5mm、流路断面積B
構造:ドラム巻きタイプ
図17はこの二重管式熱交換器の概略図を示す。
(2)実施例及び比較例
水流管及び冷媒管の外管:表3の実施例30の組成の銅合金管
冷媒管の内管:JIS H3300 C1220 りん脱酸銅管
(3)試験条件
水流量:1.0リットル/分
水入り側温度:20℃
(4−1)試験の評価方法(熱交換性能評価)
実施例及び比較例の試験期間前の熱交換器について、熱交換性能を測定した。実施例及び比較例の二重管式熱交換器の、水流管内に水を流し、冷媒管の内部に水流管の水の流れと逆方向に超臨界状態のCOを流して、出水(湯)側の水の温度を測定した。そして、流路断面積の変化が、熱交換器の熱交換性能に及ぼす影響を測定した。図18はこの熱交換性能試験の試験装置を示す。出湯側の水の温度が80℃以上であった場合を◎、70℃以上80℃未満であった場合を○、70℃未満であった場合を×とした。
(5−1)試験条件と結果
入り側冷媒圧力:9MPa
冷媒流量:1.0kg/分
(Fourth embodiment)
Next, an example demonstrating the effects of heat exchange performance and durability in a heat exchanger composed of a water flow pipe and a refrigerant pipe of the present invention will be described in comparison with a comparative example that is out of the scope of the present invention.
(1) Form of double tube heat exchanger Water flow tube: outer diameter 12.7 mm, wall thickness 0.8 mm, length 8 m, flow path cross-sectional area A
Refrigerant tube: Detection structure double tube, inserted into one water tube Outer tube: Bottom wall thickness 0.5mm, peak height 0.25mm, number of peaks 50
Inner tube: wall thickness 0.5mm, channel cross-sectional area B
Structure: Drum winding type FIG. 17 shows a schematic view of this double tube heat exchanger.
(2) Examples and Comparative Examples Outer pipe of water flow pipe and refrigerant pipe: Inner pipe of copper alloy pipe refrigerant pipe having composition of Example 30 in Table 3: JIS H3300 C1220 Phosphorus deoxidized copper pipe (3) Test conditions Water flow rate : 1.0 liter / min Water-filled side temperature: 20 ° C
(4-1) Test evaluation method (heat exchange performance evaluation)
About the heat exchanger before the test period of an Example and a comparative example, the heat exchange performance was measured. In the double-tube heat exchangers of the example and the comparative example, water is allowed to flow in the water flow pipe, supercritical CO 2 is allowed to flow in the refrigerant pipe in the direction opposite to the water flow in the water flow pipe, ) Side water temperature was measured. And the influence which the change of a flow-path cross-sectional area exerts on the heat exchange performance of a heat exchanger was measured. FIG. 18 shows a test apparatus for this heat exchange performance test. The case where the temperature of the tapping water was 80 ° C. or higher was rated as “◎”, the case where it was 70 ° C. or higher and lower than 80 ° C. was marked as “◯”, and the case where it was lower than 70 ° C. was marked as “X”.
(5-1) Test conditions and results Entry-side refrigerant pressure: 9 MPa
Refrigerant flow rate: 1.0 kg / min

Figure 2008274426
Figure 2008274426

上記表8に示す実施例No.75乃至81は本発明の請求項7の範囲を満たす実施例である。比較例74及び実施例75乃至81は、出湯温度が70℃以上であり、比較例82に比して優れた熱交換性を示した。   Example No. shown in Table 8 above. 75 to 81 are embodiments which satisfy the scope of claim 7 of the present invention. Comparative Example 74 and Examples 75 to 81 had a hot water temperature of 70 ° C. or higher, and showed excellent heat exchange properties as compared with Comparative Example 82.

上記表8に示す実施例No.75乃至79は本発明の請求項8の範囲を満たす実施例である。比較例74、実施例75乃至79は、出湯温度が80℃以上であり、比較例80乃至82に比して優れた熱交換性を示した。   Example No. shown in Table 8 above. 75 to 79 are embodiments which satisfy the scope of claim 8 of the present invention. Comparative Example 74 and Examples 75 to 79 had a tapping temperature of 80 ° C. or higher, and exhibited excellent heat exchange properties as compared with Comparative Examples 80 to 82.

(4−2)試験の評価方法(スケール付着性評価)
実施例及び比較例の熱交換器について、試験時間前後の圧力損失を測定した。350時間の試験時間経過後の圧力損失が試験時間前の圧力損失と比較して1.5倍を超えたものを不良品、ならなかったものを良品とした。更に、700時間の試験時間経過後の圧力損失が試験時間前の圧力損失と比較して2.0倍を超えたものを不良品、ならなかったものを良品とした。
(5−2)試験条件と結果
冷媒流量:1.3kg/分
水出側温度:85℃
試験水中のCaCO濃度:800CaCOmg/リットル
試験時間:350時間、700時間
(4-2) Test evaluation method (scale adhesion evaluation)
About the heat exchanger of an Example and a comparative example, the pressure loss before and behind test time was measured. A product whose pressure loss after a test time of 350 hours exceeded 1.5 times the pressure loss before the test time was regarded as a defective product, and a product that did not become a defective product. Further, a product whose pressure loss after the test time of 700 hours exceeded 2.0 times the pressure loss before the test time was regarded as a defective product and a product that did not become a defective product.
(5-2) Test conditions and results Refrigerant flow rate: 1.3 kg / min Water discharge side temperature: 85 ° C
CaCO 3 concentration of the test water: 800CaCO 3 mg / l Test time: 350 hours, 700 hours

Figure 2008274426
Figure 2008274426

上記表9に示す実施例No.75乃至81は本発明の請求項7の範囲を満たす実施例である。実施例75乃至81及び比較例82はスケールの付着が進まず、圧力損失が大きく上昇しなかった。スケールの溜まり易いと考えられる内面溝付管においても、圧力損失の上昇は深刻なほどではなかった。これに対し、比較例74は、スケール付着防止効果がなく、350時間の試験時間を経て圧力損失は1.5倍を超え、700時間の試験時間を経て圧力損失は2.0倍以上に上昇した。   Example No. shown in Table 9 above. 75 to 81 are embodiments which satisfy the scope of claim 7 of the present invention. In Examples 75 to 81 and Comparative Example 82, scale adhesion did not progress and the pressure loss did not increase significantly. The increase in pressure loss was not serious even in the internally grooved tube, which was thought to be prone to scale accumulation. On the other hand, Comparative Example 74 has no scale adhesion preventing effect, the pressure loss exceeds 1.5 times after 350 hours of test time, and the pressure loss increases to 2.0 times or more after 700 hours of test time. did.

(a)、(b)は熱交換部分の水流路を構成する部材が管で(水流管)その外面に冷媒管を1本以上巻きつけて前記水流管の内面と外面とで熱交換する熱交換器を示す図である。(A), (b) is a member that constitutes the water flow path of the heat exchange portion is a tube (water flow tube). Heat that exchanges heat between the inner surface and the outer surface of the water flow tube by winding one or more refrigerant tubes around the outer surface. It is a figure which shows an exchanger. (a)乃至(c)は水流管の内部に冷媒管が存在し、水を前記冷媒管で直接加熱する熱交換器を示す図である。(A) thru | or (c) is a figure which shows the heat exchanger which a refrigerant | coolant pipe | tube exists in the inside of a water flow pipe, and heats water directly with the said refrigerant | coolant pipe | tube. 内部に複雑な経路を有した箱型筐体の水流部と、前記箱型筐体に巻きつけるなどして接触させた冷媒管とで、水流部の内面と外面で熱交換する熱交換器を示す図である。A heat exchanger that exchanges heat between the inner surface and the outer surface of the water flow portion with a water flow portion of the box-shaped housing having a complicated path inside and a refrigerant pipe that is brought into contact with the box-shaped housing by wrapping or the like. FIG. 水流管内面に多数の溝を形成した内面溝付管を示す図である。It is a figure which shows the inner surface grooved pipe | tube which formed many groove | channels in the water flow pipe inner surface. (a)乃至(g)は冷媒管を、大径管と、前記大径管の内部に配置される小径管とからなる二重管とし、更に前記大径管と前記小径管との間に、大径管外部を流通する水又は小径管内部を流通する冷媒の漏洩を検知する構造を設けた熱交換器を示す図である。In (a) to (g), the refrigerant pipe is a double pipe composed of a large diameter pipe and a small diameter pipe disposed inside the large diameter pipe, and further between the large diameter pipe and the small diameter pipe. It is a figure which shows the heat exchanger which provided the structure which detects the leakage of the water which distribute | circulates the outside of a large diameter pipe, or the refrigerant | coolant which distribute | circulates the inside of a small diameter pipe. 小径管の外側に直線状又は螺旋状のフィンを設けたものを示す図である。It is a figure which shows what provided the linear or spiral fin on the outer side of a small diameter pipe | tube. (a)乃至(e)はバッフルスペーサーを示す図である。(A) thru | or (e) are figures which show a baffle spacer. インナー材を示す図である。It is a figure which shows an inner material. (a)乃至(c)はインナー材を示す図である。(A) thru | or (c) is a figure which shows an inner material. バッフルリングを示す図である。It is a figure which shows a baffle ring. バッフルリング及びスペーサーを示す図である。It is a figure which shows a baffle ring and a spacer. コルゲート加工したものを示す図である。It is a figure which shows what corrugated. 水流管の外側に設けた溝に冷媒管が嵌合されている熱交換器を示す図である。It is a figure which shows the heat exchanger with which the refrigerant pipe is fitted by the groove | channel provided in the outer side of the water flow pipe. 流水試験装置を示す図である。It is a figure which shows a flowing water test apparatus. (a)乃至(c)はヘアピン曲げ加工評価装置を示す図である。(A) thru | or (c) is a figure which shows a hairpin bending process evaluation apparatus. 二重管式熱交換器の概略図である。It is the schematic of a double tube type heat exchanger. 二重管式熱交換器の概略図である。It is the schematic of a double pipe type heat exchanger. 熱交換性能試験の試験装置である。This is a test apparatus for heat exchange performance test.

符号の説明Explanation of symbols

1:伝熱管、2:大径管、3:小径管、4:外管、5:内管、6:空間部、7:外側流路、8:内面溝付管、9:箱型筐体、10:熱交換器、10a:二重管式熱交換器、11:冷媒管、110:検知溝付二重管式冷媒管、110a:漏洩検知溝、12:水流管、13:バッフルスペーサー、14:インナー材、15:バッフルリング、16:スペーサー、17:コルゲート管、18:溝、21:マンドレル、22:クランプ、23:曲げピッチ、24:圧縮機、25:蒸発器、26:膨張弁、81:溝、82:フィン、83:捩れ溝、84:ストレート溝、85:交叉溝 1: Heat transfer tube, 2: Large diameter tube, 3: Small diameter tube, 4: Outer tube, 5: Inner tube, 6: Space part, 7: Outer channel, 8: Inner grooved tube, 9: Box-type housing 10: heat exchanger, 10a: double tube heat exchanger, 11: refrigerant tube, 110: double tube refrigerant tube with detection groove, 110a: leakage detection groove, 12: water flow tube, 13: baffle spacer, 14: inner material, 15: baffle ring, 16: spacer, 17: corrugated pipe, 18: groove, 21: mandrel, 22: clamp, 23: bending pitch, 24: compressor, 25: evaporator, 26: expansion valve , 81: groove, 82: fin, 83: twisted groove, 84: straight groove, 85: crossing groove

Claims (15)

Coを、母相中に固溶体、単体及び/又は化合物として、0.02乃至0.5質量%(化合物の場合はCo換算値)含有し、Pを、母相中に固溶体、単体及び/又は化合物として、0.005乃至0.2質量%(化合物の場合はP換算値)含有し、残部がCuと不可避的不純物からなり、表面の残留炭素量が10mg/m以下であることを特徴とする銅合金部材。 Co is contained in the matrix as a solid solution, simple substance and / or compound in an amount of 0.02 to 0.5% by mass (in the case of a compound, Co equivalent value), and P is contained in the matrix as a solid solution, simple substance and / or The compound contains 0.005 to 0.2% by mass (in the case of a compound, converted to P), the balance is made of Cu and inevitable impurities, and the amount of residual carbon on the surface is 10 mg / m 2 or less. A copper alloy member. 更に、Zrを、母相中に固溶体、単体及び/又は化合物として、0.005乃至0.3質量%(化合物の場合はZr換算値)含有することを特徴とする請求項1に記載の銅合金部材。 The copper according to claim 1, further comprising 0.005 to 0.3% by mass (in the case of a compound, Zr converted value) of Zr as a solid solution, a simple substance and / or a compound in the matrix. Alloy member. 更に、Snを0.03乃至3.0質量%含有し、平均結晶粒径が30μm以下であることを特徴とする請求項1又は2に記載の銅合金部材。 The copper alloy member according to claim 1, further comprising 0.03 to 3.0 mass% of Sn and having an average crystal grain size of 30 μm or less. 更に、Znを0.03乃至5.0質量%含有することを特徴とする請求項1乃至3のいずれか1項に記載の銅合金部材。 The copper alloy member according to any one of claims 1 to 3, further comprising 0.03 to 5.0 mass% of Zn. 更に、Ni:0.005乃至0.2質量%、Mg:0.005乃至0.2質量%、Fe:0.005乃至0.2質量%からなる群から選択された少なくとも1種以上の元素を総計0.005乃至0.5質量%含有し、平均結晶粒径が10μm以下であることを特徴とする請求項1乃至4のいずれか1項に記載の銅合金部材。 Furthermore, at least one element selected from the group consisting of Ni: 0.005 to 0.2 mass%, Mg: 0.005 to 0.2 mass%, and Fe: 0.005 to 0.2 mass% The copper alloy member according to any one of claims 1 to 4, wherein a total amount of 0.005 to 0.5 mass% is contained and an average crystal grain size is 10 µm or less. 水が流通する水流路と、冷媒が流通する冷媒管とを有し、前記冷媒管内の冷媒により前記水流路の水を加熱する熱交換器において、水と接触する前記水流路及び/又は前記冷媒管の少なくとも一部が請求項1乃至5のいずれか1項に記載の銅合金部材で構成されていることを特徴とする熱交換器。 In the heat exchanger which has a water flow path through which water flows and a refrigerant pipe through which a refrigerant flows, and heats the water in the water flow path with the refrigerant in the refrigerant pipe, the water flow path and / or the refrigerant in contact with water A heat exchanger, wherein at least a part of the pipe is made of the copper alloy member according to any one of claims 1 to 5. 前記水流路の流路断面積をA、前記冷媒管の流路断面積をBとするとき、前記水流路断面積の前記冷媒管流路断面積に対する比A/Bが1.0乃至12.3であることを特徴とする請求項6に記載の熱交換器。 When the channel cross-sectional area of the water channel is A and the channel cross-sectional area of the refrigerant pipe is B, the ratio A / B of the water channel cross-sectional area to the refrigerant pipe channel cross-sectional area is 1.0 to 12. The heat exchanger according to claim 6, wherein the heat exchanger is 3. 前記水流路の流路断面積をA、前記冷媒管の流路断面積をBとするとき、前記水流路断面積の前記冷媒管流路断面積に対する比A/Bが1.0乃至3.5であることを特徴とする請求項6に記載の熱交換器。 When the channel cross-sectional area of the water channel is A and the channel cross-sectional area of the refrigerant pipe is B, the ratio A / B of the water channel cross-sectional area to the refrigerant pipe channel cross-sectional area is 1.0 to 3. The heat exchanger according to claim 6, wherein the heat exchanger is 5. 前記水流路が、水流管であることを特徴とする請求項6に記載の熱交換器。 The heat exchanger according to claim 6, wherein the water flow path is a water flow pipe. 前記冷媒管が、前記水流管の内部に配置されていることを特徴とする請求項9に記載の熱交換器。 The heat exchanger according to claim 9, wherein the refrigerant pipe is disposed inside the water flow pipe. 前記水流管が、内面溝付管であることを特徴とする請求項10に記載の熱交換器。 The heat exchanger according to claim 10, wherein the water flow pipe is an internally grooved pipe. 前記冷媒管が、その外面を前記水が流れる大径管と、前記大径管内内に配置され内部を前記冷媒が通流する小径管とを有することを特徴とする請求項6乃至11のいずれか1項に記載の熱交換器。 12. The refrigerant pipe according to claim 6, wherein the refrigerant pipe has a large-diameter pipe through which the water flows, and a small-diameter pipe arranged in the large-diameter pipe and through which the refrigerant flows. Or a heat exchanger according to claim 1. 前記大径管と前記小径管との間に、前記水又は前記冷媒の漏洩を検知する検知部が設けられていることを特徴とする請求項12に記載の熱交換器。 The heat exchanger according to claim 12, wherein a detection unit that detects leakage of the water or the refrigerant is provided between the large-diameter pipe and the small-diameter pipe. 前記小径管の内面に管軸方向に平行又はねじれ角を有する複数の溝が形成されていることを特徴とする請求項12又は13に記載の熱交換器。 The heat exchanger according to claim 12 or 13, wherein a plurality of grooves having a parallel or twist angle in a tube axis direction are formed on an inner surface of the small diameter tube. 前記冷媒管における大径管の外表面の少なくとも一部にフィンが形成されていることを特徴とする請求項12乃至14のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 12 to 14, wherein fins are formed on at least a part of an outer surface of the large-diameter pipe in the refrigerant pipe.
JP2008094307A 2007-03-31 2008-03-31 Copper alloy member and heat exchanger Active JP4921410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094307A JP4921410B2 (en) 2007-03-31 2008-03-31 Copper alloy member and heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007095904 2007-03-31
JP2007095904 2007-03-31
JP2008094307A JP4921410B2 (en) 2007-03-31 2008-03-31 Copper alloy member and heat exchanger

Publications (2)

Publication Number Publication Date
JP2008274426A true JP2008274426A (en) 2008-11-13
JP4921410B2 JP4921410B2 (en) 2012-04-25

Family

ID=40052747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094307A Active JP4921410B2 (en) 2007-03-31 2008-03-31 Copper alloy member and heat exchanger

Country Status (1)

Country Link
JP (1) JP4921410B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151332A (en) * 2008-12-24 2010-07-08 Toshiba Carrier Corp Heat exchanger and heat pump type water heater
JP2011169581A (en) * 2010-02-22 2011-09-01 Sang Pil Choi Water cooler/heater
JP2012042125A (en) * 2010-08-19 2012-03-01 Corona Corp Heat exchanger for hot water supply
JP2012149315A (en) * 2011-01-20 2012-08-09 Kobe Steel Ltd Copper alloy tube
WO2013014899A1 (en) * 2011-07-22 2013-01-31 パナソニック株式会社 Heat exchanger and heat pump using same
EP2813792A1 (en) * 2013-06-14 2014-12-17 Mitsubishi Electric Corporation Twisted tube heat exchanger and method for manufacturing twisted tube heat exchanger
CN104278170A (en) * 2013-07-01 2015-01-14 株式会社科倍可菱材料 Phosphorus deoxidized copper for heat exchanger
JP2015232415A (en) * 2014-06-09 2015-12-24 株式会社コベルコ マテリアル銅管 Heat transfer pipe for overcooling double-pipe heat exchanger
JP2016180170A (en) * 2015-03-25 2016-10-13 株式会社Uacj Copper alloy tube
US11300360B2 (en) 2020-01-24 2022-04-12 Hamilton Sundstrand Corporation Pressure vessel with barrier passage containing fire suppressant elements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140305A (en) * 1996-11-13 1998-05-26 Sumitomo Light Metal Ind Ltd Production of copper tube for cold water resistant type pitting
JP2001247923A (en) * 2000-03-07 2001-09-14 Sanbo Copper Alloy Co Ltd Pitting corrosion resistant copper base alloy pipe material
JP2004360974A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Heat exchanging device and heat pump water heater
JP2006046888A (en) * 2004-07-02 2006-02-16 Kobelco & Materials Copper Tube Inc Composite heat exchanger tube
JP2006170571A (en) * 2004-12-17 2006-06-29 Hitachi Cable Ltd Double multitubular heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140305A (en) * 1996-11-13 1998-05-26 Sumitomo Light Metal Ind Ltd Production of copper tube for cold water resistant type pitting
JP2001247923A (en) * 2000-03-07 2001-09-14 Sanbo Copper Alloy Co Ltd Pitting corrosion resistant copper base alloy pipe material
JP2004360974A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Heat exchanging device and heat pump water heater
JP2006046888A (en) * 2004-07-02 2006-02-16 Kobelco & Materials Copper Tube Inc Composite heat exchanger tube
JP2006170571A (en) * 2004-12-17 2006-06-29 Hitachi Cable Ltd Double multitubular heat exchanger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151332A (en) * 2008-12-24 2010-07-08 Toshiba Carrier Corp Heat exchanger and heat pump type water heater
JP2011169581A (en) * 2010-02-22 2011-09-01 Sang Pil Choi Water cooler/heater
JP2012042125A (en) * 2010-08-19 2012-03-01 Corona Corp Heat exchanger for hot water supply
JP2012149315A (en) * 2011-01-20 2012-08-09 Kobe Steel Ltd Copper alloy tube
CN103562665B (en) * 2011-07-22 2015-10-21 松下电器产业株式会社 Heat exchanger and employ the heat pump of this heat exchanger
CN103562665A (en) * 2011-07-22 2014-02-05 松下电器产业株式会社 Heat exchanger and heat pump using same
JPWO2013014899A1 (en) * 2011-07-22 2015-02-23 パナソニック株式会社 Heat exchanger and heat pump using the same
WO2013014899A1 (en) * 2011-07-22 2013-01-31 パナソニック株式会社 Heat exchanger and heat pump using same
EP2813792A1 (en) * 2013-06-14 2014-12-17 Mitsubishi Electric Corporation Twisted tube heat exchanger and method for manufacturing twisted tube heat exchanger
CN104278170A (en) * 2013-07-01 2015-01-14 株式会社科倍可菱材料 Phosphorus deoxidized copper for heat exchanger
JP2015232415A (en) * 2014-06-09 2015-12-24 株式会社コベルコ マテリアル銅管 Heat transfer pipe for overcooling double-pipe heat exchanger
JP2016180170A (en) * 2015-03-25 2016-10-13 株式会社Uacj Copper alloy tube
US11300360B2 (en) 2020-01-24 2022-04-12 Hamilton Sundstrand Corporation Pressure vessel with barrier passage containing fire suppressant elements

Also Published As

Publication number Publication date
JP4921410B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4921410B2 (en) Copper alloy member and heat exchanger
JP5260109B2 (en) Copper alloy member and heat exchanger
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
TWI396757B (en) High strength and high thermal conductivity copper alloy tube
KR101053007B1 (en) Copper Alloy Pipes for Heat Exchangers
JP6266737B2 (en) Brass alloy with excellent resistance to stress corrosion cracking, processed parts and wetted parts
JP2015178679A (en) Copper alloy for heat exchanger tube
TWI657155B (en) Free cutting copper alloy and method for manufacturing free cutting copper alloy
JP2009235428A (en) Copper alloy member and heat-exchanger
JP2006274313A (en) Copper alloy tube for heat exchanger and manufacturing method therefor
JP2010156002A (en) Copper alloy tube, method for manufacturing the same, and heat pump water heater
JP2001247923A (en) Pitting corrosion resistant copper base alloy pipe material
JP4818179B2 (en) Copper alloy tube
JP2013512341A (en) Copper alloy and heat exchange tube
JP2010163665A (en) Copper alloy member and heat exchanger
KR101911214B1 (en) High corrosion resistance copper pipe
JP2008174785A (en) Copper alloy tube for heat exchanger
US11655530B2 (en) Copper alloy tube for heat exchanger with excellent thermal conductivity and breaking strength and method of manufacturing the same
TWI614353B (en) Cold/hot water supply copper alloy seamless tube
JP2015010265A (en) Corrosion-resistant oxygen-free copper alloy pipe
JP2009249699A (en) Method for producing sacrificial material for aluminum alloy cladding material for heat exchanger, and method for producing aluminum alloy cladding material for heat exchanger
WO2024075797A1 (en) Corrosion-resistant copper alloy, copper alloy pipe, and heat exchanger
JP2007263526A (en) Heat exchanger with superior scale adhesion resistance
JP2011225989A (en) Copper alloy tube
JP5208562B2 (en) Seamless pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

R150 Certificate of patent or registration of utility model

Ref document number: 4921410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250