JP5138170B2 - Copper alloy plastic working material and method for producing the same - Google Patents

Copper alloy plastic working material and method for producing the same Download PDF

Info

Publication number
JP5138170B2
JP5138170B2 JP2006034613A JP2006034613A JP5138170B2 JP 5138170 B2 JP5138170 B2 JP 5138170B2 JP 2006034613 A JP2006034613 A JP 2006034613A JP 2006034613 A JP2006034613 A JP 2006034613A JP 5138170 B2 JP5138170 B2 JP 5138170B2
Authority
JP
Japan
Prior art keywords
mass
plastic working
casting
less
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006034613A
Other languages
Japanese (ja)
Other versions
JP2007211317A (en
Inventor
恵一郎 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2006034613A priority Critical patent/JP5138170B2/en
Publication of JP2007211317A publication Critical patent/JP2007211317A/en
Application granted granted Critical
Publication of JP5138170B2 publication Critical patent/JP5138170B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、Cu−Sn銅合金又はCu−Sn−Zn銅合金を冷間加工及び/又は熱間加工してなる結晶粒微細な銅合金製塑性加工材並びにこれを製造する方法に関するものである。   The present invention relates to a plastic work material made of a fine crystal grain copper alloy obtained by cold working and / or hot working a Cu-Sn copper alloy or Cu-Sn-Zn copper alloy, and a method for producing the same. .

Snを含有する銅合金としては、一般に、JIS H3110、H3270のC5111,C5102,C5191,C5212、JIS H5120のCAC502A,CAC502B、JIS H3100のC4250,C4430で規定される燐青銅等が周知であるが、熱間又は冷間での加工性や鋳造性等に劣るといった欠点があり、そのため用途が大幅に制限されていた。このような欠点は、低融点金属であるSnを含有していることに起因するものであり、主として、Snのマクロ偏析が原因となっていた。   As the copper alloy containing Sn, in general, phosphor bronze defined by JIS H3110, H3270 C5111, C5102, C5191, C5212, JIS H5120 CAC502A, CAC502B, JIS H3100 C4250, C4430, etc. are well known. There are drawbacks such as inferior workability or castability in hot or cold, and the use has been greatly limited. Such a defect is attributed to the inclusion of Sn, which is a low melting point metal, mainly due to macro segregation of Sn.

ところで、かかるSnのマクロ偏析を解消する有効な手段として、結晶粒を微細化させることが考えられる。   By the way, as an effective means for eliminating such macro segregation of Sn, it is conceivable to refine crystal grains.

而して、銅合金の結晶粒径が微細化する基本形態としては、一般に、(A)銅合金の溶融固化時に結晶粒が微細化する場合と、(B)溶融固化後の銅合金(インゴット、スラブ等の鋳塊、ダイキャスト等の鋳造品、溶融鋳造品等)に圧延等の変形加工又は加熱処理を施すことにより、歪エネルギー等の蓄積エネルギーが駆動力となって結晶粒が微細化する場合とがあり、(A)(B)何れの場合にも、Zrが結晶粒の微細化に有効に作用する元素として知られている。   Thus, as a basic form in which the crystal grain size of the copper alloy is refined, generally, (A) the crystal grain is refined when the copper alloy is melt-solidified, and (B) the copper alloy (ingot after melt-solidification) , Ingots such as slabs, cast products such as die casts, and melt cast products) are subjected to deformation processing such as rolling or heat treatment, so that the stored energy such as strain energy becomes the driving force to refine crystal grains In both cases (A) and (B), Zr is known as an element that effectively acts on the refinement of crystal grains.

しかし、(A)の場合、溶融固化段階におけるZrの結晶粒微細化作用は、他の元素及びそれらの含有量による影響を大きく受けるため、所望レベルの結晶粒微細化が達成されていないのが実情である。このため、一般的には、(B)の手法が広く用いられており、溶融固化後の鋳塊、鋳造品等に熱処理を施し、さらに歪を与えることにより、結晶粒の微細化を図ることが行われている。   However, in the case of (A), the crystal grain refining action of Zr in the melt-solidification stage is greatly influenced by other elements and their contents, so that the desired level of crystal grain refinement is not achieved. It is a fact. For this reason, in general, the method (B) is widely used, and heat treatment is performed on the ingot and cast product after being melted and solidified to further refine the crystal grains. Has been done.

例えば、特公昭38−20467号公報は、Zr、P、Niを含む銅合金に800℃で溶体化処理を行なった後水焼入れし、次に75%の加工率で冷間加工を施した上、これを熱処理した後の平均結晶粒径を調べたもので、Zrを含有しないときの280μmから、170μm(Zr:0.05mass%含有)、50μm(Zr:0.13mass%含有)、29μm(Zr:0.22mass%含有)、6μm(Zr:0.89mass%含有)の如く、Zrの含有量の増加に比例して微細化されることを教示する。なお、この公報においては、Zrの含有過多による悪影響を回避するために、Zrを0.05〜0.3mass%含有させることが提案されている。
For example, JP-B-38-20467 may, Zr, P, and water quenched after solution treatment lines Tsu Na at 800 ° C. in a copper alloy containing Ni, facilities cold working and then at 75% of working ratio In addition, the average crystal grain size after the heat treatment was examined. From 280 μm when Zr is not contained, 170 μm (Zr: 0.05 mass% contained), 50 μm (Zr: 0.13 mass% contained), It teaches that it is refined in proportion to the increase in the Zr content, such as 29 μm (Zr: 0.22 mass% contained) and 6 μm (Zr: 0.89 mass% contained). In this publication, it is proposed to contain 0.05 to 0.3 mass% of Zr in order to avoid an adverse effect due to excessive Zr content.

また、特開2004−100042公報を参照すると、0.15〜0.5mass%のZrが含有された銅合金を、鋳造後、溶体化処理及び歪付加のための変形加工を施すと、平均結晶粒径は、約20μm以下のレベルにまで微細化されることが開示されている。
Further , referring to Japanese Patent Application Laid-Open No. 2004-100042 , when a copper alloy containing 0.15 to 0.5 mass% of Zr is subjected to deformation treatment for solution treatment and strain addition after casting, an average crystal It is disclosed that the particle size is refined to a level of about 20 μm or less.

特公昭38−20467号公報Japanese Patent Publication No. 38-20467 特開2004−100042公報JP 2004-100042 A

しかし、前記(B)の手法のように、結晶粒径を微細化させるために、鋳造後にこれら処理及び加工を行うことは、コスト高を招く。また、鋳物製品の形状によっては、歪付加のための変形加工を施すことができないものもある。このため、結晶粒は、前記(A)の手法により、銅合金が溶融固化した時点で微細化されていることが好ましい。ところが、(A)の手法の場合、前述したように、溶融固化段階でのZrは、他の元素及びそれらの含有量による影響を大きく受けるため、Zrの含有量を増やしたとしても、その増量に対応した結晶粒微細化効果を得られるとは限らない。また、Zrは、酸素との親和力が非常に強いため、Zrを大気溶解で添加すると、酸化物となり易く、歩留まりが非常に悪い。このため、鋳造後の製品に含まれる量はたとえ僅かな量であっても、鋳込み段階では、相当量の原料を投入する必要がある。一方、溶解中での酸化物の生成量があまり多くなると、鋳込み時に酸化物が巻き込まれ易くなり、鋳造欠陥を生じる虞れがある。なお、酸化物の生成を回避するために、真空中又は不活性ガス雰囲気中で溶解、鋳造を行なうことは可能であるが、コスト高を招く。   However, as in the method (B), it is expensive to perform these treatments and processing after casting in order to reduce the crystal grain size. In addition, depending on the shape of the cast product, there are some that cannot be deformed to add strain. For this reason, it is preferable that the crystal grains are refined by the method (A) when the copper alloy is melted and solidified. However, in the case of the method (A), as described above, Zr in the melt-solidification stage is greatly affected by other elements and their contents. Therefore, even if the Zr content is increased, the increase in the Zr content is increased. It is not always possible to obtain a crystal grain refinement effect corresponding to the above. Moreover, since Zr has a very strong affinity for oxygen, when Zr is added by dissolution in the atmosphere, it is likely to be an oxide and has a very poor yield. For this reason, even if the amount contained in the product after casting is a small amount, it is necessary to input a considerable amount of raw material at the casting stage. On the other hand, if the amount of oxide generated during dissolution is too large, the oxide is likely to be caught during casting, which may cause casting defects. In addition, in order to avoid the production | generation of an oxide, although melt | dissolution and casting can be performed in a vacuum or inert gas atmosphere, it causes a high cost.

本発明は、前記(A)の手法により銅合金が溶融固化した時点で結晶粒が微細化する場合における上記した問題を生じることなく、結晶粒の微細化による強度,加工性等の大幅な向上を図りうる銅合金製塑性加工材を提供すると共に、これを好適に製造することができる製造方法を提供することを目的とするものである。
The present invention provides a significant improvement in strength, workability, etc. due to the refinement of crystal grains without causing the above-mentioned problems when the crystal grains are refined when the copper alloy is melted and solidified by the method (A). It is an object of the present invention to provide a copper alloy plastic working material capable of achieving the above and a production method capable of suitably producing it.

本発明は、第1に、次のようなCu−Sn銅合金の第1〜第4塑性加工材を提案する。
The present invention firstly proposes first to fourth plastic working materials made of Cu-Sn copper alloy as follows.

すなわち、第1塑性加工材は、後述する(1)(9)の組成をなす平均結晶粒径300μm以下の鋳造素材に塑性加工を施してなるものであり、α相の面積率が94.5%以上(好ましくは96%以上、より好ましくは98%以上、最適には99.5%以上)で且つγ相、δ相及びε相の合計面積率が5%以下(好ましくは3.5%以下、より好ましくは1.5%以下、最適には0.5%以下)である金属組織をなし、平均結晶粒径が150μm以下の結晶構造をなすものである。なお、本発明において、各相の含有量つまり面積率は画像解析により測定されるものであり、具体的には、200倍の光学顕微鏡組織を画像処理ソフト「WinROOF」(株式会社テックジャム)で2値化することにより求められるもので、3視野で測定された面積率の平均値である。また、以下の説明において、[a]は元素aの含有量値を示すものであり、元素aの含有量は[a]mass%で表現される。
That is, the first plastic working material is obtained by subjecting a casting material having an average crystal grain size of 300 μm or less, which has the composition of (1) and (9) described later, to an α phase area ratio of 94.5. % Or more (preferably 96% or more, more preferably 98% or more, optimally 99.5% or more) and the total area ratio of the γ phase, δ phase and ε phase is 5% or less (preferably 3.5% Hereinafter, it has a metal structure that is more preferably 1.5% or less, and most preferably 0.5% or less), and has a crystal structure with an average crystal grain size of 150 μm or less. In the present invention, the content of each phase, that is, the area ratio, is measured by image analysis. Specifically, a 200-fold optical microscope tissue is obtained with image processing software “WinROOF” (Tech Jam Co., Ltd.). It is obtained by binarization and is an average value of area ratios measured in three visual fields. In the following description, [a] indicates a content value of the element a, and the content of the element a is expressed by [a] mass%.

また、第2塑性加工材は、後述する(2)(9)(11)の組成をなす平均結晶粒径300μm以下の鋳造素材に塑性加工を施してなるものであり、α相の面積率が94.5%以上(好ましくは96%以上、より好ましくは98%以上、最適には99.5%以上)で且つγ相、δ相及びε相の合計面積率が5%以下(好ましくは3.5%以下、より好ましくは1.5%以下、最適には0.5%以下)である金属組織をなし、平均結晶粒径が150μm以下の結晶構造をなすものである。
The second plastic working material is obtained by subjecting a casting material having an average crystal grain size of 300 μm or less, which has the composition of (2), (9), and (11) described later, to an area ratio of α phase. 94.5% or more (preferably 96% or more, more preferably 98% or more, optimally 99.5% or more), and the total area ratio of the γ phase, δ phase, and ε phase is 5% or less (preferably 3 0.5% or less, more preferably 1.5% or less, optimally 0.5% or less), and a crystal structure having an average crystal grain size of 150 μm or less.

また、第3塑性加工材は、後述する(3)(9)(12)の組成をなす平均結晶粒径300μm以下の鋳造素材に塑性加工を施してなるものであり、α相の面積率が94.5%以上(好ましくは96%以上、より好ましくは98%以上、最適には99.5%以上)で且つγ相、δ相及びε相の合計面積率が5%以下(好ましくは3.5%以下、より好ましくは1.5%以下、最適には0.5%以下)である金属組織をなし、平均結晶粒径が150μm以下の結晶構造をなすものである。
Further, the third plastic working material is obtained by subjecting a casting material having an average crystal grain size of 300 μm or less, which has a composition of (3), (9), and (12) described later, to an area ratio of α phase. 94.5% or more (preferably 96% or more, more preferably 98% or more, optimally 99.5% or more), and the total area ratio of the γ phase, δ phase, and ε phase is 5% or less (preferably 3 0.5% or less, more preferably 1.5% or less, optimally 0.5% or less), and a crystal structure having an average crystal grain size of 150 μm or less.

また、第4塑性加工材は、後述する(4)(9)(11)(12)の組成をなす平均結晶粒径300μm以下の鋳造素材に塑性加工を施してなるものであり、α相の面積率が94.5%以上(好ましくは96%以上、より好ましくは98%以上、最適には99.5%以上)で且つγ相、δ相及びε相の合計面積率が5%以下(好ましくは3.5%以下、より好ましくは1.5%以下、最適には0.5%以下)である金属組織をなし、平均結晶粒径が150μm以下の結晶構造をなすものである。
The fourth plastic working material is obtained by subjecting a casting material having an average crystal grain size of 300 μm or less, which has the composition of (4), (9), (11), and (12) described later, to α-phase. The area ratio is 94.5% or more (preferably 96% or more, more preferably 98% or more, optimally 99.5% or more), and the total area ratio of the γ phase, δ phase, and ε phase is 5% or less ( The metal structure is preferably 3.5% or less, more preferably 1.5% or less, and most preferably 0.5% or less, and has a crystal structure with an average crystal grain size of 150 μm or less.

本発明は、第2に、次のようなCu−Sn−Zn銅合金製の第5〜第8塑性加工材を提案する。   Secondly, the present invention proposes fifth to eighth plastic working materials made of a Cu—Sn—Zn copper alloy as follows.

すなわち、第5塑性加工材は、後述する(5)(9)(10)の組成をなす平均結晶粒径300μm以下の鋳造素材に塑性加工を施してなるものであり、α相の面積率が94.5%以上(好ましくは96%以上、より好ましくは98%以上、最適には99.5%以上)で且つγ相、δ相及びε相の合計面積率が5%以下(好ましくは3.5%以下、より好ましくは1.5%以下、最適には0.5%以下)である金属組織をなし、平均結晶粒径が150μm以下の結晶構造をなすものである。
That is, the fifth plastic working material is obtained by subjecting a casting material having an average crystal grain size of 300 μm or less having the composition of (5), (9), and (10), which will be described later, to an α phase area ratio. 94.5% or more (preferably 96% or more, more preferably 98% or more, optimally 99.5% or more), and the total area ratio of the γ phase, δ phase, and ε phase is 5% or less (preferably 3 0.5% or less, more preferably 1.5% or less, optimally 0.5% or less), and a crystal structure having an average crystal grain size of 150 μm or less.

また、第6塑性加工材は、後述する(6)(9)(10)(11)の組成をなす平均結晶粒径300μm以下の鋳造素材に塑性加工を施してなるものであり、α相の面積率が94.5%以上(好ましくは96%以上、より好ましくは98%以上、最適には99.5%以上)で且つγ相、δ相及びε相の合計面積率が5%以下(好ましくは3.5%以下、より好ましくは1.5%以下、最適には0.5%以下)である金属組織をなし、平均結晶粒径が150μm以下の結晶構造をなすものである。
The sixth plastic working material is obtained by subjecting a casting material having an average crystal grain size of 300 μm or less, which has the composition of (6), (9), (10), and (11) described later, to α-phase. The area ratio is 94.5% or more (preferably 96% or more, more preferably 98% or more, optimally 99.5% or more), and the total area ratio of the γ phase, δ phase, and ε phase is 5% or less ( The metal structure is preferably 3.5% or less, more preferably 1.5% or less, and most preferably 0.5% or less, and has a crystal structure with an average crystal grain size of 150 μm or less.

また、第7塑性加工材は、後述する(7)(9)(10)(12)の組成をなす平均結晶粒径300μm以下の鋳造素材に塑性加工を施してなるものであり、α相の面積率が94.5%以上(好ましくは96%以上、より好ましくは98%以上、最適には99.5%以上)で且つγ相、δ相及びε相の合計面積率が5%以下(好ましくは3.5%以下、より好ましくは1.5%以下、最適には0.5%以下)である金属組織をなし、平均結晶粒径が150μm以下の結晶構造をなすものである。
The seventh plastic working material is obtained by subjecting a casting material having an average crystal grain size of 300 μm or less, which has the composition of (7), (9), (10), and (12) described later, to α-phase. The area ratio is 94.5% or more (preferably 96% or more, more preferably 98% or more, optimally 99.5% or more), and the total area ratio of the γ phase, δ phase, and ε phase is 5% or less ( The metal structure is preferably 3.5% or less, more preferably 1.5% or less, and most preferably 0.5% or less, and has a crystal structure with an average crystal grain size of 150 μm or less.

また、第8塑性加工材は、後述する(8)(9)(10)(11)(12)の組成をなす平均結晶粒径300μm以下の鋳造素材に塑性加工を施してなるものであり、α相の面積率が94.5%以上(好ましくは96%以上、より好ましくは98%以上、最適には99.5%以上)で且つγ相、δ相及びε相の合計面積率が5%以下(好ましくは3.5%以下、より好ましくは1.5%以下、最適には0.5%以下)である金属組織をなし、平均結晶粒径が150μm以下の結晶構造をなすものである。
The eighth plastic work material is obtained by subjecting a cast material having an average crystal grain size of 300 μm or less, which has the composition of (8), (9), (10), (11), and (12) described later, to plastic processing, The area ratio of the α phase is 94.5% or more (preferably 96% or more, more preferably 98% or more, optimally 99.5% or more), and the total area ratio of the γ phase, δ phase, and ε phase is 5 % Or less (preferably 3.5% or less, more preferably 1.5% or less, optimally 0.5% or less), and a crystal structure having an average crystal grain size of 150 μm or less. is there.

(1) Sn:4.2〜15mass%(好ましくは4.2〜13mass%、より好ましくは4.2〜12.5mass%、最適には4.2〜12mass%)と、Zr:0.001〜0.049mass%(好ましくは0.0015〜0.039mass%、より好ましくは0.002〜0.029mass%、最適には0.003〜0.019mass%)と、P:0.01〜0.14mass%(好ましくは0.015〜0.14mass%、より好ましくは0.02〜0.14mass%、最適には0.03〜0.13mass%)と、Cu:残部とからなる組成をなすこと。
(1) Sn: 4.2 ~15mass% ( preferably 4.2 ~13mass%, more preferably 4.2 ~12.5mass%, optimally 4.2 ~12mass%) and, Zr: 0.001 ~0.049mass% (preferably 0.0015~0.039mass%, more preferably 0.002~0.029mass%, optimally 0.003~0.019mass%) and, P: 0.01 to 0 consisting of the balance: .14 mass% (preferably 0.015 to 0.14 mass%, more preferably 0.02 to 0.14 mass%, and optimally 0.03~0.13mass%) and, Cu Making a composition.

(2) Sn:4.2〜15mass%(好ましくは4.2〜13mass%、より好ましくは4.2〜12.5mass%、最適には4.2〜12mass%)と、Zr:0.001〜0.049mass%(好ましくは0.0015〜0.039mass%、より好ましくは0.002〜0.029mass%、最適には0.003〜0.019mass%)と、P:0.01〜0.14mass%(好ましくは0.015〜0.14mass%、より好ましくは0.02〜0.14mass%、最適には0.03〜0.13mass%)と、Ti:0.002〜0.049mass%(好ましくは0.003〜0.039mass%、最適には0.005〜0.029mass%)、Hf:0.002〜0.049mass%(好ましくは0.003〜0.039mass%、最適には0.005〜0.029mass%)、B:0.001〜0.03mass%(好ましくは0.0015〜0.025mass%、最適には0.002〜0.02mass%)、Mg:0.001〜0.3mass%(好ましくは0.005〜0.2mass%、最適には0.01〜0.1mass%)、Mn:0.03〜1mass%(好ましくは0.05〜0.7mass%、最適には0.1〜0.5mass%)及びAl:0.01〜1mass%(好ましくは0.02〜0.8mass%、より好ましくは0.05〜0.5mass%)、As:0.02〜0.2mass%(好ましくは0.025〜0.15mass%、最適には0.03〜0.1mass%)及びSb:0.02〜0.2mass%(好ましくは0.025〜0.15mass%、最適には0.03〜0.1mass%)から選択された1種以上の元素と、Cu:残部とからなる組成をなすこと。
(2) Sn: 4.2 ~15mass% ( preferably 4.2 ~13mass%, more preferably 4.2 ~12.5mass%, optimally 4.2 ~12mass%) and, Zr: 0.001 ~0.049mass% (preferably 0.0015~0.039mass%, more preferably 0.002~0.029mass%, optimally 0.003~0.019mass%) and, P: 0.01 to 0 .14 mass% (preferably 0.015 to 0.14 mass%, more preferably 0.02 to 0.14 mass%, and optimally 0.03~0.13mass%) and, Ti: 0.002 to 0.049 mass% (preferably 0.003-0.039 mass%, optimally 0.005-0.029 mass%), Hf: 0.002-0.049 mass% ( Preferably 0.003-0.039 mass%, optimally 0.005-0.029 mass%), B: 0.001-0.03 mass% (preferably 0.0015-0.025 mass%, optimally 0.002 to 0.02 mass%), Mg: 0.001 to 0.3 mass% (preferably 0.005 to 0.2 mass%, optimally 0.01 to 0.1 mass%), Mn: 0.03 ~ 1 mass% (preferably 0.05 to 0.7 mass%, optimally 0.1 to 0.5 mass%) and Al: 0.01 to 1 mass% (preferably 0.02 to 0.8 mass%, more preferably 0.05 to 0.5 mass%), As: 0.02 to 0.2 mass% (preferably 0.025 to 0.15 mass%, optimally 0.03 to 0.1 mass%), and Sb: A composition comprising one or more elements selected from 0.02 to 0.2 mass% (preferably 0.025 to 0.15 mass%, optimally 0.03 to 0.1 mass%), and Cu: the balance. To do.

(3) Sn:4.2〜15mass%(好ましくは4.2〜13mass%、より好ましくは4.2〜12.5mass%、最適には4.2〜12mass%)と、Zr:0.001〜0.049mass%(好ましくは0.0015〜0.039mass%、より好ましくは0.002〜0.029mass%、最適には0.003〜0.019mass%)と、P:0.01〜0.14mass%(好ましくは0.015〜0.14mass%、より好ましくは0.02〜0.14mass%、最適には0.03〜0.13mass%)と、Fe:0.01〜0.2mass%(好ましくは0.02〜0.15mass%、最適には0.03〜0.1mass%)、Co:0.01〜0.2mass%(好ましくは0.02〜0.15mass%、最適には0.03〜0.1mass%)及びSi:0.01〜0.8mass%(好ましくは0.03〜0.5mass%、最適には0.05〜0.3mass%)から選択された1種以上の元素と、Cu:残部とからなる組成をなすこと。
(3) Sn: 4.2 ~15mass% ( preferably 4.2 ~13mass%, more preferably 4.2 ~12.5mass%, optimally 4.2 ~12mass%) and, Zr: 0.001 ~0.049mass% (preferably 0.0015~0.039mass%, more preferably 0.002~0.029mass%, optimally 0.003~0.019mass%) and, P: 0.01 to 0 .14 mass% (preferably 0.015 to 0.14 mass%, more preferably 0.02 to 0.14 mass%, and optimally 0.03~0.13mass%) and, Fe: 0.01 to 0.2 mass% (preferably 0.02 to 0.15 mass%, optimally 0.03 to 0.1 mass%), Co: 0.01 to 0.2 mass% (preferably 0.02 to 0) 15 mass%, optimally 0.03-0.1 mass%) and Si: 0.01-0.8 mass% (preferably 0.03-0.5 mass%, optimally 0.05-0.3 mass%) The composition which consists of 1 or more types of elements selected from these, and Cu: remainder.

(4)Sn:4.2〜15mass%(好ましくは4.2〜13mass%、より好ましくは4.2〜12.5mass%、最適には4.2〜12mass%)と、Zr:0.001〜0.049mass%(好ましくは0.0015〜0.039mass%、より好ましくは0.002〜0.029mass%、最適には0.003〜0.019mass%)と、P:0.01〜0.14mass%(好ましくは0.015〜0.14mass%、より好ましくは0.02〜0.14mass%、最適には0.03〜0.13mass%)と、Ti:0.002〜0.049mass%(好ましくは0.003〜0.039mass%、最適には0.005〜0.029mass%)、Hf:0.002〜0.049mass%(好ましくは0.003〜0.039mass%、最適には0.005〜0.029mass%)、B:0.001〜0.03mass%(好ましくは0.0015〜0.025mass%、最適には0.002〜0.02mass%)、Mg:0.001〜0.3mass%(好ましくは0.005〜0.2mass%、最適には0.01〜0.1mass%)、Mn:0.03〜1mass%(好ましくは0.05〜0.7mass%、最適には0.1〜0.5mass%)及びAl:0.01〜1mass%(好ましくは0.02〜0.8mass%、より好ましくは0.05〜0.5mass%)、As:0.02〜0.2mass%(好ましくは0.025〜0.15mass%、最適には0.03〜0.1mass%)及びSb:0.02〜0.2mass%(好ましくは0.025〜0.15mass%、最適には0.03〜0.1mass%)から選択された1種以上の元素と、Fe:0.01〜0.2mass%(好ましくは0.02〜0.15mass%、最適には0.03〜0.1mass%)、Co:0.01〜0.2mass%(好ましくは0.02〜0.15mass%、最適には0.03〜0.1mass%)及びSi:0.01〜0.8mass%(好ましくは0.03〜0.5mass%、最適には0.05〜0.3mass%)から選択された1種以上の元素と、Cu:残部とからなる組成をなすこと。
(4) Sn: 4.2 ~15mass% ( preferably 4.2 ~13mass%, more preferably 4.2 ~12.5mass%, optimally 4.2 ~12mass%) and, Zr: 0.001 ~0.049mass% (preferably 0.0015~0.039mass%, more preferably 0.002~0.029mass%, optimally 0.003~0.019mass%) and, P: 0.01 to 0 .14 mass% (preferably 0.015 to 0.14 mass%, more preferably 0.02 to 0.14 mass%, and optimally 0.03~0.13mass%) and, Ti: 0.002 to 0.049 mass% (preferably 0.003-0.039 mass%, optimally 0.005-0.029 mass%), Hf: 0.002-0.049 mass% ( Preferably 0.003-0.039 mass%, optimally 0.005-0.029 mass%), B: 0.001-0.03 mass% (preferably 0.0015-0.025 mass%, optimally 0.002 to 0.02 mass%), Mg: 0.001 to 0.3 mass% (preferably 0.005 to 0.2 mass%, optimally 0.01 to 0.1 mass%), Mn: 0.03 ~ 1 mass% (preferably 0.05 to 0.7 mass%, optimally 0.1 to 0.5 mass%) and Al: 0.01 to 1 mass% (preferably 0.02 to 0.8 mass%, more preferably 0.05 to 0.5 mass%), As: 0.02 to 0.2 mass% (preferably 0.025 to 0.15 mass%, optimally 0.03 to 0.1 mass%), and Sb: 0 One or more elements selected from 0.02 to 0.2 mass% (preferably 0.025 to 0.15 mass%, optimally 0.03 to 0.1 mass%), and Fe: 0.01 to 0. 2 mass% (preferably 0.02-0.15 mass%, optimally 0.03-0.1 mass%), Co: 0.01-0.2 mass% (preferably 0.02-0.15 mass%, optimal Selected from 0.03 to 0.1 mass%) and Si: 0.01 to 0.8 mass% (preferably 0.03 to 0.5 mass%, optimally 0.05 to 0.3 mass%). The composition which consists of 1 or more types of elements and Cu: remainder is made.

(5) Sn:0.2〜15mass%(好ましくは0.6〜13mass%、より好ましくは1.5〜12.5mass%、最適には2〜12mass%)と、Zr:0.001〜0.049mass%(好ましくは0.0015〜0.039mass%、より好ましくは0.002〜0.029mass%、最適には0.003〜0.019mass%)と、P:0.01〜0.25mass%(好ましくは0.015〜0.2mass%、より好ましくは0.02〜0.18mass%、最適には0.03〜0.13mass%)と、Zn:0.01〜35mass%(好ましくは0.05〜31mass%、より好ましくは0.3〜27mass%、最適には4〜15mass%)と、Cu:残部とからなる組成をなすこと。 (5) Sn: 0.2-15 mass% (preferably 0.6-13 mass%, more preferably 1.5-12.5 mass%, optimally 2-12 mass%), and Zr: 0.001-0 0.049 mass% (preferably 0.0015 to 0.039 mass%, more preferably 0.002 to 0.029 mass%, optimally 0.003 to 0.019 mass%), and P: 0.01 to 0.25 mass % (Preferably 0.015-0.2 mass%, more preferably 0.02-0.18 mass%, optimally 0.03-0.13 mass%) and Zn: 0.01-35 mass% (preferably 0.05 to 31 mass%, more preferably 0.3 to 27 mass%, and most preferably 4 to 15 mass%), and Cu: the balance.

(6) Sn:0.2〜15mass%(好ましくは0.6〜13mass%、より好ましくは1.5〜12.5mass%、最適には2〜12mass%)と、Zr:0.001〜0.049mass%(好ましくは0.0015〜0.039mass%、より好ましくは0.002〜0.029mass%、最適には0.003〜0.019mass%)と、P:0.01〜0.25mass%(好ましくは0.015〜0.2mass%、より好ましくは0.02〜0.18mass%、最適には0.03〜0.13mass%)と、Zn:0.01〜35mass%(好ましくは0.05〜31mass%、より好ましくは0.3〜27mass%、最適には4〜15mass%)と、Ti:0.002〜0.049mass%(好ましくは0.003〜0.039mass%、最適には0.005〜0.029mass%)、Hf:0.002〜0.049mass%(好ましくは0.003〜0.039mass%、最適には0.005〜0.029mass%)、B:0.001〜0.03mass%(好ましくは0.0015〜0.025mass%、最適には0.002〜0.02mass%)、Mg:0.001〜0.3mass%(好ましくは0.005〜0.2mass%、最適には0.01〜0.1mass%)、Mn:0.03〜1mass%(好ましくは0.05〜0.7mass%、最適には0.1〜0.5mass%)及びAl:0.01〜1mass%(好ましくは0.02〜0.8mass%、より好ましくは0.05〜0.5mass%)、As:0.02〜0.2mass%(好ましくは0.025〜0.15mass%、最適には0.03〜0.1mass%)及びSb:0.02〜0.2mass%(好ましくは0.025〜0.15mass%、最適には0.03〜0.1mass%)から選択された1種以上の元素と、Cu:残部とからなる組成をなすこと。 (6) Sn: 0.2-15 mass% (preferably 0.6-13 mass%, more preferably 1.5-12.5 mass%, optimally 2-12 mass%), and Zr: 0.001-0 0.049 mass% (preferably 0.0015 to 0.039 mass%, more preferably 0.002 to 0.029 mass%, optimally 0.003 to 0.019 mass%), and P: 0.01 to 0.25 mass % (Preferably 0.015-0.2 mass%, more preferably 0.02-0.18 mass%, optimally 0.03-0.13 mass%) and Zn: 0.01-35 mass% (preferably 0.05 to 31 mass%, more preferably 0.3 to 27 mass%, optimally 4 to 15 mass%) and Ti: 0.002 to 0.049 mass% (preferably 0.003-0.039 mass%, optimally 0.005-0.029 mass%), Hf: 0.002-0.049 mass% (preferably 0.003-0.039 mass%, optimally 0) 0.005 to 0.029 mass%), B: 0.001 to 0.03 mass% (preferably 0.0015 to 0.025 mass%, optimally 0.002 to 0.02 mass%), Mg: 0.001 to 0.3 mass% (preferably 0.005 to 0.2 mass%, optimally 0.01 to 0.1 mass%), Mn: 0.03 to 1 mass% (preferably 0.05 to 0.7 mass%, optimal 0.1 to 0.5 mass%) and Al: 0.01 to 1 mass% (preferably 0.02 to 0.8 mass%, more preferably 0.05 to 0.5 mass%) , As: 0.02-0.2 mass% (preferably 0.025-0.15 mass%, optimally 0.03-0.1 mass%) and Sb: 0.02-0.2 mass% (preferably 0 0.025 to 0.15 mass%, optimally 0.03 to 0.1 mass%) and a composition comprising Cu: the balance.

(7) Sn:0.2〜15mass%(好ましくは0.6〜13mass%、より好ましくは1.5〜12.5mass%、最適には2〜12mass%)と、Zr:0.001〜0.049mass%(好ましくは0.0015〜0.039mass%、より好ましくは0.002〜0.029mass%、最適には0.003〜0.019mass%)と、P:0.01〜0.25mass%(好ましくは0.015〜0.2mass%、より好ましくは0.02〜0.18mass%、最適には0.03〜0.13mass%)と、Zn:0.01〜35mass%(好ましくは0.05〜31mass%、より好ましくは0.3〜27mass%、最適には4〜15mass%)と、Fe:0.01〜0.2mass%(好ましくは0.02〜0.15mass%、最適には0.03〜0.1mass%)、Co:0.01〜0.2mass%(好ましくは0.02〜0.15mass%、最適には0.03〜0.1mass%)及びSi:0.01〜0.8mass%(好ましくは0.03〜0.5mass%、最適には0.05〜0.3mass%)から選択された1種以上の元素と、Cu:残部とからなる組成をなすこと。 (7) Sn: 0.2-15 mass% (preferably 0.6-13 mass%, more preferably 1.5-12.5 mass%, optimally 2-12 mass%), and Zr: 0.001-0 0.049 mass% (preferably 0.0015 to 0.039 mass%, more preferably 0.002 to 0.029 mass%, optimally 0.003 to 0.019 mass%), and P: 0.01 to 0.25 mass % (Preferably 0.015-0.2 mass%, more preferably 0.02-0.18 mass%, optimally 0.03-0.13 mass%) and Zn: 0.01-35 mass% (preferably 0.05 to 31 mass%, more preferably 0.3 to 27 mass%, optimally 4 to 15 mass%) and Fe: 0.01 to 0.2 mass% (preferably 0.02-0.15 mass%, optimally 0.03-0.1 mass%), Co: 0.01-0.2 mass% (preferably 0.02-0.15 mass%, optimally 0.03 -0.1 mass%) and Si: 0.01-0.8 mass% (preferably 0.03-0.5 mass%, optimally 0.05-0.3 mass%). And a composition consisting of Cu: the balance.

(8)Sn:0.2〜15mass%(好ましくは0.6〜13mass%、より好ましくは1.5〜12.5mass%、最適には2〜12mass%)と、Zr:0.001〜0.049mass%(好ましくは0.0015〜0.039mass%、より好ましくは0.002〜0.029mass%、最適には0.003〜0.019mass%)と、P:0.01〜0.25mass%(好ましくは0.015〜0.2mass%、より好ましくは0.02〜0.18mass%、最適には0.03〜0.13mass%)と、Zn:0.01〜35mass%(好ましくは0.05〜31mass%、より好ましくは0.3〜27mass%、最適には4〜15mass%)と、Ti:0.002〜0.049mass%(好ましくは0.003〜0.039mass%、最適には0.005〜0.029mass%)、Hf:0.002〜0.049mass%(好ましくは0.003〜0.039mass%、最適には0.005〜0.029mass%)、B:0.001〜0.03mass%(好ましくは0.0015〜0.025mass%、最適には0.002〜0.02mass%)、Mg:0.001〜0.3mass%(好ましくは0.005〜0.2mass%、最適には0.01〜0.1mass%)、Mn:0.03〜1mass%(好ましくは0.05〜0.7mass%、最適には0.1〜0.5mass%)及びAl:0.01〜1mass%(好ましくは0.02〜0.8mass%、より好ましくは0.05〜0.5mass%)、As:0.02〜0.2mass%(好ましくは0.025〜0.15mass%、最適には0.03〜0.1mass%)及びSb:0.02〜0.2mass%(好ましくは0.025〜0.15mass%、最適には0.03〜0.1mass%)から選択された1種以上の元素と、Fe:0.01〜0.2mass%(好ましくは0.02〜0.15mass%、最適には0.03〜0.1mass%)、Co:0.01〜0.2mass%(好ましくは0.02〜0.15mass%、最適には0.03〜0.1mass%)及びSi:0.01〜0.8mass%(好ましくは0.03〜0.5mass%、最適には0.05〜0.3mass%)から選択された1種以上の元素と、Cu:残部とからなる組成をなすこと。 (8) Sn: 0.2 to 15 mass% (preferably 0.6 to 13 mass%, more preferably 1.5 to 12.5 mass%, optimally 2 to 12 mass%), and Zr: 0.001 to 0 0.049 mass% (preferably 0.0015 to 0.039 mass%, more preferably 0.002 to 0.029 mass%, optimally 0.003 to 0.019 mass%), and P: 0.01 to 0.25 mass % (Preferably 0.015-0.2 mass%, more preferably 0.02-0.18 mass%, optimally 0.03-0.13 mass%) and Zn: 0.01-35 mass% (preferably 0.05 to 31 mass%, more preferably 0.3 to 27 mass%, optimally 4 to 15 mass%) and Ti: 0.002 to 0.049 mass% (preferred) 0.003-0.039 mass%, optimally 0.005-0.029 mass%), Hf: 0.002-0.049 mass% (preferably 0.003-0.039 mass%, optimally 0) 0.005 to 0.029 mass%), B: 0.001 to 0.03 mass% (preferably 0.0015 to 0.025 mass%, optimally 0.002 to 0.02 mass%), Mg: 0.001 to 0.3 mass% (preferably 0.005 to 0.2 mass%, optimally 0.01 to 0.1 mass%), Mn: 0.03 to 1 mass% (preferably 0.05 to 0.7 mass%, optimal 0.1 to 0.5 mass%) and Al: 0.01 to 1 mass% (preferably 0.02 to 0.8 mass%, more preferably 0.05 to 0.5 mass%) As: 0.02-0.2 mass% (preferably 0.025-0.15 mass%, optimally 0.03-0.1 mass%) and Sb: 0.02-0.2 mass% (preferably 0.00. One or more elements selected from 025 to 0.15 mass%, optimally 0.03 to 0.1 mass%) and Fe: 0.01 to 0.2 mass% (preferably 0.02 to 0.15 mass) %, Optimally 0.03-0.1 mass%), Co: 0.01-0.2 mass% (preferably 0.02-0.15 mass%, optimally 0.03-0.1 mass%) and From one or more elements selected from Si: 0.01 to 0.8 mass% (preferably 0.03 to 0.5 mass%, optimally 0.05 to 0.3 mass%), and Cu: the balance To make a composition.

(9) Zr及びPの含有量についてF1=[P]/[Zr]=0.6〜36.8(最適にはF1=2〜30)の関係が成立する組成であること。
(9) Regarding the content of Zr and P, the composition should satisfy the relationship of F1 = [P] / [Zr] = 0.6-36.8 ( optimally F1 = 2-30).

(10) Znを含有する場合において、Sn及びZnの含有量についてF2=3[Sn]+[Zn]=11.1〜36.6(最適にはF2=17.5〜36)の関係が成立する組成であること。
(10) In the case of containing Zn, there is a relationship of F2 = 3 [Sn] + [Zn] = 11.1 to 36.6 ( optimally F2 = 17.5 to 36) with respect to the contents of Sn and Zn. The composition must be established.

(11) Ti、Hf、B及びMgの少なくとも何れかを含有する場合において、F3=([P]+[Mg])/([Zr]+0.5[Ti]+0.5[Hf]+[B])=0.6〜36.8(最適にはF3=2〜30)の関係が成立する組成であること。なお、F3において含有しない元素[a]については[a]=0とする。
(11) In the case of containing at least one of Ti, Hf, B and Mg, F3 = ([P] + [Mg]) / ([Zr] +0.5 [Ti] +0.5 [Hf] + [ B]) = 0.6 to 36.8 ( optimally F3 = 2 to 30). Note that the element [a] not contained in F3 is set to [a] = 0.

(12) Feを含有する場合において、F4=([P]−0.3[Fe])/[Zr]=0.6〜36.8(最適にはF4=2〜30)の関係が成立する組成であること。
(12) When Fe is contained, the relationship of F4 = ([P] −0.3 [Fe]) / [Zr] = 0.6-36.8 ( optimally F4 = 2-30) is established. The composition should be

而して、第1〜第8塑性加工材にあって、Cuは当該塑性加工材ないし鋳造素材を構成する銅合金の主元素であり、その含有量が多くなると、α相を容易に得ることができ、耐食性(耐脱亜鉛腐食性、耐応力腐食割れ性)及び機械的特性を向上させることができるが、Cuの過剰な含有は鋳造素材における結晶粒の微細化を妨げることになる。一方、Cu量が過少であると、鋳造時における初晶がα相とならず、α相以外の相が多く出現して、結晶粒の微細化を妨げることになる。さらに、Sn(第5〜第8塑性加工材にあってはSn及びZn)との配合比にもよるが、Cu含有量の範囲の下限側は、より一層安定した耐蝕性、耐潰蝕性を確保できるように決定しておくことが好ましく、その上限側も、より一層の強度、耐摩耗性を確保できるように決定しておくことが好ましい。また、結晶粒の微細化を図るためには、他の含有元素との関係をも考慮する必要がある。これらの点から、Cuの含有量は残部とした。   Thus, in the first to eighth plastic working materials, Cu is the main element of the copper alloy constituting the plastic working material or casting material, and when the content increases, the α phase can be easily obtained. The corrosion resistance (dezincification corrosion resistance, stress corrosion cracking resistance) and mechanical properties can be improved, but excessive Cu content hinders the refinement of crystal grains in the casting material. On the other hand, if the amount of Cu is too small, the primary crystal at the time of casting does not become the α phase, and many phases other than the α phase appear and hinder the refinement of crystal grains. Furthermore, although depending on the compounding ratio with Sn (Sn and Zn in the case of the fifth to eighth plastic working materials), the lower limit side of the range of Cu content is more stable corrosion resistance and erosion resistance. It is preferable to determine so as to be able to ensure, and it is also preferable to determine the upper limit side so as to ensure further strength and wear resistance. In addition, in order to refine the crystal grains, it is necessary to consider the relationship with other contained elements. From these points, the content of Cu was the balance.

第1〜第8塑性加工材にあって、Snは鋳造素材における結晶粒の微細化を図り、熱間加工又は冷間加工に伴う再結晶温度域での焼鈍(再結晶焼鈍)による加工材結晶粒の微細化を図るものである。更には、Snの含有により、強度、ばね限界値、耐食性及び耐摩耗性を向上させることができ、強度と延性とのバランスに優れた塑性加工材を得ることができる。Snは、それ単独ではさほどの効果はないが、後述するZr及びPの存在下で、鋳物における結晶粒の微細化を効果的に実現する。また、熱間加工又は焼鈍冷間加工を施した場合、Snは銅合金の積層欠陥エネルギーを低下させ、その結果、再結晶の核生成サイトが増えて、結晶粒を著しく微細化させる。このような効果は、Snを0.2mass%以上含有することによって発揮される。Snによる結晶粒の微細化を図るためにはSn含有量は多い方がよいが、Snが低融点金属であることから、Snを15mass%を超えて含有させると、その含有量が増すに従ってSnの偏析が著しくなり、鋳造性、熱間加工性及び冷間加工性の低下原因となる。Zr及びPの存在下であっても延性,鋳造性を低下させ、割れ,ひけ巣,ざく巣の発生等の鋳造欠陥を生じる原因となり、良好な塑性加工を行なうことができない。また、Snは、包晶反応(溶融固化時における結晶粒の微細化を達成するための有効な手段)を生じる組成域を広げる役目を果たすものであり、Sn含有量が増すに従って、実用上広範囲のCu濃度で包晶反応を生じさせることができる。また、Snを15mass%を超えて含有させておくと、Cu(第5〜第8塑性加工材にあってはCu及びZn)との配合割合にもよるが、母相(α相)よりSn濃度の高い硬質相であるγ相,δ相,ε相が過剰に生成して相の選択腐蝕が生じ、耐蝕性を却って低下させる虞れがある。また、第5〜第8塑性加工材にあって、前記(10)の関係式F2の値が30を超える場合(特にSn量が10mass%を超える場合)には、γ相,δ相,ε相が顕著に出現(析出)して、その析出個所が起点となって曲げ加工時等においてクラックが発生する虞れがある。このような問題を生じさせないためには、第1〜第8塑性加工材の何れにおいても、α相の面積率が94.5%以上(好ましくは96%以上、より好ましくは98%以上、最適には99.5%以上)で且つγ相、δ相及びε相の合計面積率が5%以下(好ましくは3.5%以下、より好ましくは1.5%以下、最適には0.5%以下)である金属組織をなすことが必要である。これらの点を総合的に勘案して、第1〜第4塑性加工材にあっては、Sn含有量は4.2〜15mass%としておく必要があり、4.2〜13mass%としておくことが好ましく、4.2〜12.5mass%としておくことがより好ましく、4.2〜12mass%としておくのが最適である。特に、Znを含有する第5〜第8塑性加工材にあっては、Sn含有量は0.2〜15mass%としておく必要があり、0.6〜13mass%としておくことが好ましく、1.5〜12.5mass%としておくことがより好ましく、2〜12mass%としておくのが最適であり、鋳造素材の結晶粒微細化を図るためにも、Znとの関係を考慮して、Sn含有量を、上記範囲内において、前記(10)の関係式F2が成立するように決定しておく必要がある。
In the first to eighth plastic working materials, Sn is used to refine crystal grains in the casting material, and the workpiece crystal is obtained by annealing (recrystallization annealing) in a recrystallization temperature range associated with hot working or cold working. It is intended to refine the grain. Furthermore, by containing Sn, the strength, spring limit value, corrosion resistance and wear resistance can be improved, and a plastic working material having an excellent balance between strength and ductility can be obtained. Sn alone has no significant effect, but effectively realizes refinement of crystal grains in the casting in the presence of Zr and P described later. Further, when hot working or annealing cold work is performed, Sn reduces the stacking fault energy of the copper alloy, and as a result, the number of recrystallization nucleation sites increases and the crystal grains are remarkably refined. Such an effect is exhibited by containing 0.2 mass% or more of Sn. In order to achieve finer crystal grains with Sn, it is better that the Sn content is large. However, since Sn is a low melting point metal, when Sn is contained in an amount exceeding 15 mass%, Sn content increases as the content increases. Segregation of the steel becomes remarkable, which causes a decrease in castability, hot workability, and cold workability. Even in the presence of Zr and P, ductility and castability are deteriorated, causing casting defects such as generation of cracks, shrinkage nests, and nests, and good plastic working cannot be performed. Further, Sn plays a role of expanding a composition range in which a peritectic reaction (an effective means for achieving the refinement of crystal grains at the time of melting and solidifying) occurs, and as the Sn content increases, a wide range of practical use. The peritectic reaction can be caused at a Cu concentration of 2%. Further, if Sn is contained in an amount exceeding 15 mass%, it depends on the blending ratio with Cu (Cu and Zn in the case of the fifth to eighth plastic working materials), but Sn from the parent phase (α phase). The γ phase, δ phase, and ε phase, which are hard phases having a high concentration, are excessively generated to cause selective corrosion of the phase, which may lower the corrosion resistance. Further, in the fifth to eighth plastic working materials, when the value of the relational expression F2 in (10) exceeds 30 (particularly when the Sn amount exceeds 10 mass%), the γ phase, δ phase, ε There is a possibility that a phase appears (precipitates) remarkably, and cracks are generated at the time of bending or the like starting from the precipitated portion. In order not to cause such a problem, the area ratio of the α phase is 94.5% or more (preferably 96% or more, more preferably 98% or more) in any of the first to eighth plastic working materials. 99.5% or more) and the total area ratio of the γ phase, δ phase and ε phase is 5% or less (preferably 3.5% or less, more preferably 1.5% or less, optimally 0.5 % Or less) is necessary. In consideration of these points comprehensively, in the first to fourth plastic workpiece, Sn content must be between 4.2 ~15mass%, it is kept as a 4.2 ~13mass% preferably, more preferably to keep the 4.2 ~12.5mass%, it is best to keep the 4.2 ~12mass%. In particular, in the fifth to eighth plastic working materials containing Zn, the Sn content needs to be 0.2 to 15 mass%, preferably 0.6 to 13 mass%, It is more preferable to set it to ˜12.5 mass%, and it is most preferable to set it to 2 to 12 mass%. In order to refine crystal grains of the casting material, the Sn content is taken into consideration in consideration of the relationship with Zn. Within the above range, it is necessary to determine that the relational expression F2 of (10) is established.

第1〜第8塑性加工材にあって、Zr及びPは塑性加工材の結晶粒微細化、特に鋳造素材の溶融固化時における結晶粒の微細化を図ることを目的として共添されるものである。すなわち、Zr及びPは、単独では、他の一般的な添加元素と同様、結晶粒の微細化を僅かに図ることができるにすぎないが、共存状態で極めて有効な結晶粒の微細化機能を発揮するものである。   In the first to eighth plastic working materials, Zr and P are co-added for the purpose of refining the crystal grains of the plastic working material, in particular, for refining the crystal grains at the time of melting and solidifying the casting material. is there. In other words, Zr and P, alone, as well as other general additive elements, can only slightly refine crystal grains, but have an extremely effective grain refinement function in the coexisting state. It is something that demonstrates.

このような結晶粒の微細化機能は、Zrについては0.001mass%以上で発揮され、0.0015mass%以上で顕著に発揮され、0.002mass%以上でより顕著に発揮され、0.003mass%以上で極めて顕著に発揮されることになり、Pについては0.01mass%以上で発揮され、0.015mass%以上で顕著に発揮され、0.02mass%以上でより顕著に発揮され、0.03mass%以上で極めて顕著に発揮されることになる。   Such a crystal grain refining function is exhibited at 0.001 mass% or more for Zr, prominently exhibited at 0.0015 mass% or more, more prominently at 0.002 mass% or more, and 0.003 mass%. As described above, P is exhibited significantly at 0.01 mass% or more, P is exhibited significantly at 0.015 mass% or more, is exhibited more significantly at 0.02 mass% or more, and 0.03 mass. % Or more, it will be exhibited remarkably.

一方、Zrの含有量が0.049mass%に達し、またPの含有量が0.25mass%に達すると、他の構成元素の種類,含有量に拘わらず、Zr及びPの共添による結晶粒の微細化機能は完全に飽和することになり、寧ろ微細化機能が損なわれる虞れがあり、結晶粒が微細化された塑性加工材を得ることが困難となる。したがって、結晶粒微細化機能を効果的に発揮させるに必要なZr及びPの含有量は、Zrについては0.049mass%以下であり、Pについては0.25mass%以下であることが必要である。なお、Zr及びPは、それらの含有量が上記した範囲で設定される微量であれば、他の構成元素によって発揮される合金特性を阻害することがなく、寧ろ、結晶粒の微細化により、偏析するSn濃度の高い部分を連続したものでなくマトリックス内に均一に分布させることができる。その結果、鋳造割れを防止でき、ざく巣,引け巣,ブローホール,ミクロポロシティーの少ない健全な鋳造物を得ることができ、更に鋳造後に行う塑性加工性(冷間抽伸性,冷間伸線性等)を向上させることができ、当該塑性加工材の特性を更に向上させることができる。   On the other hand, when the Zr content reaches 0.049 mass% and the P content reaches 0.25 mass%, the crystal grains produced by co-addition of Zr and P are used regardless of the type and content of other constituent elements. However, there is a possibility that the refining function may be impaired, and it is difficult to obtain a plastic working material with fine crystal grains. Therefore, the contents of Zr and P necessary for effectively exhibiting the crystal grain refining function are required to be 0.049 mass% or less for Zr and 0.25 mass% or less for P. . In addition, Zr and P, if their content is a trace amount set in the above-described range, does not hinder the alloy characteristics exhibited by other constituent elements, but rather, by refining crystal grains, The segregated portion having a high Sn concentration can be distributed uniformly in the matrix, not continuously. As a result, it is possible to prevent casting cracks and to obtain a sound casting with little nest, shrinkage, blowhole and microporosity, and plastic workability after cold casting (cold drawing, cold drawing) Etc.) and the characteristics of the plastic working material can be further improved.

なお、Zrは非常に酸素との親和力が強いものであるため、大気中で溶融させる場合やスクラップ材を原料として使用する場合には、Zrの酸化物,硫化物となり易く、Zrを過剰に添加すると、溶湯の粘性が高められて、鋳造中に酸化物,硫化物の巻き込み等による鋳造欠陥を生じ、鋳造素材にブローホールやミクロポロシティーが発生し易くなって、高品質の塑性加工材を得ることが困難となる。これを避けるために真空や完全な不活性ガス雰囲気で溶解,鋳造させることも考えられるが、このようにすると、汎用性がなくなり、Zrを専ら微細化元素として含有する銅合金において大幅なコストアップとなる。かかる点を考慮すると、酸化物,硫化物としての形態をなさないZr量を0.039mass%以下としておくことが好ましく、0.029mass%以下としておくことがより好ましく、0.019mass%以下としておくのが最適である。また、Zr量をこのような範囲としておくと、当該鋳物を再利用材として大気中で溶解しても、Zrの酸化物や硫化物の生成が減少し、再び微細結晶粒で構成された健全な第1〜第8塑性加工材を得ることが可能となる。   Since Zr has a very strong affinity for oxygen, when it is melted in the atmosphere or when scrap material is used as a raw material, it is likely to be an oxide or sulfide of Zr, and Zr is added excessively. As a result, the viscosity of the molten metal is increased, and casting defects due to the inclusion of oxides and sulfides during casting occur. Blow holes and microporosity are likely to occur in the casting material, resulting in a high-quality plastic work material. It becomes difficult to obtain. In order to avoid this, melting and casting in a vacuum or a completely inert gas atmosphere can be considered. However, if this is done, the versatility is lost and the cost of copper alloys containing Zr exclusively as a refined element is greatly increased. It becomes. Considering this point, the amount of Zr that does not form an oxide or sulfide is preferably 0.039 mass% or less, more preferably 0.029 mass% or less, and 0.019 mass% or less. Is the best. Moreover, if the amount of Zr is set in such a range, even if the casting is dissolved in the air as a reusable material, the production of Zr oxides and sulfides is reduced, and the sound composed of fine crystal grains is again formed. It becomes possible to obtain the first to eighth plastic working materials.

これらの点から、Zrの含有量は、工業的に微量のZrを添加することを考慮に入れ、0.001〜0.049mass%としておくことが必要であり、0.0015〜0.039mass%としておくことが好ましく、0.002〜0.029mass%としておくことがより好ましく、0.003〜0.019mass%としておくのが最適である。   From these points, the Zr content needs to be 0.001 to 0.049 mass% in consideration of industrially adding a small amount of Zr, and 0.0015 to 0.039 mass%. It is preferable to set it as 0.002 to 0.029 mass%, and it is optimal to set it as 0.003 to 0.019 mass%.

また、Pは、上述した如くZrとの共添により結晶粒の微細化機能を発揮させるために含有されるものであるが、耐蝕性,鋳造性等にも影響を与えるものである。Pは溶湯の粘性を下げ、溶融固化(凝固)の過程で晶出する初晶と融液(残液)との界面エネルギー及び界面張力を下げる役割を果たす。このような状態にするためには、P量を0.01mass%以上としておくことが必要であり、0.015mass%以上としておくことが好ましく、0.02mass%以上としておくことがより好ましく、0.03mass%以上としておくのが最適である。一方、Pを0.25mass%を超えて含有しても、その効果は飽和するばかりでなく、むしろ冷間での延性、熱間での延性を損なう。この観点から、P量は、第1〜第4塑性加工材にあっては0.14mass%以下としておくのが最適であり、第5〜第8塑性加工材にあっては0.25mass%以下としておく必要があり、0.2mass%以下としておくことが好ましく、0.18mass%以下としておくことがより好ましく、0.14mass%以下としておくのが最適である。また、上記したような溶融固化状態下におけるP,Zrの共添による機能及び相互作用により、結晶核生成が結晶成長を遥かに上回ることにより、溶融固化段階で結晶粒が微細化される。適正なP,Zrの含有範囲において、前記(9)の関係式F1(=[P]/[Zr])の値が150を超えると核生成が十分に行われず、F1<0.5となると結晶粒同士の合体が進み結果的に、結晶粒はネットワーク状になる。これらの点から、P量は、F1が前記(9)の値を満足することを条件として、第1〜第4塑性加工材にあっては0.01〜0.14mass%としておくことが必要であり、0.015〜0.14mass%としておくことが好ましく、0.02〜0.14mass%としておくことがより好ましく、0.03〜0.14mass%としておくのが最適であり、第5〜第8塑性加工材にあっては0.01〜0.25mass%としておくことが必要であり、0.015〜0.2mass%としておくことが好ましく、0.02〜0.18mass%としておくことがより好ましく、0.03〜0.14mass%としておくのが最適である。
Further, P is contained in order to exert the function of refining crystal grains by co-addition with Zr as described above, but also affects the corrosion resistance, castability and the like. P lowers the viscosity of the melt and lowers the interfacial energy and interfacial tension between the primary crystal and the melt (residual liquid) that crystallize in the process of solidification (solidification). In order to achieve such a state, the P amount needs to be 0.01 mass% or more, preferably 0.015 mass% or more, more preferably 0.02 mass% or more, and 0 It is optimal to set it to 0.03 mass% or more. On the other hand, even if P is contained exceeding 0.25 mass%, the effect is not only saturated, but rather, the ductility in the cold and the ductility in the hot are impaired. From this point of view, the P amount is optimally 0.14 mass% or less for the first to fourth plastic working materials, and 0.25 mass% or less for the fifth to eighth plastic working materials. Therefore, it is preferable to set it to 0.2 mass% or less, more preferably 0.18 mass% or less, and most preferably 0.14 mass% or less. Further, the crystal grains are refined in the melt-solidification stage because the crystal nucleation far exceeds the crystal growth by the function and interaction by the co-addition of P and Zr in the melt-solidified state as described above. When the value of the relational expression F1 (= [P] / [Zr]) in (9) exceeds 150 in an appropriate P and Zr content range, nucleation is not sufficiently performed and F1 <0.5. As the coalescence of crystal grains progresses, the crystal grains become network-like. From these points, it is necessary that the P amount be 0.01 to 0.14 mass% for the first to fourth plastic working materials on the condition that F1 satisfies the value of (9). It is preferably 0.015 to 0.14 mass%, more preferably 0.02 to 0.14 mass%, and most preferably 0.03 to 0.14 mass%. In the eighth plastic working material, it is necessary to be 0.01 to 0.25 mass%, preferably 0.015 to 0.2 mass%, and preferably 0.02 to 0.18 mass%. It is more preferable that 0.03 to 0.14 mass% be optimal.

また、Zr,Pの共添による結晶粒の微細化効果は、Zr,Pの含有量を上記した範囲で個々に決定するのみでは発揮されず、これらの含有量相互において前記(9)の関係式F1を満足することが必要である。結晶粒の微細化は、融液から晶出する初晶のα相の核生成速度が、デンドライト結晶の成長速度を遥かに上回ることによって達成されるが、かかる現象を発生させるには、Zr,Pの含有量を個々に決定するのみでは不十分であり、その共添割合(F1=[P]/[Zr])を考慮する必要がある。Zr,Pの含有量を適正な範囲において適正な含有割合となるように決定しておくことにより、Zr,Pの共添機能ないし相互作用によって初晶α相の結晶生成を著しく促進させることができ、その結果、当該α相の核生成がデンドライト結晶の成長を遥かに上回ることになるのである。Zr,Pの含有量が適正範囲にあり且つそれらの配合比率([P]/[Zr])が量論的である場合、数十ppm程度の微量なZrの含有により、α相の結晶中に、Zr,Pの金属間化合物(例えばZrP,ZrP1−x)を生成することがあり、当該α相の核生成速度は、[P]/[Zr]の値F1が0.5〜150となることによって高められ、その程度はF1=0.8〜100となることによって更に高められ、F1=1.2〜60となることにより著しく高められ、F1=2〜30となることにより飛躍的に高められることになる。すなわち、ZrとPとの共添割合F1(=[P]/[Zr])は結晶粒の微細化を図る上で重要な要素であり、F1が上記した範囲にあれば、溶融固化時の結晶核生成が結晶成長を大きく上回ることになる。   Further, the effect of refining crystal grains due to the co-addition of Zr and P is not exhibited only by individually determining the contents of Zr and P within the above-mentioned ranges, but the relationship of (9) above among these contents. It is necessary to satisfy Formula F1. Grain refinement is achieved by the fact that the nucleation rate of the primary α phase crystallized from the melt far exceeds the growth rate of the dendrite crystal. To generate such a phenomenon, Zr, It is not sufficient to determine the P content individually, and the co-addition ratio (F1 = [P] / [Zr]) needs to be considered. By determining the content of Zr and P so as to be an appropriate content ratio in an appropriate range, the crystal formation of the primary α phase can be significantly accelerated by the co-addition function or interaction of Zr and P. As a result, the nucleation of the α phase far exceeds the growth of the dendrite crystals. When the content of Zr and P is in the proper range and the blending ratio ([P] / [Zr]) is stoichiometric, the Zr and P content in the α-phase crystals can be reduced due to the small amount of Zr of about several tens of ppm. In addition, an intermetallic compound of Zr, P (for example, ZrP, ZrP1-x) may be generated, and the nucleation rate of the α phase is such that the value F1 of [P] / [Zr] is 0.5 to 150. The degree is further increased by F1 = 0.8 to 100, significantly increased by F1 = 1.2 to 60, and dramatically increased by F1 = 2 to 30. Will be enhanced. That is, the co-addition ratio F1 (= [P] / [Zr]) of Zr and P is an important factor in achieving finer crystal grains, and if F1 is in the above range, Crystal nucleation greatly exceeds crystal growth.

また、鋳造素材の製造時において、溶融固化が進行し、固相の割合が増してくると、結晶成長が頻繁に行われ始め、一部で結晶粒の合体も生じ始め、通例、α相結晶粒は大きくなっていく。ここで、溶融物が固化する過程において包晶反応が生じると、固化されずに残っている融液と固相α相とが固液反応し、固相のα相を食いながらβ相が生成する。その結果として、α相がβ相に包み込まれて、α相の結晶粒自体の大きさもより小さくなっていき且つその形状も角の取れた楕円形状になっていく。固相がこのように微細な楕円形状になれば、ガスやZrの硫化物,酸化物も浮上し易くなり、固化するときの凝固収縮に伴う割れに対する耐性を持ち、引けも滑らかに生じて、常温での強度、耐食性等の諸特性にも好影響をもたらす。したがって、鋳造素材の溶融固化時においては初晶がα相であり、溶融固化時において包晶反応が生じることが好ましい。なお、包晶反応に与るかどうかは、実用上平衡状態とは異なり一般的には平衡状態より広い組成で生じる。ここでZnを含有するCu−Sn−Zn合金においては、前記(10)の関係式F2が重要な役割を果たすのであり、F2の下限値は、主として、溶融固化後の結晶粒の大きさと包晶反応とに与れる尺度に関わり、F2の上限値は、主として、溶融固化後の結晶の大きさと初晶がα相であるかどうかの境界値とに関わるものである。F2の値が前記(10)に記載した好ましい範囲、より好ましい範囲、最適な範囲となるに従って、初晶α相の量が増え、非平衡反応で生じる包晶反応がより活発に生じ、結果として常温で得られる結晶粒はより小さくなっていく。   In addition, when the casting material is manufactured, when solidification progresses and the proportion of the solid phase increases, crystal growth begins to occur frequently, and some of the crystal grains begin to coalesce. Grain grows larger. Here, if a peritectic reaction occurs in the process of solidification of the melt, the remaining melt without solidification reacts with the solid α phase, and a β phase is formed while eating the solid α phase. To do. As a result, the α phase is encapsulated in the β phase, the size of the α phase crystal grains themselves becomes smaller, and the shape of the α phase becomes an elliptical shape with a corner. If the solid phase becomes such a fine elliptical shape, the gas, Zr sulfide, and oxide are also likely to float, have resistance to cracking due to solidification shrinkage when solidified, and the shrinkage occurs smoothly, It also has a positive effect on various properties such as strength at normal temperature and corrosion resistance. Therefore, it is preferable that the primary crystal is the α phase when the cast material is melted and solidified, and a peritectic reaction occurs during the melt and solidification. Note that whether or not it affects the peritectic reaction generally occurs in a wider composition than the equilibrium state, unlike the equilibrium state in practice. Here, in the Cu—Sn—Zn alloy containing Zn, the relational expression F2 of the above (10) plays an important role, and the lower limit value of F2 mainly depends on the size of the crystal grains after melting and solidification. The upper limit value of F2 is mainly related to the size of the crystal after melt-solidification and the boundary value of whether the primary crystal is an α phase. As the value of F2 becomes the preferred range, the more preferred range, and the optimum range described in (10) above, the amount of the primary α phase increases, and the peritectic reaction that occurs in the non-equilibrium reaction occurs more actively. The crystal grains obtained at room temperature are getting smaller.

これら一連の溶融固化現象は、当然、冷却速度に依存する。すなわち、冷却速度が10℃/秒を超える急冷では、結晶の核生成を行うには、その時間がないので結晶粒が微細化されない虞れがあり、逆に、0.1℃/秒未満の冷却速度では、結晶成長が促進されるため、結晶粒は微細化されない虞れがある。また、平衡状態に近づくので、包晶反応に与る組成範囲も小さくなる。したがって、鋳造素材の製造工程(鋳造工程)においては、鋳物の冷却速度を0.1〜10℃/秒(好ましくは0.5〜10℃/秒、より好ましくは5〜10℃/秒)としておくことが好ましい。このような冷却速度の範囲のなかでも、より上限に近い冷却速度となる程、結晶粒が微細化される組成領域が広がり、結晶粒はより微細化されることになる。 A series of these melt solidification phenomena naturally depends on the cooling rate. That is, when the cooling rate exceeds 10 5 ° C / second, there is a risk that the crystal grains will not be refined because there is no time for nucleation of crystals, and conversely, less than 0.1 ° C / second. At this cooling rate, crystal growth is promoted, so that the crystal grains may not be refined. Further, since the equilibrium state is approached, the composition range that affects the peritectic reaction is also reduced. Therefore, in the manufacturing process (casting process) of the casting material, the casting cooling rate is 0.1 to 10 5 ° C / second (preferably 0.5 to 10 4 ° C / second, more preferably 5 to 10 3 ° C / second. Seconds). Within such a range of cooling rates, the closer the cooling rate is to the upper limit, the wider the composition region in which crystal grains are refined, and the crystal grains are further refined.

第5〜第8塑性加工材において含有されるZnは、Snと同様に、鋳造素材の溶融固化時に結晶粒を微細化させる有力な手段である包晶反応を生ぜしめ、Snと同様に、合金の積層欠陥エネルギーを低下させ、塑性加工工程における再結晶焼鈍時に再結晶粒を微細化させる機能を有する。Znは、それ単独ではさほどの効果はないが、Zr及びPの存在下で、鋳物の結晶粒の更なる微細化を図る。また、Znは強度、ばね限界値、耐食性、耐磨耗性、湯流れ性を向上させる機能を有するものであり、強度−延性のバランスが優れた合金添加元素である。しかし、Znを過剰添加すると、初晶がβ相になり、鋳物の結晶粒が微細化しなくなるばかりか脆くなり、応力腐食割れ又は脱亜鉛腐食の感受性が増すことになる。これらの点を考慮すれば、Znの含有量は0.01〜35mass%としておくことが必要であり、Sn含有量にもよるが、0.05〜31mass%としておくことが好ましく、0.3〜27mass%としておくことがより好ましく、4〜15mass%としておくのが最適である。また、Zn含有量を上記範囲において決定するに当っては、鋳造素材の結晶粒微細化を図るためにも、前述した如くSn含有量との関係を考慮する必要があり、前記(10)の関係式F2が成立するように決定しておく必要がある。   Zn contained in the fifth to eighth plastic working materials, like Sn, causes a peritectic reaction, which is an effective means for refining crystal grains when the cast material is melted and solidified. The stacking fault energy is reduced and the recrystallized grains are refined during recrystallization annealing in the plastic working process. Zn alone is not so effective, but in the presence of Zr and P, the crystal grains of the casting are further refined. Zn has a function of improving strength, spring limit value, corrosion resistance, wear resistance, and hot water flow, and is an alloy additive element having an excellent balance between strength and ductility. However, when Zn is added excessively, the primary crystal becomes β phase, the crystal grains of the casting are not refined and become brittle, and the susceptibility to stress corrosion cracking or dezincification corrosion increases. Considering these points, the Zn content needs to be 0.01 to 35 mass%, and although it depends on the Sn content, it is preferably 0.05 to 31 mass%. It is more preferable to set it to -27 mass%, and it is optimal to set it to 4-15 mass%. Further, in determining the Zn content in the above range, it is necessary to consider the relationship with the Sn content as described above in order to refine the crystal grains of the casting material. It is necessary to determine so that the relational expression F2 holds.

Ti,Hf,Bは、Zr,Pの結晶粒微細化機能及び特性を代用させ、又はZr,Pを有効存続させる機能を有するものである。このようなZrの代替としての結晶粒微細化効果の程度は、Hf,TiについてはZrの1/2に相当し、BについてはZrと同等である。しかし、Ti,Hf,Bの過剰な含有は、酸化物の生成を招来して鋳物の健全性に問題を生じることになる。かかる点を考慮して、Ti,Hf,Bを含有する場合にあっては、Zr,Pとの関係において前記(11)の関係式F3が成立することを条件として、Tiの含有量は0.002〜0.049mass%(好ましくは0.003〜0.039mass%、最適には0.005〜0.029mass%)とし、Hfの含有量は0.002〜0.049mass%(好ましくは0.003〜0.039mass%、最適には0.005〜0.029mass%)とし、Bの含有量は0.001〜0.03mass%(好ましくは0.0015〜0.025mass%、最適には0.002〜0.02mass%)とする。   Ti, Hf, and B have a function of substituting the crystal grain refining function and characteristics of Zr and P, or effectively maintaining Zr and P. The degree of crystal grain refinement effect as an alternative to Zr is equivalent to 1/2 of Zr for Hf and Ti, and is equivalent to Zr for B. However, an excessive content of Ti, Hf, and B leads to the formation of oxides and causes a problem in the soundness of the casting. In consideration of this point, when Ti, Hf, and B are contained, the content of Ti is 0 on the condition that the relational expression F3 of (11) is satisfied in relation to Zr and P. 0.002-0.049 mass% (preferably 0.003-0.039 mass%, optimally 0.005-0.029 mass%), and the Hf content is 0.002-0.049 mass% (preferably 0 0.003 to 0.039 mass%, optimally 0.005 to 0.029 mass%), and the content of B is 0.001 to 0.03 mass% (preferably 0.0015 to 0.025 mass%, optimally 0.002 to 0.02 mass%).

Mg,Mn,Alは、Zrによる結晶粒微細化機能をより有効に発揮させる機能を有する。すなわち、Zrは、これが硫化物及び/又は酸化物の形態をなすと、結晶粒の微細化に有効な機能を十分発揮できなくなるが、Mg,Mn,Alは、鋳造時におけるZrの添加前に予め、溶湯を十分に脱硫ないし脱酸させる機能を発揮し、結晶粒の微細化機能を発揮しうるに必要なZr量を最小限とする。鋳物原料(鋳造素材の原料)の一部としてスクラップ材(廃棄伝熱管等)が使用されることは多いが、かかるスクラップ材にはS成分(硫黄成分)が含まれていることが多いが、溶湯にS成分が含まれていると、結晶粒微細化元素であるZrが硫化物を形成して、Zrによる有効な結晶粒微細化機能が喪失される虞れがあり、更には湯流れ性を低下させて、ブローホール、割れや酸化物,硫化物の巻き込み等による鋳造欠陥が生じ易くなる。このような場合、Mg等はS成分を含有するスクラップ材を合金原料として使用する場合にも鋳造時における湯流れ性を向上させる機能を有する。また、例えば、MgはS成分をより無害なMgSの形態で除去することができ、このMgSはそれが仮に合金に残留したとしても耐蝕性に有害な形態でなく、原料にS成分が含まれていることに起因する耐蝕性低下を効果的に防止できる。また、原料にS成分が含まれていると、Sが結晶粒界に存在し易く粒界腐蝕を生じる虞れがあるが、Mgの含有により粒界腐蝕を効果的に防止することができる。また、溶湯のS濃度が高くなって、ZrがSによって消費される虞れがあるが、Zr装入前に、溶湯に一定量以上のMgを含有させておくと、溶湯中のS成分がMgSの形で除去され或いは固定されることから、かかる問題を生じない。ただし、Mgを過剰に含有すると、Zrと同様に酸化して、溶湯の粘性が高められ、酸化物の巻き込み等による鋳造欠陥を生じる虞れがある。さらに、MgはZr及びPの存在下において、Pによる結晶粒微細化機能の一部を代替する機能をも有するものであり、このようなPの代替としての結晶粒微細化効果の程度はPと同等である。したがって、Mgを含有させる場合にあっては、Zr,Pとの関係において前記(11)の関係式F3が成立することを条件として、Mg量を0.001〜0.3mass%(好ましくは0.003〜0.2mass%、最適には0.01〜0.1mass%)とする。また、Al,Mnも、上記したMgに比しては劣るものの、溶湯に含まれるS成分を除去する作用がある。また、溶湯中の酸素量が多いと、Zrが酸化物を形成して結晶粒の微細化機能が喪失される虞れがあるが、Al,Mnは、このようなZrの酸化物形成をも防止する効果も発揮する。かかる点及び上記した点を考慮して、Mn含有量は0.03〜1mass%(好ましくは0.05〜0.7mass%、最適には0.1〜0.5mass%)とし、Al含有量は0.01〜1mass%(好ましくは0.02〜0.8mass%、より好ましくは0.05〜0.5mass%)とする。なお、Alは上記した機能に加え、Pと同様に、湯流れ性及び耐食性を向上させると共に、更に耐エロージョンコロージョン性、強度及び耐磨耗性を向上させる機能を有することから、かかる機能をも発揮させるべく、含有量範囲の下限値をMg,Mnより大きくした。   Mg, Mn, and Al have a function of more effectively exerting the crystal grain refining function by Zr. That is, if Zr is in the form of sulfide and / or oxide, the function effective for refining the crystal grains cannot be sufficiently exhibited. However, Mg, Mn, and Al are not added before the addition of Zr during casting. In advance, the function of sufficiently desulfurizing or deoxidizing the molten metal is exhibited, and the amount of Zr necessary to exhibit the function of refining crystal grains is minimized. Although scrap materials (such as waste heat transfer tubes) are often used as a part of casting materials (raw materials for casting materials), such scrap materials often contain S components (sulfur components) When the S component is contained in the molten metal, Zr, which is a grain refinement element, may form a sulfide, and the effective grain refinement function due to Zr may be lost. , And casting defects due to blow holes, cracks, oxides, sulfides, etc. are likely to occur. In such a case, Mg or the like has a function of improving the hot water flow during casting even when a scrap material containing an S component is used as an alloy raw material. In addition, for example, Mg can remove S component in the form of harmless MgS, and this MgS is not in a form harmful to corrosion resistance even if it remains in the alloy, and the raw material contains S component. Therefore, it is possible to effectively prevent the corrosion resistance from being reduced. In addition, when the raw material contains an S component, S is likely to be present at the crystal grain boundaries, and there is a risk of causing grain boundary corrosion. However, inclusion of Mg can effectively prevent grain boundary corrosion. Moreover, there is a possibility that the S concentration of the molten metal becomes high and Zr is consumed by S. However, if the molten metal contains a certain amount or more of Mg before Zr charging, the S component in the molten metal will be reduced. Such a problem does not occur because it is removed or fixed in the form of MgS. However, if Mg is contained excessively, it is oxidized like Zr, the viscosity of the molten metal is increased, and there is a possibility that a casting defect due to oxide entrainment or the like may occur. Further, Mg also has a function of substituting part of the crystal grain refining function by P in the presence of Zr and P, and the degree of the crystal grain refining effect as an alternative to such P is P Is equivalent to Therefore, in the case of containing Mg, the Mg amount is set to 0.001 to 0.3 mass% (preferably 0) on condition that the relational expression F3 of (11) is satisfied in relation to Zr and P. 0.003 to 0.2 mass%, optimally 0.01 to 0.1 mass%). Al and Mn are also inferior to the above Mg, but have the effect of removing S component contained in the molten metal. Further, if the amount of oxygen in the molten metal is large, Zr may form an oxide and the function of refining crystal grains may be lost, but Al and Mn may also form such an oxide of Zr. The effect to prevent is also demonstrated. Considering this point and the above points, the Mn content is 0.03 to 1 mass% (preferably 0.05 to 0.7 mass%, optimally 0.1 to 0.5 mass%), and the Al content is Is 0.01 to 1 mass% (preferably 0.02 to 0.8 mass%, more preferably 0.05 to 0.5 mass%). In addition to the above-described functions, Al has the functions of improving the hot water flow and corrosion resistance, and further improving the erosion corrosion resistance, strength, and wear resistance as well as P. In order to exhibit it, the lower limit of the content range was made larger than Mg and Mn.

As,Sbは、Zr及びPの存在下において、Pによる結晶粒微細化機能の一部を代替する機能を有するものであり、Pと同様に、耐食性及び耐粒界腐食性を向上させる機能も有する。但し、As,Sbの過剰な含有は、延性を低下させる虞れがあり、更には人体に悪影響を及ぼす有毒性が問題となる。かかる点を考慮して、As,Sbの含有量は、何れも、0.02〜0.2mass%(好ましくは0.025〜0.15mass%、最適には0.03〜0.1mass%)とした。   As and Sb have the function of substituting part of the crystal grain refining function of P in the presence of Zr and P, and, like P, have the function of improving corrosion resistance and intergranular corrosion resistance. Have. However, excessive contents of As and Sb may reduce ductility, and further, toxic effects that adversely affect the human body are problematic. Considering this point, the contents of As and Sb are both 0.02 to 0.2 mass% (preferably 0.025 to 0.15 mass%, optimally 0.03 to 0.1 mass%). It was.

Feは、冷間加工後に行なわれる再結晶焼鈍時における結晶粒成長を抑制する機能を有する。例えば、Feが0.25mass%を超えて含有されていると、鋳物の結晶粒の微細化を阻害するが、Fe量が0.2mass%以下であれば、鋳物における結晶粒の微細化への影響はほとんどなく、鋳物の結晶粒が十分に微細化する。一方、熱処理による再結晶は、被処理物の全ての部分で同時に起こるものではなく、ミクロ的に核生成サイトの数等によりタイムラグが生じることがあり、最初に再結晶した結晶粒(再結晶粒)は、その間に結晶粒の成長が起こり易いことから、これを回避することによって、被処理物(加工材)における結晶粒微細化が実現可能となる。Feは、その含有量が上記した如く鋳物における結晶粒微細化に影響を及ぼし得ない0.2mass%以下であっても、再結晶焼鈍時における結晶粒成長を抑制する機能があることから、その範囲でFeを含有させておくことにより、鋳物及びその加工物における結晶粒の微細化に寄与しうるものである。Feによる再結晶粒の成長抑制は、Cu−Sn合金又はCu−Zn−Sn合金において、FeはPの一部と結合して微細な化合物(FeP)を生成し、その析出粒子のピン止め効果によって再結晶粒の成長を効果的に抑制する。このようなFeによる機能は、Fe量が0.01mass%未満であると殆ど発揮されないし、逆に、0.2mass%を超えて含有させても、上記したFeによる再結晶粒の成長抑制効果は飽和されることになり、却って、上記した如く鋳造段階での結晶粒の微細化を阻害することになる。したがって、これらの点から、Feの含有量は0.01〜0.2mass%としておくのが適当である。また、鋳物における結晶粒の微細化をも更に考慮にいれると、Fe量の上限側は0.15mass%以下にしておくことが好ましく、0.1mass%以下がより好ましいし、塑性加工材における結晶粒の成長抑制効果に鑑みれば、Fe量の下限側は0.02mass%以上としておくことが好ましく、0.03mass%以上としておくことがより好ましい。而して、Feを含有させる場合には、上記した如くPとの間で化合物(FeP)を生成することによりPを消費することから、この点をも考慮して、Feの含有量は、前記(12)の関係式F4が成立することを条件として、0.01〜0.2mass%(好ましくは0.02〜0.15mass%、最適には0.03〜0.1mass%)としておくのがよい。 Fe has a function of suppressing crystal grain growth during recrystallization annealing performed after cold working. For example, if Fe is contained in excess of 0.25 mass%, the refinement of crystal grains in the casting is inhibited. However, if the amount of Fe is 0.2 mass% or less, the refinement of crystal grains in the casting is reduced. There is almost no effect, and the crystal grains of the casting are sufficiently refined. On the other hand, recrystallization by heat treatment does not occur simultaneously in all parts of the object to be processed, and there may be a time lag due to the number of nucleation sites microscopically. ) Is likely to cause crystal grain growth in the meantime. By avoiding this, crystal grain refinement in the workpiece (work material) can be realized. Fe has a function of suppressing grain growth during recrystallization annealing even if its content is 0.2 mass% or less, which cannot affect the grain refinement in the casting as described above. By containing Fe in the range, it can contribute to refinement of crystal grains in the casting and the processed product. The suppression of the growth of recrystallized grains by Fe is caused by the fact that Fe combines with a part of P in a Cu—Sn alloy or Cu—Zn—Sn alloy to produce a fine compound (Fe 2 P) and the pin of the precipitated particles The stopping effect effectively suppresses the growth of recrystallized grains. Such a function by Fe is hardly exhibited when the Fe amount is less than 0.01 mass%, and conversely, even if the Fe content exceeds 0.2 mass%, the above-described effect of suppressing the growth of recrystallized grains by Fe. Will be saturated, and on the contrary, it will hinder the refinement of crystal grains at the casting stage as described above. Therefore, from these points, it is appropriate that the Fe content is 0.01 to 0.2 mass%. In addition, if further refinement of crystal grains in the casting is taken into consideration, the upper limit of the amount of Fe is preferably set to 0.15 mass% or less, more preferably 0.1 mass% or less, and crystals in the plastic work material. In view of the effect of suppressing grain growth, the lower limit of the amount of Fe is preferably set to 0.02 mass% or more, and more preferably set to 0.03 mass% or more. Thus, when Fe is contained, P is consumed by forming a compound (Fe 2 P) with P as described above. Is 0.01 to 0.2 mass% (preferably 0.02 to 0.15 mass%, optimally 0.03 to 0.1 mass%) on condition that the relational expression F4 of (12) is satisfied. It is good to leave as.

また、Co,Siも、Feと同様に、冷間加工後に行なわれる再結晶焼鈍時における結晶粒成長を抑制する機能を有しており、特にCo,Siを共添させると、CoSiを形成してFePと同様に再結晶粒の成長をより効果的に抑制する機能を有する。また、Siは強度向上に効果があり、Sn,Znと同様に、積層欠陥エネルギーを低くして、結晶粒の微細化に寄与する。さらに、Siはばね限界値及び応力緩和特性を向上させる機能も有する。これらの点から、Co含有量は0.01〜0.2mass%(好ましくは0.02〜0.15mass%、最適には0.03〜0.1mass%)とし、Si含有量は0.01〜0.8mass%(好ましくは0.03〜0.5mass%、最適には0.05〜0.3mass%)とする。 Co and Si, like Fe, have a function of suppressing crystal grain growth during recrystallization annealing performed after cold working. In particular, when Co and Si are added together, Co 2 Si is added. It has the function of forming and suppressing the growth of recrystallized grains more effectively like Fe 2 P. Further, Si is effective in improving the strength, and, like Sn and Zn, reduces the stacking fault energy and contributes to the refinement of crystal grains. Furthermore, Si also has a function of improving the spring limit value and stress relaxation characteristics. From these points, the Co content is 0.01-0.2 mass% (preferably 0.02-0.15 mass%, optimally 0.03-0.1 mass%), and the Si content is 0.01 To 0.8 mass% (preferably 0.03 to 0.5 mass%, optimally 0.05 to 0.3 mass%).

ところで、鋳物は、結晶粒が粗大なため、塑性加工時に応力が局所的に集中すると割れ易くなる。さらに、合金化すると濃度偏析が起こり、特にSn等の低融点金属を多量に含有すると、その偏析の度合いも更に著しくなる。この濃度偏析も結晶粒が粗大化していると、マクロ的になり(大きく広範囲になり)結晶粒の粗大化現象と相俟って、更に塑性加工時の割れ感受性が高くなる(Sn濃度の高く硬い部分と柔らかい部分とが広範囲で存在することにより、その境界で応力集中が起これば割れ易い)。鋳物の結晶粒が微細であると、応力が集中しても、微細化効果により緩和でき、また、Sn等の元素が含有されても、その偏析はミクロ的なものに過ぎず、応力集中源になり難い。すなわち、鋳物段階で結晶粒が大きいものは、圧延,伸線等の塑性加工時に早期に割れが発生するが、鋳物の結晶粒が微細であるとSn等の元素の含有量が多くても、加工割れに対する耐性が高くなる。一度の軽い塑性加工で製品化する場合、当然鋳物の結晶粒が大きいとそれは脆く、強度が低く、耐食性等に問題が生じる。耐食性に関しても第2相,第3相が存在する場合、それらは長く連続したものであるので、かかる点からも問題である。   By the way, since the crystal grain of the casting is coarse, if the stress is locally concentrated during the plastic working, it becomes easy to crack. Further, when alloyed, concentration segregation occurs. In particular, when a large amount of a low melting point metal such as Sn is contained, the degree of segregation becomes further remarkable. This concentration segregation also becomes macroscopic (large and wide) when the crystal grains are coarsened, coupled with the coarsening phenomenon of the crystal grains, and further increases the susceptibility to cracking during plastic working (high Sn concentration). (Since the hard part and the soft part exist in a wide area, it is easy to crack if stress concentration occurs at the boundary.) If the crystal grain of the casting is fine, even if stress is concentrated, it can be mitigated by the effect of miniaturization. Even if elements such as Sn are contained, the segregation is only microscopic, and the stress concentration source It is hard to become. That is, when the crystal grains are large at the casting stage, cracks occur early during plastic processing such as rolling and wire drawing, but if the crystal grains of the casting are fine, even if the content of elements such as Sn is large, Increased resistance to processing cracks. When a product is manufactured by light plastic processing once, naturally, if the crystal grain of the casting is large, it is brittle, the strength is low, and there is a problem in corrosion resistance and the like. Regarding the corrosion resistance, when the second phase and the third phase are present, they are long and continuous, and this is also a problem.

塑性加工後に行なわれる再結晶焼鈍にあって、元の結晶粒が大きいと、再結晶の核生成サイトは、粒界を中心とした部分で再結晶が起こる。塑性加工による加工率や焼鈍の温度条件にもよるが、粒内は未再結晶状態となり、或いは再結晶したとしても粗大な再結晶粒である。そしてSn等の合金元素の偏析は、もともと粗大化によりマクロ的な偏析であるので、再結晶と共に元素偏析が解消されていくが、十分であるとはいえず、鋳造段階より改善されるものの、依然として塑性加工性が悪い。さらに、Sn等が多い場合又はF2(=3[Sn]+[Zn])の値が大きい場合には、α相以外の第2相(γ相,δ相等)が平衡状態より過剰に生成し易いが、鋳物の段階で結晶粒が大きいと、当該第2相は焼鈍(再結晶焼鈍)しても減少,消滅することがなく残留する。その結果、塑性加工時において第2相を起点とした割れが生じ易くなる。かかる問題は、特に、曲げ加工等による応力が集中しやすい塑性加工時においては顕著に生じる。焼鈍温度を高くすると、元素偏析は、かなり解消されるが、得られる結晶粒の大きさは粗大で、当然エネルギーコストも高くなる。この段階で製品化(最終加工がある場合あり)すると、前記の鋳物段階より改善されるが、強度が低く、曲げ加工性等延性に劣り、依然として耐食性に問題が生じる。   In the recrystallization annealing performed after the plastic working, if the original crystal grain is large, the recrystallization nucleation site is recrystallized at a portion centering on the grain boundary. Although depending on the processing rate by plastic working and the temperature condition of annealing, the grains are in an unrecrystallized state or are coarse recrystallized grains even if recrystallized. And since the segregation of alloy elements such as Sn is originally macroscopic segregation due to coarsening, element segregation will be eliminated together with recrystallization, but it is not sufficient, although it is improved from the casting stage, The plastic workability is still poor. Furthermore, when there is a large amount of Sn or the like or when the value of F2 (= 3 [Sn] + [Zn]) is large, the second phase other than the α phase (γ phase, δ phase, etc.) is generated excessively from the equilibrium state. Although it is easy, if the crystal grains are large at the casting stage, the second phase remains without being reduced or disappeared even after annealing (recrystallization annealing). As a result, cracks starting from the second phase are likely to occur during plastic working. Such a problem is conspicuous particularly during plastic processing where stress due to bending or the like tends to concentrate. When the annealing temperature is increased, element segregation is considerably eliminated, but the size of the obtained crystal grain is coarse and naturally the energy cost is also increased. If it is commercialized at this stage (there may be final processing), it is improved from the casting stage, but the strength is low, the ductility such as bending workability is inferior, and the corrosion resistance still has a problem.

好ましい実施の形態にあって、第1〜第8塑性加工材は、鋳造素材に冷間加工及び/又は熱間加工を1回以上施すと共に再結晶温度域での焼鈍(再結晶焼鈍)を1回以上施してなる板材、条材、線材、棒材又は管材である。冷間加工には、必要に応じて、最後の再結晶焼鈍後に行なわれる仕上加工,矯正加工等の冷間加工(以下「単純冷間加工」という)も含まれる。被加工材(鋳造材を含む)に冷間加工を施した後に再結晶焼鈍を行なうことにより、或いは再結晶温度域での塑性加工である熱間加工を被加工材に施すことにより、被加工材の結晶粒が細小化される。この結晶粒の細小化程度は、再結晶焼鈍前における冷間加工又は熱間加工の加工率が高くなるに従って大きくなる。一方、鋳造素材は上記した組成をなすことによって結晶粒が微細化(平均結晶粒径D2が300μm以下(好ましくはD2≦150μm、より好ましくはD2≦100μm、最適にはD2≦60μm))されたものとなっていることから、鋳造素材に1回以上の冷間加工(その後に再結晶焼鈍が行なわれるもの)及び/又は熱間加工を施すことによって、被加工材の結晶粒が更に微細化されて微細結晶(平均結晶粒径が150μm以下)の塑性加工材が得られることになる。この塑性加工材における結晶粒の微細化程度は、後述する総合加工率Pが大きくなるに従って及び/又は鋳造素材の結晶粒が微細化されるに従って、大きくなる。なお、単純冷間加工では、被加工材の結晶粒を変形させるに止まり、結晶粒を細小化させることはできない。   In the preferred embodiment, the first to eighth plastic working materials are subjected to cold working and / or hot working one or more times on the casting material and at the same time annealing in the recrystallization temperature range (recrystallization annealing). It is a plate material, strip material, wire material, bar material or pipe material that is applied more than once. The cold working includes cold working such as finishing and straightening performed after the last recrystallization annealing (hereinafter referred to as “simple cold working”) as necessary. By subjecting the workpiece (including cast material) to cold working and then performing recrystallization annealing, or by subjecting the workpiece to hot working that is plastic working in the recrystallization temperature range. The crystal grains of the material are reduced. The degree of grain refinement increases as the working rate of cold working or hot working before recrystallization annealing increases. On the other hand, the casting material has the above-described composition, so that the crystal grains are refined (the average crystal grain size D2 is 300 μm or less (preferably D2 ≦ 150 μm, more preferably D2 ≦ 100 μm, optimally D2 ≦ 60 μm)). Therefore, the crystal grain of the workpiece is further refined by subjecting the casting material to cold processing (recrystallization annealing is performed after that) and / or hot processing. As a result, a plastic work material having fine crystals (average crystal grain size of 150 μm or less) is obtained. The degree of refinement of crystal grains in the plastic working material increases as the overall processing rate P described later increases and / or as the crystal grains of the casting material become finer. In simple cold working, the crystal grains of the workpiece are only deformed, and the crystal grains cannot be reduced.

ところで、塑性加工による結晶粒の微細化度は、塑性加工の種類(冷間加工(その後に再結晶焼鈍が行なわれるもの)又は熱間加工)、塑性加工による加工率及び塑性加工の回数によって増減するが、これらの関係を把握するためには、次のように定義された総合加工率P(%)を用いるのが便利である。   By the way, the degree of crystal grain refinement by plastic working increases / decreases depending on the type of plastic working (cold working (after which recrystallization annealing is performed) or hot working), the working rate by plastic working, and the number of plastic workings. However, in order to grasp these relationships, it is convenient to use an overall processing rate P (%) defined as follows.

すなわち、3回の再結晶焼鈍が行なわれると仮定した場合において、最後の再結晶焼鈍と中間の再結晶焼鈍との間で行なわれる全ての冷間加工(以下「第1冷間加工」という)による加工率(以下「第1加工率」という)P1と、最初の再結晶焼鈍と中間の再結晶焼鈍との間で行なわれる全ての冷間加工(以下「第2冷間加工」という)による加工率(以下「第2加工率」という)P2と、最初の再結晶焼鈍前に行なわれる全ての冷間加工(以下「第3冷間加工」という)による加工率(以下「第3加工率」という)P3と、熱間加工による加工率(以下「熱間加工率」という)P4とにより、総合加工率をP=P1+0.4×(P2+P3)+0.2×P4とする。なお、総合加工率Pの計算上、中間の再結晶焼鈍が2回以上あるときは、各再結晶焼鈍間に行なわれる冷間加工による加工率を合計したものが第2加工率となる。また、第1、第2若しくは第3冷間加工又は熱間加工が複数回行なわれるときにおいては、その加工率は最初の加工が施される被加工材の断面積(板材については断面積又は板厚)と最後の加工が施された被加工材(最終加工材たる塑性加工材を含む)の断面積(板材については断面積又は板厚)とを用いて計算される。また、中間の再結晶焼鈍が行なわれないとき(再結晶焼鈍が2回であるとき)は第2加工率をP2=0とし、最初の再結晶焼鈍及び中間の再結晶焼鈍が行なわれないとき(再結晶焼鈍が1回であるとき)は第2及び第3加工率をP2=P3=0とし、熱間加工が行なわれないときは熱間加工率をP4=0とする。また、いうまでもないが、前記単純冷間加工による加工率は、単純冷間加工が結晶粒の微細化に関与しないため、総合加工率Pには算入しない。   That is, assuming that three recrystallization annealings are performed, all the cold workings performed between the last recrystallization annealing and the intermediate recrystallization annealing (hereinafter referred to as “first cold working”). By the processing rate (hereinafter referred to as “first processing rate”) P1 and all cold processing (hereinafter referred to as “second cold processing”) performed between the first recrystallization annealing and the intermediate recrystallization annealing. The processing rate (hereinafter referred to as “second processing rate”) P2 and the processing rate (hereinafter referred to as “third processing rate”) of all cold processing (hereinafter referred to as “third cold processing”) performed before the first recrystallization annealing. )) P3 and the processing rate by hot processing (hereinafter referred to as “hot processing rate”) P4, the total processing rate is P = P1 + 0.4 × (P2 + P3) + 0.2 × P4. In addition, in the calculation of the overall processing rate P, when there are two or more intermediate recrystallization annealings, the sum of the processing rates by cold working performed between each recrystallization annealing is the second processing rate. In addition, when the first, second, or third cold working or hot working is performed a plurality of times, the processing rate is the cross-sectional area of the workpiece to be subjected to the first processing (the cross-sectional area or (Plate thickness) and a cross-sectional area (including a cross-sectional area or a plate thickness for a plate material) of a workpiece (including a plastic processed material that is a final processed material) subjected to the last processing. When the intermediate recrystallization annealing is not performed (when the recrystallization annealing is performed twice), the second processing rate is set to P2 = 0, and the first recrystallization annealing and the intermediate recrystallization annealing are not performed. When the recrystallization annealing is performed once, the second and third processing rates are P2 = P3 = 0, and when the hot processing is not performed, the hot processing rate is P4 = 0. Needless to say, the processing rate by the simple cold working is not included in the total processing rate P because the simple cold working does not contribute to the refinement of crystal grains.

而して、塑性加工材における結晶粒は鋳造素材の結晶粒より顕著に微細化されるが、その微細化度は総合加工率Pの値が大きくなるに従い高くなる。好ましい実施の形態にあっては、鋳造素材の平均結晶粒径D2が300μm以下(好ましくはD2≦150μm、より好ましくはD2≦100μm、最適にはD2≦60μm)である場合、P<30%の塑性加工を施することによって平均結晶粒径D1≦150μm(好ましくはD1≦100μm、より好ましくはD1≦60μm、最適にはD1≦50μm)の塑性加工材を得ることができ、30%≦P<50%の塑性加工を施すことによって平均結晶粒径D1≦60μm(好ましくはD1≦50μm、より好ましくはD1≦40μm、最適にはD1≦30μm)の塑性加工材を得ることができる。また、P≧50%の塑性加工を施すことによって平均結晶粒径D≦45μm(好ましくはD1≦40μm、より好ましくはD1≦30μm、最適にはD1≦25μm)の塑性加工材を得ることができ、更にはP≧70%の塑性加工を施すことによって平均結晶粒径D1≦4μm(好ましくはD1≦3μm、より好ましくはD1≦2.5μm、最適にはD1≦2μm)の塑性加工材を得ることができる。なお、塑性加工材の結晶粒を効果的に微細化させるためには、最後の再結晶焼鈍前に行なわれる冷間加工の加工率(第1加工率P1)は30%以上としておくことが好ましい。   Thus, although the crystal grains in the plastic work material are remarkably refined as compared with the crystal grains of the cast material, the degree of refinement becomes higher as the value of the overall work rate P increases. In a preferred embodiment, when the average crystal grain size D2 of the casting material is 300 μm or less (preferably D2 ≦ 150 μm, more preferably D2 ≦ 100 μm, optimally D2 ≦ 60 μm), P <30% By performing plastic working, a plastic working material having an average crystal grain size D1 ≦ 150 μm (preferably D1 ≦ 100 μm, more preferably D1 ≦ 60 μm, optimally D1 ≦ 50 μm) can be obtained, and 30% ≦ P < By applying 50% plastic working, a plastic working material having an average crystal grain size D1 ≦ 60 μm (preferably D1 ≦ 50 μm, more preferably D1 ≦ 40 μm, optimally D1 ≦ 30 μm) can be obtained. Further, by performing plastic working with P ≧ 50%, a plastic working material having an average grain size D ≦ 45 μm (preferably D1 ≦ 40 μm, more preferably D1 ≦ 30 μm, optimally D1 ≦ 25 μm) can be obtained. Further, a plastic working material having an average grain size D1 ≦ 4 μm (preferably D1 ≦ 3 μm, more preferably D1 ≦ 2.5 μm, optimally D1 ≦ 2 μm) is obtained by performing plastic working with P ≧ 70%. be able to. In order to effectively refine the crystal grains of the plastic working material, it is preferable that the working rate (first working rate P1) of the cold working performed before the last recrystallization annealing is 30% or more. .

このような平均結晶径D1の塑性加工材を得るための塑性加工数は、鋳造素材の平均結晶粒径D2が小さくになるに従い、少なくなる。一方、鋳造素材の結晶粒は上記した組成となすことによって微細化され、平均結晶粒径D2をD2≦300μm(好ましくはD2≦150μm、より好ましくはD2≦100μm、最適にはD2≦60μm)となすことが可能となる。したがって、このように結晶粒が微細化された鋳造素材を使用することによって、後述する実施例からも理解されるように、上記した平均結晶径D1の塑性加工材を得るための塑性加工数を最小限とすることができる。   The number of plastic working steps for obtaining a plastic working material having such an average crystal diameter D1 decreases as the average crystal grain diameter D2 of the casting material decreases. On the other hand, the crystal grains of the casting material are refined by having the above-described composition, and the average crystal grain size D2 is D2 ≦ 300 μm (preferably D2 ≦ 150 μm, more preferably D2 ≦ 100 μm, optimally D2 ≦ 60 μm). Can be made. Therefore, by using a casting material in which crystal grains are refined in this way, the number of plastic working steps for obtaining a plastic working material having the above-mentioned average crystal diameter D1 can be reduced as will be understood from the examples described later. Can be minimal.

また、第1〜第8塑性加工材は、上記した結晶構造(D1≦150μm)及び相組織(α≧94.5%,γ+δ+ε≦5%)をなすことによって、強度,伸び,曲げ加工性等に優れたものとなる。塑性加工材の平均結晶粒径Dが大きいと、当該塑性加工材を製品加工(例えば深絞り加工)する場合、製品表面に肌荒れやしわが生じるといった外観上の欠陥に加えて、製品機能にも悪影響を与えるが、このような問題はD1≦150μmであれば回避することができ、例えばD1≦30μmともなれば、どのような製品加工を行なう場合にも殆ど問題は生じない。また、鋳造素材の結晶粒が粗大であると、塑性加工材を得るための加工率が低い場合には微小な再結晶粒を得ることができず、仮に微小な再結晶粒が得られたとしても、鋳造素材の粒界を中心として再結晶することになるため、塑性加工材における結晶粒が不揃いとなる。平均結晶粒径が小さい場合にも、結晶粒の大きさが不揃いであるときには、大径粒の局部的な存在により肌荒れが生じる。また、粗大な結晶粒が残留するということは、鋳造時に偏析する元素(Sn等)の均一化も不十分であることを意味し、偏析の度合いに応じて強度差が生じることにより、製品加工時に割れが生じ易くなる。すなわち、粗大な粒と小さな再結晶粒とが存在すると、その間に応力が集中して割れが生じ易くなる。このような2つの要因が重なって、製品の加工性に問題が生じる他、耐蝕性についても当然に問題が残る。しかし、第1〜第8塑性加工材では、鋳造素材の結晶粒が微細化されているため、塑性加工材における結晶粒の大きさが均一であり、上記のような問題は生じない。強度は、本来的に、結晶粒に依存するものであるから、結晶粒が大きい程又は粗大粒を含む程、強度が劣ることになるが、本発明によれば、強度,延性,加工性に優れた塑性加工材を提供することができる。   In addition, the first to eighth plastic working materials have the above-described crystal structure (D1 ≦ 150 μm) and phase structure (α ≧ 94.5%, γ + δ + ε ≦ 5%), so that strength, elongation, bending workability, etc. It will be excellent. When the average grain size D of the plastic workpiece is large, when the plastic workpiece is processed (for example, deep drawing), in addition to the appearance defects such as rough skin and wrinkles on the product surface, it also affects the product function. Although adverse effects are caused, such a problem can be avoided if D1 ≦ 150 μm. For example, if D1 ≦ 30 μm, there is almost no problem in any product processing. Also, if the crystal grain of the casting material is coarse, if the processing rate for obtaining the plastic work material is low, it is not possible to obtain a fine recrystallized grain, suppose that a fine recrystallized grain was obtained However, since the recrystallization is performed around the grain boundary of the casting material, the crystal grains in the plastic working material are not uniform. Even when the average crystal grain size is small, if the crystal grains are uneven in size, rough skin occurs due to the local presence of the large-diameter grains. Moreover, the fact that coarse crystal grains remain means that the elements that segregate at the time of casting (such as Sn) are not sufficiently uniform, and the strength of the segregation varies depending on the degree of segregation. Sometimes cracks tend to occur. That is, when coarse grains and small recrystallized grains exist, stress is concentrated between them and cracks are likely to occur. These two factors overlap to cause a problem in the workability of the product, and naturally a problem remains in the corrosion resistance. However, in the first to eighth plastic working materials, since the crystal grains of the casting material are miniaturized, the size of the crystal grains in the plastic working material is uniform, and the above problems do not occur. Since the strength is inherently dependent on the crystal grains, the larger the crystal grains or the larger the coarse grains, the lower the strength. However, according to the present invention, the strength, ductility, and workability are reduced. An excellent plastic working material can be provided.

また、第1〜第8塑性加工材が十分な強度,耐蝕性等を確保するためには、面積率においてマトリックスであるα相の含有量が94.5%以上(好ましくは96%以上、より好ましくは98%以上、最適には99.5%以上)で且つγ相、δ相及びε相の合計面積率が5%以下(好ましくは3.5%以下、より好ましくは1.5%以下、最適には0.5%以下)である金属組織(相組織)をなすことが必要である。すなわち、δ相等の含有量が過剰であると、相の選択腐蝕が生じて耐食性が低下すると共に、延性を低下させることになる。なお、結晶粒が微細化されることにより、δ相等が少なく、分断,細分化され、マトリックス中に均一に分布されることになり、機械的諸特性が大幅に向上される。   Moreover, in order to ensure sufficient strength, corrosion resistance, etc. for the first to eighth plastic working materials, the content of α phase as a matrix in the area ratio is 94.5% or more (preferably 96% or more, more Preferably it is 98% or more, optimally 99.5% or more) and the total area ratio of γ phase, δ phase and ε phase is 5% or less (preferably 3.5% or less, more preferably 1.5% or less) It is necessary to form a metal structure (phase structure) that is 0.5% or less optimally). That is, if the content of the δ phase or the like is excessive, selective corrosion of the phase occurs, the corrosion resistance is lowered, and the ductility is lowered. When the crystal grains are refined, the δ phase and the like are small, and the crystal grains are divided, subdivided, and uniformly distributed in the matrix, so that mechanical characteristics are greatly improved.

したがって、結晶粒が微細で且つ上記した相組織をなす第1〜第8塑性加工材は、高度の強度,伸び,加工性等を必要とする、電子・電気機器用ばね、スイッチ、コネクタ、ベロー、ヒューズクリップ、ブッシュ、リレー、歯車、カム、継手、フランジ、小ねじ、ボルト、ナット、ハトメ、ワッシャ、軸受け、コイルばね、渦巻きばね、スナップボタン、ヘッダー、リード端子、トランジスタ端子、リードフレーム、ロータリースイッチしゅう動片、開閉器接片、ベアリングフレーム、油圧キャップ、パッキン、クラッチ板、製紙用ブレード材、ダイヤフラム、ケーブル脱着部のスプリング、タイマーリレー用可動ばね、熱交換器、熱交換器用管板、熱交換器、金網、海洋ネット、養殖網、魚網、海水用復水器管、船舶部品シャフト、生簀用フレーム、タンブラー、配線器具、ソケット、ピン、ガス配管用溶接管、船舶海水取入口、海洋生簀枠(フレーム)等の構成材として好適に使用することができる。   Therefore, the first to eighth plastic working materials having fine crystal grains and having the phase structure described above require high strength, elongation, workability, etc., springs, switches, connectors, bellows for electronic and electrical equipment. , Fuse clip, bush, relay, gear, cam, joint, flange, machine screw, bolt, nut, eyelet, washer, bearing, coil spring, spiral spring, snap button, header, lead terminal, transistor terminal, lead frame, rotary Switch sliding piece, switch contact piece, bearing frame, hydraulic cap, packing, clutch plate, papermaking blade material, diaphragm, spring for cable attachment / detachment, movable spring for timer relay, heat exchanger, tube plate for heat exchanger, Heat exchanger, wire net, marine net, aquaculture net, fish net, seawater condenser pipe, ship parts shaft, ginger Frame, tumbler, wiring devices, sockets, pins, welded pipe gas pipe, intake ship seawater, can be suitably used as a constituent material, such as marine fish preserve frame (frame).

なお、第1〜第8塑性加工材を製造するに当って、鋳造素材の原料にスクラップ材を使用することがあるが、かかるスクラップ材を使用する場合、不可避的に不純物が含有されることがあり、実用上、許容される。しかし、スクラップ材がニッケル鍍金材等である場合において、不可避不純物としてNiが含有されるときには、その含有量を制限しておくことが好ましい。すなわち、不純物Niの含有量が多いと、結晶粒の微細化に有用なZr及びPがNiによって消費され、結晶粒の微細化作用を阻害する不都合があるからである。したがって、第1〜第8塑性加工材にあって、鋳造素材の製造時にNiが不純物として含有される場合には、その含有量を0.25mass%以下(好ましくは0.2mass%以下、最適には0.1mass%以下)に制限しておくことが好ましい。また、このような範囲であれば、Feが共添されることを条件として、Niを不純物としてでなく含有させることも意義がある。すなわち、Niの含有量が0.1mass%以下であれば、鋳造素材の結晶粒微細化に悪影響を及ぼすことが殆どなく、Feとの共添効果により、塑性加工後の再結晶焼鈍時において結晶粒成長を効果的に抑制する。   In addition, when manufacturing the 1st-8th plastic working material, a scrap material may be used for the raw material of a casting raw material, However, When using this scrap material, an impurity may inevitably contain. Yes, practically acceptable. However, when the scrap material is a nickel-plated material or the like, when Ni is contained as an inevitable impurity, the content is preferably limited. That is, if the content of the impurity Ni is large, Zr and P useful for refining crystal grains are consumed by Ni, and there is an inconvenience that inhibits the refining action of crystal grains. Therefore, in the first to eighth plastic working materials, when Ni is contained as an impurity during the production of the casting material, the content is 0.25 mass% or less (preferably 0.2 mass% or less, optimally Is preferably limited to 0.1 mass% or less). In such a range, it is also meaningful to contain Ni as an impurity, provided that Fe is co-added. That is, if the Ni content is 0.1 mass% or less, there is almost no adverse effect on the refinement of the crystal grains of the casting material, and the effect of co-addition with Fe causes crystals during recrystallization annealing after plastic working. Effectively suppress grain growth.

また、本発明は、第3に、第1〜第8塑性加工材を製造する方法であって、平均結晶粒径D2が300μm以下(好ましくはD2≦150μm、より好ましくはD2≦100μm、最適にはD2≦60μm)の鋳造素材を製造する鋳造工程と、鋳造工程で得られた鋳造素材に冷間加工及び/又は熱間加工を1回以上施すと共に再結晶温度域での焼鈍たる再結晶焼鈍を1回以上施す塑性加工工程とを具備する銅合金製塑性加工材の製造方法を提案する。   The third aspect of the present invention is a method for producing the first to eighth plastic working materials, wherein the average crystal grain size D2 is 300 μm or less (preferably D2 ≦ 150 μm, more preferably D2 ≦ 100 μm, optimally Is a casting process for producing a casting material of D2 ≦ 60 μm), and a recrystallization annealing which is performed at least once in the recrystallization temperature range while subjecting the casting material obtained in the casting process to cold working and / or hot working at least once. The manufacturing method of the copper alloy-made plastic working material which comprises the plastic working process which performs this more than once is proposed.

かかる製造方法にあっては、前述した如く、塑性加工工程における最後の再結晶焼鈍前に行なわれる冷間加工(第1冷間加工)の加工率(第1加工率)P1を30%以上としておくことが好ましい。   In this manufacturing method, as described above, the working rate (first working rate) P1 of cold working (first cold working) performed before the last recrystallization annealing in the plastic working step is set to 30% or more. It is preferable to keep.

また、最後の再結晶焼鈍は、300℃〜450℃(特に300〜400℃)の温度域での平均冷却速度を0.5℃/秒以上(好ましくは1℃/秒以上、より好ましくは3℃/秒以上、最適には10℃/秒以上)とする条件で行なうことが好ましい。すなわち、マトリックス相(α相)以外の第2相(δ相等)が生じる温度域(300℃〜450℃)での冷却速度を早くする(平均冷却速度を0.5℃/秒以上とする)ことにより、かかる第2相の出現を可及的に回避して、第1〜第8塑性加工材における相組織を上述した如く適正なものとするのである。また、このような高速冷却と脆化温度域を避けたより高温(具体的には、450℃以上より好ましくは475℃以上の温度)での短時間焼鈍とにより、再結晶焼鈍により得られる再結晶粒がより微細なものとなる。すなわち、高温状態が長時間続くと結晶粒は成長するが、短時間であれば、より多くの場所でタイムラグを生じることなく同時に再結晶核が生成することになり、その結果、得られる結晶粒が細かくなる。そして、当然、焼鈍後の冷却速度が速いと冷却過程での再結晶粒の成長は抑制される。特に、前記した如く再結晶粒の抑制効果を発揮するFe等を少量含有させておくと、再結晶温度をほとんど上げず、再結晶粒の成長を効果的に抑制するため、脆化温度を避けた高温の焼鈍温度での条件に適合した材料が得られる。   In the final recrystallization annealing, the average cooling rate in the temperature range of 300 ° C. to 450 ° C. (especially 300 to 400 ° C.) is 0.5 ° C./second or more (preferably 1 ° C./second or more, more preferably 3 C./second or more, optimally 10 ° C./second or more). That is, the cooling rate in the temperature range (300 ° C. to 450 ° C.) where the second phase (δ phase etc.) other than the matrix phase (α phase) is generated is increased (the average cooling rate is 0.5 ° C./second or more). Thus, the appearance of the second phase is avoided as much as possible, and the phase structure in the first to eighth plastic working materials is made appropriate as described above. In addition, recrystallization obtained by recrystallization annealing by high-speed cooling and short-time annealing at a higher temperature (specifically, 450 ° C or higher, more preferably 475 ° C or higher) avoiding the brittle temperature range. The grains become finer. That is, if the high temperature state continues for a long time, the crystal grains grow, but if it is a short time, recrystallization nuclei are generated at the same time without causing a time lag in more places. Becomes finer. And naturally, if the cooling rate after annealing is high, the growth of recrystallized grains in the cooling process is suppressed. In particular, if a small amount of Fe or the like that exerts the effect of suppressing recrystallized grains as described above is contained, the recrystallization temperature is hardly increased and the growth of recrystallized grains is effectively suppressed. A material suitable for the conditions at a high annealing temperature can be obtained.

また、鋳造工程においては、前述した如く、鋳物の溶融固化時における初晶がα相をなすこと及び/又は鋳物の溶融固化時において包晶反応を生じさせることが好ましい。   In the casting process, as described above, it is preferable that the primary crystal at the time of melting and solidifying the casting forms an α phase and / or that a peritectic reaction is caused at the time of melting and solidifying the casting.

また、鋳造工程にあっては、Zr(より一層の結晶粒の微細化及び安定した結晶粒の微細化を図る目的で含有されるもの)を、これを含有する銅合金物の形態で、鋳込み直前或いは原料溶解の最終段階で添加させることにより、鋳造に際して酸化物及び/又は硫化物の形態でZrが含有されないようにしておくことが好ましい。Zrを含有する前記銅合金物としては、Cu−Zr合金若しくはCu−Zn−Zr合金又はこれらの合金をベースとしてP、Mg、Al、Sn、Mn及びBから選択する1種以上の元素を更に含有させたものが好適する。   In the casting process, Zr (containing for the purpose of further refinement of crystal grains and stable refinement of crystal grains) is cast in the form of a copper alloy containing the same. It is preferable that Zr is not contained in the form of an oxide and / or sulfide at the time of casting by adding it immediately before or at the final stage of raw material dissolution. The copper alloy containing Zr includes a Cu—Zr alloy, a Cu—Zn—Zr alloy, or one or more elements selected from P, Mg, Al, Sn, Mn, and B based on these alloys. What was contained is suitable.

すなわち、第1〜第8塑性加工材の素材(鋳造素材)を鋳造する鋳造工程においては、Zrを粒状物、薄板状物、棒状物又は線状物の形状とした中間合金物(銅合金物)の形態で鋳込み直前に添加させることにより、Zrの添加時におけるロスを可及的に少なくして、鋳造に際して酸化物及び/又は硫化物の形態をなしてZrが含有されることにより結晶粒の微細化効果を発揮するに必要且つ十分なZr量が確保できないといった事態が発生しないようにするのである。そして、このようにZrを鋳込み直前に添加する場合、Zrの融点は当該銅合金の融点より800〜1000℃高いため、粒状物(粒径:2〜50mm程度)、薄板状物(厚み:1〜10mm程度)、棒状物(直径:2〜50mm程度)又は線状物とした中間合金物であって当該銅合金の融点に近く且つ必要成分を多く含んだ低融点合金物(例えば、0.5〜65mass%のZrを含有するCu−Zr合金若しくはCu−Zn−Zr合金又はこれらの合金をベースとして更にP、Mg、Al、Sn、Mn及びBから選択した1種以上の元素(各元素の含有量:0.1〜5mass%)を含有させた合金)の形態で使用することが好ましい。特に、融点を下げて溶解を容易ならしめると共にZrの酸化によるロスを防止するためには、0.5〜35mass%のZrと5〜50mass%のZnを含有するCu−Zn−Zr合金(より好ましくは1〜15mass%のZrと5〜45mass%のZnを含有するCu−Zn−Zr合金)をベースとした合金物の形態で使用することが好ましい。Zrは、これと共添させるPとの配合割合にもよるが、銅合金の本質的特性である電気・熱伝導性を阻害する元素であるが、酸化物,硫化物としての形態をなさないZr量が0.039mass%以下、特に0.019mass%以下であると、Zrの含有による電気・熱伝導性の低下を殆ど招くことがなく、仮に電気・熱伝導性が低下したとしても、その低下率はZrを含有しない場合に比して極く僅かで済む。   That is, in the casting process of casting the raw material (casting material) of the first to eighth plastic working materials, an intermediate alloy (copper alloy) in which Zr is in the form of a granular material, a thin plate material, a rod material, or a linear material. ) In the form of Z), the loss during addition of Zr is reduced as much as possible, and Zr is contained in the form of an oxide and / or sulfide during casting to produce crystal grains. Therefore, it is possible to prevent a situation in which a Zr amount necessary and sufficient for exhibiting the micronization effect cannot be secured. When Zr is added just before casting as described above, the melting point of Zr is 800 to 1000 ° C. higher than the melting point of the copper alloy, so that the granular material (particle size: about 2 to 50 mm), the thin plate (thickness: 1) A low melting point alloy material (for example, about 0.1 mm to about 0.1 mm), a rod-shaped material (diameter: about 2 to 50 mm) or a linear material, which is close to the melting point of the copper alloy and contains many necessary components. One or more elements selected from P, Mg, Al, Sn, Mn and B based on Cu-Zr alloy or Cu-Zn-Zr alloy containing 5 to 65 mass% Zr or these alloys as a base (each element It is preferable to use it in the form of an alloy) containing 0.1-5 mass%). In particular, a Cu-Zn-Zr alloy containing 0.5 to 35 mass% Zr and 5 to 50 mass% Zn (more It is preferably used in the form of an alloy based on a Cu-Zn-Zr alloy containing 1-15 mass% Zr and 5-45 mass% Zn. Zr is an element that hinders electrical and thermal conductivity, which is an essential characteristic of copper alloys, although it depends on the blending ratio of P and co-added with Zr, but does not form oxides or sulfides. If the amount of Zr is 0.039 mass% or less, particularly 0.019 mass% or less, there is almost no decrease in electrical / thermal conductivity due to the inclusion of Zr, even if the electrical / thermal conductivity is reduced, The rate of decrease is negligible compared to the case where Zr is not contained.

また、第1〜第8塑性加工材を得るために好適する鋳造素材を製造(鋳造)するに当っては、鋳造条件、特に鋳込み温度及び冷却速度を適正としておくことが望ましい。すなわち、鋳込み温度については、当該銅合金の液相線温度に対して20〜250℃高温(より好ましくは25〜150℃高温)となるように決定しておくことが好ましい。すなわち、鋳込み温度は、(液相線温度+20℃)≦鋳込み温度≦(液相線温度+250℃)の範囲で決定しておくことが好ましく、(液相線温度+25℃)≦鋳込み温度≦(液相線温度+150℃)の範囲で決定しておくことがより好ましい。一般的には、鋳込み温度は1200℃以下であり、好ましくは1150℃以下である。鋳込み温度の下限側は、溶湯がモールドの隅々に充填される限り、特に制限はないが、より低い温度で鋳込む程、結晶粒が微細化される傾向となる。なお、これらの温度条件が合金の配合量によって異なることは理解されるべきである。   Further, in producing (casting) a casting material suitable for obtaining the first to eighth plastic working materials, it is desirable that the casting conditions, particularly the casting temperature and the cooling rate, be appropriate. That is, the casting temperature is preferably determined so as to be 20 to 250 ° C. high temperature (more preferably 25 to 150 ° C. high temperature) with respect to the liquidus temperature of the copper alloy. That is, the casting temperature is preferably determined in the range of (liquidus temperature + 20 ° C.) ≦ casting temperature ≦ (liquidus temperature + 250 ° C.), and (liquidus temperature + 25 ° C.) ≦ casting temperature ≦ ( It is more preferable to determine within the range of (liquidus temperature + 150 ° C.). Generally, the casting temperature is 1200 ° C. or lower, preferably 1150 ° C. or lower. The lower limit side of the casting temperature is not particularly limited as long as the molten metal is filled in every corner of the mold, but as the casting is performed at a lower temperature, the crystal grains tend to become finer. It should be understood that these temperature conditions vary depending on the alloying amount.

本発明のCu−Sn銅合金又はCu−Sn−Zn銅合金からなる塑性加工材は、結晶粒の微細化を実現することにより強度,延性,耐蝕性,加工性等の大幅な向上を図ったものであり、最終製品を容易且つ高品質に得ることができるものである。更なる高強度化及び薄肉化等の小形化が要求されている電気・電子機器部品等(コネクター等)の構成材としても好適に使用することができ、その用途の大幅な拡大を図ることができるものである。   The plastic work material made of the Cu-Sn copper alloy or Cu-Sn-Zn copper alloy of the present invention has achieved significant improvements in strength, ductility, corrosion resistance, workability, etc. by realizing finer crystal grains. The final product can be obtained easily and with high quality. It can be suitably used as a component of electrical and electronic equipment parts (connectors, etc.) that are required to be further reduced in strength, thickness, etc., and its use can be greatly expanded. It can be done.

また、本発明の製造方法によれば、このような塑性加工材を効率良く容易に製造することができる。   Moreover, according to the manufacturing method of this invention, such a plastic working material can be manufactured efficiently and easily.

実施例1として、表1及び表2に示す組成の鋳造素材を塑性加工してなる塑性加工材No.1〜No.8及びNo.10〜No.40を次のような鋳造工程及び塑性加工工程により得た。
As Example 1, a plastic working material No. 1 obtained by plastic working a casting material having the composition shown in Tables 1 and 2 was used. 1- No. 8 and no. 10- No. 40 was obtained by the following casting process and plastic working process.

鋳造工程:
表1及び表2に示す組成の銅合金材料を、夫々、鋳込み温度を液相線温度+100℃として鋳型に鋳込んで、矩形体状の鋳塊(厚さ:30mm,幅:70mm,長さ:250mm)を得た上、この鋳塊を表面面削して厚さ:24mm,幅:70mm,長さ:250mmの矩形体状の鋳造素材E1を得た。
Casting process:
The copper alloy materials having the compositions shown in Tables 1 and 2 were cast into molds at a casting temperature of the liquidus temperature + 100 ° C., respectively, and a rectangular ingot (thickness: 30 mm, width: 70 mm, length) : 250 mm), and the ingot was subjected to surface chamfering to obtain a rectangular casting material E1 having a thickness of 24 mm, a width of 70 mm, and a length of 250 mm.

塑性加工工程:
各鋳造素材E1を冷間圧延(第3冷間加工)して、厚さ:6mmの一次加工材E2を得た(第3加工率P3:75%)上、これを再結晶温度域で焼鈍(最初の再結晶焼鈍)した。次に、一次加工材E2を冷間圧延(第1冷間加工)して厚さ:0.9mmの二次加工材E3を得た(第1加工率P1:85%)上、再結晶温度域で焼鈍(最後の再結晶焼鈍)した。しかる後、二次加工材E3を酸洗した上で冷間圧延(単純冷間加工)して、厚さ:0.7mmの塑性加工材(薄板材)No.3〜No.37(No.8No.10、No.13〜No.19、No.22及びNo.28)を得た。なお、No.1、No.2、N
o.8No.10、No.13、No.17〜No.19、No.22及びNo.28については、後述する冷間圧延性の評価をするために必要な一次加工材E2を得るための工程(冷間圧延)を行なった時点で塑性加工工程を終了した。また、No.14〜No.16に及びNo.No.38〜No.40については、鋳造素材の平均結晶粒径を調査するための鋳造素材E1を得るに止め、鋳造素材E1の塑性加工工程は行なわなかった。
Plastic working process:
Each cast material E1 was cold-rolled (third cold work) to obtain a primary work material E2 having a thickness of 6 mm (third work rate P3: 75%), and annealed in a recrystallization temperature range. (First recrystallization annealing). Next, the primary work material E2 was cold-rolled (first cold work) to obtain a secondary work material E3 having a thickness of 0.9 mm (first work rate P1: 85%), and the recrystallization temperature. Annealed in the zone (final recrystallization annealing). Thereafter, the secondary work material E3 is pickled and then cold-rolled (simple cold work) to obtain a plastic work material (thin plate material) No. 7 having a thickness of 0.7 mm. 3-No. 37 (No. 8 , No. 10 , No. 13 to No. 19, No. 22, and No. 28) were obtained. In addition, No. 1, no. 2, N
o. 8 , no . 10, no. 13, no. 17-No. 19, no. 22 and no. For No. 28, the plastic working step was completed when a step (cold rolling) for obtaining the primary work material E2 necessary for evaluating the cold rolling property described later was performed. No. 14-No. 16 and no. No. 38-No. For No. 40, only the casting material E1 for investigating the average crystal grain size of the casting material was obtained, and the plastic working process of the casting material E1 was not performed.

この塑性加工工程における総合加工率PはP=P1+0.4×P3で得られ、表5及び表6に示す如くP=115%であった。   The overall processing rate P in this plastic processing step was obtained by P = P1 + 0.4 × P3, and P = 115% as shown in Tables 5 and 6.

塑性加工材No.3〜No.37(No.8No.10、No.13〜No.19、No.22、No.28を除く)の何れについても、一次加工材E2の焼鈍(中間焼鈍)は、500℃に60分保持した上で冷却することによって行なった。この冷却は、300〜450℃の温度域での平均冷却速度が5℃/秒となる条件で行なった。
Plastic working material No. 3-No. 37 (No. 8 , No. 10 , No. 13 to No. 19, No. 22, and No. 28 are excluded), the primary work material E2 is annealed (intermediate annealing) at 500 ° C. for 60 minutes. This was carried out by holding and cooling. This cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 5 ° C./second.

また、塑性加工材No.3、No.11、No.12、No.20〜No.23、No.29〜No.31、No.36、No.37については、二次加工材E3の焼鈍(最終焼鈍)を、400℃に30分間保持した上で冷却することによって行なった。冷却は、300〜400℃の温度域での平均冷却速度が5℃/秒となる条件で行なった。   Also, plastic working material No. 3, no. 11, no. 12, no. 20-No. 23, no. 29-No. 31, no. 36, no. Regarding No. 37, the secondary processed material E3 was annealed (final annealing) by holding it at 400 ° C. for 30 minutes and then cooling it. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 400 ° C. was 5 ° C./second.

また、塑性加工材No.4、No.24及びNo.32については、二次加工材E3の焼鈍(最終焼鈍)を、450〜475℃に1000秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が2℃/秒となる条件で行なった。   Also, plastic working material No. 4, no. 24 and no. For No. 32, the secondary processed material E3 was annealed (final annealing) by holding at 450 to 475 ° C. for 1000 seconds and then cooling. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 2 ° C./second.

また、塑性加工材No.5、No.25及びNo.33については、二次加工材E3の焼鈍(最終焼鈍)を、475〜500℃に120秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が5℃/秒となる条件で行なった。   Also, plastic working material No. 5, no. 25 and no. Regarding No. 33, the secondary work material E3 was annealed (final annealing) by holding at 475 to 500 ° C. for 120 seconds and then cooling. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 5 ° C./second.

また、塑性加工材No.6、No.26及びNo.34については、二次加工材E3の焼鈍(最終焼鈍)を、500〜525℃に30秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が15℃/秒となる条件で行なった。   Also, plastic working material No. 6, no. 26 and no. For No. 34, the secondary processed material E3 was annealed (final annealing) by holding at 500 to 525 ° C. for 30 seconds and then cooling. The cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 15 ° C./second.

また、塑性加工材No.7、No.27及びNo.35については、二次加工材E3の焼鈍(最終焼鈍)を、525〜550℃に10秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が0.7℃/秒となる条件で行なった。   Also, plastic working material No. 7, no. 27 and no. Regarding No. 35, the secondary work material E3 was annealed (final annealing) by holding at 525 to 550 ° C. for 10 seconds and then cooling. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 0.7 ° C./second.

実施例2として、表2及び表3に示す組成の鋳造素材を塑性加工してなる塑性加工材No.41〜No.59を次のような鋳造工程及び塑性加工工程により得た。   As Example 2, a plastic working material No. 2 formed by plastic working a casting material having the composition shown in Tables 2 and 3 was used. 41-No. 59 was obtained by the following casting process and plastic working process.

鋳造工程:
表2及び表3に示す組成の銅合金材料を、夫々、鋳込み温度を液相線温度+100℃として鋳型に鋳込んで、矩形体状の鋳塊(厚さ:30mm,幅:70mm,長さ:250mm)を得た上、この鋳塊を表面面削して厚さ:24mm,幅:70mm,長さ:250mmの矩形体状の鋳造素材F1を得た。
Casting process:
The copper alloy materials having the compositions shown in Table 2 and Table 3 were cast into molds at a casting temperature of the liquidus temperature + 100 ° C., respectively, and a rectangular ingot (thickness: 30 mm, width: 70 mm, length) : 250 mm), and the surface of the ingot was chamfered to obtain a rectangular casting material F1 having a thickness of 24 mm, a width of 70 mm, and a length of 250 mm.

塑性加工工程:
各鋳造素材F1を熱間圧延(熱間加工)して、厚さ:6mmの一次加工材F2を得た(熱間加工率P4:75%)。次に、一次加工材F2を冷間圧延(第1冷間加工)して、厚さ:0.9mmの二次加工材F3を得た(第1加工率P1:85%)上、再結晶温度域で焼鈍(最後の再結晶焼鈍)した。しかる後、二次加工材F3を酸洗した上で冷間圧延(単純冷間加工)して、厚さ:0.7mmの塑性加工材(薄板材)No.42〜No.55(No.45、No.46及びNo.50を除く)を得た。なお、No.41、No.45、No.46、No.50及びNo.56〜No.59については、後述する熱間圧延性の評価をするために必要な一次加工材F2を得るための工程(熱間圧延)を行なった時点で塑性加工工程を終了した。
Plastic working process:
Each cast material F1 was hot-rolled (hot work) to obtain a primary work material F2 having a thickness of 6 mm (hot work rate P4: 75%). Next, the primary work material F2 was cold-rolled (first cold work) to obtain a secondary work material F3 having a thickness of 0.9 mm (first work rate P1: 85%), and recrystallized. Annealing was performed in the temperature range (final recrystallization annealing). Thereafter, the secondary work material F3 is pickled and then cold-rolled (simple cold work) to obtain a plastic work material (thin plate material) No. 7 having a thickness of 0.7 mm. 42-No. 55 (excluding No. 45, No. 46 and No. 50) were obtained. In addition, No. 41, no. 45, no. 46, no. 50 and no. 56-No. For 59, the plastic working process was completed when a process (hot rolling) for obtaining the primary work material F2 necessary for evaluating the hot rollability described later was performed.

この塑性加工工程における総合加工率PはP=P1+0.2×P4で得られ、表6及び表7に示す如くP=100%であった。   The overall processing rate P in this plastic processing step was obtained by P = P1 + 0.2 × P4, and P = 100% as shown in Tables 6 and 7.

塑性加工材No.41〜No.51及びNo.56〜No.59については、二次加工材F3の焼鈍(最後の再結晶焼鈍)を、400℃に30分間保持した上で冷却することによって行なった。冷却は、300〜400℃の温度域での平均冷却速度が5℃/秒となる条件で行なった。   Plastic working material No. 41-No. 51 and no. 56-No. For No. 59, the secondary work material F3 was annealed (final recrystallization annealing) by holding at 400 ° C. for 30 minutes and then cooling. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 400 ° C. was 5 ° C./second.

また、塑性加工材No.52については、二次加工材F3の焼鈍(最後の再結晶焼鈍)を、450〜475℃に1000秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が2℃/秒となる条件で行なった。   Also, plastic working material No. Regarding No. 52, the secondary work material F3 was annealed (final recrystallization annealing) by holding at 450 to 475 ° C. for 1000 seconds and then cooling. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 2 ° C./second.

また、塑性加工材No.53については、二次加工材F3の焼鈍(最後の再結晶焼鈍)を、475〜500℃に120秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が5℃/秒となる条件で行なった。   Also, plastic working material No. For 53, the secondary work material F3 was annealed (final recrystallization annealing) by holding at 475 to 500 ° C. for 120 seconds and then cooling. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 5 ° C./second.

また、塑性加工材No.54については、二次加工材F3の焼鈍(最後の再結晶焼鈍)を、500〜525℃に30秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が15℃/秒となる条件で行なった。   Also, plastic working material No. For No. 54, the secondary work material F3 was annealed (final recrystallization annealing) at 500 to 525 ° C. for 30 seconds and then cooled. The cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 15 ° C./second.

また、塑性加工材No.55については、二次加工材F3の(最後の再結晶焼鈍)を、525〜550℃に10秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が0.7℃/秒となる条件で行なった。   Also, plastic working material No. About 55, it carried out by cooling after hold | maintaining (second recrystallization annealing) of the secondary processed material F3 at 525-550 degreeC for 10 second. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 0.7 ° C./second.

実施例3として、表3に示す組成の鋳造素材を塑性加工してなる塑性加工材No.60〜No.62を次のような鋳造工程及び塑性加工工程により得た。   As Example 3, a plastic working material No. obtained by plastic working a casting material having the composition shown in Table 3 was used. 60-No. 62 was obtained by the following casting process and plastic working process.

鋳造工程:
表3に示す組成の銅合金材料を、夫々、鋳込み温度を液相線温度+100℃として鋳型に鋳込んで、矩形体状の鋳塊(厚さ:30mm,幅:70mm,長さ:250mm)を得た上、この鋳塊を表面面削して厚さ:22.5mm,幅:70mm,長さ:250mmの矩形体状の鋳造素材G1を得た。
Casting process:
Each of the copper alloy materials having the composition shown in Table 3 was cast into a mold at a casting temperature of the liquidus temperature + 100 ° C. to form a rectangular ingot (thickness: 30 mm, width: 70 mm, length: 250 mm) Then, the surface of the ingot was chamfered to obtain a rectangular casting material G1 having a thickness of 22.5 mm, a width of 70 mm, and a length of 250 mm.

塑性加工工程:
塑性加工材No.60及びNo.61用の各鋳造素材G1を冷間圧延(第1冷間加工)して厚さ:20mmの一次加工材G2を得た(第1加工率P1:11%)上、これを再結晶温度域で焼鈍(最後の再結晶焼鈍)した。さらに、一次加工材G2を冷間圧延(単純冷間加工)して、厚さ:18mmの塑性加工材(厚板材)No.60及びNo.61を得た。
Plastic working process:
Plastic working material No. 60 and no. Each of the casting materials G1 for 61 was cold-rolled (first cold working) to obtain a primary processed material G2 having a thickness of 20 mm (first working rate P1: 11%), and this was recrystallized temperature range Annealing (last recrystallization annealing). Further, the primary work material G2 was cold-rolled (simple cold work), and a plastic work material (thick plate material) No. 18 having a thickness of 18 mm was obtained. 60 and no. 61 was obtained.

また、塑性加工材No.62用の各鋳造素材G1を冷間圧延(第1冷間加工)して厚さ:11mmの一次加工材G3を得た(第1加工率P1:51%)上、これを再結晶温度域で焼鈍(最後の再結晶焼鈍)した。さらに、一次加工材G3を冷間圧延(単純冷間加工)して、厚さ:10mmの塑性加工材(厚板材)No.62を得た。   Also, plastic working material No. Each of the casting materials G1 for 62 was cold-rolled (first cold working) to obtain a primary processed material G3 having a thickness of 11 mm (first working rate P1: 51%), and this was recrystallized temperature range Annealing (last recrystallization annealing). Furthermore, the primary work material G3 was cold-rolled (simple cold work), and a plastic work material (thick plate material) No. 10 having a thickness of 10 mm was obtained. 62 was obtained.

この塑性加工工程における総合加工率PはP=P1で得られ、表7に示す如く、塑性加工材No.60及びNo.61についてはP=11%であり、塑性加工材No.62についてはP=51%であった。   The overall working rate P in this plastic working process is obtained by P = P1, and as shown in Table 7, the plastic working material No. 60 and no. For P61, P = 11%. For 62, P = 51%.

一次加工材G2,G3の焼鈍(最終焼鈍)は、500℃に60分間保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が5℃/秒となる条件で行なった。   The primary processed materials G2 and G3 were annealed (final annealing) by holding them at 500 ° C. for 60 minutes and then cooling them. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 5 ° C./second.

実施例4として、表3に示す組成の鋳造素材を塑性加工してなる塑性加工材No.63〜No.73を次のような鋳造工程及び塑性加工工程により得た。   As Example 4, a plastic working material No. obtained by plastic working a casting material having the composition shown in Table 3. 63-No. 73 was obtained by the following casting process and plastic working process.

鋳造工程:
表3に示す組成の銅合金材料を、夫々、横型連鋳機により黒鉛鋳型を使用して、丸棒状鋳物(直径:10mm)を得た。鋳造は、鋳込み温度:液相線温度+100℃,鋳造速度:200mm/分の条件で行なった。そして、この丸棒状鋳物を表面面削して、直径:9.5mmの丸棒状の鋳造素材H1を得た。
Casting process:
A round bar-shaped casting (diameter: 10 mm) was obtained from each of the copper alloy materials having the compositions shown in Table 3 by using a graphite mold with a horizontal continuous casting machine. Casting was performed under the conditions of casting temperature: liquidus temperature + 100 ° C. and casting speed: 200 mm / min. Then, the round bar-shaped casting was subjected to surface chamfering to obtain a round bar-shaped casting material H1 having a diameter of 9.5 mm.

塑性加工工程:
各鋳造素材H1を冷間伸線(第1冷間加工)して、直径:5mmの一次加工材H2を得た(第1加工率P1:72%)上、これを再結晶温度域で焼鈍(最後の再結晶焼鈍)した。さらに、一次加工材H2を酸洗した上で冷間伸線(単純冷間加工)して、直径:4.45mmの塑性加工材(線材)No.63〜No.72(No.70を除く)を得た。なお、No.70及びNo.73については、後述する冷間伸線性の評価をするために必要な一次加工材H2を得るための工程(冷間伸線)を行なった時点で塑性加工工程を終了した。
Plastic working process:
Each of the cast materials H1 was cold-drawn (first cold working) to obtain a primary processed material H2 having a diameter of 5 mm (first working rate P1: 72%), which was then annealed in the recrystallization temperature range. (Final recrystallization annealing). Further, the primary work material H2 was pickled and then cold-drawn (simple cold work) to obtain a plastic work material (wire) No. 4 having a diameter of 4.45 mm. 63-No. 72 (excluding No. 70) was obtained. In addition, No. 70 and no. For 73, the plastic working step was completed when a step (cold drawing) for obtaining the primary work material H2 necessary for evaluating the cold drawing property described later was performed.

この塑性加工工程における総合加工率PはP=P1で得られ、表7に示す如くP=72%であった。   The overall processing rate P in this plastic processing step was obtained with P = P1, and as shown in Table 7, P = 72%.

塑性加工材No.63及びNo.68〜No.73については、一次加工材H2の焼鈍(最後の再結晶焼鈍)を、400℃に30分間保持した上で冷却することによって行なった。冷却は、300〜400℃の温度域での平均冷却速度が5℃/秒となる条件で行なった。   Plastic working material No. 63 and no. 68-No. For 73, the primary work material H2 was annealed (final recrystallization annealing) by holding at 400 ° C. for 30 minutes and then cooling. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 400 ° C. was 5 ° C./second.

また、塑性加工材No.64については、一次加工材H2の焼鈍(最後の再結晶焼鈍)を、450〜475℃に1000秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が2℃/秒となる条件で行なった。   Also, plastic working material No. For No. 64, annealing (final recrystallization annealing) of the primary work material H2 was held at 450 to 475 ° C. for 1000 seconds and then cooled. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 2 ° C./second.

また、塑性加工材No.65については、一次加工材H2の焼鈍(最後の再結晶焼鈍)を、475〜500℃に120秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が5℃/秒となる条件で行なった。   Also, plastic working material No. For No. 65, the primary work material H2 was annealed (final recrystallization annealing) at 475 to 500 ° C. for 120 seconds and then cooled. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 5 ° C./second.

また、塑性加工材No.66については、一次加工材H2の焼鈍(最後の再結晶焼鈍)を、500〜525℃に30秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が15℃/秒となる条件で行なった。   Also, plastic working material No. For No. 66, the primary work material H2 was annealed (final recrystallization annealing) at 500 to 525 ° C. for 30 seconds and then cooled. The cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 15 ° C./second.

また、塑性加工材No.67については、一次加工材H2の焼鈍(最後の再結晶焼鈍)を、525〜550℃に10秒保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が0.7℃/秒となる条件で行なった。   Also, plastic working material No. For No. 67, the primary work material H2 was annealed (final recrystallization annealing) at 525 to 550 ° C. for 10 seconds and then cooled. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 0.7 ° C./second.

実施例5として、表3に示す組成の鋳造素材を塑性加工してなる塑性加工材No.74〜No.78を次のような鋳造工程及び塑性加工工程により得た。   As Example 5, a plastic work material No. obtained by plastic working a cast material having the composition shown in Table 3 was used. 74-No. 78 was obtained by the following casting process and plastic working process.

鋳造工程:
表3に示す組成の銅合金材料を、夫々、横型連鋳機により黒鉛鋳型を使用して、丸棒状鋳物(直径:20mm)を得た。鋳造は、鋳込み温度:液相線温度+100℃,鋳造速度:150mm/分の条件で行なった。そして、この丸棒状鋳物を表面面削して、直径:19.5mmの丸棒状の鋳造素材I1を得た。
Casting process:
A round bar-shaped casting (diameter: 20 mm) was obtained from each of the copper alloy materials having the compositions shown in Table 3 using a graphite mold by a horizontal continuous casting machine. Casting was performed under the conditions of casting temperature: liquidus temperature + 100 ° C. and casting speed: 150 mm / min. Then, the round bar-shaped casting was subjected to surface chamfering to obtain a round bar-shaped casting material I1 having a diameter of 19.5 mm.

塑性加工工程:
塑性加工材No.74〜No.77用の各鋳造素材I1を冷間抽伸(第1冷間加工)して、直径:18mmの一次加工材I2を得た(第1加工率P1:15%)上、これを再結晶温度域で焼鈍(最後の再結晶焼鈍)した。しかる後、一次加工材I2を酸洗した上で冷間伸線(単純冷間加工)して、直径:17mmの塑性加工材(線材)No.74〜No.77を得た。
Plastic working process:
Plastic working material No. 74-No. Each of the casting materials I1 for 77 was subjected to cold drawing (first cold working) to obtain a primary processed material I2 having a diameter of 18 mm (first working rate P1: 15%). Annealing (last recrystallization annealing). Thereafter, the primary work material I2 is pickled and then cold-drawn (simple cold work) to obtain a plastic work material (wire) No. 17 having a diameter of 17 mm. 74-No. 77 was obtained.

また、塑性加工材No.78用の鋳造素材I1を冷間抽伸(第1冷間加工)して、直径:15.5mmの一次加工材I3を得た(第1加工率P1:37%)上、これを再結晶温度域で焼鈍処理した。しかる後、一次加工材I3を酸洗した上で冷間伸線(単純冷間加工)して、直径:14.7mmの塑性加工材(線材)No.78を得た。
Also, plastic working material No. Cast material I1 for 78 was cold-drawn (first cold working) to obtain a primary work material I3 having a diameter of 15.5 mm (first working rate P1: 37%), and this was recrystallized temperature Annealed in the zone. Thereafter, the primary work material I3 is pickled and then cold-drawn (simple cold work) to obtain a plastic work material (wire material) No. 1 with a diameter of 14.7 mm. 78 was obtained.

この塑性加工工程における総合加工率PはP=P1で得られ、表7に示す如く、塑性加工材No.74〜No.77についてはP=15%であり、塑性加工材No.78についてはP=37%であった。   The overall working rate P in this plastic working process is obtained by P = P1, and as shown in Table 7, the plastic working material No. 74-No. 77, P = 15%. For 78, P = 37%.

塑性加工材No.74〜No.78の何れについても、一次加工材I2,I3の焼鈍(最後の再結晶焼鈍)を、500℃に60分間保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が5℃/秒となる条件で行なった。
Plastic working material No. 74-No. In each of 78, the primary processed materials I2 and I3 were annealed (final recrystallization annealing) by holding at 500 ° C. for 60 minutes and then cooling. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 5 ° C./second.

実施例6として、表3に示す組成の鋳造素材を塑性加工してなる塑性加工材No.79及びNo.80を次のような鋳造工程及び塑性加工工程により得た。   As Example 6, plastic working material No. obtained by plastic working a casting material having the composition shown in Table 3. 79 and no. 80 was obtained by the following casting process and plastic working process.

鋳造工程:
表3に示す組成の銅合金材料を、夫々、横型連鋳機により黒鉛鋳型を使用して、管状鋳物(外径:61mm,内径:50mm)を得た。鋳造は、鋳込み温度:液相線温度+100℃,鋳造速度:150mm/分の条件で行なった。そして、この管状鋳物を表面面削して、外径:60mm,内径:50mmの管状の鋳造素材J1を得た。
Casting process:
Each of the copper alloy materials having the compositions shown in Table 3 was obtained by using a graphite mold with a horizontal continuous casting machine to obtain a tubular casting (outer diameter: 61 mm, inner diameter: 50 mm). Casting was performed under the conditions of casting temperature: liquidus temperature + 100 ° C. and casting speed: 150 mm / min. Then, the surface of this tubular casting was chamfered to obtain a tubular casting material J1 having an outer diameter of 60 mm and an inner diameter of 50 mm.

塑性加工工程:
各鋳造素材J1を冷間抽伸(第1冷間加工)して、外径:58mm,内径:50mmの一次加工材J2を得た(第1加工率P1:21%)上。これを再結晶温度域で焼鈍(最後の再結晶焼鈍)した。しかる後、一次加工材J2を酸洗した上で冷間伸線(単純冷間加工)して、外径:57.2mm,内径:50の塑性加工材(管材)No.79及びNo.80を得た。
Plastic working process:
Each cast material J1 was subjected to cold drawing (first cold working) to obtain a primary work material J2 having an outer diameter of 58 mm and an inner diameter of 50 mm (first working rate P1: 21%). This was annealed in the recrystallization temperature range (final recrystallization annealing). Thereafter, the primary work material J2 is pickled and then cold-drawn (simple cold work) to obtain a plastic work material (tube material) No. 5 having an outer diameter of 57.2 mm and an inner diameter of 50. 79 and no. 80 was obtained.

この塑性加工工程における総合加工率PはP=P1で得られ、表7に示す如く、P=21%であった。   The overall processing rate P in this plastic processing step was obtained with P = P1, and as shown in Table 7, P = 21%.

一次加工材J2の焼鈍(最後の再結晶焼鈍)は、500℃に60分間保持した上で冷却することによって行なった。冷却は、300〜450℃の温度域での平均冷却速度が5℃/秒となる条件で行なった。   The primary processed material J2 was annealed (final recrystallization annealing) by holding it at 500 ° C. for 60 minutes and then cooling it. Cooling was performed under the condition that the average cooling rate in the temperature range of 300 to 450 ° C. was 5 ° C./second.

また、比較例1として、実施例1において塑性加工材No.1を得た場合と同一の鋳造工程及び塑性加工工程により塑性加工材No.101〜No.107を得ようとしたが、以下のように塑性加工工程を行い得なかった。   As Comparative Example 1, the plastic working material No. 1 in Example 1 was used. In the same casting process and plastic working process as in the case of obtaining 1 101-No. 107 was obtained, but the plastic working process could not be performed as follows.

すなわち、表4に示す組成の銅合金材料から、実施例1と同一の鋳造工程により、前記鋳造素材E1と同一形状の鋳造素材e1を得た。なお、No.104、No.106及びNo.107については、鋳造素材の平均結晶粒径を調査するための鋳造素材e1を得るに止め、鋳造素材e1の塑性加工工程は行なわなかった。
That is, a casting material e1 having the same shape as the casting material E1 was obtained from the copper alloy material having the composition shown in Table 4 by the same casting process as in Example 1. In addition, No. 104, no. 106 and no. For 107, the casting material e1 for investigating the average crystal grain size of the casting material was stopped, and the plastic working process of the casting material e1 was not performed.

そして、各鋳造素材e1に、実施例1と同一の冷間圧延を施して、前記一次加工材E2と同一形状の一次加工材e2を得た。しかし、No.101〜No.105(No.104を除く)の何れについても、一次加工材e2に大きな割れを生じたため、爾後の塑性加工工程を行い得ず、最終的な塑性加工材を得ることができなかった。
Then, each casting material e1, underwent the same cold rolling as in Example 1 to produce a primary processed member e2 of the primary processed material E2 the same shape. However, no. 101-No. In any of No. 105 (excluding No. 104), the primary work material e2 was cracked so that the subsequent plastic working process could not be performed, and the final plastic work material could not be obtained.

また、比較例2として、実施例2において塑性加工材No.41を得た場合と同一の鋳造工程及び塑性加工工程により塑性加工材No.108〜No.112を得ようとしたが、以下のように塑性加工工程を行い得なかった。   As Comparative Example 2, the plastic working material No. 1 in Example 2 was used. No. 41 is obtained by the same casting process and plastic working process as in the case of obtaining No. 41. 108-No. 112 was obtained, but the plastic working process could not be performed as follows.

すなわち、表4に示す組成の銅合金材料から、実施例2と同一の鋳造工程により、前記鋳造素材F1と同一形状の鋳造素材f1を得た。   That is, a casting material f1 having the same shape as the casting material F1 was obtained from the copper alloy material having the composition shown in Table 4 by the same casting process as in Example 2.

そして、各鋳造素材f1に、実施例2と同一の熱間圧延を施して、前記一次加工材F2と同一形状の一次加工材f2を得た。しかし、No.108〜No.112の何れについても、一次加工材f2に大きな割れを生じたため、爾後の塑性加工工程を行い得ず、最終的な塑性加工材を得ることができなかった。
And each casting raw material f1 was subjected to the same hot rolling as in Example 2 to obtain a primary processed material f2 having the same shape as the primary processed material F2 . However, no. 108-No. In all of 112, since the primary work material f2 was cracked greatly, the plastic working process after the cracking could not be performed, and the final plastic work material could not be obtained.

また、比較例3として、実施例3において塑性加工材No.60又はNo.62を得た場合と同一の鋳造工程及び塑性加工工程により塑性加工材No.113〜No.118を得た。   As Comparative Example 3, the plastic working material No. 1 in Example 3 was used. 60 or No. No. 62 is obtained by the same casting process and plastic working process as in the case of obtaining No. 62. 113-No. 118 was obtained.

すなわち、表4に示す組成の銅合金材料から、実施例3と同一の鋳造工程により、前記鋳造素材G1と同一形状の鋳造素材g1を得た。   That is, a casting material g1 having the same shape as the casting material G1 was obtained from the copper alloy material having the composition shown in Table 4 by the same casting process as in Example 3.

そして、塑性加工材No.113〜No.117用の各鋳造素材g1に、実施例3と同一の塑性加工工程により、塑性加工材No.60を得た場合と同一の塑性加工を施すことにより、当該塑性加工材No.60と同一形状の塑性加工材No.113〜No.117を得た。なお、No.113〜No.117の何れについても、各鋳造素材g1に一次加工材G2を得た場合と同一の冷間圧延を施すことにより、当該一次加工材G2と同一形状の一次加工材g2を得たが、この一次加工材g2に割れを生じた。しかし、爾後の冷間加工が低加工率で行なわれるものであったため、一次加工材g2を得た時点で塑性加工工程を終了せず、そのまま塑性加工工程を継続して、最終の塑性加工材No.113〜No.117を得た。   And plastic working material No. 113-No. Each of the casting materials g1 for 117 was subjected to the same plastic working process as in Example 3 to obtain a plastic working material No. By performing the same plastic working as in the case of obtaining 60, the plastic working material No. No. 60 plastic work material No. 113-No. 117 was obtained. In addition, No. 113-No. For each of 117, the primary work material g2 having the same shape as the primary work material G2 was obtained by subjecting each casting material g1 to the same cold rolling as when the primary work material G2 was obtained. The work material g2 was cracked. However, since the cold working after brazing is performed at a low working rate, the plastic working process is not finished when the primary work material g2 is obtained, and the plastic working process is continued as it is to obtain the final plastic working material. No. 113-No. 117 was obtained.

また、塑性加工材No.118用の各鋳造素材g1に、実施例3と同一の塑性加工工程により、塑性加工材No.62を得た場合と同一の塑性加工を施すことにより、当該塑性加工材No.62と同一形状の塑性加工材No.118を得た。なお、No.118については、鋳造素材g1に一次加工材G3を得た場合と同一の冷間圧延を施すことにより、当該一次加工材G3と同一形状の一次加工材g3を得たが、この一次加工材g3に割れを生じた。しかし、爾後の冷間加工が低加工率で行なわれるものであったため、一次加工材g3を得た時点で塑性加工工程を終了せず、そのまま塑性加工工程を継続して、最終の塑性加工材No.118を得た。   Also, plastic working material No. Each of the casting materials g1 for 118 was subjected to the same plastic working process as in Example 3 to produce a plastic working material No. By performing the same plastic working as in the case of obtaining No. 62, the plastic working material No. No. 62 plastic work material No. 118 was obtained. In addition, No. For 118, a primary work material g3 having the same shape as the primary work material G3 was obtained by subjecting the casting material g1 to the same cold rolling as when the primary work material G3 was obtained. Cracks occurred. However, since the cold working after brazing is performed at a low working rate, the plastic working process is not finished when the primary work material g3 is obtained, and the plastic working process is continued as it is to obtain the final plastic working material. No. 118 was obtained.

また、比較例4として、実施例4において塑性加工材No.63を得た場合と同一の鋳造工程及び塑性加工工程により塑性加工材No.119及びNo.120を得ようとしたが、以下のように塑性加工工程を行い得なかった。   As Comparative Example 4, the plastic working material No. 1 in Example 4 was used. No. 63 is obtained by the same casting process and plastic working process as in the case of obtaining No. 63. 119 and No. 120 was obtained, but the plastic working process could not be performed as follows.

すなわち、表4に示す組成の銅合金材料から、実施例4と同一の鋳造工程により、前記鋳造素材H1と同一形状の鋳造素材h1を得た。   That is, a casting material h1 having the same shape as the casting material H1 was obtained from the copper alloy material having the composition shown in Table 4 by the same casting process as in Example 4.

そして、各鋳造素材h1に、実施例4と同一の冷間伸線を施して、前記一次加工材H2と同一形状の一次加工材h2を得た。しかし、No.119及びNo.120の何れについても、一次加工材h2を得る段階で断線したため、爾後の塑性加工工程を行い得ず、最終的な塑性加工材を得ることができなかった。
Then, the same cold drawing as in Example 4 was performed on each casting material h1 to obtain a primary processing material h2 having the same shape as the primary processing material H2 . However, no. 119 and No. For all of 120, since the wire was disconnected at the stage of obtaining the primary work material h2 , the subsequent plastic working process could not be performed, and the final plastic work material could not be obtained.

また、比較例5として、実施例5において塑性加工材No.74又はNo.78を得た場合と同一の鋳造工程及び塑性加工工程により塑性加工材No.121〜No.125を得た。   Further, as Comparative Example 5, the plastic working material No. 74 or No. No. 78 is obtained by the same casting process and plastic working process as in the case of obtaining No. 78. 121-No. 125 was obtained.

すなわち、表4に示す組成の銅合金材料から、実施例5と同一の鋳造工程により、前記鋳造素材I1と同一形状の鋳造素材i1を得た。   That is, a casting material i1 having the same shape as the casting material I1 was obtained from the copper alloy material having the composition shown in Table 4 by the same casting process as in Example 5.

そして、塑性加工材No.121〜No.124用の各鋳造素材i1に、実施例5と同一の塑性加工工程により、塑性加工材No.74を得た場合と同一の塑性加工を施すことにより、当該塑性加工材No.74と同一形状の塑性加工材No.121〜No.124を得た。   And plastic working material No. 121-No. Each of the casting materials i1 for No. 124 is subjected to the same plastic working process as in Example 5 to produce a plastic working material No. 74, the same plastic working material No. 74 is obtained. No. 74 plastic work material No. 121-No. 124 was obtained.

また、塑性加工材No.125用の各鋳造素材i1に、実施例5と同一の塑性加工工程により、塑性加工材No.78を得た場合と同一の塑性加工を施すことにより、当該塑性加工材No.78と同一形状の塑性加工材No.125を得た。   Also, plastic working material No. Each of the casting materials i1 for 125 is subjected to the plastic working material No. 1 by the same plastic working process as in the fifth embodiment. 78, the same plastic working as in the case of obtaining No. 78 is performed. No. 78 plastic work material No. 125 was obtained.

また、比較例6として、実施例6と同一の鋳造工程及び塑性加工工程により塑性加工材No.126〜No.128を得た。   Further, as Comparative Example 6, plastic working material No. 1 was obtained by the same casting process and plastic working process as in Example 6. 126-No. 128 was obtained.

すなわち、表4に示す組成の銅合金材料から、実施例6と同一の鋳造工程により、前記鋳造素材J1と同一形状の鋳造素材j1を得た。   That is, a casting material j1 having the same shape as the casting material J1 was obtained from the copper alloy material having the composition shown in Table 4 by the same casting process as in Example 6.

そして、各鋳造素材j1に、実施例6と同一の塑性加工工程により、塑性加工材No.79を得た場合と同一の塑性加工を施すことにより、当該塑性加工材No.79と同一形状の塑性加工材No.126〜No.128を得た。   Then, each cast material j1 was subjected to the same plastic working process as in Example 6 with a plastic working material No. 79, the same plastic working as in the case of obtaining No. 79 is performed. No. 79 plastic working material No. 126-No. 128 was obtained.

而して、実施例及び比較例の塑性加工材の平均結晶粒径D1並びに鋳造素材の平均結晶粒径D2を測定した。平均結晶粒径D1,D2は、塑性加工材ないし鋳造素材を切断して、その切断面を硝酸でエッチングした上、そのエッチング面に出現するマクロ組織における結晶粒の粒径を測定し、その平均径を算出したものである。この測定は、JIS H0501の伸銅品結晶粒度試験の比較法に基づいて行なったもので、切断面を硝酸でエッチングした後、結晶粒径が0.5mmを超えるものは肉眼で観察し、0.5mm以下のものについては7.5倍に拡大して観察し、約0.1mmよりも小さなものについては、過酸化水素とアンモニア水の混合液でエッチングした上、光学顕微鏡で75倍に拡大して観察した。その結果は、表5〜表8に示す通りであった。なお、表8において、平均結晶粒径欄に「混粒」と記載したものは、結晶粒の大きさが揃っておらず、結晶粒径に大きなバラツキが生じているものである。   Thus, the average crystal grain size D1 of the plastic working materials of Examples and Comparative Examples and the average crystal grain size D2 of the casting material were measured. The average crystal grain diameters D1 and D2 are obtained by cutting a plastic working material or casting material, etching the cut surface with nitric acid, and measuring the grain size of the crystal grains in the macro structure appearing on the etched surface. The diameter is calculated. This measurement was carried out based on the comparison method of the grain size test of JIS H0501 for copper products. After etching the cut surface with nitric acid, the crystal grain size exceeding 0.5 mm was observed with the naked eye. .5 mm or less is observed at a magnification of 7.5 times, and those smaller than about 0.1 mm are etched with a mixed solution of hydrogen peroxide and ammonia water and then magnified by a magnification of 75 with an optical microscope. And observed. The results were as shown in Tables 5-8. In Table 8, what is described as “mixed grain” in the average grain size column indicates that the grain size is not uniform and the grain size varies greatly.

表5〜表8に示す塑性加工材の平均結晶粒径D1及び鋳造素材の平均結晶粒径D2をみれば明らかなように、比較例の塑性加工材は結晶粒の微細化が行なわれていないのに対し、実施例の塑性加工材では、その結晶粒が鋳造素材の結晶粒径及び総合加工率Pに応じて大幅に微細化されている。   As apparent from the average crystal grain size D1 of the plastic working material and the average crystal grain size D2 of the casting material shown in Tables 5 to 8, the plastic working material of the comparative example is not refined of crystal grains. On the other hand, in the plastic working material of the example, the crystal grains are greatly refined according to the crystal grain size and the overall processing rate P of the casting material.

また、実施例及び比較例の塑性加工材について相組織を確認し、α相の面積率(%)並びにγ相、δ相及びε相の合計面積率(%)を画像解析により測定した。すなわち、200倍の光学顕微鏡組織を画像処理ソフト「WinROOF」で2値化することにより、各相の面積率を求めた。面積率の測定は3視野で行い、その平均値を各相の相比率とした。その結果は表5〜表8に示す通りであり、実施例の塑性加工材は、何れも、前述した好適な結晶構造をなしていることが確認された。   Further, the phase structures of the plastic working materials of Examples and Comparative Examples were confirmed, and the area ratio (%) of the α phase and the total area ratio (%) of the γ phase, δ phase, and ε phase were measured by image analysis. That is, the area ratio of each phase was determined by binarizing a 200-fold optical microscope texture with image processing software “WinROOF”. The area ratio was measured in three fields, and the average value was used as the phase ratio of each phase. The results are as shown in Tables 5 to 8, and it was confirmed that all of the plastic working materials of the examples had the above-described preferred crystal structure.

また、実施例及び比較例の塑性加工材について、次のように塑性加工性を評価した。   Moreover, the plastic workability of the plastic working materials of the examples and comparative examples was evaluated as follows.

すなわち、実施例1、実施例3、比較例1及び比較例3の塑性加工材(一部を除く)について、鋳造素材E1,G1,e1,g1を冷間圧延して得られた一次加工材E2,G2,G3,e2,g2,g3に割れが生じているか否かを目視確認することにより、冷間加工性を評価した。その結果は、表5〜表8に示す通りであった。表5〜表8においては、割れが全く生じていないものを冷間圧延性(冷間加工性)に優れるとして「○」で示し、顕著な割れが生じているものを冷間圧延性に劣る(実用困難)として「×」で示し、何れでもないもの(多少の問題はあるが実用可能である)を一般的な冷間圧延を有するとして「△」で示した。   That is, the primary processed material obtained by cold-rolling the casting materials E1, G1, e1, and g1 of the plastic processed materials (excluding some) of Example 1, Example 3, Comparative Example 1, and Comparative Example 3. Cold workability was evaluated by visually confirming whether or not cracks occurred in E2, G2, G3, e2, g2, and g3. The results were as shown in Tables 5-8. In Tables 5 to 8, those having no cracks are indicated by “◯” as being excellent in cold rollability (cold workability), and those having significant cracks are inferior in cold rollability. “X” is indicated as (practical difficulty), and “N” is indicated as “Δ” indicating that it has general cold rolling.

実施例2及び比較例2の塑性加工材について、鋳造素材F1,f1を熱間圧延して得られた一次加工材F2,f2に割れが生じているか否かを目視確認することにより、熱間加工性を評価した。その結果は、表6〜表8に示す通りであった。表6〜表8においては、割れが全く生じていないものを熱間圧延性に優れるとして「○」で示し、顕著な割れが生じているものを熱間加工性に劣る(実用困難)として「×」で示し、何れでもないもの(多少の問題はあるが実用可能である)を一般的な熱間加工性を有するとして「△」で示した。   About the plastic work material of Example 2 and Comparative Example 2, it is hot by visually confirming whether the primary work materials F2 and f2 obtained by hot rolling the casting materials F1 and f1 are cracked. Processability was evaluated. The results were as shown in Tables 6-8. In Tables 6 to 8, those having no cracks are indicated by “◯” as being excellent in hot rollability, and those having significant cracks are indicated as being inferior in hot workability (practical difficulty) as “ A symbol “x” indicates that none of them (which can be practically used although there are some problems) is indicated by “Δ” as having general hot workability.

実施例4、実施例5、比較例4及び比較例5の塑性加工材について、鋳造素材H1,h1を冷間伸線して一次加工材H2,h2を得る段階で断線しているか否か又は得られた当該一次加工材に割れが生じているか否かを目視確認することにより、冷間伸線性を評価した。その結果は、表7及び表8に示す通りであった。表7及び表8においては、割れや断線が全く生じなかったものを冷間伸線性に優れるとして「○」で示し、断線や顕著な割れが生じたものを冷間伸線性に劣る(実用困難)として「×」で示し、これらの何れでもないもの(多少の問題はあるが実用可能である)を一般的な冷間伸線性を有するとして「△」で示した。なお、No.78及びNo.125については、実施例4と同一の鋳造工程により鋳造素材T1と同一の鋳造素材を得た上、これを実施例4における一次加工材H2を得た場合と同一の冷間伸線することにより、当該一次加工材H2と同一形状の一次加工材(伸線材)を得て、これに割れや断線が生じたかどうかによって冷間伸線性を評価した(No.125は当該一次加工材を得る段階で断線した)。   Whether or not the plastic working materials of Example 4, Example 5, Comparative Example 4 and Comparative Example 5 are disconnected at the stage of cold drawing the casting materials H1 and h1 to obtain the primary working materials H2 and h2. The cold drawing property was evaluated by visually confirming whether or not the obtained primary processed material was cracked. The results were as shown in Table 7 and Table 8. In Tables 7 and 8, those with no cracks or wire breakage are indicated with “◯” as being excellent in cold drawability, and those with wire breakage or noticeable cracking are inferior in cold wire drawability (practical difficulty) ) Is indicated by “x”, and none of these (which is practical although there are some problems) is indicated by “Δ” as having a general cold drawing property. In addition, No. 78 and no. For 125, by obtaining the same casting material as the casting material T1 by the same casting process as in Example 4, the same cold drawing as in the case of obtaining the primary work material H2 in Example 4 was performed. The primary processed material (drawn wire) having the same shape as the primary processed material H2 was obtained, and the cold drawn property was evaluated depending on whether cracks or breakage occurred in this (No. 125 is a stage for obtaining the primary processed material) Was disconnected).

表5〜表8に示す塑性加工性の評価結果から理解されるように、実施例の塑性加工材は、鋳造素材の平均結晶粒径D2が150〜200μmと大きい塑性加工材No.1、No.13、No.56及び最終的な塑性加工材を得ていないNo.41が一般的な冷間圧延性,熱間圧延性を有することを除いて、冷間圧延性,熱間圧延性,冷間伸線性に優れるものであった。一方、比較例の塑性加工材は、何れも、冷間圧延性,熱間圧延性,冷間伸線性に大きく劣るものであった。したがって、本発明で特定する鋳造素材から得られる塑性加工材については、塑性加工性(冷間圧延性,熱間圧延性,冷間伸線性)に優れるものであることが確認された。   As can be understood from the evaluation results of plastic workability shown in Tables 5 to 8, the plastic work materials of the examples are plastic work materials No. 1 having a large average crystal grain size D2 of 150 to 200 μm of the cast material. 1, no. 13, no. 56 and No. No final plastic working material was obtained. Except for 41 having general cold rolling properties and hot rolling properties, it was excellent in cold rolling properties, hot rolling properties, and cold wire drawing properties. On the other hand, the plastic working materials of the comparative examples were all inferior in cold rollability, hot rollability, and cold wire drawing. Therefore, it was confirmed that the plastic work material obtained from the casting material specified in the present invention is excellent in plastic workability (cold rollability, hot rollability, cold drawability).

また、実施例及び比較例の塑性加工材から試験片を採取し、この試験片についてアムスラー型万能試験機による引張試験を行い、引張強さ(N/mm)及び伸び(%)を測定した。 In addition, test pieces were collected from the plastic working materials of Examples and Comparative Examples, and the test pieces were subjected to a tensile test using an Amsler type universal testing machine to measure tensile strength (N / mm 2 ) and elongation (%). .

すなわち、実施例1〜実施例3及び比較例3の塑性加工材からJIS Z 2201に規定する5号試験片を採取して、この試験片についてアムスラー型万能試験機による引張試験を行い、引張強さ(N/mm)及び伸び(%)を測定した。また、実施例4及び比較例4の塑性加工材からJIS Z 2201に規定する4号試験片を採取して、この試験片についてアムスラー型万能試験機による引張試験を行い、引張強さ(N/mm)及び伸び(%)を測定した。また、実施例5及び比較例5の塑性加工材からJIS Z 2201に規定する9号B試験片を採取して、この試験片についてアムスラー型万能試験機による引張試験を行い、引張強さ(N/mm)及び伸び(%)を測定した。さらに、実施例6及び比較例6の塑性加工材からJIS Z 2201に規定する12号B試験片を採取して、この試験片についてアムスラー型万能試験機による引張試験を行い、引張強さ(N/mm)及び伸び(%)を測定した。これらの試験結果は、表5〜表8に示す通りであった。 That is, a No. 5 test piece defined in JIS Z 2201 was collected from the plastic working materials of Examples 1 to 3 and Comparative Example 3, and a tensile test was performed on the test piece using an Amsler type universal testing machine to obtain a tensile strength. The thickness (N / mm 2 ) and elongation (%) were measured. In addition, No. 4 test piece defined in JIS Z 2201 was collected from the plastic working materials of Example 4 and Comparative Example 4, and the test piece was subjected to a tensile test using an Amsler type universal testing machine, and the tensile strength (N / mm 2 ) and elongation (%) were measured. Further, a No. 9 B test piece defined in JIS Z 2201 was collected from the plastic working materials of Example 5 and Comparative Example 5, and this test piece was subjected to a tensile test using an Amsler type universal testing machine to obtain a tensile strength (N / Mm 2 ) and elongation (%). Furthermore, No. 12 B test piece defined in JIS Z 2201 was collected from the plastic working materials of Example 6 and Comparative Example 6, and the test piece was subjected to a tensile test using an Amsler type universal testing machine to obtain a tensile strength (N / Mm 2 ) and elongation (%). These test results were as shown in Tables 5 to 8.

表5〜表8に示す引張試験の結果から、実施例の塑性加工材は引張強さ及び伸びに優れたものであることが確認された。   From the results of the tensile tests shown in Tables 5 to 8, it was confirmed that the plastic working materials of the examples were excellent in tensile strength and elongation.

また、実施例の塑性加工材及び塑性加工材の曲げ加工性について、次のような評価を行なった。   Moreover, the following evaluation was performed about the plastic work material of an Example, and the bending workability of a plastic work material.

すなわち、薄板材である実施例1及び実施例2の塑性加工材について、塑性加工材からその圧延方向に対して垂直に切り出した試験片をU字状に180°折曲して、割れが生じたときの折曲度R/t(R:折曲部における内周側の曲率半径(mm),t:試験片の板厚(mm))によって曲げ加工性を評価した。その結果は表5及び表6に示す通りであり、これらの表においては、R/t=1で割れが生じなかったものを、曲げ加工性に優れるものとして「○」で示し、R/t=2.5では割れが生じなかったがR/t=1で割れを生じたものを、良好な曲げ加工性を有するもの(実用上の問題はない)として「△」で示し、R/t=2.5で割れを生じたものを、曲げ加工性に劣るもの(実用困難)として「×」で示した。   That is, with respect to the plastic working material of Example 1 and Example 2 which is a thin plate material, a test piece cut out perpendicularly to the rolling direction from the plastic working material is bent 180 ° into a U shape, and a crack occurs. The bending workability was evaluated based on the bending degree R / t (R: radius of curvature (mm) on the inner peripheral side in the bent portion, t: plate thickness (mm) of the test piece). The results are as shown in Tables 5 and 6. In these tables, those in which no cracks occurred when R / t = 1 were indicated by “◯” as being excellent in bending workability, and R / t No crack was generated at 2.5, but a crack was generated at R / t = 1, which was indicated by “Δ” as having good bending workability (no practical problem), and R / t A crack that occurred at = 2.5 was shown by “x” as being inferior in bending workability (practical difficulty).

また、厚板材である実施例3及び比較例3の塑性加工材について、塑性加工材からその圧延方向に対して垂直に切り出した試験片をL字状に90°折曲して、割れが生じたときの折曲度R/t(R:折曲部における内周側の曲率半径(mm),t:試験片の板厚(mm))によって曲げ加工性を評価した。その結果は表7及び表8に示す通りであり、これらの表においては、R/t=0.5で割れが生じなかったものを、曲げ加工性に優れるものとして「○」で示し、R/t=1では割れが生じなかったがR/t=0.5で割れを生じたものを、良好な曲げ加工性を有するもの(実用上の問題はない)として「△」で示し、R/t=1で割れを生じたものを、曲げ加工性に劣るもの(実用困難)として「×」で示した。   Moreover, about the plastic working material of Example 3 which is a thick plate material, and the comparative example 3, the test piece cut out perpendicularly | vertically with respect to the rolling direction from the plastic working material is bent 90 degrees in L shape, and a crack arises. The bending workability was evaluated based on the bending degree R / t (R: radius of curvature (mm) on the inner peripheral side in the bent portion, t: plate thickness (mm) of the test piece). The results are as shown in Tables 7 and 8. In these tables, those that did not crack at R / t = 0.5 are indicated by “◯” as being excellent in bending workability, and R No cracking occurred at / t = 1, but cracking at R / t = 0.5 was indicated by “Δ” as having good bending workability (no practical problem), and R Those having cracks at / t = 1 are indicated by “x” as being inferior in bending workability (practical difficulty).

また、線材である実施例4(伸線材)、実施例5(抽伸材)、比較例4(伸線材)及び比較例5(抽伸材)の塑性加工材について、塑性加工材を長手方向に切断して採取した試験片をL字状に90°折曲して、割れが生じたときの折曲度R/D(R:折曲部における内周側の曲率半径(mm),D:試験片の直径(mm))によって曲げ加工性を評価した。その結果は表7及び表8に示す通りであり、これらの表においては、R/D=0.5で割れが生じなかったものを、曲げ加工性に優れるものとして「○」で示し、R/D=1では割れが生じなかったがR/D=0.5で割れを生じたものを、良好な曲げ加工性を有するもの(実用上の問題はない)として「△」で示し、R/D=1で割れを生じたものを、曲げ加工性に劣るもの(実用困難)として「×」で示した。   Moreover, about the plastic working material of Example 4 (drawing material), Example 5 (drawing material), Comparative Example 4 (drawing material), and Comparative Example 5 (drawing material), which are wire materials, the plastic working material is cut in the longitudinal direction. The test specimen collected in this way was bent 90 degrees into an L shape, and the bending degree R / D when the crack occurred (R: radius of curvature (mm) on the inner periphery side in the bent portion, D: test) The bending workability was evaluated by the diameter (mm) of the piece. The results are as shown in Tables 7 and 8. In these tables, those in which cracks did not occur at R / D = 0.5 are indicated by “◯” as being excellent in bending workability, and R When / D = 1, no cracking occurred, but when R / D = 0.5, cracking was indicated by “Δ” as having good bending workability (no practical problem). Those having cracks at / D = 1 are indicated by “x” as being inferior in bending workability (practical difficulty).

また、管材である実施例6及び比較例6の塑性加工材について、塑性加工材を長手方向に切断して採取した試験片をその軸線がU字状となるように折曲して、折曲部に挟んだ厚さ:4mm,幅:30mmの板に密着する扁平状態となったときにおいて、当該折曲部に発生する割れの有無によって曲げ加工性を評価した。その結果は表7及び表8に示す通りであり、これらの表においては、割れが生じなかったものを、曲げ加工性に優れるものとして「○」で示し、割れが生じたものを、曲げ加工性に劣るもの(実用困難)として「×」で示した。   Further, for the plastic working material of Example 6 and Comparative Example 6 which are pipe materials, the test piece taken by cutting the plastic working material in the longitudinal direction is bent so that the axis thereof is U-shaped, and bent. The bending workability was evaluated based on the presence or absence of cracks occurring in the bent portion when the flat state was in close contact with a plate having a thickness of 4 mm and a width of 30 mm sandwiched between the portions. The results are as shown in Tables 7 and 8. In these tables, those that did not cause cracking are indicated by “◯” as being excellent in bending workability, and those that are cracked are bent. Indicated as “x” as inferior (practical difficulty).

表5〜表8に示す曲げ加工性の評価結果から、実施例の塑性加工材は、比較例の塑性加工材に比して、曲げ加工性に優れるものであることが確認された。   From the evaluation results of the bending workability shown in Tables 5 to 8, it was confirmed that the plastic working material of the example was excellent in bending workability as compared with the plastic working material of the comparative example.

また、実施例及び比較例の塑性加工材について、耐蝕性を確認するために、次のようなエロージョン・コロージョン試験及び「ISO 6509」に規定される脱亜鉛腐蝕試験を行なった。   Moreover, in order to confirm the corrosion resistance, the following erosion / corrosion test and the dezincification corrosion test specified in “ISO 6509” were performed on the plastic working materials of Examples and Comparative Examples.

すなわち、エロージョン・コロージョン試験においては、実施例及び比較例の塑性加工材から採取した試料に、その圧延方向又は軸線方向に直交する方向において、口径1.9mmのノズルから3%食塩水(30℃)を11m/秒の流速で衝突させて、エロージョン・コロージョン試験を行ない、96時間が経過した後の腐蝕減量(mg/cm)を測定した。腐蝕減量は、試験開始前における試料重量から3%食塩水を96時間衝突させた後の試料重量との1cm当たりの差量(mg/cm)である。エロージョン・コロージョン試験の結果は、表7及び表8に示す通りであった。 That is, in the erosion / corrosion test, samples collected from the plastic working materials of Examples and Comparative Examples were subjected to 3% saline (30 ° C.) from a nozzle having a diameter of 1.9 mm in a direction perpendicular to the rolling direction or the axial direction. ) Was collided at a flow rate of 11 m / sec, and an erosion / corrosion test was conducted. After 96 hours, the corrosion loss (mg / cm 2 ) was measured. Corrosion weight loss is the difference per 1 cm 2 (mg / cm 2 ) from the sample weight before the start of the test to the sample weight after colliding with 3% saline for 96 hours. The results of the erosion / corrosion test were as shown in Tables 7 and 8.

また、「ISO 6509」の脱亜鉛腐蝕試験においては、実施例及び比較例の塑性加工材から採取した試料を、暴露試料表面が伸縮方向に対して直角となるようにしてフェノール樹脂に座込み、試料表面をエメリー紙により1200番まで研磨した後、これを純水中で超音波洗浄して乾燥した。かくして得られた被腐蝕試験試料を、1.0%の塩化第2銅2水和物(CuCl・2HO)の水溶液中に浸潰し、75℃の温度条件下で24時間保持した後、水溶液中から取出して、その脱亜鉛腐蝕深さの最大値つまり最大脱亜鉛腐蝕深さ(μm)を測定した。その結果は、表7及び表8に示す通りであった。 In addition, in the “ISO 6509” dezincification corrosion test, samples taken from the plastic working materials of Examples and Comparative Examples were seated in a phenolic resin so that the exposed sample surface was perpendicular to the stretching direction. After the surface was polished to number 1200 with emery paper, this was ultrasonically washed in pure water and dried. After the corrosion test sample thus obtained was immersed in an aqueous solution of 1.0% cupric chloride dihydrate (CuCl 2 .2H 2 O) and kept at 75 ° C. for 24 hours, The sample was taken out from the aqueous solution, and the maximum value of the dezincification corrosion depth, that is, the maximum dezincification corrosion depth (μm) was measured. The results were as shown in Table 7 and Table 8.

表7及び表8に示すエロージョン・コロージョン試験及び脱亜鉛腐蝕試験の結果から、実施例の塑性加工材は比較例の塑性加工材に比して耐蝕性に優れることが確認された。   From the results of the erosion / corrosion test and the dezincification corrosion test shown in Table 7 and Table 8, it was confirmed that the plastic working material of the example was excellent in corrosion resistance as compared with the plastic working material of the comparative example.

以上のように、実施例の塑性加工材は、前述した如く確認された金属組織をなすことによって、機械的特性(引張強度,伸び)、冷間圧延性,熱間圧延性、冷間伸線性、曲げ加工性及び耐蝕性の何れにおいてにも優れるものであることが確認された。なお、一般には結晶粒の微細化により伸びが低くなると考えられているが、上記した引張試験の結果から理解されるように、本発明の塑性加工材では、結晶粒の微細化によって伸びが低下せず、寧ろ、向上している。   As described above, the plastic working material of the example has a mechanical structure (tensile strength, elongation), cold rollability, hot rollability, cold drawability by forming the metal structure confirmed as described above. It was confirmed that the film was excellent both in bending workability and corrosion resistance. In general, it is considered that the elongation is lowered by the refinement of crystal grains. However, as understood from the results of the tensile test described above, in the plastic working material of the present invention, the elongation is reduced by the refinement of crystal grains. Rather, it has improved.

本発明の塑性加工材は、電子・電気機器用ばね、スイッチ、コネクタ、ベロー、ヒューズクリップ、ブッシュ、リレー、歯車、カム、継手、フランジ、小ねじ、ボルト、ナット、ハトメ、ワッシャ、軸受け、コイルばね、渦巻きばね、スナップボタン、ヘッダー、リード端子、トランジスタ端子、リードフレーム、ロータリースイッチしゅう動片、開閉器接片、ベアリングフレーム、油圧キャップ、パッキン、クラッチ板、製紙用ブレード材、ダイヤフラム、ケーブル脱着部のスプリング、タイマーリレー用可動ばね、熱交換器、熱交換器用管板、熱交換器、金網、海洋ネット、養殖網、魚網、海水用復水器管、船舶部品シャフト、生簀用フレーム、タンブラー、配線器具、ソケット、ピン、ガス配管用溶接管、船舶海水取入口、海洋生簀枠(フレーム)等の構成材として好適に使用される。   The plastic working material of the present invention includes springs, switches, connectors, bellows, fuse clips, bushes, relays, gears, cams, joints, flanges, machine screws, bolts, nuts, eyelets, washers, bearings, coils for electronic and electrical equipment. Spring, spiral spring, snap button, header, lead terminal, transistor terminal, lead frame, rotary switch sliding piece, switch contact piece, bearing frame, hydraulic cap, packing, clutch plate, paper blade material, diaphragm, cable attachment / detachment Springs, movable relays for timer relays, heat exchangers, tube plates for heat exchangers, heat exchangers, wire nets, marine nets, aquaculture nets, fish nets, seawater condenser tubes, ship parts shafts, ginger frames, tumblers , Wiring equipment, sockets, pins, welded pipes for gas piping, ship seawater intake, marine ginger frame It is suitably used as a constituent material of the frame), and the like.

Claims (14)

Sn:4.2〜15mass%とZr:0.001〜0.049mass%とP:0.01〜0.14mass%とCu:残部とからなり且つ[P]/[Zr]=0.6〜36.8の関係(元素aの含有量を[a]mass%とする)が成立する組成をなす平均結晶粒径300μm以下の鋳造素材を熱間及び/又は冷間で塑性加工してなる塑性加工材であって、
α相の面積率が94.5%以上で且つγ相、δ相及びε相の合計面積率が5%以下である金属組織をなし、平均結晶粒径が150μm以下であることを特徴とする銅合金製塑性加工材。
Sn: 4.2 to 15 mass%, Zr: 0.001 to 0.049 mass%, P: 0.01 to 0.14 mass%, Cu: remainder, and [P] / [Zr] = 0.6 to Plasticity formed by hot and / or cold plastic processing of a casting material having an average crystal grain size of 300 μm or less that has a composition satisfying the relationship 36.8 (the content of element a is [a] mass%) Processing material,
It has a metal structure in which the area ratio of α phase is 94.5% or more and the total area ratio of γ phase, δ phase and ε phase is 5% or less, and the average crystal grain size is 150 μm or less. Copper alloy plastic working material.
Sn:0.2〜15mass%とZr:0.001〜0.049mass%とP:0.01〜0.25mass%とZn:0.01〜35mass%とCu:残部とからなり且つ[P]/[Zr]=0.6〜36.8及び3[Sn]+[Zn]=11.1〜36.6の関係(元素aの含有量を[a]mass%とする)が成立する組成をなす平均結晶粒径300μm以下の鋳造素材を熱間及び/又は冷間で塑性加工してなる塑性加工材であって、
α相の面積率が94.5%以上で且つγ相、δ相及びε相の合計面積率が5%以下である金属組織をなし、平均結晶粒径が150μm以下であることを特徴とする銅合金製塑性加工材。
Sn: 0.2-15 mass%, Zr: 0.001-0.049 mass%, P: 0.01-0.25 mass%, Zn: 0.01-35 mass%, Cu: balance, and [P] /[Zr]=0.6-36.8 and 3 [Sn] + [Zn] = 11.1-36.6 (the content of the element a is [a] mass%) A plastic working material obtained by plastic working hot and / or cold casting material having an average crystal grain size of 300 μm or less ,
It has a metal structure in which the area ratio of α phase is 94.5% or more and the total area ratio of γ phase, δ phase and ε phase is 5% or less, and the average crystal grain size is 150 μm or less. Copper alloy plastic working material.
Ti:0.002〜0.049mass%、Hf:0.002〜0.049mass%、B:0.001〜0.03mass%、Mg:0.001〜0.3mass%、Mn:0.03〜1mass%、Al:0.01〜1mass%、As:0.02〜0.2mass%及びSb:0.02〜0.2mass%から選択された1種以上の元素を更に含有し且つ当該元素としてTi、Hf、B及びMgのうち少なくとも一の元素が選択されている場合においては([P]+[Mg])/([Zr]+0.5[Ti]+0.5[Hf]+[B])=0.6〜36.8の関係(元素aの含有量を[a]mass%とし、含有しない元素aについては[a]=0とする)が成立する組成をなす平均結晶粒径300μm以下の鋳造素材を塑性加工してなるものであることを特徴とする、請求項1及び請求項2の何れかに記載する銅合金製塑性加工材。 Ti: 0.002-0.049 mass%, Hf: 0.002-0.049 mass%, B: 0.001-0.03 mass%, Mg: 0.001-0.3 mass%, Mn: 0.03- 1 element%, Al: 0.01-1 mass%, As: 0.02-0.2 mass%, and Sb: 0.02-0.2 mass% and further containing one or more elements selected as the element When at least one element is selected from Ti, Hf, B, and Mg, ([P] + [Mg]) / ([Zr] +0.5 [Ti] +0.5 [Hf] + [B ]) = Average crystal grain size having a composition satisfying a relationship of 0.6 to 36.8 (the content of the element a is [a] mass%, and the element a that is not contained is [a] = 0) the following casting material 300μm and plastic working Characterized in that it is a shall, copper alloy plastic working material according to any one of claims 1 and 2. Fe:0.01〜0.2mass%、Co:0.01〜0.2mass%及びSi:0.01〜0.8mass%から選択された一種以上の元素を更に含有し且つ当該元素として少なくともFeが選択されている場合においては([P]−0.3[Fe])/[Zr]=0.6〜36.8の関係(元素aの含有量を[a]mass%とする)が成立する組成をなす平均結晶粒径300μm以下の鋳造素材を塑性加工してなるものであることを特徴とする、請求項1〜請求項3の何れかに記載する銅合金製塑性加工材。 Fe: 0.01-0.2 mass%, Co: 0.01-0.2 mass%, and Si: 0.01-0.8 mass%. Is selected, ([P] −0.3 [Fe]) / [Zr] = 0.6 to 36.8 (the content of the element a is [a] mass%) The copper alloy plastic working material according to any one of claims 1 to 3, wherein the copper alloy plastic working material is formed by plastic working a cast material having an average crystal grain size of 300 µm or less that has a composition to be established. 不可避不純物としてNiを含有する場合にあって、Niの含有量が0.25mass%以下である組成をなす平均結晶粒径300μm以下の鋳造素材を塑性加工してなるものであることを特徴とする、請求項1〜請求項4の何れかに記載する銅合金製塑性加工材。 When Ni is contained as an unavoidable impurity, it is obtained by plastic working a casting material having an average crystal grain size of 300 μm or less and having a composition in which the Ni content is 0.25 mass% or less. The copper alloy plastic working material according to any one of claims 1 to 4. 鋳造素材に冷間加工及び/又は熱間加工を1回以上施すと共に再結晶温度域での焼鈍たる再結晶焼鈍を1回以上施してなる板材、条材、線材、棒材又は管材であることを特徴とする、請求項1〜請求項5の何れかに記載する銅合金製塑性加工材。   It is a plate, strip, wire, rod, or pipe that is subjected to cold processing and / or hot processing at least once on the casting material and at least one recrystallization annealing that is annealing in the recrystallization temperature range. A copper alloy plastic working material according to any one of claims 1 to 5, characterized in that: 3回の再結晶焼鈍が行なわれると仮定した場合において、最後の再結晶焼鈍と中間の再結晶焼鈍との間で行なわれる全ての冷間加工による加工率P1と、最初の再結晶焼鈍と中間の再結晶焼鈍との間で行なわれる全ての冷間加工による加工率P2と、最初の再結晶焼鈍前に行なわれる全ての冷間加工による加工率P3と、熱間加工による加工率P4とにより、総合加工率をP=P1+0.4×(P2+P3)+0.2×P4(中間の再結晶焼鈍が行なわれないときにはP2=0とし、最初の再結晶焼鈍及び中間の再結晶焼鈍が行なわれないときはP2=P3=0とし、熱間加工が行なわれないときはP4=0とする)と定義し、このように定義された総合加工率Pが30%未満となる塑性加工を鋳造素材に施してなる塑性加工材であって、その平均結晶粒径が150μm以下である結晶構造をなすものであることを特徴とする、請求項6に記載する銅合金製塑性加工材。   Assuming that the recrystallization annealing is performed three times, the processing rate P1 by all the cold work performed between the last recrystallization annealing and the intermediate recrystallization annealing, and the first recrystallization annealing and the intermediate recrystallization annealing are performed. The processing rate P2 by all cold working performed during recrystallization annealing, the processing rate P3 by all cold processing performed before the first recrystallization annealing, and the processing rate P4 by hot working. , P = P1 + 0.4 × (P2 + P3) + 0.2 × P4 (P2 = 0 when intermediate recrystallization annealing is not performed, and the first recrystallization annealing and intermediate recrystallization annealing are not performed P2 = P3 = 0, and when hot working is not performed, P4 = 0), and the plastic working with the overall working rate P defined in this way being less than 30% is used as the casting material. A plastic working material, The copper alloy plastic working material according to claim 6, which has a crystal structure having an average crystal grain size of 150 μm or less. 前記総合加工率Pが30%以上で且つ50%未満となる塑性加工を鋳造素材に施してなる塑性加工材であって、その平均結晶粒径が60μm以下である結晶構造をなすものであることを特徴とする、請求項6に記載する銅合金製塑性加工材。   It is a plastic working material obtained by subjecting a casting material to plastic working so that the total working rate P is 30% or more and less than 50%, and has an average crystal grain size of 60 μm or less. The copper alloy plastic working material according to claim 6, wherein: 前記総合加工率Pが50%以上となる塑性加工を鋳造素材に施してなる塑性加工材であって、その平均結晶粒径が45μm以下である結晶構造をなすものであることを特徴とする、請求項6に記載する銅合金製塑性加工材。   A plastic working material obtained by subjecting a casting material to plastic working with an overall processing rate P of 50% or more, and having a crystal structure having an average crystal grain size of 45 μm or less, The copper alloy plastic working material according to claim 6. 前記総合加工率Pが70%以上となる塑性加工を鋳造素材に施してなる塑性加工材であって、その平均結晶粒径が4μm以下である結晶構造をなすものであることを特徴とする、請求項6に記載する銅合金製塑性加工材。   A plastic working material obtained by subjecting a casting material to plastic working with an overall processing rate P of 70% or more, and having a crystal structure with an average crystal grain size of 4 μm or less, The copper alloy plastic working material according to claim 6. 電子・電気機器用ばね、スイッチ、コネクタ、ベロー、ヒューズクリップ、ブッシュ、リレー、歯車、カム、継手、フランジ、小ねじ、ボルト、ナット、ハトメ、ワッシャ、軸受け、コイルばね、渦巻きばね、スナップボタン、ヘッダー、リード端子、トランジスタ端子、リードフレーム、ロータリースイッチしゅう動片、開閉器接片、ベアリングフレーム、油圧キャップ、パッキン、クラッチ板、製紙用ブレード材、ダイヤフラム、ケーブル脱着部のスプリング、タイマーリレー用可動ばね、熱交換器、熱交換器用管板、熱交換器、金網、海洋ネット、養殖網、魚網、海水用復水器管、船舶部品シャフト、生簀用フレーム、タンブラー、配線器具、ソケット、ピン、ガス配管用溶接管、船舶海水取入口、海洋生簀枠(フレーム)等の構成材として使用するものであることを特徴とする、請求項7〜請求項10の何れかに記載する銅合金製塑性加工材。   Springs for electronic and electrical equipment, switches, connectors, bellows, fuse clips, bushes, relays, gears, cams, joints, flanges, machine screws, bolts, nuts, eyelets, washers, bearings, coil springs, spiral springs, snap buttons, Header, lead terminal, transistor terminal, lead frame, rotary switch sliding piece, switch contact piece, bearing frame, hydraulic cap, packing, clutch plate, paper blade material, diaphragm, spring for cable attachment / detachment, timer relay movable Spring, heat exchanger, heat exchanger tube plate, heat exchanger, wire mesh, marine net, aquaculture net, fish net, seawater condenser tube, ship parts shaft, ginger frame, tumbler, wiring device, socket, pin, Constituent materials such as welded pipes for gas piping, marine seawater intakes, marine ginger frames To characterized in that it is intended to use a copper alloy plastic working material according to any one of claims 7 to claim 10. 請求項1〜請求項11の何れかに記載する銅合金製塑性加工材を製造する方法であって、平均結晶粒径が300μm以下の鋳造素材を製造する鋳造工程と、鋳造工程で得られた鋳造素材に冷間加工及び/又は熱間加工を1回以上施すと共に再結晶温度域での焼鈍たる再結晶焼鈍を1回以上施す塑性加工工程とを具備することを特徴とする銅合金製塑性加工材の製造方法。   A method for producing a copper alloy plastic working material according to any one of claims 1 to 11, obtained by a casting process for producing a casting material having an average crystal grain size of 300 µm or less, and a casting process. A copper alloy plasticity characterized by comprising a plastic working step of performing at least one cold working and / or hot working on a casting material and at least one recrystallization annealing which is annealing in a recrystallization temperature range. Manufacturing method of processed material. 最後の再結晶焼鈍前に行なわれる冷間加工による加工率を30%以上とすることを特徴とする、請求項12に記載する銅合金製塑性加工材の製造方法。   The method for producing a plastic work material made of copper alloy according to claim 12, wherein a processing rate by cold working performed before the last recrystallization annealing is set to 30% or more. 最後の再結晶焼鈍を、300℃〜450℃の温度域での平均冷却速度が0.5℃/秒以上となる条件で行なうことを特徴とする、請求項13に記載する銅合金製塑性加工材の製造方法。   14. The copper alloy plastic working according to claim 13, wherein the final recrystallization annealing is performed under a condition that an average cooling rate in a temperature range of 300 ° C. to 450 ° C. is 0.5 ° C./second or more. A method of manufacturing the material.
JP2006034613A 2006-02-12 2006-02-12 Copper alloy plastic working material and method for producing the same Expired - Fee Related JP5138170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034613A JP5138170B2 (en) 2006-02-12 2006-02-12 Copper alloy plastic working material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034613A JP5138170B2 (en) 2006-02-12 2006-02-12 Copper alloy plastic working material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007211317A JP2007211317A (en) 2007-08-23
JP5138170B2 true JP5138170B2 (en) 2013-02-06

Family

ID=38490014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034613A Expired - Fee Related JP5138170B2 (en) 2006-02-12 2006-02-12 Copper alloy plastic working material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5138170B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208562B2 (en) * 2008-04-04 2013-06-12 住友軽金属工業株式会社 Seamless pipe
JP5380117B2 (en) * 2009-03-11 2014-01-08 三菱伸銅株式会社 Wire conductor manufacturing method, wire conductor, insulated wire, and wire harness
JPWO2011036728A1 (en) * 2009-09-25 2013-02-14 三菱マテリアル株式会社 Copper alloy trolley wire
JP5623169B2 (en) * 2010-07-23 2014-11-12 三菱伸銅株式会社 Method for producing irregular cross-section copper alloy strip
US9080227B2 (en) 2011-09-20 2015-07-14 Mitsubishi Shindoh Co., Ltd. Copper alloy sheet and method of manufacturing copper alloy sheet
US9970081B2 (en) 2013-09-26 2018-05-15 Mitsubishi Shindoh Co., Ltd. Copper alloy and copper alloy sheet
CA2923462C (en) 2013-09-26 2017-11-14 Mitsubishi Shindoh Co., Ltd. Copper alloy
JP5933848B2 (en) * 2013-09-26 2016-06-15 三菱伸銅株式会社 Discoloration-resistant copper alloy and copper alloy member
JP6463227B2 (en) 2015-07-07 2019-01-30 東京エレクトロン株式会社 Substrate transfer method
JP2021004048A (en) * 2019-06-25 2021-01-14 三菱マテリアル株式会社 Container for livestock transport
CN115948706B (en) * 2023-03-13 2023-05-12 松诺盟科技有限公司 Amorphous alloy high-pressure common rail pipe forging process, common rail pipe and high-pressure common rail system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789449A (en) * 1980-11-21 1982-06-03 Sumitomo Electric Ind Ltd Method of manufacture of copper alloy for conducting electricity
JPS5793556A (en) * 1980-12-02 1982-06-10 Tamagawa Kikai Kinzoku Kk Lead material for high heat resistant conductive semiconductor
JPH08127830A (en) * 1994-11-01 1996-05-21 Fujikura Ltd Production of copper alloy for wire conductor and wire conductor

Also Published As

Publication number Publication date
JP2007211317A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP5138170B2 (en) Copper alloy plastic working material and method for producing the same
JP4951343B2 (en) Sn-containing copper alloy and method for producing the same
JP4951517B2 (en) Melt-solidified product, copper alloy material for melt-solidification, and method for producing the same
JP3999676B2 (en) Copper-based alloy and method for producing the same
JP5555135B2 (en) Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy
JP3961529B2 (en) High strength copper alloy
TWI467034B (en) Machinable copper-based alloy and method for producing the same
JP4708485B2 (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5873618B2 (en) Method for producing copper alloy
JP2009242926A (en) Copper-nickel-silicon based alloy for electronic material
JP2011084764A (en) High strength copper alloy plate material and method for producing the same
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5880670B2 (en) Method for determining melting temperature of copper alloy slabs
JP2007126739A (en) Copper alloy for electronic material
JPH0762472A (en) Copper-based shape memory alloy having high workability and its production
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP2008214760A (en) Lead-free free-cutting brass alloy and its manufacturing method
WO2011105686A2 (en) High-strength and highly conductive copper alloy, and method for manufacturing same
JP4166147B2 (en) Method for producing copper alloy plate for high-strength electrical and electronic parts
JP2007070685A (en) Highly workable magnesium alloy, and method for producing the same
WO2006100859A1 (en) Process for producing continuous magnesium material
JP2009041088A (en) Lead-free free-cutting brass with excellent castability
JP4184357B2 (en) Lead-free free-cutting brass alloy and method for producing the same
JP4719731B2 (en) Aluminum alloy rolled material with excellent machinability and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Ref document number: 5138170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees