JP4166147B2 - Method for producing copper alloy plate for high-strength electrical and electronic parts - Google Patents

Method for producing copper alloy plate for high-strength electrical and electronic parts Download PDF

Info

Publication number
JP4166147B2
JP4166147B2 JP2003405156A JP2003405156A JP4166147B2 JP 4166147 B2 JP4166147 B2 JP 4166147B2 JP 2003405156 A JP2003405156 A JP 2003405156A JP 2003405156 A JP2003405156 A JP 2003405156A JP 4166147 B2 JP4166147 B2 JP 4166147B2
Authority
JP
Japan
Prior art keywords
less
copper alloy
alloy plate
cold rolling
electronic parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003405156A
Other languages
Japanese (ja)
Other versions
JP2005163127A (en
Inventor
浩史 荒井
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003405156A priority Critical patent/JP4166147B2/en
Publication of JP2005163127A publication Critical patent/JP2005163127A/en
Application granted granted Critical
Publication of JP4166147B2 publication Critical patent/JP4166147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、端子、コネクタ、ワイヤハーネス、ターミナル、リレー、スイッチ、リードフレーム及びばね材料等として用いられる高強度でばね特性に優れる電気電子部品用銅合金板の製造方法に関する。   The present invention relates to a method for producing a copper alloy plate for electric and electronic parts that is used as a terminal, a connector, a wire harness, a terminal, a relay, a switch, a lead frame, a spring material, and the like and has high strength and excellent spring characteristics.

上記の用途には、従来、Be銅、りん青銅(PBS)等の高強度銅合金が用いられてきた。
Be銅(CDA17410:Cu−0.3Be)は引張強さ:800N/mm 、ばね限界値:700N/mm 、導電率40%IACS程度で、曲げ加工性にも優れるため、電気電子部品用の高級ばね材として利用されている。しかし、最近携帯電話やパーソナルコンピュータの普及により本分野が急激に拡大しているのに対し、Beの環境問題(Beは酸化しやすく、生成した酸化物が人体に有害)から溶解鋳造、熱処理などの製造工程には細心の注意が必要で、特に溶解鋳造には特別な設備が必要であることから製造量が限られており、前記の需要増大に伴って供給不足が問題となり、さらにコスト面でも高価である。一方、リン青銅は導電率が低いため、小型化に対応できず、また異方性が大きいために成形加工が難しく、さらに応力緩和特性に劣るため発熱時のばねの保持力を確保できない等の問題が生じてきた。
Conventionally, high-strength copper alloys such as Be copper and phosphor bronze (PBS) have been used for the above applications.
Be Copper (CDA17410: Cu-0.3Be) tensile strength: 800 N / mm 2, a spring limit: 700 N / mm 2, in conductivity 40% IACS about, since the excellent bendability, for electrical and electronic components It is used as a high-grade spring material. However, this field has expanded rapidly due to the recent popularization of mobile phones and personal computers, but from the environmental problems of Be (Be is easy to oxidize and the generated oxide is harmful to the human body), melt casting, heat treatment, etc. The manufacturing process of this type requires careful attention, and in particular, the amount of production is limited due to the need for special equipment for melting casting. But it is expensive. Phosphor bronze, on the other hand, has a low electrical conductivity, so it cannot cope with downsizing, and because of its large anisotropy, it is difficult to mold, and because it has poor stress relaxation properties, it cannot secure the holding force of the spring during heat generation. Problems have arisen.

これらのニーズに対応するため、(1)Cu−10%Sn、(2)Cu−Ni−Sn−Zn(下記特許文献1参照)等が提案されている。しかし、(1)はBe銅と同等の強度を有するが曲げ加工性に劣り、異方性が大きく曲げ加工による成形に難がある。また、(2)は、Ni:0.1%以上0.5%未満、Sn:1.0%を超え2.5%未満、Zn:1.0%を超え15%以下、P:0.0001%以上0.05%未満とSi:0.0001%以上0.05%以下のいずれか一方又は双方を含有し、必要に応じて、Ti:0.0001%以上0.2%以下、Mg0.0001%以上0.2%以下、Ag:0.0001%以上0.2%以下及びFe0.0001%以上0.6%以下の1種以上を総量で0.0001〜1%含み、あるいは必要に応じてさらにCa、Mn、Be、Al、V、Cr、Co、Zr、Nb、Mo、In、Pb、Hf、Ta、Bの1種又は2種以上を総量で1%以下を含有し、残部不純物及びCuからなる銅合金であり、Be銅に比較した場合、引張強さ、ばね限界値において未だ低い水準にある。   In order to meet these needs, (1) Cu-10% Sn, (2) Cu-Ni-Sn-Zn (see Patent Document 1 below) and the like have been proposed. However, although (1) has the same strength as Be copper, it is inferior in bending workability, has a large anisotropy, and is difficult to form by bending. (2) is Ni: 0.1% or more and less than 0.5%, Sn: more than 1.0% and less than 2.5%, Zn: more than 1.0% and not more than 15%, P: 0.00. One or both of 0001% or more and less than 0.05% and Si: 0.0001% or more and 0.05% or less are contained. If necessary, Ti: 0.0001% or more and 0.2% or less, Mg0 0.0001% or more and 0.2% or less, Ag: 0.0001% or more and 0.2% or less, and Fe0.0001% or more and 0.6% or less, including 0.0001 to 1% in total or necessary In addition, the total amount of one or more of Ca, Mn, Be, Al, V, Cr, Co, Zr, Nb, Mo, In, Pb, Hf, Ta, B is 1% or less. It is a copper alloy consisting of the remaining impurities and Cu. When compared with Be copper, the tensile strength and spring limit Is still at a low level.

特開2000−80427号公報JP 2000-80427 A

本発明は、前記Cu−Ni−Sn−Zn系銅合金板について、Be銅板に近い引張強さ及びばね限界値が得られるようにすることを目的とする。   An object of the present invention is to obtain a tensile strength and a spring limit value close to those of a Be copper plate for the Cu—Ni—Sn—Zn based copper alloy plate.

本発明は、前記特許文献1に記載された銅合金板とほぼ同じ組成の銅合金について、その製造方法を改良することにより所要の特性を得たもので、Ni:0.1%以上1.0%未満、Sn:0.5%を超え4.0%未満、Zn:1.0%を超え20%以下を含有し、必要に応じてP、Si、Ti、Mg、Ag、Fe、Ca、Mn、Be、Al、V、Cr、Co、Zr、Nb、Mo、In、Pb、Hf、Ta、Bの1種又は2種以上:総量で1%以下を含有し、残部不純物及びCuからなる銅合金に対し、冷間圧延工程の途中で行う再結晶を伴う中間焼鈍と最終冷間圧延後の安定化焼鈍を200〜850℃の温度範囲内で5秒以上1分以下の条件で施し、かつ前記最終冷間圧延の加工率を72%以上としたことを特徴とする。   In the present invention, a copper alloy having substantially the same composition as that of the copper alloy plate described in Patent Document 1 is obtained by improving its production method, and Ni: 0.1% or more. Less than 0%, Sn: more than 0.5% and less than 4.0%, Zn: more than 1.0% and not more than 20%, P, Si, Ti, Mg, Ag, Fe, Ca as required One, or two or more of Mn, Be, Al, V, Cr, Co, Zr, Nb, Mo, In, Pb, Hf, Ta, and B: 1% or less in total, and remaining impurities and Cu An intermediate annealing with recrystallization performed in the middle of the cold rolling process and a stabilizing annealing after the final cold rolling are applied to the copper alloy obtained under the temperature range of 200 to 850 ° C. for 5 seconds to 1 minute. And the processing rate of the said last cold rolling shall be 72% or more.

本発明によれば、引張強さ700N/mm 以上、ばね限界値550N/mm 以上を有し、曲げ加工性にも優れた銅合金板を製造することができる。また、本発明により製造した銅合金板は、導電率20%IACS以上が得られ、さらに、耐応力緩和特性、耐応力腐食割れ性、耐マイグレーション性、はんだ耐候性、耐ウイスカー性についても優れている。 According to the present invention, it is possible to produce a copper alloy plate having a tensile strength of 700 N / mm 2 or more, a spring limit value of 550 N / mm 2 or more, and excellent bending workability. In addition, the copper alloy plate produced according to the present invention has an electrical conductivity of 20% IACS or more, and is excellent in stress relaxation resistance, stress corrosion cracking resistance, migration resistance, solder weather resistance, and whisker resistance. Yes.

以下、本発明に係る高強度電気電子部品用銅合金板の製造方法について詳細に説明する。
まず、各添加元素の添加理由(前記特許文献1に記載された銅合金と基本的に同じ)について説明する。
(Ni)
Niは、Snとの共添にて強度及び耐応力緩和特性を向上させる元素である。その含有量が0.1%未満では上記効果が得られず、また、1.0%以上含有されると導電率及びはんだ耐候性の低下を招き、コスト的にも不利である。従って、Niの添加量は0.1%以上1.0%未満とした。望ましくは、0.1%以上0.5%未満である。
Hereinafter, the manufacturing method of the copper alloy plate for high-strength electrical and electronic parts according to the present invention will be described in detail.
First, the reason for adding each additive element (essentially the same as the copper alloy described in Patent Document 1) will be described.
(Ni)
Ni is an element that improves strength and stress relaxation resistance by co-addition with Sn. If the content is less than 0.1%, the above effect cannot be obtained. If the content is 1.0% or more, the conductivity and solder weather resistance are lowered, which is disadvantageous in terms of cost. Therefore, the addition amount of Ni is set to 0.1% or more and less than 1.0%. Desirably, it is 0.1% or more and less than 0.5%.

(Sn)
Snは、機械的性質の向上、特に耐力と伸びのバランスひいては成形加工性及びばね限界値並びに耐応力緩和特性の向上に効果をもたらすが、0.5%以下ではその効果が得られず、また、4.0%以上含有されると導電率の低下を招き、経済的でない。従って、Snの添加量は0.5%を超え4.0%未満とした。望ましくは、1.0%を超え2.5%未満である。
(Sn)
Sn has an effect on improving mechanical properties, particularly on the balance between yield strength and elongation, and hence on the formability, spring limit value, and stress relaxation resistance, but the effect cannot be obtained at 0.5% or less. If it is contained in an amount of 4.0% or more, the conductivity is lowered, which is not economical. Therefore, the amount of Sn added is more than 0.5% and less than 4.0%. Desirably, it is more than 1.0% and less than 2.5%.

(Zn)
Znは、固溶により強度向上に寄与し、はんだ耐候性や各種めっきの密着性、さらにはウイスカーやマイグレーション発生を抑制する必須元素である。Zn含有量が1.0重量%以下では、はんだ耐候性や各種めっきの密着性向上、ウイスカーやマイグレーション発生の抑制効果が小さく、Zn含有量が20%を超えた場合は、導電率が低くなり、応力緩和特性が劣化し、さらに応力腐食割れを起こし易くなる。従って、Zn含有量は1.0%を超え20%以下とする。望ましくは1.0%を超え15%以下である。
(Zn)
Zn is an essential element that contributes to strength improvement by solid solution and suppresses solder weather resistance, adhesion of various platings, and further suppresses whisker and migration. When the Zn content is 1.0% by weight or less, the solder weather resistance, the adhesion of various platings, and the effect of suppressing whisker and migration are small. When the Zn content exceeds 20%, the conductivity is low. The stress relaxation characteristics are deteriorated, and stress corrosion cracking is more likely to occur. Therefore, the Zn content is more than 1.0% and 20% or less. Desirably, it exceeds 1.0% and is 15% or less.

(その他の元素)
P、Si、Ti、Mg、Ag、Fe、Ca、Mn、Be、Al、V、Cr、Co、Zr、Nb、Mo、In、Pb、Hf、Ta、Bは、必要に応じて添加され、あるいは不純物として含有される元素であり、その1種又は2種以上が総量で1%以下に規制される。
このうちPは鋳塊の健全性向上(脱酸・湯流れ等)に寄与する元素であり、その目的であれば含有量(残存量)が0.0001%以上で効果がある。一方、多すぎると製品の機械的性質、曲げ加工性あるいはめっき性を阻害するため、0.05%未満、望ましくは0.01%未満に規制することが望ましい。
Siは溶解鋳造時に添加すると脱酸材としての効果があり、Pの代わりに又はPとともに添加する。その目的であれば、含有量(残存量)0.0001%以上が望ましい。一方、固溶分として母相中に残存したSiが多すぎると、はんだ及びSnめっきの白化あるいは剥離を引き起こし、導電率も低下するため、0.05%以下、望ましくは0.01%以下に規制することが望ましい。
(Other elements)
P, Si, Ti, Mg, Ag, Fe, Ca, Mn, Be, Al, V, Cr, Co, Zr, Nb, Mo, In, Pb, Hf, Ta, and B are added as necessary. Or it is an element contained as an impurity, The 1 type (s) or 2 or more types are controlled by 1% or less in total amount.
Among these, P is an element that contributes to improving the soundness of the ingot (deoxidation, hot water flow, etc.). For that purpose, the content (residual amount) is effective at 0.0001% or more. On the other hand, if the amount is too large, the mechanical properties, bending workability, or plating properties of the product are hindered.
When Si is added at the time of melt casting, it has an effect as a deoxidizing material, and is added in place of or together with P. For that purpose, the content (residual amount) is preferably 0.0001% or more. On the other hand, if too much Si remains in the matrix as a solid solution, it causes whitening or peeling of the solder and Sn plating, and the electrical conductivity also decreases, so it is 0.05% or less, preferably 0.01% or less. It is desirable to regulate.

Ti、Mg、Fe、Agは微量添加により耐応力緩和特性を向上させる効果を有するが、いずれも0.0001%未満では効果がなく、総量で1%を超えて含有されると導電率、はんだ耐候性及び曲げ加工性の低下を招く。従って、添加する場合、総量で0.0001%以上1%以下とする。望ましくは、Ti:0.0001%以上0.2%以下、Mg:0.0001%以上0.2%以下、Ag:0.0001%以上0.2%以下、Fe0.0001%以上0.6%以下の範囲である。これらの元素は、Ni、Sn、Zn及びCuからなる銅合金、又はさらにSiとPのいずれか又は双方を含む銅合金に適宜添加できる。
Ca、Mn、Be、Al、V、Cr、Co、Zr、Nb、Mo、In、Pb、Hf、Ta、Bは耐応力緩和特性を向上させる働きをもつ。いずれの元素も1%以下であれば本合金の主要成分であるNi、Snとは金属間化合物を造らないが、常温付近での固溶限が低い、もしくは酸素との親和力が強いため、これらの元素の1種又は2種以上が総量で1%を超えて含有されていると、溶解鋳造時、熱間圧延時あるいは加工熱処理中に粗大な酸化物を形成したり、粗大な晶出物が発生し、めっき性や曲げ加工性を低下させてしまう。また、導電率を低下させる。従って、これらの選択元素の1種又は2種以上の添加量は総量で1%以下とする。これらの元素は、(1)Ni、Sn、Zn及びCuからなる銅合金、(2)さらにSiとPのいずれか又は双方を含む銅合金、(3)前記(1)又は(2)の元素に加えさらにTi、Mg、Fe、Agの1種以上を含む銅合金に適宜添加できる。
Ti, Mg, Fe, and Ag have an effect of improving stress relaxation resistance by addition of a small amount, but any of them is ineffective at less than 0.0001%, and if contained in a total amount exceeding 1%, conductivity, solder The weather resistance and bending workability are reduced. Therefore, when added, the total amount is 0.0001% or more and 1% or less. Desirably, Ti: 0.0001% to 0.2%, Mg: 0.0001% to 0.2%, Ag: 0.0001% to 0.2%, Fe 0.0001% to 0.6 % Or less. These elements can be appropriately added to a copper alloy composed of Ni, Sn, Zn, and Cu, or a copper alloy containing either or both of Si and P.
Ca, Mn, Be, Al, V, Cr, Co, Zr, Nb, Mo, In, Pb, Hf, Ta, and B have a function of improving the stress relaxation resistance. If any element is less than 1%, Ni and Sn, which are the main components of this alloy, do not form intermetallic compounds, but these have low solid solubility limit around room temperature or strong affinity with oxygen. When one or more of these elements are contained in a total amount exceeding 1%, a coarse oxide is formed during melt casting, hot rolling, or thermomechanical treatment, or a coarse crystallized product. Occurs, and the plating property and bending workability are deteriorated. In addition, the conductivity is lowered. Therefore, the addition amount of one or more of these selective elements is 1% or less in total. These elements are (1) a copper alloy composed of Ni, Sn, Zn and Cu, (2) a copper alloy further containing one or both of Si and P, and (3) the element of (1) or (2) In addition, it can be added as appropriate to a copper alloy containing one or more of Ti, Mg, Fe, and Ag.

本発明の製造方法は、前記組成の銅合金鋳造材に対し、必要に応じて熱間圧延を行い、続いて途中に中間焼鈍を挟む冷間圧延を行った後、安定化焼鈍を行うもので、中間焼鈍と安定化焼鈍を200〜850℃の温度範囲内で5秒以上1分以下の条件で施し、安定化焼鈍前の最終冷間圧延の加工率を72%以上とする。鋳造材が厚い(例えば厚さ50mm以上)場合、必要に応じて均質化処理を行った後、熱間圧延し、横型連続鋳造により製造した薄い(例えば厚さ50mm未満)鋳造材は、均質化処理のみを行い熱間圧延は省略することができる。
中間焼鈍は、冷間圧延途中で銅合金板を再結晶させるためのもので、250〜850℃、より好ましくは550〜650℃の範囲内の温度で5秒以上1分以下の加熱保持時間にて行う。これは連続炉に通板して実施することができる。この範囲よりも低温あるいは短時間では完全再結晶組織は得られず、これにより製品の曲げ加工性及び耐応力緩和特性が低下し、この範囲よりも高温あるいは長時間では結晶粒及び析出物が粗大化し、これにより製品の引張強さ、ばね限界値が低下し、曲げ加工性や耐応力緩和特性も低下する。
The manufacturing method of the present invention is a method in which the copper alloy cast material having the above composition is subjected to hot rolling as necessary, followed by cold rolling with intermediate annealing in the middle, followed by stabilization annealing. The intermediate annealing and the stabilization annealing are performed in the temperature range of 200 to 850 ° C. for 5 seconds or more and 1 minute or less, and the processing rate of the final cold rolling before the stabilization annealing is set to 72% or more. If the cast material is thick (for example, 50 mm or more in thickness), homogenization is performed as necessary, then hot rolling, and thin (for example, less than 50 mm) cast material produced by horizontal continuous casting is homogenized. Only the treatment can be performed and hot rolling can be omitted.
The intermediate annealing is for recrystallizing the copper alloy sheet during the cold rolling, and is performed at a temperature in the range of 250 to 850 ° C., more preferably 550 to 650 ° C., for a heating and holding time of 5 seconds or more and 1 minute or less. Do it. This can be done through a continuous furnace. A complete recrystallized structure cannot be obtained at a temperature lower or shorter than this range, thereby reducing the bending workability and stress relaxation resistance of the product. At higher temperatures or longer than this range, the grains and precipitates are coarse. As a result, the tensile strength and spring limit value of the product are lowered, and the bending workability and the stress relaxation resistance are also lowered.

最終冷間圧延は、多量の転位を蓄積して製品の引張強さ及びばね限界値を向上させるため、72%以上の加工率で行う必要がある。これにより、製品の引張強さ及びばね限界値を大幅に向上させることができ(それぞれ、700N/mm 以上、550N/mm 以上)、しかも、他の特性をほとんど劣化させることがない。加工率の上限は特に限定されないが、90%程度が現実的なめどとなる。より高強度の製品を製造するには加工率を望ましくは78%以上とする。上限は望ましくは87%以下とする。
安定化焼鈍は、再結晶を起こすことなく最終冷間圧延で導入された転位を適切に解放し、製品の耐応力緩和特性やばね限界値等の特性を向上させるためのもので、250〜850℃、より好ましくは300〜450℃の温度範囲内の温度で5秒以上1分以下の加熱保持時間で行う。これは連続炉に通板して実施することができる。この範囲よりも低温あるいは短時間では転位が適切に解放されるに至らず、これにより製品のばね限界値や耐応力緩和特性、曲げ加工性が向上せず、この範囲よりも高温あるいは長時間では製品の引張強さ、ばね限界値が低下し、耐応力緩和特性も低下する。
The final cold rolling needs to be performed at a processing rate of 72% or more in order to accumulate a large amount of dislocations and improve the tensile strength and spring limit value of the product. Thus, it is possible to significantly improve the tensile product strength and spring limit value (respectively, 700 N / mm 2 or more, 550 N / mm 2 or higher), moreover, is not possible to almost deteriorating other characteristics. The upper limit of the working ratio is not particularly limited, about 90% is realistic prospect. In order to produce a higher strength product, the processing rate is desirably 78% or more. The upper limit is desirably 87% or less.
Stabilization annealing is to appropriately release the dislocations introduced in the final cold rolling without causing recrystallization, and to improve the stress relaxation characteristics and spring limit values of the product. It is performed at a temperature within a temperature range of 300 ° C., more preferably 300 to 450 ° C., for a heating and holding time of 5 seconds or more and 1 minute or less. This can be done through a continuous furnace. Dislocations will not be released properly at temperatures lower or shorter than this range, and this will not improve the spring limit value, stress relaxation resistance, and bending workability of the product, and at temperatures higher or longer than this range. The tensile strength and spring limit value of the product will decrease, and the stress relaxation resistance will also decrease.

この製造方法により得られた銅合金板の結晶粒の形態は、圧延面において板幅方向に測定した平均結晶粒径(a)が1〜20μm、圧延方向に平行な方向に測定した平均結晶粒径(b)が2〜200μm、アスペクト比(b/a)が2以上10以下であることが望ましい。この結晶粒形態は、中間焼鈍後の再結晶粒(ほぼ等軸晶)の粒径を1〜20μmの範囲内とすることにより得ることができ、これは前記中間焼鈍条件により達成される。この再結晶粒は、最終冷間圧延により圧延方向に引き伸ばされ、上記アスペクト比のラグビーボール形状となる。製品の銅合金板の結晶粒は、aが3〜10μm、bが6〜100μm、b/aは同じく2以上10以下が望ましい。この場合、中間焼鈍後の再結晶粒の粒径を3〜10μmの範囲内とすればよい。   The form of the crystal grains of the copper alloy sheet obtained by this manufacturing method is such that the average crystal grain size (a) measured in the sheet width direction on the rolled surface is 1 to 20 μm, and the average crystal grain measured in the direction parallel to the rolling direction. It is desirable that the diameter (b) is 2 to 200 μm and the aspect ratio (b / a) is 2 or more and 10 or less. This crystal grain form can be obtained by setting the grain size of the recrystallized grains (substantially equiaxed crystals) after the intermediate annealing within the range of 1 to 20 μm, which is achieved by the intermediate annealing conditions. The recrystallized grains are stretched in the rolling direction by final cold rolling to form a rugby ball shape having the above aspect ratio. As for the crystal grain of the copper alloy plate of a product, a is 3-10 micrometers, b is 6-100 micrometers, and b / a is similarly 2-10. In this case, the grain size of the recrystallized grains after the intermediate annealing may be in the range of 3 to 10 μm.

Ni:0.35%、Sn2.31%、Zn14.0%、Ca,Mn,Be及びAlを各0.0001%含み、残部Cuからなる銅合金について、クリプトル炉により大気中の木炭被覆下で溶解して鋳塊を得た。次いで、この鋳塊を熱間圧延して厚さ15mmに仕上げ、さらに冷間圧延と中間焼鈍及び安定化焼鈍を組み合わせて、0.25mm厚の銅合金板を製造した。中間焼鈍前の冷延材厚み、中間焼鈍条件、最終冷間圧延後の冷延材厚みと加工率、及び安定化焼鈍条件を表1に示す。
続いて、この銅合金板について、結晶粒径を下記要領で、各種特性を前記要領で測定した。その結果を表2に示す。
(結晶粒径)圧延表面において、板幅方向と圧延方向に平行な方向に、それぞれJISH0501に規定された切断法で測定した。なお、中間焼鈍で再結晶しなかったNo.3,5,6については測定ができなかった。
Ni: 0.35%, Sn 2.31%, Zn 14.0%, Ca, Mn, Be, and Al containing 0.0001% each of the remaining Cu alloy, with a kryptor furnace under charcoal coating in the atmosphere An ingot was obtained by melting. Next, this ingot was hot-rolled and finished to a thickness of 15 mm, and further cold rolling, intermediate annealing and stabilization annealing were combined to produce a 0.25 mm-thick copper alloy plate. Table 1 shows the cold-rolled material thickness before intermediate annealing, intermediate annealing conditions, cold-rolled material thickness and processing rate after final cold rolling, and stabilization annealing conditions.
Then, about this copper alloy board, the crystal grain size was measured in the following way, and various characteristics were measured in the said way. The results are shown in Table 2.
(Crystal grain size) The rolling surface was measured by a cutting method defined in JISH0501 in the plate width direction and the direction parallel to the rolling direction. In addition, No. which was not recrystallized by intermediate annealing. Measurement was not possible for 3, 5, and 6.

(引張強さ)長手方向が圧延方向となるように、銅合金板からJIS5号試験片を採取し、JISZ2241の規定に基づいて測定した。
(ばね限界値)JISH3130に基づき、モーメント式試験により室温における永久たわみ量を測定し、Kb0.1を算出した。試験片の長手方向は圧延方向に平行とした。
(導電率)JISH0505に基づいて測定した。
(90°曲げ加工性)長手方向が板幅方向となるように銅合金板から幅10mm、長さ35mmの供試材を採取し、CESM0002金属材料W曲げ試験に規定されているB型曲げ治具で供試材をはさみ、島津製作所製万能試験機RH−30を使用して1tの荷重でR/t=2にてW曲げ加工を行い、曲げ部の割れの有無を判別した。
(Tensile strength) A JIS No. 5 test piece was sampled from the copper alloy plate so that the longitudinal direction was the rolling direction, and measured according to JISZ2241.
(Spring limit value) Based on JISH3130, the amount of permanent deflection at room temperature was measured by a moment type test, and Kb0.1 was calculated. The longitudinal direction of the test piece was parallel to the rolling direction.
(Conductivity) Measured based on JISH0505.
(90 ° bending workability) A specimen of 10 mm width and 35 mm length was taken from a copper alloy plate so that the longitudinal direction was the plate width direction, and B-type bending treatment specified in the CESM0002 metal material W bending test The test material was sandwiched between tools, and W bending was performed at a load of 1 t at R / t = 2 using a universal testing machine RH-30 manufactured by Shimadzu Corporation, and the presence or absence of cracks in the bent portion was determined.

(応力緩和率)
図1及び図2に示すように、幅10mmの試験片1をEMAS−3003に記載の片持ち梁式にて、長さ80mm(l)の位置に試験片の耐力の80%の曲げ応力を付加し、応力を付加した状態で150℃で1000時間保持した後応力を除去した。応力を付加したときの付加点での試験片のたわみ量(δ)と応力を除去したときの変位量(ε1)を測定し、次式によって応力緩和率を測定した(各温度でn=5)。
応力緩和率(%)=(ε1/δ)×100
なお、曲げ応力(σ)は次式によって算出される。
σ=(3×E×t×δ)/(2×l
ただし、
σ:曲げ応力=試験片の耐力×0.8
E:試験片のヤング率(N/mm
t:試験片の板厚=0.25mm
(Stress relaxation rate)
As shown in FIGS. 1 and 2, a test piece 1 having a width of 10 mm is subjected to a bending stress of 80% of the yield strength of the test piece at a position of 80 mm (l) in the cantilever type described in EMAS-3003. After adding and holding the stress at 150 ° C. for 1000 hours with the stress applied, the stress was removed. The amount of deflection (δ) of the test piece at the added point when stress was applied and the displacement (ε1) when the stress was removed were measured, and the stress relaxation rate was measured by the following formula (n = 5 at each temperature) ).
Stress relaxation rate (%) = (ε1 / δ) × 100
The bending stress (σ) is calculated by the following formula.
σ = (3 × E × t × δ) / (2 × l 2 )
However,
σ: bending stress = proof strength of test piece × 0.8
E: Young's modulus of test piece (N / mm 2 )
t: Thickness of the test piece = 0.25 mm

Figure 0004166147
Figure 0004166147

Figure 0004166147
Figure 0004166147

表1をみると、本発明に規定する条件で製造したNo.1は、引張強さ及びばね限界値が特許文献1のデータに比べて高く、導電率、曲げ加工性及び応力緩和特性も優れている。
一方、最終冷間圧延の加工率が低いNo.2は、アスペクト比が低く、引張強さ及びばね限界値が低い。中間焼鈍温度及び時間が規定を下回るNo.3は、再結晶が行われず、曲げ加工性及び応力緩和特性が劣り、中間焼鈍温度及び時間が規定を上回る高いNo.4は、結晶粒が粗大化しアスペクト比も高く、引張強さ、ばね限界値、曲げ加工性及び応力緩和特性が劣り、中間焼鈍時間が規定より短いNo.5及び中間焼鈍温度が規定より低いNo.6は、いずれも再結晶が行われず、曲げ加工性及び応力緩和特性が劣り、中間焼鈍温度が規定より高いNo.7は、結晶粒が粗大化しアスペクト比も高く、引張強さ、ばね限界値、曲げ加工性及び応力緩和特性が劣り、安定化焼鈍を行っていないNo.8及び安定化焼鈍時間が短いNo.9は、ばね限界値、曲げ加工性及び応力緩和特性が劣り、安定化焼鈍温度及び時間が規定を上回るNo.10及び安定化焼鈍時間が規定より長いNo.11は、いずれも再結晶を起こして結晶粒が粗大化し、引張強さ、ばね限界値及び応力緩和特性が劣り、安定化焼鈍温度が低いNo.12は、ばね限界値、曲げ加工性及び応力緩和特性が劣り、中間焼鈍時間が長いNo.13及び中間焼鈍温度及び時間が規定を上回るNo.14は、結晶粒が粗大化し、引張強さ、ばね限界値、曲げ加工性及び応力緩和特性が劣る。
Table 1 shows that No. manufactured under the conditions specified in the present invention. No. 1 has a higher tensile strength and spring limit value than the data of Patent Document 1, and is excellent in conductivity, bending workability and stress relaxation characteristics.
On the other hand, No. with a low processing rate of final cold rolling. 2 has a low aspect ratio and a low tensile strength and spring limit value. The intermediate annealing temperature and time are less than the standard. No. 3 is a high No. 3 in which recrystallization is not performed, bending workability and stress relaxation characteristics are inferior, and the intermediate annealing temperature and time exceed the specified values. No. 4 is No. 4 in which the crystal grains are coarsened and the aspect ratio is high, the tensile strength, the spring limit value, the bending workability and the stress relaxation property are inferior, and the intermediate annealing time is shorter than specified. No. 5 and the intermediate annealing temperature is lower than specified. In No. 6, no recrystallization was performed, bending workability and stress relaxation characteristics were inferior, and the intermediate annealing temperature was higher than specified. No. 7 has a large grain size and a high aspect ratio, is inferior in tensile strength, spring limit value, bending workability and stress relaxation characteristics, and is not subjected to stabilization annealing. 8 and No. 8 with a short stabilization annealing time. No. 9 is inferior in spring limit value, bending workability and stress relaxation characteristics, and has a stabilized annealing temperature and time exceeding the specified values. No. 10 and the stabilization annealing time is longer than specified. No. 11 was recrystallized and the crystal grains became coarse, the tensile strength, the spring limit value and the stress relaxation characteristic were inferior, and the stabilization annealing temperature was low. No. 12 is inferior in spring limit value, bending workability and stress relaxation characteristics, and has a long intermediate annealing time. No. 13 and intermediate annealing temperature and time No. In No. 14, crystal grains are coarsened, and the tensile strength, spring limit value, bending workability and stress relaxation characteristics are inferior.

応力緩和率特性を評価する方法を説明するための斜視図である。It is a perspective view for demonstrating the method of evaluating a stress relaxation rate characteristic. その側面図である。It is the side view.

符号の説明Explanation of symbols

1 試験片   1 Test piece

Claims (2)

Ni:0.1%以上1.0%未満(質量%、以下同じ)、Sn:0.5%を超え4.0%未満、Zn:1.0%を超え15%以下を含有し、必要に応じてP、Si、Ti、Mg、Ag、Fe、Ca、Mn、Be、Al、V、Cr、Co、Zr、Nb、Mo、In、Pb、Hf、Ta、Bの1種又は2種以上:総量で1%以下を含有し、残部不純物及びCuからなる銅合金鋳造材に対し、必要に応じて熱間圧延を行った後、冷間圧延を行って電気電子部品用銅合金板を製造するに際して、冷間圧延工程の途中で行う再結晶を伴う中間焼鈍を550〜650℃の温度範囲内で5秒以上1分以下の条件で施し、最終冷間圧延の加工率を72%以上とし、最終冷間圧延後の安定化焼鈍を300〜450℃の温度範囲内で5秒以上1分以下の条件で施すことを特徴とする高強度電気電子部品用銅合金板の製造方法。 Ni: 0.1% or more and less than 1.0% (mass%, the same shall apply hereinafter), Sn: more than 0.5% and less than 4.0%, Zn: more than 1.0% and less than 15% , necessary 1 type or 2 types of P, Si, Ti, Mg, Ag, Fe, Ca, Mn, Be, Al, V, Cr, Co, Zr, Nb, Mo, In, Pb, Hf, Ta, B Above: The copper alloy cast material containing 1% or less in total and comprising the remaining impurities and Cu is hot-rolled as necessary, and then cold-rolled to obtain a copper alloy plate for electric and electronic parts. In manufacturing, intermediate annealing with recrystallization performed in the middle of the cold rolling process is performed within a temperature range of 550 to 650 ° C. for 5 seconds or more and 1 minute or less, and the final cold rolling processing rate is 72% or more. and then, subjected to stabilization annealing after the final cold rolling in the temperature range of 300 to 450 ° C. for 5 seconds or more 1 minute following conditions High intensity electrical method for manufacturing an electronic component for a copper alloy sheet, wherein the door. 中間焼鈍後の再結晶粒の平均粒径を20μm以下とすることを特徴とする請求項1に記載された高強度電気電子部品用銅合金板の製造方法。 The method for producing a copper alloy plate for high-strength electrical and electronic parts according to claim 1, wherein the average grain size of the recrystallized grains after the intermediate annealing is set to 20 µm or less.
JP2003405156A 2003-12-03 2003-12-03 Method for producing copper alloy plate for high-strength electrical and electronic parts Expired - Fee Related JP4166147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003405156A JP4166147B2 (en) 2003-12-03 2003-12-03 Method for producing copper alloy plate for high-strength electrical and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003405156A JP4166147B2 (en) 2003-12-03 2003-12-03 Method for producing copper alloy plate for high-strength electrical and electronic parts

Publications (2)

Publication Number Publication Date
JP2005163127A JP2005163127A (en) 2005-06-23
JP4166147B2 true JP4166147B2 (en) 2008-10-15

Family

ID=34727939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003405156A Expired - Fee Related JP4166147B2 (en) 2003-12-03 2003-12-03 Method for producing copper alloy plate for high-strength electrical and electronic parts

Country Status (1)

Country Link
JP (1) JP4166147B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693960B (en) * 2005-06-08 2011-09-07 株式会社神户制钢所 Copper alloy, copper alloy plate, and process for producing the same
KR100732553B1 (en) 2005-06-28 2007-06-27 인하대학교 산학협력단 Fabrication method for two-phases brass having excellent superplastic formability
JP5191725B2 (en) * 2007-08-13 2013-05-08 Dowaメタルテック株式会社 Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector
JP5153949B1 (en) 2012-03-30 2013-02-27 Jx日鉱日石金属株式会社 Cu-Zn-Sn-Ni-P alloy
JP5572754B2 (en) 2012-12-28 2014-08-13 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5452778B1 (en) * 2013-01-25 2014-03-26 三菱伸銅株式会社 Copper alloy plate for terminal / connector material and method for producing copper alloy plate for terminal / connector material
WO2014115307A1 (en) * 2013-01-25 2014-07-31 三菱伸銅株式会社 Copper-alloy plate for terminal/connector material, and method for producing copper-alloy plate for terminal/connector material
CN111526674A (en) * 2015-06-05 2020-08-11 Jx日矿日石金属株式会社 Rolled copper foil, copper-clad laminate, flexible printed board, and electronic device
CN105483425A (en) * 2015-12-02 2016-04-13 芜湖楚江合金铜材有限公司 High-strength copper strap wire alloy wire material and production technology thereof
CN108950271B (en) * 2018-08-01 2020-08-04 西安西电电气研究院有限责任公司 Chromium-zirconium-copper alloy and preparation method thereof
CN110280617A (en) * 2019-07-16 2019-09-27 姹や寒 A kind of process improving copper strip surface quality
CN112708791A (en) * 2020-12-24 2021-04-27 国工恒昌新材料沧州有限公司 Preparation method of C17410 beryllium copper strip
CN115852200A (en) * 2022-11-29 2023-03-28 宁波金田铜业(集团)股份有限公司 Brass strip and preparation method thereof

Also Published As

Publication number Publication date
JP2005163127A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
JP4566048B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP3953357B2 (en) Copper alloy for electrical and electronic parts
JP4837697B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JPH0841612A (en) Copper alloy and its preparation
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP2006009137A (en) Copper alloy
WO2013018228A1 (en) Copper alloy
JP4166147B2 (en) Method for producing copper alloy plate for high-strength electrical and electronic parts
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JP4431741B2 (en) Method for producing copper alloy
TWI621721B (en) Copper alloy sheet, connector, and method for manufacturing copper alloy sheet
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JPH06145930A (en) Production of precipitation type copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Ref document number: 4166147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees