JP5208562B2 - Seamless pipe - Google Patents

Seamless pipe Download PDF

Info

Publication number
JP5208562B2
JP5208562B2 JP2008097842A JP2008097842A JP5208562B2 JP 5208562 B2 JP5208562 B2 JP 5208562B2 JP 2008097842 A JP2008097842 A JP 2008097842A JP 2008097842 A JP2008097842 A JP 2008097842A JP 5208562 B2 JP5208562 B2 JP 5208562B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
content
tube
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008097842A
Other languages
Japanese (ja)
Other versions
JP2009249675A (en
Inventor
哲也 安藤
博一 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKEI COPPER TUBE CO., LTD.
Sumitomo Light Metal Industries Ltd
Original Assignee
SUMIKEI COPPER TUBE CO., LTD.
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKEI COPPER TUBE CO., LTD., Sumitomo Light Metal Industries Ltd filed Critical SUMIKEI COPPER TUBE CO., LTD.
Priority to JP2008097842A priority Critical patent/JP5208562B2/en
Publication of JP2009249675A publication Critical patent/JP2009249675A/en
Application granted granted Critical
Publication of JP5208562B2 publication Critical patent/JP5208562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Description

本発明は、空調機、冷凍機等に用いられる熱交換器用の伝熱管、特に、ヘアピン管、内面溝付管の製造に用いられる継目無管用銅合金及び該銅合金製の継目無管に関する。   TECHNICAL FIELD The present invention relates to a heat transfer tube for a heat exchanger used in an air conditioner, a refrigerator, etc., and more particularly to a seamless pipe copper alloy used for manufacturing a hairpin tube and an inner grooved tube, and a seamless tube made of the copper alloy.

従来より、ルームエアコン、パッケージエアコン等の空調機、冷凍機等に用いられる熱交換器の伝熱管には、継目無管が多く採用されており、強度や加工性、伝熱性等の諸物性、並びに材料及び加工コストにバランスの取れたりん脱酸銅管(JIS C1220T)が使用されてきた。   Conventionally, many heat exchanger tubes used in air conditioners such as room air conditioners and packaged air conditioners, and heat exchangers used in refrigerators, etc. have been adopted seamless pipes, and various physical properties such as strength, workability, and heat transfer properties, In addition, a phosphorus-deoxidized copper pipe (JIS C1220T) having a balanced material and processing cost has been used.

近年、これらの熱交換器では、重量の低減又はコストダウンの要求により、継目無管の薄肉化が必要となってきた。   In recent years, in these heat exchangers, it has become necessary to reduce the thickness of seamless pipes due to demands for weight reduction or cost reduction.

一方、冷媒変更に伴う冷媒圧力の増加や、地球温暖化ガスである冷媒ガスの排出抑制の観点から、配管材料には、高い信頼性が求められるようになってきた。つまり、肉厚が薄くても信頼性が高い配管材料が、要求されている。そして、このような要求を満たすためには、銅合金には、加工性に優れ且つ強度が高いことが求められる。また、該銅合金は、伝熱管や冷却管の原材料となるため、該銅合金には、熱伝導性が高いことも求められる。   On the other hand, piping materials have been required to have high reliability from the viewpoints of an increase in refrigerant pressure accompanying the change of refrigerant and suppression of discharge of refrigerant gas, which is a global warming gas. That is, there is a demand for a piping material with high reliability even if the wall thickness is thin. And in order to satisfy | fill such a request | requirement, it is calculated | required that a copper alloy is excellent in workability and high intensity | strength. In addition, since the copper alloy is a raw material for heat transfer tubes and cooling tubes, the copper alloy is also required to have high thermal conductivity.

しかし、りん脱酸銅では、重量の低減又はコストダウンを目的として薄肉化すると、耐圧強度が低くなり過ぎるため、信頼性が低くなり、薄肉化と高信頼性の要求を両立させることは著しく困難であった。   However, with phosphorous-deoxidized copper, if the thickness is reduced for the purpose of reducing weight or cost, the pressure strength becomes too low, so the reliability is lowered, and it is extremely difficult to achieve both the reduction in thickness and the requirement for high reliability. Met.

ところで、熱交換器用の伝熱管には、ロウ付けによる強度低下が小さいことも要求される。すなわち、熱交換器の種類によっては、組み立てられる際に、配管自体が、800℃以上の高温に曝されるため、ロウ付けの前後において、強度変化が小さいことが要求される。   By the way, a heat exchanger tube for a heat exchanger is also required to have a small decrease in strength due to brazing. That is, depending on the type of heat exchanger, the pipe itself is exposed to a high temperature of 800 ° C. or higher when assembled, so that it is required that the strength change is small before and after brazing.

しかし、りん脱酸銅は、高温に曝されると、粒成長が起こり、それを起因とする強度及び延性の低下が起こる。この現象は、信頼性を低くする原因となるため、好ましくない。   However, when phosphorus deoxidized copper is exposed to high temperatures, grain growth occurs, resulting in a decrease in strength and ductility. This phenomenon is not preferable because it causes low reliability.

そこで、薄肉化ができ且つ信頼性を高くするため、あるいは、ロウ付けによる強度低下の問題を解決するための対策合金として、析出強化型合金及び固溶強化型合金が提案されている。   Accordingly, precipitation strengthened alloys and solid solution strengthened alloys have been proposed as countermeasure alloys for reducing the thickness and increasing the reliability, or for solving the problem of strength reduction due to brazing.

具体的には、析出強化型合金としては、例えば、特許文献1には、重量%でCo:0.02〜0.2%、P:0.01〜0.05%を含有し、残りがCu及び不可避不純物からなり、前記不可避不純物として含まれる酸素含有量を50ppm以下に規制した組成の銅合金が、また、特許文献2には、ロウ付け熱交換器に用いられ、再結晶温度が高く、優れた伝導率を有する銅合金において、該合金は、0.1重量%以上且つ0.3重量以下のクロムを含むことを特徴とする銅合金が開示されている。また、特許文献3には、継目無管製造用銅合金におけるFe、Zr、P及びOの含有量を、Fe:0.005〜0.8%、P:0.01〜0.026%、Zr:0.005〜0.3%、O:3〜30ppmとし、これ以外の合金成分は実質的に含有しない継目無管用銅合金が開示されている。また、固溶強化型合金としては、特許文献4には、Sn:0.1乃至1.0質量%、P:0.005乃至0.1質量%、O:0.005質量%以下及びH:0.0002質量%以下を含有し、残部がCu及び不可避不純物からなる組成を有し、平均結晶粒径が30μm以下である銅合金が開示されている。また、特許文献5には、Sn:0.1乃至1.0質量%、P:0.005乃至0.1質量%、O:0.005質量%以下及びH:0.0002質量%以下を含有し、残部がCu及び不可避的不純物からなるビレットを、780乃至900℃に加熱して熱間押出加工をした後、750℃以上の温度から冷却することにより、100℃までの平均冷却速度が1.5℃/秒以上となるように冷却し、その後、加工率92%以下の圧延加工及び加工率40%以下の抽伸加工を順次行うことにより得られる熱交換器用銅合金平滑管及び熱交換器用銅合金内面溝付管が開示されている。   Specifically, as a precipitation strengthening type alloy, for example, Patent Document 1 contains Co: 0.02 to 0.2% by weight%, P: 0.01 to 0.05%, and the rest A copper alloy composed of Cu and inevitable impurities and having a composition in which the oxygen content contained as the inevitable impurities is regulated to 50 ppm or less is used in Patent Document 2 for brazing heat exchangers and has a high recrystallization temperature. A copper alloy having excellent conductivity is disclosed, wherein the alloy contains 0.1 wt% or more and 0.3 wt% or less of chromium. Moreover, in patent document 3, content of Fe, Zr, P, and O in the copper alloy for seamless pipe manufacture is made into Fe: 0.005-0.8%, P: 0.01-0.026%, A seamless pipe copper alloy containing Zr: 0.005 to 0.3% and O: 3 to 30 ppm and containing substantially no other alloy components is disclosed. Moreover, as a solid solution strengthening type alloy, in patent document 4, Sn: 0.1 thru | or 1.0 mass%, P: 0.005 thru | or 0.1 mass%, O: 0.005 mass% or less and H : A copper alloy containing 0.0002% by mass or less, the balance being Cu and inevitable impurities, and an average crystal grain size of 30 μm or less is disclosed. Patent Document 5 includes Sn: 0.1 to 1.0 mass%, P: 0.005 to 0.1 mass%, O: 0.005 mass% or less, and H: 0.0002 mass% or less. The billet containing Cu and the inevitable impurities contained therein is heated to 780 to 900 ° C. and subjected to hot extrusion, and then cooled from a temperature of 750 ° C. or higher, so that the average cooling rate up to 100 ° C. Copper alloy smooth tube for heat exchanger and heat exchange obtained by cooling to 1.5 ° C / second or higher, and then performing rolling with a processing rate of 92% or less and drawing with a processing rate of 40% or less A dexterous copper alloy internally grooved tube is disclosed.

特開2000−1728号公報(特許請求の範囲)JP 2000-1728 A (Claims) 特開平10−168531号公報(特許請求の範囲)JP-A-10-168531 (Claims) 特開昭54−92516号公報(特許請求の範囲)JP-A-54-92516 (Claims) 特開2003−268467号公報(特許請求の範囲)JP 2003-268467 A (Claims) 特開2004−292917号公報(特許請求の範囲)JP 2004-292917 A (Claims)

ところが、引用文献1〜5記載の銅合金であっても、加工性及び強度の両方を高くすることは難しく、薄肉化したときの信頼性が不十分であるという問題があった。   However, even with the copper alloys described in the cited references 1 to 5, it is difficult to increase both the workability and the strength, and there is a problem that the reliability when thinned is insufficient.

すなわち、熱交換器用伝熱管においては、析出強化はロウ付け強度低下を少なくする効果はあるが、ロウ付け温度によっては析出元素の再固溶が起こるため、十分な強度を確保できないという問題があり、このような再固溶のために、粒成長が更に促進されるという問題があった。   In other words, in heat exchanger tubes for heat exchangers, precipitation strengthening has the effect of reducing a decrease in brazing strength, but depending on the brazing temperature, there is a problem that sufficient strength cannot be ensured because re-dissolution of the precipitated elements occurs. There is a problem that the grain growth is further promoted due to such re-dissolution.

また、析出強化は、延性を低下させるため、加工性が悪くなるという問題があった。特に、上述の熱交換器用伝熱管は、熱交換性能を向上させるため、管内面に冷間で転造加工を行って、らせん状の溝を形成させることが一般的である。このようならせん溝の形状は、熱交換器の高性能化の要求に従って、難加工性の形状になってきており、このような溝形状を冷間での転造加工で形成させることが難しくなってきている。従って、冷間での転造加工性は、熱交換器用銅合金材料にとって、非常に重要な要素となっている。   Moreover, since precipitation strengthening reduces ductility, there was a problem that workability deteriorated. In particular, in order to improve the heat exchange performance of the heat exchanger tube for heat exchanger described above, it is common to form a helical groove by cold rolling on the inner surface of the tube. The shape of the spiral groove has become difficult to process in accordance with the demand for higher performance of the heat exchanger, and it is difficult to form such a groove shape by cold rolling. It has become to. Therefore, cold rolling processability is a very important factor for the copper alloy material for heat exchangers.

また、熱交換器用伝熱管は、熱交換器に組付けられる際に、ヘアピン曲げと称する強度の曲げ加工が部分的に行われる。このようなヘアピン曲げ加工は、熱交換器のコンパクト化により、その曲げ半径がますます小さくなってきていると共に、銅管の曲げ部の表面しわが発生する等が問題視されてきており、ヘアピン曲げ加工性も、熱交換器用銅合金材料にとって非常に重要な要素となっている(参考文献:特開2004−322141号公報「ヘアピン曲げ銅管および銅管のヘアピン曲げ加工方法」)。   Moreover, when the heat exchanger tube for heat exchanger is assembled to the heat exchanger, a bending process with a strength called hairpin bending is partially performed. In such hairpin bending processing, the bend radius is becoming smaller and smaller due to the compact heat exchanger, and surface wrinkling of the bent portion of the copper tube has been regarded as a problem. Bending workability is also a very important factor for copper alloy materials for heat exchangers (reference document: Japanese Patent Application Laid-Open No. 2004-322141 “Hairpin bending copper tube and hairpin bending method of copper tube”).

析出強化元素を添加することは、このような転造加工性やヘアピン曲げ加工性に悪影響を及ぼすので、単純に適用することには問題があった。   The addition of a precipitation strengthening element has an adverse effect on such rolling processability and hairpin bending processability, so that there is a problem in applying it simply.

一方、固溶強化の場合には、十分な強度を維持するためには、析出元素と比較して、多量の添加が必要となり、その結果、熱伝導性が低下するという問題があった。熱伝導性を確保するために更に薄肉化することも考えられるが、十分な強度を確保することが困難であり、実用的ではない。   On the other hand, in the case of solid solution strengthening, in order to maintain sufficient strength, a large amount of addition is required as compared with the precipitated elements, and as a result, there is a problem that the thermal conductivity is lowered. Although it is conceivable to further reduce the thickness in order to ensure thermal conductivity, it is difficult to ensure sufficient strength and is not practical.

すなわち、析出強化又は固溶強化のみでは、近年の熱交換器用伝熱管の高性能化の要求を、十分に満足させることはできなかった。   That is, only the precipitation strengthening or the solid solution strengthening could not sufficiently satisfy the recent demand for higher performance of heat exchanger tubes for heat exchangers.

従って、本発明は、加工性に優れ、強度が高く、ロウ付けによる強度低下が少なく、且つ、熱伝導性が高い継目無管用銅合金及び継目無管を提供することにある。また、本発明は、特に、冷間での難加工性の転造加工性及び強度のヘアピン曲げ加工性に優れ、強度が高く、ロウ付けによる強度低下が少なく、且つ、熱伝導性が高い継目無管用銅合金及び継目無管を提供することにある。   Accordingly, it is an object of the present invention to provide a seamless pipe copper alloy and a seamless pipe that are excellent in workability, high in strength, less in strength reduction due to brazing, and high in thermal conductivity. In addition, the present invention has a seam that is particularly excellent in cold-working rolling processability and strength hairpin bending processability, high in strength, less in strength reduction due to brazing, and high in thermal conductivity. The object is to provide a copper alloy for seamless pipes and a seamless pipe.

なお、特許文献6には、Fe、Cr、Mn、Ni、Ag、Zn、Sn、Al、Si、Pb、Mg、Te、Zr、B及びTiから選ばれる1種又は2種以上の元素を合わせて0.01〜0.5重量%含み、残部Cu及び不可避不純物からなる銅合金が開示されている。しかし、特許文献6に記載されている銅合金は、溶接管用の銅合金である。また、固溶強化元素及び析出強化元素を合わせて添加することを含むものではあるが、上述した高性能の熱交換器用伝熱管に要求される導電率及び加工性をバランス良く合わせ持った銅合金材料を実現することはできない。   In Patent Document 6, one or more elements selected from Fe, Cr, Mn, Ni, Ag, Zn, Sn, Al, Si, Pb, Mg, Te, Zr, B, and Ti are combined. In other words, a copper alloy containing 0.01 to 0.5% by weight, the balance being Cu and inevitable impurities is disclosed. However, the copper alloy described in Patent Document 6 is a copper alloy for welded pipes. In addition, a copper alloy that includes a solid solution strengthening element and a precipitation strengthening element in combination, but has a well-balanced conductivity and workability required for the above-described high performance heat exchanger tubes. Material cannot be realized.

特開平6−58688号公報(特許請求の範囲)JP-A-6-58688 (Claims)

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、銅合金に、特定の元素を特定の含有量で含有させることにより、加工性、特に、冷間での転造加工性及びヘアピン曲げ加工性に優れ、強度が高く、ロウ付けによる強度低下が少なく、且つ、熱伝導性が高い銅合金が得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have made a copper alloy contain a specific element at a specific content, thereby improving workability, particularly in cold conditions. It has been found that a copper alloy having excellent rolling processability and hairpin bending processability, high strength, little strength decrease due to brazing, and high thermal conductivity can be obtained, and the present invention has been completed.

すなわち、本発明は、銅合金を加工して得られる銅合金製の継目無管であり、
該銅合金は、Snと、0〜0.1質量%のZnと、0.01〜0.06質量%のZrと、0.004〜0.04質量%のPと、を含有し、残部Cu及び不可避不純物からなり、
該銅合金中のSn、Zn及びZrの含有量が、下記式(1)(2)及び(3)
(1)A+B≦0.60
(2)0.4≦A+B+2C≦0.7
(3)0.41≦A+B
(式中、AはSnの含有量(質量%)を示し、BはZnの含有量(質量%)を示し、CはZrの含有量(質量%)を示す。)
のいずれも満たすこと、
を特徴とする継目無管を提供するものである。
That is, the present invention is a copper alloy seamless pipe obtained by processing a copper alloy,
The copper alloy contains Sn, 0 to 0.1% by mass of Zn, 0.01 to 0.06 % by mass of Zr, and 0.004 to 0.04% by mass of P, and the balance Consisting of Cu and inevitable impurities,
The contents of Sn, Zn and Zr in the copper alloy are the following formulas (1) , (2) and (3) :
(1) A + B ≦ 0.60
(2) 0.4 ≦ A + B + 2C ≦ 0.7
(3) 0.41 ≦ A + B
(In the formula, A represents the Sn content (mass%), B represents the Zn content (mass%), and C represents the Zr content (mass%).)
Meeting any of the
A seamless tube characterized by the above is provided.

本発明によれば、加工性に優れ、強度が高く、ロウ付けによる強度低下が少なく、且つ、熱伝導性が高い継目無管用銅合金及び継目無管を提供することができうる。また、本発明によれば、特に、冷間での難加工性の転造加工性及び強度のヘアピン曲げ加工性に優れ、強度が高く、ロウ付けによる強度低下が少なく、且つ、熱伝導性が高い継目無管用銅合金及び継目無管を提供することができる。   According to the present invention, it is possible to provide a seamless pipe copper alloy and a seamless pipe that are excellent in workability, high in strength, little in strength reduction due to brazing, and high in thermal conductivity. Further, according to the present invention, in particular, it is excellent in cold-working rolling processability and strength hairpin bending processability, high in strength, less in strength reduction due to brazing, and has high thermal conductivity. High seamless copper alloys and seamless pipes can be provided.

本発明の継目無管は、銅合金を加工して得られる銅合金製の継目無管であり、
該銅合金は、Snと、0〜0.1質量%のZnと、0.01〜0.1質量%のZrと、を含有し、残部Cu及び不可避不純物からなり、
該銅合金中のSn、Zn及びZrの含有量が、下記式(1)及び(2):
(1)A+B≦0.60
(2)0.4≦A+B+2C≦0.7
(式中、AはSnの含有量(質量%)を示し、BはZnの含有量(質量%)を示し、CはZrの含有量(質量%)を示す。)
のいずれも満たす継目無管である。
The seamless pipe of the present invention is a copper alloy seamless pipe obtained by processing a copper alloy,
The copper alloy contains Sn, 0 to 0.1% by mass of Zn, and 0.01 to 0.1% by mass of Zr, and consists of the balance Cu and inevitable impurities,
The contents of Sn, Zn and Zr in the copper alloy are the following formulas (1) and (2):
(1) A + B ≦ 0.60
(2) 0.4 ≦ A + B + 2C ≦ 0.7
(In the formula, A represents the Sn content (mass%), B represents the Zn content (mass%), and C represents the Zr content (mass%).)
Both are seamless pipes.

本発明の継目無管に係る該銅合金は、Snと、0〜0.1質量%のZnと、0.01〜0.1質量%のZrと、を含有し、残部Cu及び不可避不純物からなる銅合金であり、
該銅合金中のSn、Zn及びZrの含有量が、下記式(1)及び(2):
(1)A+B≦0.60
(2)0.4≦A+B+2C≦0.7
(式中、AはSnの含有量(質量%)を示し、BはZnの含有量(質量%)を示し、CはZrの含有量(質量%)を示す。)
のいずれもを満たす継目無管用の銅合金である。
そして、本発明の継目無管に係る該銅合金は、好ましくは、更に下記式(3):
(3)0.40≦A+B
(式中、A、B及びCは、前記と同義である。)
を満たし、且つ、Zrの含有量が0.06質量%以下である継目無管用の銅合金である。
The copper alloy according to the seamless pipe of the present invention contains Sn, 0 to 0.1% by mass of Zn, and 0.01 to 0.1% by mass of Zr, from the remaining Cu and inevitable impurities. Copper alloy
The contents of Sn, Zn and Zr in the copper alloy are the following formulas (1) and (2):
(1) A + B ≦ 0.60
(2) 0.4 ≦ A + B + 2C ≦ 0.7
(In the formula, A represents the Sn content (mass%), B represents the Zn content (mass%), and C represents the Zr content (mass%).)
It is a copper alloy for seamless pipes that satisfies any of the above.
The copper alloy according to the seamless pipe of the present invention is preferably further represented by the following formula (3):
(3) 0.40 ≦ A + B
(In the formula, A, B, and C are as defined above.)
And the Zr content is 0.06% by mass or less and is a copper alloy for seamless pipes.

本発明の継目無管に係る該銅合金は、Sn及びZrを必須元素として含有し、Znを任意元素として含有し、残部Cu及び不可避不純物からなる銅合金である。   The copper alloy according to the seamless pipe of the present invention is a copper alloy containing Sn and Zr as essential elements, Zn as an optional element, and the balance being Cu and inevitable impurities.

本発明の継目無管において、Sn及びZnには、固溶強化により銅合金の強度を向上させる効果及び常温での延性を向上させる効果がある。また、これらの元素の場合、比較的低温で合金化できるので、製造上有利である。   In the seamless pipe of the present invention, Sn and Zn have the effect of improving the strength of the copper alloy by solid solution strengthening and the effect of improving the ductility at room temperature. In addition, these elements are advantageous in production because they can be alloyed at a relatively low temperature.

本発明の継目無管において、Zrには、析出強化により銅合金の強度を向上させる効果がある。また、Zrには、ロウ付け温度が過剰に高くならない前提では、Zr析出物が残存し、結晶粒の粗大化を抑制することにより、強度低下を小さくする効果がある。   In the seamless pipe of the present invention, Zr has the effect of improving the strength of the copper alloy by precipitation strengthening. Further, in Zr, on the premise that the brazing temperature does not become excessively high, Zr precipitates remain, and there is an effect of reducing the strength reduction by suppressing the coarsening of crystal grains.

本発明の継目無管に係る該銅合金中、Zrの含有量は、0.01〜0.1質量%である。銅合金中のZrの含有量が、0.01質量%未満だと、結晶粒粗大化を抑制する効果が小さく、ロウ付けによる強度低下が大きくなり、また、Sn及びZnによる固溶強化とZrによる析出強化を合わせても銅合金の強化が不十分となる。一方、銅合金中のZrの含有量が、0.1質量%を超えると、過剰な析出硬化が起こり、加工性を低下させる原因となる。特に、冷間での転造加工性が悪くなる。その結果、管内面のらせん溝形状の転写が不十分となり、C1220で得られたような伝熱性能が得られ難くなる。   In the copper alloy according to the seamless pipe of the present invention, the content of Zr is 0.01 to 0.1% by mass. When the content of Zr in the copper alloy is less than 0.01% by mass, the effect of suppressing the coarsening of crystal grains is small, the strength decrease due to brazing becomes large, and the solid solution strengthening by Sn and Zn and Zr Even if precipitation strengthening due to is combined, strengthening of the copper alloy becomes insufficient. On the other hand, if the content of Zr in the copper alloy exceeds 0.1% by mass, excessive precipitation hardening occurs, causing workability to deteriorate. In particular, the rolling processability in the cold is deteriorated. As a result, the transfer of the spiral groove shape on the inner surface of the tube becomes insufficient, making it difficult to obtain the heat transfer performance obtained with C1220.

本発明の継目無管に係る該銅合金中のZnは、Snに比べて、延性を向上させる効果が小さく、また、過剰なZnは応力腐食感受性を高めるため、本発明の継目無管に係る該銅合金では、Snを主として、Znの含有量は0.1質量%以下とする。銅合金中のZnの含有量が0.1質量%を超えると、応力腐食感受性が高くなり過ぎるので好ましくない。また、本発明の継目無管に係る該銅合金では、Snは必須元素であるが、Znは任意元素なので、本発明の継目無管に係る該銅合金中のZnの含有量は、0〜0.1質量%である。また、本発明の継目無管に係る該銅合金は、他の不可避的不純物の含有量の一般的な上限である0.01質量%より、多い量のZnを含有してもよいので、溶解原料としてCu−Zn系銅合金のスクラップを使用することができる。   Zn in the copper alloy according to the seamless pipe of the present invention has a smaller effect of improving ductility than Sn, and excess Zn increases the stress corrosion susceptibility, so that it relates to the seamless pipe of the present invention. In the copper alloy, the Sn content is mainly 0.1% by mass or less. If the Zn content in the copper alloy exceeds 0.1% by mass, the stress corrosion sensitivity becomes too high, which is not preferable. Further, in the copper alloy according to the seamless pipe of the present invention, Sn is an essential element, but Zn is an optional element, so the content of Zn in the copper alloy according to the seamless pipe of the present invention is from 0.1% by mass. In addition, the copper alloy according to the seamless pipe of the present invention may contain a larger amount of Zn than 0.01% by mass, which is a general upper limit of the content of other inevitable impurities. Cu-Zn copper alloy scrap can be used as a raw material.

本発明の継目無管に係る該銅合金中のSnの含有量をA(質量%)、Znの含有量をB(質量%)、Zrの含有量をC(質量%)とすると、本発明の継目無管に係る該銅合金では、A+Bは0.60以下であること、すなわち、下記式(1):
(1)A+B≦0.60
を満たし、
好ましくはA+Bは0.55以下であること、すなわち、下記式(1a):
(1a)A+B≦0.55
を満たす。A+Bが上記範囲内にあることより、熱伝導率が高くなる。一方、A+Bが、0.60を超えると、熱伝導性が低くなり、熱交換器用伝熱管として適用できなくなる。
In the copper alloy according to the present invention, the Sn content is A (mass%), the Zn content is B (mass%), and the Zr content is C (mass%). In the copper alloy according to the seamless pipe, A + B is 0.60 or less, that is, the following formula (1):
(1) A + B ≦ 0.60
The filling,
A + B is preferably 0.55 or less, that is, the following formula (1a):
(1a) A + B ≦ 0.55
Meet. Since A + B is within the above range, the thermal conductivity is increased. On the other hand, when A + B exceeds 0.60, the thermal conductivity becomes low, and it cannot be applied as a heat exchanger tube for a heat exchanger.

本発明の継目無管に係る該銅合金では、好ましくは更にA+Bが0.40以上であること、すなわち、下記式(3):
(3)0.40≦A+B
を満たし、且つ、Zrの含有量が0.06質量%以下であり、
特に好ましくは更にA+Bが0.43以上であること、すなわち、下記式(3a):
(3a)0.43≦A+B
を満たし、且つ、Zrの含有量が0.06質量%以下である。本発明の継目無管に係る該銅合金のように、Zr等の析出強化元素を含む銅合金の場合、時効析出によって強度が向上する一方、延性低下を引き起こす。本発明の継目無管に係る該銅合金では、延性の低下による加工性の阻害を抑えるべく、Zrの含有量の上限を0.1質量%としてはいるが、厳しい加工性が必要となる場合、例えば、厳しい曲げ条件によるヘアピン曲げ加工や、高性能化の要求により難加工の内面溝形状を転造加工によって作製する場合などにおいては、十分な加工性を維持するために、SnやZnを積極的に添加することが望ましい。Sn及びZnは、前記のように、常温での延性を向上させる効果があり、Zrの含有量が0.01〜0.06質量%の場合、Zrの含有量を0.06質量%以下とし、且つ、Sn及びZnの合計量を0.40質量%以上とすることにより、加工性改善効果を奏する。
In the copper alloy according to the seamless pipe of the present invention, preferably, A + B is 0.40 or more, that is, the following formula (3):
(3) 0.40 ≦ A + B
And the Zr content is 0.06% by mass or less,
Particularly preferably, A + B is 0.43 or more, that is, the following formula (3a):
(3a) 0.43 ≦ A + B
And the Zr content is 0.06% by mass or less. In the case of a copper alloy containing a precipitation strengthening element such as Zr like the copper alloy according to the seamless pipe of the present invention, the strength is improved by aging precipitation, but the ductility is lowered. In the copper alloy according to the seamless pipe of the present invention, the upper limit of the content of Zr is set to 0.1% by mass in order to suppress inhibition of workability due to a decrease in ductility, but severe workability is required. For example, in the case of hairpin bending processing under severe bending conditions, or in the case where a difficult-to-process inner surface groove shape is formed by rolling processing due to a demand for high performance, Sn or Zn is used in order to maintain sufficient workability. It is desirable to add it positively. As described above, Sn and Zn have an effect of improving ductility at normal temperature. When the content of Zr is 0.01 to 0.06% by mass, the content of Zr is set to 0.06% by mass or less. And the workability improvement effect is produced by making the total amount of Sn and Zn 0.40 mass% or more.

本発明の継目無管に係る該銅合金では、A+B+2Cは0.4〜0.7であること、すなわち、下記式(2):
(1)0.4≦A+B+2C≦0.7
を満たす。
銅合金中のZrの含有量が0.1質量%以下であっても、Sn及びZnの含有量が多過ぎると、加工硬化が著しくなり、加工性、特に、冷間での引き抜き加工性が悪くなり、焼き鈍し工程の追加等のコスト増大を招く要因となるので、A+B+2Cを0.7以下とする必要がある。
また、A+B+2Cを0.4以上とし、且つ、Zrの含有量を0.01質量%以上とすることにより、厳しい加工性が必要となる場合でも、継目無管の強度を最低限維持することができる。一方、A+B+2Cが0.4未満だと、継目無管の強度が不足する。
In the copper alloy according to the seamless pipe of the present invention, A + B + 2C is 0.4 to 0.7, that is, the following formula (2):
(1) 0.4 ≦ A + B + 2C ≦ 0.7
Meet.
Even if the content of Zr in the copper alloy is 0.1% by mass or less, if the content of Sn and Zn is too large, the work hardening becomes remarkable, and the workability, in particular, the cold drawability is improved. It becomes worse and causes an increase in cost such as the addition of an annealing process, so A + B + 2C needs to be 0.7 or less.
Further, by setting A + B + 2C to be 0.4 or more and the Zr content to be 0.01% by mass or more, even when severe workability is required, the strength of the seamless pipe can be kept to a minimum. it can. On the other hand, if A + B + 2C is less than 0.4, the strength of the seamless pipe is insufficient.

本発明の継目無管に係る該銅合金中のPの含有量は、0.004〜0.040質量%であることが好ましく、0.015〜0.030質量%であることが特に好ましい。銅合金が、P元素を0.004質量%以上含有することにより、材料中の脱酸が十分であることが示される。そして、銅合金中のPの含有量が、多すぎると、銅合金の熱伝導性が低くなるので、銅合金中のPの含有量は、0.040質量%以下が好ましい。   The content of P in the copper alloy according to the seamless pipe of the present invention is preferably 0.004 to 0.040% by mass, and particularly preferably 0.015 to 0.030% by mass. It is shown that the deoxidation in the material is sufficient when the copper alloy contains 0.004% by mass or more of the P element. And if there is too much content of P in a copper alloy, since the heat conductivity of a copper alloy will become low, 0.040 mass% or less is preferable as content of P in a copper alloy.

本発明の継目無管に係る該銅合金は、冷間での加工性に優れ、強度が高く、且つ、熱伝導性が高いので、管内面に溝が形成される熱交換器用伝熱管の製造用に好適に用いられる。そのため、該銅合金を加工して得られる本発明の継目無管は、冷間での転造加工に優れている。   The copper alloy according to the seamless pipe of the present invention is excellent in cold workability, has high strength, and has high thermal conductivity, and therefore, manufacture of a heat exchanger tube for a heat exchanger in which a groove is formed on the inner surface of the pipe. It is suitably used for. Therefore, the seamless pipe of the present invention obtained by processing the copper alloy is excellent in cold rolling.

本発明の継目無管は、管内面に溝が形成されている内面溝付管であり、熱交換器用の伝熱管として用いられる。   The seamless tube of the present invention is an internally grooved tube having a groove formed on the tube inner surface, and is used as a heat transfer tube for a heat exchanger.

本発明の継目無管は、常法に従って、溶解、鋳造し、所定の元素が所定の含有量で配合されているビレットを得る鋳造工程を行い、次いで、造塊されたビレットを均質化する均質化処理→熱間押出加工→圧延加工又は引抜加工等の冷間加工の順に行い、次いで、冷間で転造加工を行い、管内面にらせん状の溝を形成させ、次いで、時効処理することにより製造される。また、必要に応じて、上記工程内に、中間焼鈍、溶体化処理又は焼入れ処理を加えることもできる。   The seamless pipe of the present invention is subjected to a casting process to obtain a billet in which a predetermined element is blended in a predetermined content by melting and casting in accordance with a conventional method, and then homogenizing the agglomerated billet. Processing → hot extrusion → cold processing such as rolling or drawing, then cold rolling to form a spiral groove on the inner surface of the tube, then aging treatment Manufactured by. Moreover, an intermediate annealing, solution treatment, or a quenching process can also be added in the said process as needed.

該鋳造工程では、例えば、銅の地金及び本発明の継目無管用銅合金の含有元素の地金又は該含有元素と銅の合金を、本発明の継目無管用銅合金中の含有量が、所定の含有量となるように配合して、成分調整を行い、次いで、高周波溶解炉等を用いて、ビレットを鋳造する。   In the casting process, for example, the content of the copper ingot and the alloy of the seamless element copper alloy of the present invention or the alloy of the element and copper in the seamless pipe copper alloy of the present invention, It mix | blends so that it may become predetermined | prescribed content, a component adjustment is performed, and then a billet is cast using a high frequency melting furnace etc. FIG.

Zrは活性な金属なので、溶解時の酸化ロスが多くなるため、成分調整においては、Zrの溶解時の酸化ロスを考慮した配合が必要である。   Since Zr is an active metal, the oxidation loss at the time of dissolution increases. Therefore, in adjusting the components, it is necessary to blend in consideration of the oxidation loss at the time of dissolution of Zr.

また、該鋳造工程では、Pを配合することにより、溶湯の流動性が高くなるので、鋳造性が高くなり、ガス孔等の鋳造欠陥の発生が抑制され、また、脱酸効果が得られるので、上記Zrの溶解時の酸化ロスを少なくすることができる。そして、Pの配合量が多くなりすぎると、銅合金中のP元素の含有量が多くなりすぎるため、熱伝導性が低くなる。そのため、該鋳造工程では、銅合金中のP含有量が、0.004〜0.040質量%となるようにPを配合することが好ましく、0.015〜0.030質量%となるようにPを配合することが特に好ましい。   Further, in the casting process, by adding P, the fluidity of the molten metal is increased, so that the castability is improved, the occurrence of casting defects such as gas holes is suppressed, and the deoxidation effect is obtained. The oxidation loss during the dissolution of Zr can be reduced. And when the compounding quantity of P increases too much, since content of P element in a copper alloy will increase too much, thermal conductivity will become low. Therefore, in this casting process, it is preferable to mix | blend P so that P content in a copper alloy may be 0.004-0.040 mass%, and it may become 0.015-0.030 mass%. It is particularly preferable to blend P.

該鋳造工程で得られたビレットを、所定の温度で均質化処理した後、熱間押出加工を行う。また、該熱間押出加工前に、ビレットを加熱するが、この熱間押出加工前の加熱に、均質化処理を兼ねさせることもできる。該熱間押出加工は、マンドレル押出によって行われる。すなわち、加熱前に、冷間で予め穿孔したビレット、あるいは、押出前に熱間で穿孔したビレットに、マンドレルを挿入した状態で、熱間押出を行なって、継目無熱間押出素管を得る。   The billet obtained in the casting process is homogenized at a predetermined temperature and then subjected to hot extrusion. Moreover, although a billet is heated before this hot extrusion process, the heating before this hot extrusion process can also be made to serve as a homogenization process. The hot extrusion process is performed by mandrel extrusion. That is, hot extruding is performed with a mandrel inserted into a billet that has been previously perforated cold before heating, or a billet that has been perforated hot before extrusion to obtain a seamless hot extruded element tube. .

該熱間押出加工により得られた該継目無熱間押出素管を、冷却した後、圧延加工や引き抜き加工等の冷間加工を行い、管の外径及び肉厚を減じていく。   After the seamless hot-extrusion element tube obtained by the hot extrusion process is cooled, cold processing such as rolling or drawing is performed to reduce the outer diameter and thickness of the pipe.

該時効処理は、該冷間での転造加工を施した銅管を、400〜700℃で加熱し、冷却することにより行なわれる。   The aging treatment is performed by heating and cooling the cold-rolled copper tube at 400 to 700 ° C.

該転造加工は、引抜加工後の内面平滑素管内に、外面にらせん状の溝加工を施した転造プラグを配置して、高速回転する複数の転造ボールによって、管の外側から押圧して、管の内面に転造プラグの溝を転写することにより行われる(特開2003−191006号公報参照)。   In the rolling process, a rolling plug with a spiral groove formed on the outer surface is placed in the smooth inner pipe after drawing, and pressed from the outside of the pipe by a plurality of rolling balls rotating at high speed. This is done by transferring the groove of the rolled plug to the inner surface of the tube (see Japanese Patent Application Laid-Open No. 2003-191006).

近年、管内面のらせん溝の形状については、伝熱管の高性能化の要求のもと、らせん角度を大きくしたり、フィンの高さを高くしたり、フィンの幅を小さくしたり、各種の方策が講じられている(特開2001−33185号公報参照)。このような加工は、転造加工性を低下させることになるので、転造加工性が悪い銅合金だと、転造速度を遅くすることが必要となったり、正常な溝の形成自体が困難となったりする。また、最近では、地球温暖化防止等の見地から、従来のフロン系冷媒から炭酸ガス冷媒に転換が図られてきている。このような炭酸ガス冷媒用の内面溝付管においては、冷媒の運転圧力が高いので、従来より厚肉化することが必要なため、転造加工による内面溝の形成がより難しくなってきている。   In recent years, with regard to the shape of the spiral groove on the inner surface of the tube, various demands for higher performance of heat transfer tubes have been made, such as increasing the helix angle, increasing the height of the fin, reducing the width of the fin, Measures have been taken (see JP 2001-33185 A). Such a process reduces the rolling processability, so if the copper alloy has poor rolling processability, it is necessary to slow the rolling speed or it is difficult to form a normal groove itself. It becomes. Recently, from the viewpoint of prevention of global warming and the like, conversion from a conventional chlorofluorocarbon refrigerant to a carbon dioxide refrigerant has been attempted. In such an inner grooved tube for carbon dioxide refrigerant, since the operating pressure of the refrigerant is high, it is necessary to increase the thickness of the refrigerant, and therefore it is more difficult to form the inner groove by rolling. .

本発明の銅合金は、上述した組成を有するので、優れた転造加工性を有している。また、本発明の銅合金は、該冷間での転造加工で、内面溝のらせん角度を大きくしたり、フィンの高さを高くしたり、フィンの幅を小さくしたり、あるいは、厚肉化したりしても、転造加工性が良好であり、本発明の継目無管には正常なフィンが形成されている。   Since the copper alloy of the present invention has the above-described composition, it has excellent rolling processability. In addition, the copper alloy of the present invention can be formed by increasing the helical angle of the inner surface groove, increasing the height of the fin, reducing the width of the fin, Even if it is made into a roll, the rolling processability is good, and normal fins are formed in the seamless pipe of the present invention.

このようにして作製された本発明の継目無管は、熱交換器用の伝熱管としてコイル形状に巻き取られ、熱交換器(クロスフィンチューブ型熱交換器)作製工程に供される。   The seamless tube of the present invention thus manufactured is wound up in a coil shape as a heat transfer tube for a heat exchanger, and used for a heat exchanger (cross fin tube heat exchanger) manufacturing process.

該クロスフィンチューブ型熱交換器は、空気側のアルミニウムフィンと冷媒側の伝熱管が一体に組付けられて構成されているものである。   The cross fin tube type heat exchanger is constructed by integrally assembling an air-side aluminum fin and a refrigerant-side heat transfer tube.

該クロスフィンチューブ型熱交換器作製工程では、先ず、プレス加工等により、所定の組付け孔が複数形成されたアルミニウムプレートフィンを作製する。   In the cross fin tube type heat exchanger manufacturing step, first, an aluminum plate fin in which a plurality of predetermined assembly holes are formed is manufactured by pressing or the like.

次いで、得られたアルミニウムプレートフィンを積層した後、前記組付け孔の内部に、伝熱管を挿通する。該伝熱管は、該冷間での転造加工によって内面に溝が形成された本発明の継目無管を、定尺切断及びヘアピン曲げ加工して作製される。   Next, after stacking the obtained aluminum plate fins, a heat transfer tube is inserted into the assembly hole. The heat transfer tube is produced by subjecting the seamless tube of the present invention in which a groove is formed on the inner surface by the cold rolling process to a regular cut and a hairpin bending process.

次いで、該伝熱管を、該アルミニウムプレートフィンに拡管固着し、ヘアピン曲げ加工を施した側とは反対側の伝熱管端部に、Uベンド管をロウ付けして、熱交換器を作製する。   Next, the heat transfer tube is expanded and fixed to the aluminum plate fin, and a U-bend tube is brazed to the end of the heat transfer tube opposite to the side subjected to the hairpin bending process, thereby producing a heat exchanger.

このような工程中で、本発明の継目無管は、ヘアピン曲げ加工という強加工が施される。該ヘアピン曲げ加工は、継目無管に中子を挿入した上で、管をU字状に曲げ加工するような加工である。   In such a process, the seamless pipe of the present invention is subjected to strong processing called hairpin bending. The hairpin bending process is a process of bending a tube into a U-shape after inserting a core into a seamless tube.

また、本発明の継目無管は、高強度の内面溝付ヒートパイプ用としても適用可能である。   The seamless pipe of the present invention can also be applied to a high-strength internally grooved heat pipe.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(実施例)
(銅合金の製造)
Cu、Sn及びZnの地金又はスクラップ、並びにCu−Zr母合金及びCu−P母合金を用いて、表2に示す成分に配合し、高周波溶解炉を用いてφ254mmの鋳塊を製造後、熱間押出を行い、φ81mm×t1.5mm管(押出素管)とした。そして、該押出素管を、熱間押出後直ちに水槽へ投入して冷却した。次いで、φ81mm×t1.5mm管を、冷間で圧延加工し、さらに冷間で引抜加工及び適宜中間焼鈍を行って、転造加工用の原管(引き抜き加工素管)を作製した。
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
(Example)
(Manufacture of copper alloys)
Using Cu, Sn and Zn ingots or scraps, and Cu-Zr master alloy and Cu-P master alloy, blended with the components shown in Table 2, after producing a 254 mm ingot using a high frequency melting furnace, Hot extrusion was performed to obtain a φ81 mm × t1.5 mm tube (extrusion tube). And this extrusion element pipe was thrown into the water tank immediately after hot extrusion, and was cooled. Next, a φ81 mm × t1.5 mm tube was cold-rolled, and further cold-drawn and appropriately subjected to intermediate annealing, thereby producing a raw tube for rolling (drawing-processed raw tube).

(加工性評価)
1.転造加工性評価
<転造加工試験>
上記で得た引抜加工素管の転造加工を行い、図1及び表1に示す形状の内面溝付継目無管を作製した。なお、図1は、転造加工試験の溝形状を示す図である。
比較的転造加工性の容易な溝形状として、溝形状1を選択した。また、高性能化を目的として、フィン高さを高く、フィン頂角を小さく、らせん角を大きくした難加工性の溝形状として、溝形状2を選択した。
(Processability evaluation)
1. Rolling processability evaluation <Rolling process test>
The drawn blank pipe obtained above was rolled to produce seamless pipes with inner grooves having the shapes shown in FIG. 1 and Table 1. In addition, FIG. 1 is a figure which shows the groove shape of a rolling process test.
The groove shape 1 was selected as a groove shape that is relatively easy to roll. Further, for the purpose of improving the performance, the groove shape 2 was selected as a difficult-to-work groove shape having a high fin height, a small fin apex angle, and a large helix angle.

Figure 0005208562
Figure 0005208562

*フィン幅w:フィンの高さ方向の真ん中の位置のフィン幅である。
*フィンピッチPf:フィンの根本の位置でのフィン同士の間隔である。
* Fin width w: Fin width at the center position in the height direction of the fin.
* Fin pitch Pf: The distance between fins at the base position of the fins.

<評価方法>
正常なフィン形状が得られたものを「○」と、正常なフィン形状が得られなかったものを「×」とした。その結果を表3に示す。
なお、正常なフィン形状が得られたかったものとは、転造加工時に、転造プラグの溝にメタルが十分に充満しない部分が生じたものである。
<Evaluation method>
The case where a normal fin shape was obtained was indicated as “◯”, and the case where a normal fin shape was not obtained was indicated as “x”. The results are shown in Table 3.
In addition, what the normal fin shape was not obtained means that a portion where the metal is not sufficiently filled in the groove of the rolled plug occurred during the rolling process.

(機械的性質評価)
上記転造加工試験により得た溝形状の継目無管を、表4に示す時効処理温度にて時効処理を行った後、JIS Z 2241に準じ、0.2%耐力、引張強さを測定した。その結果を表4に示す。
なお、時効処理を、Zrの含有量によって、430℃、520℃又は650℃のいずれかの温度にて行った。表2及び表3中の試験No.7については、520℃と、650℃と、の2種類の温度で時効処理を行った。
(導電率評価)
上記転造加工試験により得た溝形状の継目無管を、表4に示す時効処理温度にて時効処理を行った後、四端子法にて導電率を測定した。その結果を表4に示す。
(Mechanical property evaluation)
The groove-shaped seamless pipe obtained by the rolling test was subjected to aging treatment at the aging treatment temperature shown in Table 4, and then 0.2% proof stress and tensile strength were measured according to JIS Z2241. . The results are shown in Table 4.
The aging treatment was performed at a temperature of 430 ° C., 520 ° C., or 650 ° C. depending on the Zr content. Test No. in Table 2 and Table 3 For No. 7, aging treatment was performed at two temperatures of 520 ° C. and 650 ° C.
(Conductivity evaluation)
The groove-shaped seamless pipe obtained by the rolling process test was subjected to aging treatment at the aging treatment temperature shown in Table 4, and then the conductivity was measured by the four-terminal method. The results are shown in Table 4.

(加工性評価)
2.ヘアピン曲げ加工性評価
<ヘアピン曲げ加工試験>
上記転造加工試験により得た溝形状1の継目無管を、表4に示す時効処理温度にて時効処理を行った後、管内に心金を挿入し、ベンダーで曲げ加工を行う公知のヘアピン曲げ加工方法により、図2に示す形状のヘアピン曲げ管を作製した。なお、曲げピッチP=16mmとした。
<評価方法>
曲げ部(図2中、矢印10で示す部分)にしわの発生がなかったものを合格とした。その結果を表4に示す。
(Processability evaluation)
2. Hairpin bending processability evaluation <Hairpin bending process test>
A known hairpin in which a seamless pipe having a groove shape 1 obtained by the rolling process test is subjected to aging treatment at the aging treatment temperature shown in Table 4, and then a mandrel is inserted into the pipe and bent by a bender. A hairpin bending tube having the shape shown in FIG. 2 was produced by a bending method. The bending pitch P was 16 mm.
<Evaluation method>
A bent portion (portion indicated by an arrow 10 in FIG. 2) in which no wrinkles occurred was regarded as acceptable. The results are shown in Table 4.

なお、表中には、性能評価の指標とするために、りん脱酸銅C1220についても測定した結果を記載した。   In addition, in the table | surface, in order to use as a parameter | index of performance evaluation, the result measured also about the phosphorus deoxidation copper C1220 was described.

Figure 0005208562
Figure 0005208562

*表2中の数値は、「質量%」である。 * Numerical values in Table 2 are “% by mass”.

Figure 0005208562
Figure 0005208562

1)C1220:りん脱酸銅C1220 1) C1220: Phosphorus deoxidized copper C1220

Figure 0005208562
Figure 0005208562

1)C1220:りん脱酸銅C1220 1) C1220: Phosphorus deoxidized copper C1220

<試験No.1〜24>
No.1〜24のいずれも、耐力、引張強さ、導電率のいずれについても良好であり、また、溝形状1の転造加工試験に合格し、加工性は良好であった。このことから、No.1〜24は、いずれも、加工性に優れ、強度が高く、且つ、熱伝導性が高く、総合的に性能のバランスが良い継目無管であった。
特に、No.1〜10、21及び22は、難加工性の溝形状2の転造加工試験及びヘアピン曲げ加工試験も合格し、冷間での加工性に関し顕著な加工性を示した。
No.21は、P含有量が高いため、No.9と比較して、導電率が若干低くなり、熱伝導率が若干劣る。
No.22は、P含有量が低いため、No.9と比較して、脱酸が十分ではなく、熱交換器組み立て工程中の、炉中ろう付けをする際に、雰囲気(水素ガス)の影響によって、水素脆化を生じるものが見られた。
<Test No. 1-24>
No. All of Nos. 1 to 24 were good in terms of proof stress, tensile strength, and electrical conductivity, passed the rolling process test of the groove shape 1, and had good workability. From this, No. Each of Nos. 1 to 24 was a seamless tube having excellent workability, high strength, high thermal conductivity, and a good overall balance of performance.
In particular, no. 1 to 10, 21 and 22 passed the rolling process test and the hairpin bending process test of the difficult-to-process groove shape 2, and showed remarkable processability with respect to the processability in the cold.
No. No. 21 has a high P content. Compared to 9, the conductivity is slightly lower and the thermal conductivity is slightly inferior.
No. No. 22 has a low P content. Compared to 9, deoxidation was not sufficient, and when the furnace was brazed during the heat exchanger assembly process, hydrogen embrittlement was observed due to the influence of the atmosphere (hydrogen gas).

<No.31及び33>
Zr含有量が低いため、耐力、引張強さが不十分であった。
<No.39、40及び41>
A+B+2Cの値が低過ぎるため、耐力、引張強さが不十分であった。
<No.34、35及び36>
A+B+2Cの値が高過ぎるため、加工性が悪く、溝形状1の転造加工試験が不合格であった。そのため、溝形状2の転造加工試験及びヘアピン曲げ加工試験を行わなかった。
<No.37及び38>
Zr含有量が多過ぎるため、加工性が悪く、溝形状1の転造加工試験が不合格であった。そのため、溝形状2の転造加工試験及びヘアピン曲げ加工試験を行わなかった。
<No.32>
A+Bの値が高過ぎるため、導電率が低過ぎる結果となった。そのため、熱伝導率が低過ぎて、熱交換器用としての使用に適さない。
<No.42>
強度、導電率、加工性とも良好な結果であったが、Zn含有量が多過ぎるため、応力腐食割れ感受性が高くなり、熱交換器用としての使用に適さない。
<No. 31 and 33>
Since the Zr content is low, the yield strength and tensile strength were insufficient.
<No. 39, 40 and 41>
Since the value of A + B + 2C was too low, the yield strength and tensile strength were insufficient.
<No. 34, 35 and 36>
Since the value of A + B + 2C was too high, the workability was poor, and the rolling process test for the groove shape 1 was rejected. Therefore, the rolling process test of the groove shape 2 and the hairpin bending process test were not performed.
<No. 37 and 38>
Since there was too much Zr content, workability was bad and the rolling process test of the groove shape 1 was disqualified. Therefore, the rolling process test of the groove shape 2 and the hairpin bending process test were not performed.
<No. 32>
Since the value of A + B was too high, the conductivity was too low. For this reason, the thermal conductivity is too low to be suitable for use as a heat exchanger.
<No. 42>
Although strength, electrical conductivity, and workability were good results, since the Zn content is too high, the stress corrosion cracking susceptibility becomes high and is not suitable for use as a heat exchanger.

本発明によれば、加工性、特に、冷間での転造加工性及びヘアピン曲げ加工性に優れ、強度が高く、ロウ付けによる強度低下が少なく、且つ、熱伝導性が高い継目無管を提供することができるので、高性能な熱交換器又は冷媒として二酸化炭素を用いる熱交換器を製造できる。また、該継目無管は、この他、高強度の内面溝付ヒートパイプとして適用することも可能である。   According to the present invention, a seamless tube having excellent workability, in particular, cold-rolling workability and hairpin bending workability, high strength, little strength reduction due to brazing, and high thermal conductivity. Therefore, a high-performance heat exchanger or a heat exchanger using carbon dioxide as a refrigerant can be manufactured. In addition, the seamless pipe can also be applied as a heat pipe with a high strength inner surface groove.

転造加工試験の溝形状を示す図である。It is a figure which shows the groove shape of a rolling process test. ヘアピン曲げ加工試験で作製する継目無管の形状を示す図である。It is a figure which shows the shape of the seamless pipe produced by a hairpin bending process test.

符号の説明Explanation of symbols

10 曲げ部
D 外径
t 肉厚
h フィン高さ
α フィン頂角
w フィン幅
Pf フィンピッチ
P 曲げピッチ
10 Bending part D Outer diameter t Thickness h Fin height α Fin apex angle w Fin width Pf Fin pitch P Bending pitch

Claims (2)

銅合金を加工して得られる銅合金製の継目無管であり、
該銅合金は、Snと、0〜0.1質量%のZnと、0.01〜0.06質量%のZrと、0.004〜0.04質量%のPと、を含有し、残部Cu及び不可避不純物からなり、
該銅合金中のSn、Zn及びZrの含有量が、下記式(1)(2)及び(3)
(1)A+B≦0.60
(2)0.4≦A+B+2C≦0.7
(3)0.41≦A+B
(式中、AはSnの含有量(質量%)を示し、BはZnの含有量(質量%)を示し、CはZrの含有量(質量%)を示す。)
のいずれも満たすこと、
を特徴とする継目無管。
It is a seamless pipe made of copper alloy obtained by processing copper alloy,
The copper alloy contains Sn, 0 to 0.1% by mass of Zn, 0.01 to 0.06 % by mass of Zr, and 0.004 to 0.04% by mass of P, and the balance Consisting of Cu and inevitable impurities,
The contents of Sn, Zn and Zr in the copper alloy are the following formulas (1) , (2) and (3) :
(1) A + B ≦ 0.60
(2) 0.4 ≦ A + B + 2C ≦ 0.7
(3) 0.41 ≦ A + B
(In the formula, A represents the Sn content (mass%), B represents the Zn content (mass%), and C represents the Zr content (mass%).)
Meeting any of the
Seamless tube characterized by
前記銅合金中のSn、Zn及びZrの含有量が、更に、下記式(3a):
(3)0.4≦A+B
(式中、A、B及びCは、前記と同義である。)
を満たすことを特徴とする請求項1記載の継目無管。
The contents of Sn, Zn and Zr in the copper alloy are further represented by the following formula (3a):
(3 a ) 0.4 3 ≦ A + B
(In the formula, A, B, and C are as defined above.)
The seamless pipe according to claim 1, wherein:
JP2008097842A 2008-04-04 2008-04-04 Seamless pipe Active JP5208562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097842A JP5208562B2 (en) 2008-04-04 2008-04-04 Seamless pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097842A JP5208562B2 (en) 2008-04-04 2008-04-04 Seamless pipe

Publications (2)

Publication Number Publication Date
JP2009249675A JP2009249675A (en) 2009-10-29
JP5208562B2 true JP5208562B2 (en) 2013-06-12

Family

ID=41310647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097842A Active JP5208562B2 (en) 2008-04-04 2008-04-04 Seamless pipe

Country Status (1)

Country Link
JP (1) JP5208562B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103851945B (en) * 2012-12-07 2017-05-24 诺而达奥托铜业(中山)有限公司 Internal threaded pipe with rough internal surface

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461026A (en) * 1977-10-24 1979-05-17 Sumitomo Electric Ind Ltd Copper alloy for lead of semiconductor device
JP2758536B2 (en) * 1992-08-11 1998-05-28 三菱伸銅株式会社 Welded copper alloy pipe with inner groove
JPH06184669A (en) * 1992-12-18 1994-07-05 Mitsubishi Materials Corp Pitting corrosion resistant copper alloy piping for feeding water and hot water
WO1994010352A1 (en) * 1992-10-27 1994-05-11 Mitsubishi Materials Corporation Pitting-resistant copper alloy pipe for water and hot-water supply
JP4387027B2 (en) * 2000-03-07 2009-12-16 三菱伸銅株式会社 Pitting corrosion resistant copper base alloy tubing
JP5138170B2 (en) * 2006-02-12 2013-02-06 三菱伸銅株式会社 Copper alloy plastic working material and method for producing the same
JP4694527B2 (en) * 2007-03-30 2011-06-08 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP5260109B2 (en) * 2007-03-31 2013-08-14 株式会社コベルコ マテリアル銅管 Copper alloy member and heat exchanger

Also Published As

Publication number Publication date
JP2009249675A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP4349640B2 (en) Seamless pipe
JP4629080B2 (en) Copper alloy tube for heat exchanger
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP5534777B2 (en) Copper alloy seamless pipe
JP4818179B2 (en) Copper alloy tube
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP6244588B2 (en) Copper alloy seamless pipe for heat transfer tubes
JP5208562B2 (en) Seamless pipe
JP6034727B2 (en) High strength copper alloy tube
JP5451217B2 (en) Manufacturing method of internally grooved tube
JP6114939B2 (en) Seamless pipe, level wound coil, cross fin tube type heat exchanger and method for manufacturing the same
JP5990496B2 (en) Phosphorus deoxidized copper pipe for heat exchanger
JP5638999B2 (en) Copper alloy tube
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP7053140B2 (en) Aluminum alloy clad material for heat exchanger and its manufacturing method and manufacturing method of aluminum alloy tube for heat exchanger
WO2014142048A1 (en) Copper alloy seamless tube for cold and hot water supply
JP6402043B2 (en) High strength copper alloy tube
JP6101969B2 (en) Level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
JP2011094176A (en) Copper alloy seamless tube
JP2011094175A (en) Copper alloy seamless tube
JP2014109040A (en) Level wound coil, manufacturing method of level wound coil, cross fin tube type heat exchanger and manufacturing method of cross fin tube type heat exchanger
WO2013157461A1 (en) Level wound coil, method for manufacturing level wound coil, cross fin tube type heat exchanger, and method for manufacturing cross fin tube type heat exchanger
JP2014109041A (en) Level wound coil, manufacturing method of level wound coil, cross fin tube type heat exchanger and manufacturing method of cross fin tube type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250