JP2006009137A - Copper alloy - Google Patents

Copper alloy Download PDF

Info

Publication number
JP2006009137A
JP2006009137A JP2004328177A JP2004328177A JP2006009137A JP 2006009137 A JP2006009137 A JP 2006009137A JP 2004328177 A JP2004328177 A JP 2004328177A JP 2004328177 A JP2004328177 A JP 2004328177A JP 2006009137 A JP2006009137 A JP 2006009137A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
plane
diffraction intensity
bending workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004328177A
Other languages
Japanese (ja)
Other versions
JP4809602B2 (en
Inventor
Nobuyuki Tanaka
信行 田中
Tatsuhiko Eguchi
立彦 江口
Kuniteru Mihara
邦照 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2004328177A priority Critical patent/JP4809602B2/en
Priority to US11/135,289 priority patent/US20050263218A1/en
Priority to KR1020067024910A priority patent/KR100929276B1/en
Priority to TW094117169A priority patent/TWI371499B/en
Priority to MYPI20052404A priority patent/MY142123A/en
Priority to DE112005001197.6T priority patent/DE112005001197B4/en
Priority to PCT/JP2005/010096 priority patent/WO2005116282A1/en
Priority to CNB2005800149710A priority patent/CN100462460C/en
Publication of JP2006009137A publication Critical patent/JP2006009137A/en
Application granted granted Critical
Publication of JP4809602B2 publication Critical patent/JP4809602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy having excellent strength, electrical conductivity, bending workability or the like as the material for a terminal, a connector, a switch or the like. <P>SOLUTION: The copper alloy for electronic machinery and tools having excellent bending workability contains Ni 2.0 to 4.5 mass%, and Si 0.3 to 1.0 mass%, with the balance being Cu and unavoidable impurities, which satisfies the following expression: Iä311}×A/(Iä311}+Iä220}+Iä200})<1.5 wherein Iä311} represents an X-ray diffraction intensity from a ä311} plane at a sheet surface; Iä220} represents an X-ray diffraction intensity from a ä220} plane at the sheet surface; Iä200} represents an X-ray diffraction intensity from a ä200} plane at the sheet surface; and A (μm) represents a crystalline grain size. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、端子、コネクタ、スイッチなどの材料として好適な高強度銅合金に関する。   The present invention relates to a high-strength copper alloy suitable as a material for terminals, connectors, switches, and the like.

近年の電気・電子機器の小型化および高性能化に伴って、そこに用いられるコネクタなどの材料にも、より厳しい特性改善が要求されるようになった。具体的には、例えば、コネクタのばね接点部に使用される板材の厚さが非常に薄くなり接触圧力の確保が難しくなってきている。即ち、コネクタのばね接点部では、通常、板材(ばね材)を撓ませて、その反力で電気的接続に必要な接触圧を得ているが、板材の厚さが薄くなると同じ接触圧を得るためには撓み量を大きくする必要があり、そうすると、板材が弾性限度を超えて塑性変形してしまうことがある。このため、板材には弾性限度の一層の向上が要求されることになる。   With the recent miniaturization and high performance of electrical and electronic equipment, more stringent improvements in characteristics have been demanded for materials such as connectors used there. Specifically, for example, the thickness of the plate material used for the spring contact portion of the connector has become very thin, and it has become difficult to ensure the contact pressure. That is, in the spring contact portion of the connector, the plate material (spring material) is usually bent, and the contact pressure necessary for electrical connection is obtained by the reaction force, but the same contact pressure is obtained when the plate material is thinned. In order to obtain it, it is necessary to increase the amount of bending, and in this case, the plate material may be plastically deformed beyond the elastic limit. For this reason, the plate material is required to further improve the elastic limit.

この他、コネクタのばね接点部の材料には応力緩和特性、熱伝導性、曲げ加工性、耐熱性、メッキ密着性、マイグレーション特性など多岐に亘る特性が要求される。中でも強度、応力緩和特性、熱・電気伝導性、曲げ加工性が重要である。ところで、前記コネクタのばね接点部には、従来より、リン青銅が大量に用いられているが、リン青銅は前記要求を完全に満たすことができず、近年は、より高強度で応力緩和特性に優れ、導電性も良好な低ベリリウム銅(JIS−C1753合金)への切り替えが進んでいる。   In addition, the material of the spring contact portion of the connector is required to have various characteristics such as stress relaxation characteristics, thermal conductivity, bending workability, heat resistance, plating adhesion, and migration characteristics. Among them, strength, stress relaxation characteristics, thermal / electrical conductivity, and bending workability are important. By the way, phosphor bronze has been conventionally used in a large amount for the spring contact portion of the connector. However, phosphor bronze cannot completely satisfy the above requirements, and in recent years it has higher strength and stress relaxation characteristics. The switch to low beryllium copper (JIS-C1753 alloy), which is excellent and has good conductivity, is in progress.

また、低ベリリウム銅と同等の特性を有し、かつ安価で、安全性の高い材料として、比較的強度の高いCu−Ni−Si系合金の例がある(例えば特許文献1)。さらに、前記接点部材料には前記Cu−Ni−Si系合金の応力緩和特性を、Mgの添加により改善した銅合金の例がある(例えば特許文献2)。前記Cu−Ni−Si系合金のNi、Si量を高濃度化することで、低ベリリウム銅同等の強度を有する銅合金の例もある(例えば、特許文献3参照)。   In addition, there is an example of a Cu—Ni—Si alloy having relatively high strength as a material having characteristics equivalent to that of low beryllium copper and being inexpensive and high in safety (for example, Patent Document 1). Furthermore, the contact part material includes an example of a copper alloy in which the stress relaxation characteristics of the Cu—Ni—Si based alloy are improved by adding Mg (for example, Patent Document 2). There is also an example of a copper alloy having a strength equivalent to low beryllium copper by increasing the concentration of Ni and Si in the Cu—Ni—Si alloy (see, for example, Patent Document 3).

しかしながら、低ベリリウム銅は非常に高価な上、金属ベリリウムには毒性があるという問題がある。そこで、Cu−Ni−Si系合金を高強度にすることが試みられているが、Ni、Si量を過度に高濃度化すると、コネクタの要求特性の一つである曲げ加工性が劣化するため、使用できるコネクタ用途に制限が生じる。具体的には、曲げ加工した際、粒界脆化割れが発生し曲げ加工性が低下することとなる。したがって、Cu−Ni−Si系合金において、強度と導電性、曲げ加工性が低ベリリウム銅に匹敵するものはこれまで無く、また応力緩和特性においてはMgを添加しても低ベリリウム銅に及ばない。   However, there is a problem that low beryllium copper is very expensive and metal beryllium is toxic. Therefore, attempts have been made to increase the strength of Cu-Ni-Si alloys. However, if the concentration of Ni and Si is excessively high, bending workability, which is one of the required characteristics of the connector, deteriorates. This limits the use of connectors that can be used. Specifically, when bending is performed, grain boundary embrittlement cracking occurs and bending workability is reduced. Therefore, no Cu-Ni-Si-based alloy has ever been comparable in strength, conductivity, and bending workability to low beryllium copper, and the stress relaxation properties do not reach that of low beryllium copper even when Mg is added. .

特開昭63−130739号公報JP-A 63-130739 特開平5−59468号公報JP-A-5-59468 特開2002−180161公報JP 2002-180161 A

本発明は、端子、コネクタ、スイッチなどの材料として、強度、導電性、曲げ加工性、応力緩和特性、メッキ密着性などの良好な銅合金を提供することを目的とする。   An object of the present invention is to provide a copper alloy having good strength, conductivity, bending workability, stress relaxation characteristics, plating adhesion, and the like as materials for terminals, connectors, switches, and the like.

本発明の課題は以下の手段により実現される。
[1]Niを2.0〜4.5質量%、Siを0.3〜1.0質量%含み、残部がCuおよび不可避不純物からなる銅合金であって、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}、結晶粒径をA(μm)とした時、下記式(1)を満たすことを特徴とする曲げ加工性の優れた電子機器用銅合金。
I{311}×A/(I{311}+I{220}+I{200})<1.5 ………(1)
[2]Niを2.0〜4.5質量%、Siを0.3〜1.0質量%、Sを0を超え0.005質量%未満含み、残部がCuおよび不可避不純物からなる銅合金であって、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}、結晶粒径をA(μm)とした時、下記式(1)を満たすことを特徴とする曲げ加工性の優れた電子機器用銅合金。
I{311}×A/(I{311}+I{220}+I{200})<1.5 ………(1)
[3]合金の組成が、さらにZnを0.2〜1.5質量%含む、[1]または[2]記載
の銅合金。
[4]合金の組成が、さらにMgを0.01〜0.2重量%含む、[1]〜[3]のいずれか1記載の銅合金。
[5]合金の組成が、さらにSnを0.05〜1.5質量%含む、[1]〜[4]のいずれか1記載の銅合金。
[6]Niを2.0〜4.5質量%、Siを0.3〜1.0質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含み、Sを0.005質量%未満に制限し、残部がCuおよび不可避不純物からなる銅合金であって、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}、結晶粒径をA(μm)とした時、下記式(1)を満たすことを特徴とする曲げ加工性の優れた電子機器用銅合金。
I{311}×A/(I{311}+I{220}+I{200})<1.5 ………(1)
[7]合金の組成が、さらにZrを0.005〜0.3質量%、Coを0.05〜2.0質量%、およびBを0.001〜0.02質量%の群から選ばれる1種または2種以上の元素を総量で0.001〜2.0質量%含む、[1]〜[5]のいずれか1つに記載の銅合金。
The object of the present invention is realized by the following means.
[1] A copper alloy containing 2.0 to 4.5% by mass of Ni and 0.3 to 1.0% by mass of Si, with the balance being Cu and inevitable impurities, from the {311} plane on the plate surface X-ray diffraction intensity is I {311}, diffraction intensity from the {220} plane is I {220}, diffraction intensity from the {200} plane is I {200}, and crystal grain size is A (μm) The copper alloy for electronic devices excellent in bending workability characterized by satisfy | filling following formula (1).
I {311} × A / (I {311} + I {220} + I {200}) <1.5 (1)
[2] Copper alloy comprising 2.0 to 4.5% by mass of Ni, 0.3 to 1.0% by mass of Si, S exceeding 0 and less than 0.005% by mass, the balance being Cu and inevitable impurities The X-ray diffraction intensity from the {311} plane on the plate surface is I {311}, the diffraction intensity from the {220} plane is I {220}, and the diffraction intensity from the {200} plane is I {200}. A copper alloy for electronic equipment having excellent bending workability, characterized by satisfying the following formula (1) when the crystal grain size is A (μm).
I {311} × A / (I {311} + I {220} + I {200}) <1.5 (1)
[3] The copper alloy according to [1] or [2], wherein the alloy composition further includes 0.2 to 1.5 mass% of Zn.
[4] The copper alloy according to any one of [1] to [3], wherein the composition of the alloy further includes 0.01 to 0.2% by weight of Mg.
[5] The copper alloy according to any one of [1] to [4], wherein the alloy composition further includes 0.05 to 1.5 mass% of Sn.
[6] Ni is 2.0 to 4.5 mass%, Si is 0.3 to 1.0 mass%, Mg is 0.01 to 0.2 mass%, Sn is 0.05 to 1.5 mass% , A copper alloy containing 0.2 to 1.5 mass% of Zn, limiting S to less than 0.005 mass%, the balance being Cu and inevitable impurities, and X from the {311} plane on the plate surface When the line diffraction intensity is I {311}, the diffraction intensity from the {220} plane is I {220}, the diffraction intensity from the {200} plane is I {200}, and the crystal grain size is A (μm), A copper alloy for electronic equipment excellent in bending workability characterized by satisfying the formula (1).
I {311} × A / (I {311} + I {220} + I {200}) <1.5 (1)
[7] The alloy composition is further selected from the group consisting of 0.005 to 0.3% by mass of Zr, 0.05 to 2.0% by mass of Co, and 0.001 to 0.02% by mass of B. The copper alloy according to any one of [1] to [5], containing one or more elements in a total amount of 0.001 to 2.0 mass%.

[8]Niを2.0〜4.5質量%、Siを0.3〜1.0質量%、Crを0.1〜0.5質量%、Sを0.005質量%未満含み、残部がCuおよび不可避不純物からなる銅合金であって、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}とした時、下記式(2)を満たすことを特徴とする銅合金。
I{311}/(I{311}+I{220}+I{200})<0.15 ………(2)
[9]Niを2.0〜4.5質量%、Siを0.3〜1.0質量%、Crを0.1〜0.5質量%、Sを0.005質量%未満、残部がCuおよび不可避不純物からなる銅合金であって、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}とし、更に結晶粒径をA(μm)とした時、下記式(3)を満たすことを特徴とする銅合金。
I{311}×A/(I{311}+I{220}+I{200})<1.5 ………(3)
[10]合金の組成が、さらにZnを0.2〜1.5質量%含むことを特徴とする[8]又は[9]記載の銅合金。
[11]合金の組成が、さらにMgを0.01〜0.2質量%含む、[8]〜[10]のいずれか1記載の銅合金。
[12]合金の組成が、さらにSnを0.05〜1.5質量%含む、[8]〜[11]のいずれか1記載の銅合金。及び
[13]合金の組成が、さらに、Zrを0.005〜0.3質量%、Coを0.05〜2.0質量%、Tiを0.005〜0.3質量%、Agを0.005〜0.3質量%、およびBを0.001〜0.02質量%の群から選ばれる1種または2種以上を含む、[8]〜[12]のいずれか1に記載の銅合金。
[8] 2.0 to 4.5% by mass of Ni, 0.3 to 1.0% by mass of Si, 0.1 to 0.5% by mass of Cr, less than 0.005% by mass of S, and the balance Is a copper alloy composed of Cu and inevitable impurities, the X-ray diffraction intensity from the {311} plane on the plate surface is I {311}, the diffraction intensity from the {220} plane is I {220}, {200} plane A copper alloy characterized by satisfying the following formula (2) when the diffraction intensity from is I {200}.
I {311} / (I {311} + I {220} + I {200}) <0.15 (2)
[9] Ni is 2.0 to 4.5 mass%, Si is 0.3 to 1.0 mass%, Cr is 0.1 to 0.5 mass%, S is less than 0.005 mass%, and the balance is A copper alloy comprising Cu and inevitable impurities, wherein the X-ray diffraction intensity from the {311} plane on the plate surface is I {311}, the diffraction intensity from the {220} plane is from I {220}, {200} plane A copper alloy characterized by satisfying the following formula (3) when the diffraction intensity is I {200} and the crystal grain size is A (μm).
I {311} × A / (I {311} + I {220} + I {200}) <1.5 (3)
[10] The copper alloy according to [8] or [9], wherein the composition of the alloy further contains 0.2 to 1.5% by mass of Zn.
[11] The copper alloy according to any one of [8] to [10], wherein the alloy composition further includes 0.01 to 0.2% by mass of Mg.
[12] The copper alloy according to any one of [8] to [11], wherein the alloy composition further includes 0.05 to 1.5 mass% of Sn. And [13] the composition of the alloy is further Zr 0.005-0.3 mass%, Co 0.05-2.0 mass%, Ti 0.005-0.3 mass%, Ag 0 The copper according to any one of [8] to [12], comprising 0.005 to 0.3% by mass and B containing one or more selected from the group of 0.001 to 0.02% by mass alloy.

本発明の銅合金は、強度、導電性及び曲げ加工性(下記の第1の実施の形態)、さらにはこれらに加えて応力緩和特性(下記の第2の実施の形態)などに優れる。これを加工した銅合金材料は、電気・電子機器部品の小型化および高性能化に対応できる。本発明の銅合金は端子、コネクタ、スイッチなどの用途に好適であるが、その他のスイッチ、リレーなどの一般導電材料としても好適である。   The copper alloy of the present invention is excellent in strength, conductivity, bending workability (first embodiment described below), stress relaxation characteristics (second embodiment described below) and the like in addition to these. The copper alloy material obtained by processing this can cope with miniaturization and high performance of electric / electronic equipment parts. The copper alloy of the present invention is suitable for applications such as terminals, connectors, and switches, but is also suitable as a general conductive material for other switches and relays.

本発明は第1の実施の形態(上記の課題を解決するための手段の[1]〜[7])及び第2の実施の形態(上記の課題を解決するための手段の[8]〜[13])をとることができる。
〔第1の実施の形態〕
この実施の形態においてCuマトリックス中にNiとSiの化合物が析出した適度の強度と導電性を有する銅合金において、結晶方位の集積度および結晶粒径を厳密に制御することにより曲げ加工性が向上することができる。
The present invention includes a first embodiment (means [1] to [7] for solving the above problems) and a second embodiment (means [8] to solving the above problems). [13]).
[First Embodiment]
In this embodiment, in a copper alloy having moderate strength and conductivity in which a compound of Ni and Si is precipitated in a Cu matrix, bending workability is improved by strictly controlling the degree of integration of crystal orientation and the crystal grain size. can do.

以下に第1の実施の形態における銅合金(以下、単に第1の銅合金という。)の結晶方位の関係について説明する。NiとSiを含む銅合金において、結晶方位の集積度はX線回折強度を限定することで同定可能であり、そこから導出した関数で曲げ加工性と強度が向上することを見いだした。すなわち、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}とし、更に結晶粒径をA(μm)とした時、下記式(1)を満たすことで、曲げ加工性と強度が向上するのである。
I{311}×A/(I{311}+I{220}+I{200})<1.5 ………(1)
The relationship of the crystal orientation of the copper alloy (hereinafter simply referred to as the first copper alloy) in the first embodiment will be described below. In a copper alloy containing Ni and Si, the degree of integration of crystal orientation can be identified by limiting the X-ray diffraction intensity, and it has been found that bending workability and strength are improved by a function derived therefrom. That is, the X-ray diffraction intensity from the {311} plane on the plate surface is I {311}, the diffraction intensity from the {220} plane is I {220}, and the diffraction intensity from the {200} plane is I {200}, Furthermore, when the crystal grain size is A (μm), bending workability and strength are improved by satisfying the following formula (1).
I {311} × A / (I {311} + I {220} + I {200}) <1.5 (1)

前記式(1)において、結晶方位と結晶粒径の規定は1.5未満、好ましくは1.2未満である。1.5以上となると曲げ加工性と強度の両立ができなくなる。NiとSiを含有する銅合金は、再結晶し、その粒径が大きくなるに従って板表面への{200}、{311}面の集積割合が増加し、冷間圧延において加工率を高くすればするほど{220}面の集積割合が増加する。結晶方位の集積度とX線回折強度との関係はX線回折強度が大きい程、前記の結晶方位の集積度が高いという関係にある。ここで、X線回折面の集積割合(結晶方位の集積度)とは各回折面方向における結晶成長度の割合を指し、各回折面のX線回折強度(I)の割合によって評価することが可能である。本発明では、式(1)の左辺にて評価している(この場合はA=1)。第1の銅合金は、例えば「熱間圧延」、「冷間圧延」、「溶体化処理」、「時効処理」、必要に応じて更に「仕上げ冷間圧延」及び「歪み取り焼鈍」という工程で製造される。結晶方位の集積度及び結晶粒径は溶体化前加工率、溶体化条件、及び冷間加工率の組み合わせで変化する。本発明では特にNi、Si量を高濃度化した際の曲げ加工時の粒界脆化を抑制し、曲げ加工性の改善を目的とし、これらの結晶方位の集積度と結晶粒径を規定する式(1)により、適正な範囲を求めたものである。   In the formula (1), the crystal orientation and crystal grain size are defined as less than 1.5, preferably less than 1.2. If it is 1.5 or more, it becomes impossible to achieve both bending workability and strength. If the copper alloy containing Ni and Si is recrystallized and the grain size increases, the accumulation ratio of {200} and {311} faces on the plate surface increases, and if the processing rate is increased in cold rolling, The accumulation rate of {220} planes increases as the value increases. The relationship between the degree of crystal orientation integration and the X-ray diffraction intensity is such that the higher the X-ray diffraction intensity, the higher the degree of crystal orientation integration. Here, the accumulation ratio of X-ray diffracting surfaces (accumulation degree of crystal orientation) refers to the ratio of crystal growth in each diffracting surface direction and can be evaluated by the ratio of X-ray diffraction intensity (I) of each diffracting surface. Is possible. In the present invention, evaluation is performed on the left side of the formula (1) (in this case, A = 1). The first copper alloy includes, for example, steps of “hot rolling”, “cold rolling”, “solution treatment”, “aging treatment”, and “finishing cold rolling” and “strain relief annealing” as necessary. Manufactured by. The degree of integration of crystal orientation and the crystal grain size vary depending on the combination of the pre-solution processing rate, the solution conditions, and the cold processing rate. In the present invention, in particular, the grain boundary embrittlement at the time of bending processing when the concentration of Ni and Si is increased is suppressed, and the degree of integration of these crystal orientations and the crystal grain size are defined for the purpose of improving bending workability. An appropriate range is obtained by equation (1).

以下に第1の銅合金の組成元素について説明する。CuにNiとSiを添加すると、Ni−Si系化合物(NiSi相)がCuマトリックス中に析出して強度および導電性が向上する。Niの含有量を2.0〜4.5質量%に規定する理由は、2.0質量%未満では低ベリリウム銅と同等以上の強度が得られず、4.5質量%を超えると鋳造時や熱間加工時に強度向上に寄与しない析出が生じ添加量に見合う強度が得られないばかりか、熱間加工性および曲げ加工性が低下し悪影響を及ぼすという問題が生じるためである。好ましくは2.2〜4.2質量%、より好ましくは3.0〜4.0質量%である。 The composition elements of the first copper alloy will be described below. When Ni and Si are added to Cu, a Ni—Si based compound (Ni 2 Si phase) is precipitated in the Cu matrix and the strength and conductivity are improved. The reason for prescribing the Ni content to 2.0 to 4.5% by mass is that if it is less than 2.0% by mass, strength equal to or higher than that of low beryllium copper cannot be obtained. This is because not only does precipitation not contribute to strength improvement occur during hot working and the strength corresponding to the amount added cannot be obtained, but also hot workability and bending workability deteriorate, resulting in a problem of adverse effects. Preferably it is 2.2-4.2 mass%, More preferably, it is 3.0-4.0 mass%.

SiはNiとNiSi相を形成するため、Ni量が決まるとSi添加量が決まる。S
i量が0.3質量%未満ではNi量が少ないときと同様に低ベリリウム銅と同等以上の強度が得られず、Si量が1.0質量%を超えるとNi量が多い場合と同じ問題が生じる。好ましくは0.5〜0.95質量%、より好ましくは0.7〜0.9質量%である。
強度はNiおよびSi量によって変化し、それに対応して応力緩和特性も変化する。従って、低ベリリウム銅と同等以上の応力緩和特性を得るためには、NiおよびSiの含有量をこの実施の形態の範囲内に確実に制御する必要があり、更に後述のMg、SnおよびZnの含有量、結晶粒径および結晶粒の形状を適正に制御する。
Since Si forms a Ni and Ni 2 Si phase, the amount of Si added is determined when the amount of Ni is determined. S
If the amount of i is less than 0.3% by mass, the strength equal to or higher than that of low beryllium copper cannot be obtained in the same manner as when the amount of Ni is small. Occurs. Preferably it is 0.5-0.95 mass%, More preferably, it is 0.7-0.9 mass%.
The strength changes depending on the amounts of Ni and Si, and the stress relaxation characteristics change accordingly. Therefore, in order to obtain a stress relaxation characteristic equal to or higher than that of low beryllium copper, it is necessary to surely control the contents of Ni and Si within the range of this embodiment. Further, Mg, Sn and Zn described later are required. The content, crystal grain size and crystal grain shape are appropriately controlled.

Mg、Sn、Znは本発明を構成する重要な合金元素である。これらの元素は相互に関係しあって良好な特性をバランス良く実現する。   Mg, Sn, and Zn are important alloy elements constituting the present invention. These elements are related to each other and realize good characteristics in a balanced manner.

Mgは応力緩和特性を大幅に改善するが、曲げ加工性には悪影響を及ぼす。応力緩和特性の改善にはMg量は0.01質量%以上で多いほど良いが、0.20質量%を超えると曲げ加工性が要求特性を満たさなくなる。本発明ではNiSi相の析出による強化量が従来のCu−Ni−Si系合金よりも格段に大きいことから、曲げ加工性が低下し易いので、Mg量は厳密に制御する必要がある。好ましくは0.05〜0.15質量%である。 Mg greatly improves the stress relaxation properties, but adversely affects bending workability. For improvement of stress relaxation characteristics, the Mg content is preferably as large as 0.01% by mass or more, but if it exceeds 0.20% by mass, the bending workability does not satisfy the required characteristics. In the present invention, the amount of strengthening due to the precipitation of the Ni 2 Si phase is markedly greater than that of conventional Cu—Ni—Si alloys, so that the bending workability is liable to deteriorate, so the Mg amount needs to be strictly controlled. Preferably it is 0.05-0.15 mass%.

SnはMgと相互に関係し合って、応力緩和特性をより一層向上させる。しかし、その効果はMg程大きくない。Snが0.05質量%未満ではその効果が充分に現れず、1.5質量%を超えると導電性が大幅に低下する。好ましくは0.1〜0.7質量%である。   Sn correlates with Mg to further improve the stress relaxation characteristics. However, the effect is not as great as Mg. If Sn is less than 0.05% by mass, the effect is not sufficiently exhibited, and if it exceeds 1.5% by mass, the conductivity is greatly lowered. Preferably it is 0.1-0.7 mass%.

Znは曲げ加工性を若干改善する。Zn量を0.2〜1.5質量%に規定することにより、Mgを最大0.20質量%まで添加しても実用上問題ないレベルの曲げ加工性が得られる。この他、ZnはSnメッキやハンダメッキの密着性やマイグレーション特性を改善する。Zn量が0.2質量%未満ではその効果が充分に得られず、1.5質量%を超えると導電性が低下する。好ましくは0.3〜1.0質量%である。   Zn slightly improves the bending workability. By defining the amount of Zn to 0.2 to 1.5 mass%, even if Mg is added up to a maximum of 0.20 mass%, bending workability at a level where there is no practical problem can be obtained. In addition, Zn improves the adhesion and migration characteristics of Sn plating and solder plating. If the amount of Zn is less than 0.2% by mass, the effect cannot be sufficiently obtained, and if it exceeds 1.5% by mass, the conductivity is lowered. Preferably it is 0.3-1.0 mass%.

次に、強度向上に有効なCo、Zrの副成分元素について説明する。CoはNiと同様にSiと化合物を形成して強度を向上させる。Coの含有量を0.05〜2.0質量%に規定する理由は、0.05質量%未満ではその効果が充分に得られず、2.0質量%を超えると曲げ加工性が低下するためである。好ましくは0.1〜1.0質量%である。   Next, subcomponent elements of Co and Zr effective for strength improvement will be described. Co, like Ni, forms a compound with Si to improve the strength. The reason why the Co content is specified to be 0.05 to 2.0% by mass is that the effect is not sufficiently obtained when the content is less than 0.05% by mass, and the bending workability is lowered when the content exceeds 2.0% by mass. Because. Preferably it is 0.1-1.0 mass%.

Zrは銅中に微細に析出して強度向上に寄与すると同時に式(1)の結晶方位集積度を下げる効果を有する。0.005質量%未満ではその効果が充分に得られず、0.3質量%を超えると曲げ加工性が劣化してくる。これらの観点からZrの最適含有量は0.005〜0.3質量%とする。好ましくは0.05〜0.2質量%である。   Zr precipitates finely in copper and contributes to the improvement of strength, and at the same time has the effect of lowering the degree of crystal orientation integration of formula (1). If it is less than 0.005% by mass, the effect cannot be sufficiently obtained, and if it exceeds 0.3% by mass, the bending workability deteriorates. From these viewpoints, the optimum content of Zr is set to 0.005 to 0.3% by mass. Preferably it is 0.05-0.2 mass%.

前記Co、Zr、Bを二種以上、添加する場合の総含有量は、要求特性に応じて0.005〜2.0質量%の範囲内で決定される。BはNiと化合物を形成し、式(1)中の結晶方位集積度を下げる。Bの含有量は0.001重量%未満では効果が充分に得られず、0.02質量%を超えると熱間加工性が低下する。これらの観点からBの最適含有量は0.001〜0.02質量%とする。好ましくは0.005〜0.01質量%である。   The total content in the case of adding two or more of Co, Zr, and B is determined in the range of 0.005 to 2.0 mass% depending on the required characteristics. B forms a compound with Ni and lowers the degree of crystal orientation integration in formula (1). If the content of B is less than 0.001% by weight, the effect is not sufficiently obtained, and if it exceeds 0.02% by mass, hot workability is deteriorated. From these viewpoints, the optimum content of B is set to 0.001 to 0.02% by mass. Preferably it is 0.005-0.01 mass%.

Sは銅合金には微量含まれるものであるが、0.005質量%以上では熱間加工性を悪化させるため、その含有量は0.005質量%未満に規定する。特には0.002質量%未満が望ましい。   Although a trace amount of S is contained in the copper alloy, since the hot workability is deteriorated at 0.005 mass% or more, the content is specified to be less than 0.005 mass%. In particular, less than 0.002 mass% is desirable.

本発明では、強度や導電性などの特性を低下させない範囲でFe、P、Mn、Ti、V、Pb、Bi、Alなどを添加しても良い。例えば、Mnは熱間加工性を改善する効果があり、導電性を劣化させない程度に0.01〜0.5質量%添加することは有効である。   In the present invention, Fe, P, Mn, Ti, V, Pb, Bi, Al, or the like may be added as long as the properties such as strength and conductivity are not deteriorated. For example, Mn has an effect of improving hot workability, and it is effective to add 0.01 to 0.5% by mass so as not to deteriorate the conductivity.

NiとSiを含有する銅合金は、再結晶しその粒径が大きくなるに従って板表面への{200}、{311}面の集積割合が増加し、圧延すると{220}面の集積割合が増加する。   The copper alloy containing Ni and Si recrystallizes, and as the grain size increases, the accumulation ratio of {200} and {311} faces on the plate surface increases, and rolling increases the accumulation ratio of {220} faces To do.

銅合金は、例えば熱間圧延、冷間圧延、溶体化処理、時効処理、必要に応じて更に仕上げ冷間圧延、歪み取り焼鈍という工程で製造される。この製造工程において、熱間圧延(温度および時間)、次いで行う冷間圧延、容体化処理(温度および時間)とその後の冷間圧延工程(加工率)の各条件を一般的な条件よりも狭い範囲に厳密に制御することにより、この集積割合および結晶粒径を制御し、式(1)を満たすことが出来る。   The copper alloy is manufactured by, for example, processes of hot rolling, cold rolling, solution treatment, aging treatment, and further finish cold rolling and strain relief annealing as necessary. In this manufacturing process, each condition of hot rolling (temperature and time), subsequent cold rolling, volumeification treatment (temperature and time), and subsequent cold rolling process (working rate) is narrower than general conditions. By strictly controlling the range, the accumulation ratio and the crystal grain size can be controlled to satisfy the formula (1).

銅合金の製造において、具体的には、熱間圧延温度を900〜1000℃の範囲で、熱間圧延後の冷間圧延を加工率90%以上、溶体化処理温度を820〜930℃で20秒以内、冷間圧延を30%以下の範囲で調整して、式(1)を満足するようにする。   In the production of a copper alloy, specifically, the hot rolling temperature is in the range of 900 to 1000 ° C, the cold rolling after hot rolling is performed at a processing rate of 90% or more, and the solution treatment temperature is 20 to 820 to 930 ° C. Within a second, the cold rolling is adjusted in the range of 30% or less to satisfy the formula (1).

最終塑性加工方向とは、最終に施した塑性加工が圧延加工の場合は圧延方向、引抜(線引)の場合は引抜方向を指す。なお、塑性加工とは圧延加工や引抜加工であり、テンションレベラーなどの矯正(整直)を目的とする加工は含めない。   The final plastic working direction refers to the rolling direction when the last plastic working is rolling, and the drawing direction when drawing (drawing). The plastic processing is rolling processing or drawing processing, and does not include processing for the purpose of correction (straightening) such as a tension leveler.

〔第2の実施の形態〕
この実施の形態において、下記の手段によりCu−Ni−Si系合金を近年のニーズを満足するように改良し、Cuマトリックス中にNiとSiの化合物が析出した銅合金において、Cr量と結晶方位の集積度を制御することにより曲げ加工性と強度が向上される。
第2の実施の形態の銅合金(以下、単に第2の銅合金という。)の各成分元素について説明する。
CuにNiとSiを添加すると、Ni−Si系化合物(NiSi相)がCuマトリックス中に析出して強度および導電性が向上することが知られている。本発明においては、Niの含有量は2.0〜4.5質量%、好ましくは2.2〜4.2質量%、より好ましくは3.0〜4.0質量%である。
Ni含有量をこのように規定する理由は、下限値未満ではベリリウム銅と同等以上の強度が得られず、上限値を超えると鋳造時や熱間加工時に強度向上に寄与しない析出が生じ添加量に見合う強度が得られないばかりか、熱間加工性および曲げ加工性に悪影響を及ぼすという問題が生じるためである。
SiはNiとNiSi相を形成するため、Ni量が決まると最適なSi添加量が決まる。Si量は、0.3〜1.0質量%、好ましくは0.5〜0.95質量%、より好ましくは0.7〜0.9質量%である。Si量が少ないとNi量が少ないときと同様にベリリウム銅と同等以上の強度が得られず、Si量が上記上限値を超えるとNi量が多い場合と同じ問題が生じる。
[Second Embodiment]
In this embodiment, a Cu—Ni—Si based alloy was improved to satisfy recent needs by the following means, and in a copper alloy in which a compound of Ni and Si precipitated in a Cu matrix, the Cr content and the crystal orientation By controlling the degree of integration, bending workability and strength are improved.
Each component element of the copper alloy of the second embodiment (hereinafter simply referred to as the second copper alloy) will be described.
It is known that when Ni and Si are added to Cu, a Ni—Si based compound (Ni 2 Si phase) is precipitated in the Cu matrix and the strength and conductivity are improved. In this invention, content of Ni is 2.0-4.5 mass%, Preferably it is 2.2-4.2 mass%, More preferably, it is 3.0-4.0 mass%.
The reason for defining the Ni content in this way is that if the amount is less than the lower limit, strength equal to or higher than beryllium copper cannot be obtained, and if the upper limit is exceeded, precipitation that does not contribute to strength improvement occurs during casting or hot working. This is because not only the strength suitable for the above can be obtained, but also the hot workability and bending workability are adversely affected.
Since Si forms a Ni and Ni 2 Si phase, the optimum Si addition amount is determined when the Ni amount is determined. The amount of Si is 0.3 to 1.0 mass%, preferably 0.5 to 0.95 mass%, more preferably 0.7 to 0.9 mass%. If the amount of Si is small, strength equal to or higher than that of beryllium copper cannot be obtained in the same manner as when the amount of Ni is small, and if the amount of Si exceeds the above upper limit, the same problem as when the amount of Ni is large occurs.

Crは、その含有量とX線回折強度を限定することで、合金板材の曲げ加工性と強度が向上する。
すなわち、Crを0.1〜0.5質量%とし、後記する規定式(2)式あるいは式(3)を満たすことで、曲げ加工性と強度の両立が可能となる。
また、Crは合金中でCr−SiやCr−Ni−Si等のCr化合物として溶体化処理時の結晶粒径の粗大化を抑制するとともに、規定式中の結晶方位集積度を下げる効果を有する。しかし、Crが少量過ぎるとその効果が充分に得られず、多すぎると曲げ加工性が劣化してくる。これらの観点からCrの含有量は0.1〜0.5質量%、好ましくは0.15〜0.4質量%である。
By limiting the content and the X-ray diffraction intensity of Cr, the bending workability and strength of the alloy sheet are improved.
That is, by setting Cr to 0.1 to 0.5 mass% and satisfying the following formula (2) or formula (3), it is possible to achieve both bending workability and strength.
In addition, Cr is an Cr compound such as Cr—Si or Cr—Ni—Si in the alloy, and suppresses the coarsening of the crystal grain size during solution treatment, and has the effect of lowering the degree of crystal orientation accumulation in the prescribed formula. . However, if the amount of Cr is too small, the effect cannot be obtained sufficiently, and if it is too large, the bending workability deteriorates. From these viewpoints, the Cr content is 0.1 to 0.5 mass%, preferably 0.15 to 0.4 mass%.

Mg、Sn、Znは本発明を構成する重要な合金元素である。これらの元素は相互に関係しあって良好な特性をバランス良く実現している。Mgは応力緩和特性を改善するが、曲げ加工性には悪影響を及ぼす。応力緩和特性の改善にはMg量は0.01質量%以上で多ければ多いほど良いが、0.20質量%を超えると曲げ加工性が要求特性を満たさなくなる。本発明ではNiSi相の析出による強化量が従来のCu−Ni−Si系合金よりも格段に大きいことから、曲げ加工性が低下し易いので、Mg量は厳密に制御する必要がある。好ましくは0.05〜0.15質量%である。
SnはMgと相互に関係し合って、応力緩和特性をより一層向上させる。Snが0.0
5質量%未満ではその効果が充分に現れず、1.5質量%を超えると導電性が大幅に低下する。好ましくは0.1〜0.7質量%である。
Mg, Sn, and Zn are important alloy elements constituting the present invention. These elements are related to each other and realize good properties in a well-balanced manner. Mg improves stress relaxation properties but adversely affects bending workability. For improvement of stress relaxation characteristics, the higher the amount of Mg, the better. However, if it exceeds 0.20 mass%, the bending workability does not satisfy the required characteristics. In the present invention, the amount of strengthening due to the precipitation of the Ni 2 Si phase is markedly greater than that of conventional Cu—Ni—Si alloys, so that the bending workability is liable to deteriorate, so the Mg amount needs to be strictly controlled. Preferably it is 0.05-0.15 mass%.
Sn correlates with Mg to further improve the stress relaxation characteristics. Sn is 0.0
If the amount is less than 5% by mass, the effect is not sufficiently exhibited. If the amount exceeds 1.5% by mass, the conductivity is significantly lowered. Preferably it is 0.1-0.7 mass%.

Znは曲げ加工性を改善する。Zn量を0.2〜1.5質量%に規定することにより、Mgを最大0.20質量%まで添加しても実用上問題ないレベルの曲げ加工性が得られる。この他、ZnはSnメッキやハンダメッキの密着性やマイグレーション特性を改善する
。Zn量が少なすぎるとその効果が充分に得られず、規定量を超えると導電性が低下する。好ましくは0.3〜1.0質量%である。
Zn improves bending workability. By defining the amount of Zn to 0.2 to 1.5 mass%, even if Mg is added up to a maximum of 0.20 mass%, bending workability at a level where there is no practical problem can be obtained. In addition, Zn improves the adhesion and migration characteristics of Sn plating and solder plating. If the amount of Zn is too small, the effect cannot be obtained sufficiently, and if it exceeds the specified amount, the conductivity is lowered. Preferably it is 0.3-1.0 mass%.

Zr、Co、Ti、AgおよびBは、いずれも後記する規定式の結晶方位集積度を下げる作用効果を有する。
Zrは、後記の規定式の結晶方位集積度を下げる効果を有すると同時に強度向上に寄与する。0.005質量%未満ではその効果が充分に得られず、0.3質量%を超えると曲げ加工性が劣化してくる。これらの観点からZrの含有量は0.005〜0.3質量%とする。好ましくは0.05〜0.2質量%である。
CoはNiと同様にSiと化合物を形成して強度を向上させるとともに、規定式中の結晶方位集積度を下げる効果を有する。Coの含有量を0.05〜2.0質量%に規定する理由は、0.05質量%未満ではその効果が充分に得られず、2.0質量%を超えると曲げ加工性が低下するためである。好ましくは0.1〜1.0質量%である。
CoにもCr、Zr、Ti、Ag等と同様に結晶粒径の粗大化を抑制し、規定式の結晶方位集積度を下げる効果がある。
Zr, Co, Ti, Ag, and B all have the effect of lowering the degree of crystal orientation integration in the prescribed formula described later.
Zr has the effect of lowering the degree of crystal orientation integration in the following formula, and at the same time contributes to strength improvement. If it is less than 0.005% by mass, the effect cannot be sufficiently obtained, and if it exceeds 0.3% by mass, the bending workability deteriorates. From these viewpoints, the Zr content is set to 0.005 to 0.3 mass%. Preferably it is 0.05-0.2 mass%.
Co, like Ni, forms a compound with Si to improve the strength and has the effect of lowering the degree of crystal orientation integration in the specified formula. The reason why the Co content is specified to be 0.05 to 2.0% by mass is that the effect is not sufficiently obtained when the content is less than 0.05% by mass, and the bending workability is deteriorated when the content exceeds 2.0% by mass. Because. Preferably it is 0.1-1.0 mass%.
Co, like Cr, Zr, Ti, Ag, etc., has the effect of suppressing the coarsening of the crystal grain size and lowering the crystal orientation integration degree of the prescribed formula.

Bは規定式中の結晶方位集積度を下げる効果を有する。Bの含有量は0.001質量%未満では効果が充分に得られず、0.02質量%を超えると熱間加工性が低下する。これらの観点からBの最適含有量は0.001〜0.02質量%とする。好ましくは0.005〜0.1質量%である。
Tiは耐熱性および強度を向上させるとともに、結晶粒径の粗大化を抑制し規定式の結晶方位集積度を下げる効果がある。Ti量が0.005質量%未満ではその効果が充分に得られず、0.3質量%以上では未固溶のTiが残存し、効果が得られないばかりか、めっき性等に悪影響を及ぼす。これらの観点からTiの添加量は0.005〜0.3質量%、好ましくは0.05〜0.2質量%とする。
B has the effect of reducing the degree of crystal orientation integration in the formula. If the content of B is less than 0.001% by mass, sufficient effects cannot be obtained, and if it exceeds 0.02% by mass, hot workability deteriorates. From these viewpoints, the optimum content of B is set to 0.001 to 0.02% by mass. Preferably it is 0.005-0.1 mass%.
Ti has the effects of improving heat resistance and strength, suppressing the coarsening of the crystal grain size, and lowering the degree of crystal orientation integration in the prescribed formula. If the amount of Ti is less than 0.005% by mass, the effect cannot be sufficiently obtained. If the amount of Ti is 0.3% by mass or more, undissolved Ti remains, and the effect cannot be obtained. . From these viewpoints, the amount of Ti added is set to 0.005 to 0.3% by mass, preferably 0.05 to 0.2% by mass.

Agは耐熱性および強度を向上させると同時に、結晶粒径の粗大化を抑制し、規定式の結晶方位集積度を下げる効果がある。Ag量が0.005質量%未満ではその効果が充分に得られず、0.3質量%を超えて添加しても特性上に悪影響はないもののコスト高になる。これらの観点からAg量は0.005〜0.3質量%、好ましくは0.05−0.2質量%とする。
前記Co、Zr、Ti、Ag、Bを2種以上同時に添加する場合の総含有量は、要求特性に応じて0.005〜2.0質量%の範囲内で決定される。
Ag improves heat resistance and strength, and at the same time, suppresses the coarsening of the crystal grain size and lowers the crystal orientation integration degree of the prescribed formula. If the amount of Ag is less than 0.005% by mass, the effect cannot be sufficiently obtained, and even if added in excess of 0.3% by mass, the properties are not adversely affected but the cost is increased. From these viewpoints, the Ag content is set to 0.005 to 0.3% by mass, preferably 0.05 to 0.2% by mass.
The total content when two or more of Co, Zr, Ti, Ag, and B are added simultaneously is determined in the range of 0.005 to 2.0 mass% depending on the required characteristics.

Sは銅合金には微量含まれるものであるが、0.005質量%を以上では熱間加工性を悪化させるため、その含有量は0.005質量%未満に規定する。特には0.002質量%未満が望ましい。
本発明では、強度や導電性などの特性を低下させない範囲でFe、P、Mn、V、Pb、Bi、Alなどを添加しても良い。例えば、Mnは熱間加工性を改善する効果があり、導電性を劣化させない程度に0.01〜0.5質量%添加することは有効である。
Although a small amount of S is contained in the copper alloy, if 0.005% by mass or more, hot workability is deteriorated, the content is specified to be less than 0.005% by mass. In particular, less than 0.002 mass% is desirable.
In the present invention, Fe, P, Mn, V, Pb, Bi, Al, or the like may be added as long as the properties such as strength and conductivity are not deteriorated. For example, Mn has an effect of improving hot workability, and it is effective to add 0.01 to 0.5% by mass so as not to deteriorate the conductivity.

次に、第2の銅合金の結晶方位について説明する。
NiとSiを含む銅合金においては、結晶は再結晶し、その粒径が大きくなるに従って板表面への{200}、{311}面の集積割合が増加し、圧延すると{220}面の集積割合が増加する。
第2の銅合金は、例えば、熱間圧延、冷間処理、時効処理、必要に応じてさらに仕上げ冷間圧延及び歪み取り焼鈍という工程で製造されるが、この製造工程において、例えば熱間圧延(温度および時間)、次いで行う冷間圧延、溶体化処理(温度および時間)その後の冷間圧延工程(加工率)各条件を、一般的な条件よりも狭い範囲に厳密に制御することにより、この集積割合および結晶粒径を制御することができる。
Next, the crystal orientation of the second copper alloy will be described.
In a copper alloy containing Ni and Si, the crystals recrystallize, and as the grain size increases, the accumulation ratio of {200} and {311} faces on the plate surface increases, and when rolled, {220} faces accumulate The rate increases.
The second copper alloy is manufactured by, for example, hot rolling, cold processing, aging treatment, and further, if necessary, finishing cold rolling and strain relief annealing. In this manufacturing process, for example, hot rolling is performed. (Temperature and time), then cold rolling to be performed, solution treatment (temperature and time) subsequent cold rolling step (working rate) by controlling each condition strictly in a narrower range than the general conditions, This accumulation ratio and crystal grain size can be controlled.

この集積割合を示すX線回折強度から得られる結晶方位集積度が特定の範囲にあるものは曲げ加工性と強度が向上することを見出した。ここで、X線回折面の集積割合(結晶方位の集積度)とは各回折面方向における結晶成長度の割合を指し、各回折面のX線回折強度(I)の割合によって評価することが可能である。詳しくは、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}とした時、次の式(2)を満たし、かつ、前述の限定されたCr量であれば、曲げ加工性と強度が向上する。
I{311}/(I{311}+I{220}+I{200})<0.15 ………(2)
前記式(2)において、結晶方位集積度の値が、0.15以下、好ましくは0.12以下である。この値が大きすぎると、曲げ加工性と強度の両立ができなくなる。
また、同様に板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}とし、更に結晶粒径をA(μm)とした時、次の式(3)を満たすことで、曲げ加工性と引張り強度が向上する。
I{311}×A/(I{311}+I{220}+I{200})<1.5 ………(3)
前記式(3)において、結晶方位集積度と結晶粒径から得られる規定は1.5以下、好ましくは1.2以下である。上記と同様にこの値が大きすぎると、曲げ加工性と強度の両立ができなくなる。このため結晶粒径は小さい程よく、具体的には10μm未満が好ましく、5〜8μmがさらに好ましい。
It has been found that when the crystal orientation integration degree obtained from the X-ray diffraction intensity indicating the integration ratio is in a specific range, bending workability and strength are improved. Here, the accumulation ratio of X-ray diffracting surfaces (accumulation degree of crystal orientation) refers to the ratio of crystal growth in each diffracting surface direction and can be evaluated by the ratio of X-ray diffraction intensity (I) of each diffracting surface. Is possible. Specifically, the X-ray diffraction intensity from the {311} plane on the plate surface is I {311}, the diffraction intensity from the {220} plane is I {220}, and the diffraction intensity from the {200} plane is I {200}. When the following formula (2) is satisfied and the above-mentioned limited Cr amount is obtained, bending workability and strength are improved.
I {311} / (I {311} + I {220} + I {200}) <0.15 (2)
In the formula (2), the value of the degree of crystal orientation integration is 0.15 or less, preferably 0.12 or less. If this value is too large, it becomes impossible to achieve both bending workability and strength.
Similarly, the X-ray diffraction intensity from the {311} plane on the plate surface is I {311}, the diffraction intensity from the {220} plane is I {220}, and the diffraction intensity from the {200} plane is I {200}. Further, when the crystal grain size is A (μm), bending workability and tensile strength are improved by satisfying the following formula (3).
I {311} × A / (I {311} + I {220} + I {200}) <1.5 (3)
In the formula (3), the definition obtained from the crystal orientation integration degree and the crystal grain size is 1.5 or less, preferably 1.2 or less. If this value is too large as described above, it becomes impossible to achieve both bending workability and strength. For this reason, the smaller the crystal grain size, the better. Specifically, it is preferably less than 10 μm, more preferably 5 to 8 μm.

第2の銅合金の製造において、具体的には、熱間圧延温度を900〜1000℃の範囲で、熱間圧延後の冷間圧延を加工率90%以上、溶体化処理温度を820〜930℃で20秒以内、冷間圧延を30%以下の範囲で調整して、式(2)または(3)を満足するようにする。   In the production of the second copper alloy, specifically, the hot rolling temperature is in the range of 900 to 1000 ° C., the cold rolling after the hot rolling is performed at a working rate of 90% or more, and the solution treatment temperature is set to 820 to 930. Within 20 seconds at 0 ° C., cold rolling is adjusted in the range of 30% or less to satisfy the formula (2) or (3).

以下に本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、例中、実施例1及び2は第1の実施の形態、実施例3及び4は第2の実施の形態の、それぞれ実施例である。   The present invention will be described below in more detail based on examples, but the present invention is not limited thereto. In the examples, Examples 1 and 2 are examples of the first embodiment, and Examples 3 and 4 are examples of the second embodiment.

(実施例1)
表1に記す規定組成の銅合金の(鋳塊No.A〜V,WA〜WH,X,Z)を高周波溶解炉にて熔解し、DC法により厚さ30mm、幅100mm、長さ150mmの鋳塊に鋳造した。次にこれらの鋳塊を1000℃に加熱し、この温度に1時間保持後、厚さ12mmに熱間圧延し、速やかに冷却した。
次いで熱間圧延板を両面各1.5mmづつ切削して酸化皮膜を除去した後、冷間圧延(イ)により厚さ0.15〜0.25mmに加工し、次いで溶体化処理温度を825〜925℃の温度範囲で変化させ15秒間熱処理し、その後直ちに15℃/秒以上の冷却速度で冷却した。次に不活性ガス雰囲気中で475℃で2時間の時効処理を施し、次いで最終塑性加工である冷間圧延(ハ)を行い、最終的な板厚を0.15mmに揃えた。前記最終塑性加工後、引き続き375℃で2時間の低温焼鈍を施して銅合金板材(試料No.1、5〜41)を製造した。
Example 1
The copper alloys (ingot Nos. A to V, WA to WH, X, and Z) having the prescribed compositions shown in Table 1 were melted in a high frequency melting furnace, and were 30 mm thick, 100 mm wide, and 150 mm long by the DC method. Cast into ingot. Next, these ingots were heated to 1000 ° C., held at this temperature for 1 hour, hot-rolled to a thickness of 12 mm, and quickly cooled.
Next, the hot-rolled plate was cut by 1.5 mm on both sides to remove the oxide film, and then processed into a thickness of 0.15 to 0.25 mm by cold rolling (a), and then the solution treatment temperature was 825. The temperature was changed in the temperature range of 925 ° C. and heat-treated for 15 seconds, and then immediately cooled at a cooling rate of 15 ° C./second or more. Next, an aging treatment was performed at 475 ° C. for 2 hours in an inert gas atmosphere, and then cold rolling (c) as the final plastic working was performed, so that the final plate thickness was adjusted to 0.15 mm. After the final plastic working, low temperature annealing was subsequently performed at 375 ° C. for 2 hours to produce a copper alloy sheet (sample No. 1, 5-41).

(実施例2)
表1に記す規定組成の銅合金(鋳塊No.J)を下記条件にて加工して厚さ0.15mmの銅合金板材を製造した。すなわち、製造条件は、熱間圧延後、酸化皮膜を除去するまでは実施例1と同じ工程とし、その後冷間圧延(イ)により厚さ0.15〜0.5mmに加工し、次いで溶体化処理温度825℃〜925℃の温度範囲で15秒間熱処理し、その後直ちに15℃/秒以上の冷却速度で冷却する。
その後50%以下の冷間圧延(ロ)を行い、次いで実施例1と同じ条件で、不活性ガス雰囲気中での時効処理の後、最終塑性加工(冷間圧延(ハ)、最終板厚:0.15mm)を経て、低温焼鈍を施し、銅合金板材(試料No.2〜4)を製造した。
(Example 2)
A copper alloy sheet having a thickness of 0.15 mm was manufactured by processing a copper alloy (ingot No. J) having a prescribed composition shown in Table 1 under the following conditions. That is, the manufacturing conditions are the same as in Example 1 until the oxide film is removed after hot rolling, then processed to a thickness of 0.15 to 0.5 mm by cold rolling (ii), and then solutionized. It heat-processes for 15 second in the temperature range of process temperature 825 degreeC-925 degreeC, and it cools with the cooling rate of 15 degreeC / second or more immediately after that.
Thereafter, cold rolling (b) of 50% or less is performed, and then after the aging treatment in an inert gas atmosphere under the same conditions as in Example 1, the final plastic working (cold rolling (c), final plate thickness: 0.15 mm) was subjected to low-temperature annealing to produce copper alloy sheet materials (Sample Nos. 2 to 4).

Figure 2006009137
Figure 2006009137

上記にて製造した各々の銅合金板材について(1)結晶粒径、(2)結晶方位、(3)引張強さ、(4)導電率、(5)曲げ加工性を評価した。(1)の結晶粒径はJISH0501(切断法)に基づき測定した。(2)結晶方位は最終製品状態(0.15mm厚さ)の銅合金板表面にX線を入射させ、各回折面からの強度を測定した。その中から曲げ加工性と相関が強い{200}、{220}及び{311}面の回折強度を比較し、結晶方位強度比([I{311}×A/(I{311}+I{220}+I{200})])を求めた。なお、X線照射の条件は、X線の種類CuKα1、管電圧40kV、管電流20mAである。(3)引張強さはJISZ2201記載の5号試験片を用い、JISZ2241に準拠して求めた。(4)導電率はJISH0505に準拠して求めた。(5)の曲げ加工性の評価はJISH3110に記載の方法に基づいた。試験片幅を10mmとし、1000kgfの荷重をかけて曲げた。試験片採取方向はGW(曲げの軸が圧延方向に直角)、BW(曲げの軸が圧延方向に平行)とし、割れの発生しない最小曲げ半径Rと供試材板厚tとの比R/tにて評価した。   Each copper alloy sheet produced above was evaluated for (1) crystal grain size, (2) crystal orientation, (3) tensile strength, (4) conductivity, and (5) bending workability. The crystal grain size of (1) was measured based on JISH0501 (cutting method). (2) As for crystal orientation, X-rays were made incident on the surface of the copper alloy plate in the final product state (0.15 mm thickness), and the intensity from each diffraction plane was measured. Among them, the diffraction intensities of {200}, {220} and {311} planes having strong correlation with bending workability are compared, and the crystal orientation intensity ratio ([I {311} × A / (I {311} + I {220 } + I {200})]). The X-ray irradiation conditions are X-ray type CuKα1, tube voltage 40 kV, and tube current 20 mA. (3) Tensile strength was obtained according to JISZ2241 using a No. 5 test piece described in JISZ2201. (4) The electrical conductivity was determined according to JISH0505. The evaluation of the bending workability of (5) was based on the method described in JISH3110. The test piece width was 10 mm, and it was bent with a load of 1000 kgf. The specimen collection direction is GW (bending axis is perpendicular to the rolling direction) and BW (bending axis is parallel to the rolling direction), and the ratio R / of the minimum bending radius R and the specimen thickness t where no crack occurs. Evaluation was made at t.

表2から明らかなように試料No.1、5〜19(実施例1)、試料No.2〜4(実施例2)は、曲げ加工性(R/t)が2未満、引張強度が800MPa以上、導電率が35%IACS以上をすべて満足しており、優れた特性を有している。また、試料No.34〜41は、引張強度が若干劣るものの、曲げ加工性(R/t)が2未満、導電率が35%IACS以上を満足しており、優れた特性を有している。
これに対し、試料No.20〜25(比較例)は式(1)の値が規定外となり、曲げ加工性が劣った例である。これは溶体化処理温度が高すぎたためと思われる。
No.26(比較例)はNi、Si量が多いので、熱間加工中に割れが生じ、正常に製造することができなかった。
No.27(請求項3の比較例)は式(1)の値を満たし曲げ加工性は優れるが、Zn量が多いため導電率が劣った。
No.28(請求項4の比較例)はMg量が多いため、曲げ加工性が劣っている。
No.29(請求項5の比較例)はSn量が多いため、冷間圧延時にコバ割れが生じ、製造することができなかった。
No.31(請求項7の比較例)はBが多いため、熱間加工時に割れが生じ、正常に製造することができなかった。
No.32(請求項2の比較例)はSの含有量が多いため、熱間加工時に割れが生じ製造を中止した。
No.33はNi、Si量が少ないため強度が劣り、ベリリウム銅に及ばない。
As is clear from Table 2, sample no. 1, 5 to 19 (Example 1), Sample Nos. 2 to 4 (Example 2) have a bending workability (R / t) of less than 2, a tensile strength of 800 MPa or more, and a conductivity of 35% IACS or more. All are satisfied and have excellent properties. Sample No. Nos. 34 to 41 have excellent properties, although the tensile strength is slightly inferior, the bending workability (R / t) is less than 2, and the electrical conductivity satisfies 35% IACS or more.
On the other hand, sample Nos. 20 to 25 (comparative examples) are examples in which the value of the formula (1) is not specified and the bending workability is inferior. This is probably because the solution treatment temperature was too high.
No. Since No. 26 (Comparative Example) had a large amount of Ni and Si, cracks occurred during hot working and could not be produced normally.
No. 27 (Comparative Example of Claim 3) satisfies the value of the formula (1) and has excellent bending workability, but the conductivity is inferior because of the large amount of Zn.
No. 28 (Comparative Example of Claim 4) is inferior in bending workability because of a large amount of Mg.
No. 29 (Comparative Example of Claim 5) has a large amount of Sn, and therefore cracks occurred during cold rolling, and could not be produced.
Since No. 31 (Comparative Example of Claim 7) contains a large amount of B, cracking occurred during hot working, and it could not be manufactured normally.
Since No. 32 (Comparative Example of Claim 2) has a high S content, cracking occurred during hot working and production was stopped.
No. 33 is inferior in strength due to the small amount of Ni and Si, and does not reach that of beryllium copper.

Figure 2006009137
Figure 2006009137

(実施例3)
表3に示す成分組成の銅合金(鋳塊No.A〜O,PA〜PH,Q〜S,Z,A-1)を高周波溶解炉にて熔解し、DC法により厚さ30mm、幅100mm、長さ150mmの鋳塊に鋳造した。次にこれらの鋳塊を1000℃に加熱し、この温度に1時間保持後、厚さ12mmに熱間圧延し、速やかに冷却した。
次いで熱間圧延板を両面各1.5mmづつ切削して酸化皮膜を除去した後、冷間圧延(イ)により厚さ0.15〜0.25mmに加工し、次いで溶体化処理温度を825℃〜925℃の温度範囲で変化させ15秒間熱処理し、その後直ちに15℃/秒以上の冷却速度で冷却した。次に不活性ガス雰囲気中で475℃で2時間の時効処理を施し、次いで最終塑性加工である冷間圧延(ハ)を行い、最終的な板厚を0.15mmに揃えた。前記最終塑性加工後、引き続き375℃で2時間の低温焼鈍を施して銅合金板材(試料No.0〜2、1−1、5〜30)を製造した。
Example 3
Copper alloys (ingot Nos. A to O, PA to PH, Q to S, Z, A-1) having the composition shown in Table 3 were melted in a high-frequency melting furnace, 30 mm thick and 100 mm wide by the DC method. And cast into an ingot having a length of 150 mm. Next, these ingots were heated to 1000 ° C., held at this temperature for 1 hour, hot-rolled to a thickness of 12 mm, and quickly cooled.
Next, the hot-rolled plate was cut by 1.5 mm on both sides to remove the oxide film, and then processed to a thickness of 0.15 to 0.25 mm by cold rolling (ii), and then the solution treatment temperature was 825 ° C. The temperature was changed in a temperature range of ˜925 ° C. and heat-treated for 15 seconds, and then immediately cooled at a cooling rate of 15 ° C./second or more. Next, an aging treatment was performed for 2 hours at 475 ° C. in an inert gas atmosphere, and then cold rolling (c) as the final plastic working was performed, so that the final plate thickness was adjusted to 0.15 mm. After the final plastic working, low temperature annealing was subsequently performed at 375 ° C. for 2 hours to produce copper alloy sheet materials (Sample Nos. 0-2, 1-1, 5-30).

(実施例4)
表3に記す成分組成の銅合金(鋳塊No.B)を下記条件にて加工して厚さ0.15mmの銅合金板材を製造した。即ち、製造条件は、熱間圧延後、酸化皮膜を除去するまでは実施例3と同じ工程とし、その後冷間圧延(イ)により厚さ0.15〜0.5mmに加工し、次いで溶体化処理温度を825℃〜925℃の温度範囲で15秒間熱処理し、その後直ちに15℃/秒以上の冷却速度で冷却する。その後50%以下の冷間圧延(ロ)を行い、次いで実施例3と同じ条件で、不活性ガス雰囲気中での時効処理をして、最終塑性加工(冷間圧延(ハ)、最終板厚:0.15mm)を経て、低温焼鈍を施して銅合金板材(試料No.3及び4)を製造した。
Example 4
A copper alloy (ingot No. B) having the composition shown in Table 3 was processed under the following conditions to produce a copper alloy sheet having a thickness of 0.15 mm. That is, the manufacturing conditions are the same as in Example 3 until the oxide film is removed after hot rolling, then processed to a thickness of 0.15-0.5 mm by cold rolling (ii), and then solution treatment. Heat treatment is performed at a temperature range of 825 ° C. to 925 ° C. for 15 seconds, and then immediately cooled at a cooling rate of 15 ° C./second or more. Thereafter, cold rolling (b) of 50% or less is performed, and then aging treatment is performed in an inert gas atmosphere under the same conditions as in Example 3, and the final plastic working (cold rolling (c), final plate thickness is performed. : 0.15 mm), low-temperature annealing was performed to produce copper alloy sheet materials (Sample Nos. 3 and 4).

Figure 2006009137
Figure 2006009137

実施例3、4で製造した各々の銅合金板材について(1)結晶粒径、(2)結晶方位、(3)曲げ加工性、(4)引張強さ、(5)導電率、(6)応力緩和特性を測定・評価した。
(1)結晶粒径は、JIS H 0501(切断法)に基づき測定した。
(2)結晶方位は、最終製品状態(0.15mm厚さ)の銅合金板表面にX線を入射させ、各回折面からの強度を測定した。その中から{200}、{220}及び{311}面の回折強度を比較し、結晶方位集積度([I{311}/(I{311}+I{220}+I{200})])、およびI{311}×A/(I{311}+I{220}+I{200})を求めた。なお、X線照射の条件は、X線の種類:CuKα1、管電圧:40kV、管電流:20mAである。
(3)曲げ加工性の評価は、JIS H 3110に記載の方法に基づいた。試験片幅を10mmとし、1000kgfの荷重をかけて曲げた。試験片採取方向はGW(曲げの軸が圧延方向に直角)、BW(曲げの軸が圧延方向に平行)とし、割れの発生しない最小曲げ半径Rと供試材板厚tとの比R/tにて評価した。
(4)引張強さは、JIS Z 2201記載の5号試験片を用い、JIS Z 2241に準拠して求めた。
(5)導電率は、JIS H 0505に準拠して求めた。
(6)応力緩和特性は、日本電子材料工業会標準規格(EMAS−3003)の片持ちブロック式を採用し、表面最大応力が80%YS(0.2%耐力)となるよう負荷応力を設定して150℃恒温槽に1000時間保持して緩和率(S.R.R.)を求めた。
得られた測定値を表4に示した。
For each copper alloy sheet produced in Examples 3 and 4, (1) crystal grain size, (2) crystal orientation, (3) bending workability, (4) tensile strength, (5) conductivity, (6) Stress relaxation characteristics were measured and evaluated.
(1) The crystal grain size was measured based on JIS H 0501 (cutting method).
(2) For crystal orientation, X-rays were made incident on the surface of the copper alloy plate in the final product state (0.15 mm thickness), and the intensity from each diffraction plane was measured. Among them, the diffraction intensity of {200}, {220} and {311} planes is compared, and the degree of crystal orientation accumulation ([I {311} / (I {311} + I {220} + I {200})]), And I {311} × A / (I {311} + I {220} + I {200}). The X-ray irradiation conditions are X-ray type: CuKα1, tube voltage: 40 kV, tube current: 20 mA.
(3) Evaluation of bending workability was based on the method described in JIS H 3110. The test piece was 10 mm wide and bent under a load of 1000 kgf. The specimen collection direction is GW (bending axis is perpendicular to the rolling direction) and BW (bending axis is parallel to the rolling direction), and the ratio R / Evaluation was made at t.
(4) Tensile strength was determined based on JIS Z 2241 using No. 5 test piece described in JIS Z 2201.
(5) The conductivity was determined according to JIS H 0505.
(6) The stress relaxation characteristics are based on the Japan Electronic Materials Manufacturers Standard (EMAS-3003) cantilever block type, and the load stress is set so that the maximum surface stress is 80% YS (0.2% proof stress). Then, the relaxation rate (S.R.R.) was obtained by holding in a thermostatic bath at 150 ° C. for 1000 hours.
The measured values obtained are shown in Table 4.

Figure 2006009137
Figure 2006009137

表4から明らかなように試料No.0〜2、1-1、5〜11(実施例3)および試料No.3、4(実施例4)は、曲げ加工性(R/t)が2未満、引張強度が810MPa以上、導電率が35%IACS以上、緩和率が10%以下をすべて満足している。また、試料No.23〜30は、引張強度、緩和率について一部若干劣るものがあるもの、曲げ加工性(R/t)が2未満、導電率が35%IACS以上を満足しており、優れた特性を有している。
これに対し、試料No.12、13(比較例)は規定式の(2)または(3)の値が範囲外となり、曲げ加工性が劣った例である。これは溶体化処理温度が高すぎたためと思われる。
No.14(比較例)はCr量が多いため曲げ加工性が劣った。
No.15(比較例)はNi,Si量が多いため熱間加工中に割れが生じ、製造することができなかった。
No.16(請求項10の比較例)はZn量が多いため導電率が劣った。
No.17(請求項11の比較例)はMg量が多いため応力緩和特性に優れるが、曲げ加工性が劣った。
No.18(請求項12の比較例)はSn量が多いため冷間加工割れが生じ、製造することができなかった。
No.19(請求項13の比較例)はZr量およびCo量が多いため曲げ加工性が劣った。
No.20(比較例)はSが多いため熱間加工時に割れが生じ、製造することができなかった。
No.21(請求項13の比較例)はB量およびTi量が多いため熱間加工中に割れが生じ、製造することができなかった。
No.22(比較例)はNi,Si量が少ないため強度と応力緩和率が劣った。
As apparent from Table 4, the sample No. 0-2, 1-1, 5-11 (Example 3) and Sample Nos. 3 and 4 (Example 4) have a bending workability (R / t) of less than 2, a tensile strength of 810 MPa or more, and conductivity. Satisfies 35% IACS or more and a relaxation rate of 10% or less. Sample No. 23 to 30 have some inferior tensile strength and relaxation rate, bending workability (R / t) of less than 2, electrical conductivity of 35% IACS or more, and excellent characteristics is doing.
In contrast, sample no. Nos. 12 and 13 (comparative examples) are examples in which the value of the formula (2) or (3) is out of the range and the bending workability is inferior. This is probably because the solution treatment temperature was too high.
No. 14 (Comparative Example) was inferior in bending workability due to a large amount of Cr.
No. No. 15 (Comparative Example) could not be produced because of the large amount of Ni and Si, causing cracks during hot working.
No. No. 16 (Comparative Example of Claim 10) was inferior in electrical conductivity because of a large amount of Zn.
No. 17 (Comparative Example of Claim 11) is excellent in stress relaxation properties due to a large amount of Mg, but inferior in bending workability.
No. No. 18 (Comparative Example of Claim 12) could not be produced because of a large amount of Sn and cold work cracking.
No. 19 (Comparative Example of Claim 13) was inferior in bending workability due to the large amount of Zr and Co.
No. Since 20 (Comparative Example) contained a large amount of S, cracks occurred during hot working and could not be produced.
No. Since No. 21 (Comparative Example of Claim 13) had a large amount of B and Ti, cracks occurred during hot working and could not be produced.
No. 22 (Comparative Example) was inferior in strength and stress relaxation rate due to the small amount of Ni and Si.

Claims (13)

Niを2.0〜4.5質量%、Siを0.3〜1.0質量%含み、残部がCuおよび不可避不純物からなる銅合金であって、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}、結晶粒径をA(μm)とした時、下記式(1)を満たすことを特徴とする曲げ加工性の優れた電子機器用銅合金。
I{311}×A/(I{311}+I{220}+I{200})<1.5 ………(1)
X-ray from {311} plane on the plate surface, comprising a copper alloy containing 2.0 to 4.5% by mass of Ni and 0.3 to 1.0% by mass of Si with the balance being Cu and inevitable impurities When the diffraction intensity is I {311}, the diffraction intensity from the {220} plane is I {220}, the diffraction intensity from the {200} plane is I {200}, and the crystal grain size is A (μm), A copper alloy for electronic equipment excellent in bending workability characterized by satisfying (1).
I {311} × A / (I {311} + I {220} + I {200}) <1.5 (1)
Niを2.0〜4.5質量%、Siを0.3〜1.0質量%、Sを0を超え0.005質量%未満含み、残部がCuおよび不可避不純物からなる銅合金であって、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}、結晶粒径をA(μm)とした時、下記式(1)を満たすことを特徴とする曲げ加工性の優れた電子機器用銅合金。
I{311}×A/(I{311}+I{220}+I{200})<1.5 ………(1)
A copper alloy comprising 2.0 to 4.5% by mass of Ni, 0.3 to 1.0% by mass of Si, S exceeding 0 and less than 0.005% by mass, with the balance being Cu and inevitable impurities. X-ray diffraction intensity from the {311} plane on the plate surface is I {311}, diffraction intensity from the {220} plane is I {220}, diffraction intensity from the {200} plane is I {200}, crystal grains A copper alloy for electronic equipment with excellent bending workability, characterized by satisfying the following formula (1) when the diameter is A (μm).
I {311} × A / (I {311} + I {220} + I {200}) <1.5 (1)
合金の組成が、さらにZnを0.2〜1.5質量%含む、請求項1または2に記載の銅合金。   The copper alloy according to claim 1 or 2, wherein the alloy composition further contains 0.2 to 1.5 mass% of Zn. 合金の組成が、さらにMgを0.01〜0.2質量%含む、請求項1〜3のいずれか1項に記載の銅合金。   The copper alloy according to any one of claims 1 to 3, wherein the alloy composition further includes 0.01 to 0.2 mass% of Mg. 合金の組成が、さらにSnを0.05〜1.5質量%含む、請求項1〜4のいずれか1項に記載の銅合金。   The copper alloy according to any one of claims 1 to 4, wherein the alloy composition further includes 0.05 to 1.5 mass% of Sn. Niを2.0〜4.5質量%、Siを0.3〜1.0質量%、Mgを0.01〜0.2質量%、Snを0.05〜1.5質量%、Znを0.2〜1.5質量%含み、Sを0.005質量%未満に制限し、残部がCuおよび不可避不純物からなる銅合金であって、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}、結晶粒径をA(μm)とした時、下記式(1)を満たすことを特徴とする曲げ加工性の優れた電子機器用銅合金。
I{311}×A/(I{311}+I{220}+I{200})<1.5 ………(1)
Ni is 2.0 to 4.5 mass%, Si is 0.3 to 1.0 mass%, Mg is 0.01 to 0.2 mass%, Sn is 0.05 to 1.5 mass%, Zn is X-ray diffraction intensity from the {311} plane on the plate surface containing 0.2 to 1.5% by mass, S limited to less than 0.005% by mass, the balance being Cu and inevitable impurities Where I {311}, the diffraction intensity from the {220} plane is I {220}, the diffraction intensity from the {200} plane is I {200}, and the crystal grain size is A (μm). ) Copper alloy for electronic equipment with excellent bending workability.
I {311} × A / (I {311} + I {220} + I {200}) <1.5 (1)
合金の組成が、さらにZrを0.005〜0.3質量%、Coを0.05〜2.0質量
%、およびBを0.001〜0.02質量%の群から選ばれる1種または2種以上の元素
を総量で0.001〜2.0質量%含む、請求項1〜5のいずれか1項に記載の銅合金。
The alloy composition is further selected from the group consisting of 0.005 to 0.3 mass% Zr, 0.05 to 2.0 mass% Co, and 0.001 to 0.02 mass% B or The copper alloy according to any one of claims 1 to 5, comprising two or more elements in a total amount of 0.001 to 2.0 mass%.
Niを2.0〜4.5質量%、Siを0.3〜1.0質量%、Crを0.1〜0.5質
量%、Sを0.005質量%未満含み、残部がCuおよび不可避不純物からなる銅合金で
あって、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}とした時、下記式(2)を満たすことを特徴とする銅合金。
I{311}/(I{311}+I{220}+I{200})<0.15 ………(2)
It contains 2.0 to 4.5% by mass of Ni, 0.3 to 1.0% by mass of Si, 0.1 to 0.5% by mass of Cr, less than 0.005% by mass of S, the balance being Cu and A copper alloy composed of unavoidable impurities, the X-ray diffraction intensity from the {311} plane on the plate surface is I {311}, the diffraction intensity from the {220} plane is I {220}, and the diffraction from the {200} plane A copper alloy characterized by satisfying the following formula (2) when the strength is I {200}.
I {311} / (I {311} + I {220} + I {200}) <0.15 (2)
Niを2.0〜4.5質量%、Siを0.3〜1.0質量%、Crを0.1〜0.5質量%、Sを0.005質量%未満含み、残部がCuおよび不可避不純物からなる銅合金であって、板表面における{311}面からのX線回折強度をI{311}、{220}面からの回折強度をI{220}、{200}面からの回折強度をI{200}とし、更に結晶粒径をA(μm)とした時、下記式(3)を満たすことを特徴とする銅合金。
I{311}×A /(I{311}+I{220}+I{200})<1.5 ………(3)
It contains 2.0 to 4.5% by mass of Ni, 0.3 to 1.0% by mass of Si, 0.1 to 0.5% by mass of Cr, less than 0.005% by mass of S, the balance being Cu and A copper alloy composed of unavoidable impurities, the X-ray diffraction intensity from the {311} plane on the plate surface is I {311}, the diffraction intensity from the {220} plane is I {220}, and the diffraction from the {200} plane A copper alloy characterized by satisfying the following formula (3) when the strength is I {200} and the crystal grain size is A (μm).
I {311} × A / (I {311} + I {220} + I {200}) <1.5 (3)
合金の組成が、さらにZnを0.2〜1.5質量%含む、請求項8又は9記載の銅合金。   The copper alloy according to claim 8 or 9, wherein the alloy composition further contains 0.2 to 1.5 mass% of Zn. 合金の組成が、さらにMgを0.01〜0.2質量%含む、請求項8〜10のいずれか1項に記載の銅合金。   The copper alloy according to any one of claims 8 to 10, wherein the alloy composition further contains 0.01 to 0.2 mass% of Mg. 合金の組成が、さらにSnを0.05〜1.5質量%含む、請求項8〜11のいずれか1項に記載の銅合金。   The copper alloy according to any one of claims 8 to 11, wherein the composition of the alloy further includes 0.05 to 1.5 mass% of Sn. 合金の組成が、さらに、Zrを0.005〜0.3質量%、Coを0.05〜2.0質量%、Tiを0.005〜0.3質量%、Agを0.005〜0.3質量%、およびBを0.001〜0.02質量%の群から選ばれる1種または2種以上を含む、請求項8〜12のいずれか1項に記載の銅合金。
The composition of the alloy is further 0.005 to 0.3% by mass of Zr, 0.05 to 2.0% by mass of Co, 0.005 to 0.3% by mass of Ti, and 0.005 to 0 of Ag. The copper alloy according to any one of claims 8 to 12, comprising one or more selected from a group of .3% by mass and B from 0.001 to 0.02% by mass.
JP2004328177A 2004-05-27 2004-11-11 Copper alloy Active JP4809602B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004328177A JP4809602B2 (en) 2004-05-27 2004-11-11 Copper alloy
US11/135,289 US20050263218A1 (en) 2004-05-27 2005-05-24 Copper alloy
TW094117169A TWI371499B (en) 2004-05-27 2005-05-26 Copper alloy
MYPI20052404A MY142123A (en) 2004-05-27 2005-05-26 Copper alloy
KR1020067024910A KR100929276B1 (en) 2004-05-27 2005-05-26 Copper alloy
DE112005001197.6T DE112005001197B4 (en) 2004-05-27 2005-05-26 Method for producing a workpiece made of a copper alloy
PCT/JP2005/010096 WO2005116282A1 (en) 2004-05-27 2005-05-26 Copper alloy
CNB2005800149710A CN100462460C (en) 2004-05-27 2005-05-26 Copper alloy

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004158197 2004-05-27
JP2004158181 2004-05-27
JP2004158197 2004-05-27
JP2004158181 2004-05-27
JP2004328177A JP4809602B2 (en) 2004-05-27 2004-11-11 Copper alloy

Publications (2)

Publication Number Publication Date
JP2006009137A true JP2006009137A (en) 2006-01-12
JP4809602B2 JP4809602B2 (en) 2011-11-09

Family

ID=35423904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328177A Active JP4809602B2 (en) 2004-05-27 2004-11-11 Copper alloy

Country Status (8)

Country Link
US (1) US20050263218A1 (en)
JP (1) JP4809602B2 (en)
KR (1) KR100929276B1 (en)
CN (1) CN100462460C (en)
DE (1) DE112005001197B4 (en)
MY (1) MY142123A (en)
TW (1) TWI371499B (en)
WO (1) WO2005116282A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032784A1 (en) * 2006-09-13 2008-03-20 The Furukawa Electric Co., Ltd. Copper-based deposited alloy board for contact material and process for producing the same
JP2008106356A (en) * 2006-09-27 2008-05-08 Dowa Metaltech Kk Copper alloy sheet and its manufacturing method
WO2009104615A1 (en) * 2008-02-18 2009-08-27 古河電気工業株式会社 Copper alloy material
JP2009215632A (en) * 2008-03-12 2009-09-24 Furukawa Electric Co Ltd:The Metallic material for electric contact component
WO2009148101A1 (en) 2008-06-03 2009-12-10 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
WO2010047373A1 (en) 2008-10-22 2010-04-29 古河電気工業株式会社 Copper alloy material, electric and electronic parts, and copper alloy material manufacturing method
EP2248922A1 (en) 2009-04-27 2010-11-10 Dowa Metaltech Co., Ltd. Copper alloy sheet and method for producing same
WO2011068126A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2011068135A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2011068121A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
WO2012026611A1 (en) 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and method for producing same
WO2012029717A1 (en) 2010-08-31 2012-03-08 古河電気工業株式会社 Copper alloy sheet material and process for producing same
WO2012150702A1 (en) 2011-05-02 2012-11-08 古河電気工業株式会社 Copper alloy sheet material and process for producing same
JP2015034336A (en) * 2013-07-11 2015-02-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof
US9034123B2 (en) 2007-02-13 2015-05-19 Dowa Metaltech Co., Ltd. Cu—Ni—Si-based copper alloy sheet material and method of manufacturing same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426225B1 (en) * 2006-05-26 2015-12-02 Kabushiki Kaisha Kobe Seiko Sho Copper alloy with high strength, high electrical conductivity, and excellent bendability
JP5170881B2 (en) * 2007-03-26 2013-03-27 古河電気工業株式会社 Copper alloy material for electrical and electronic equipment and method for producing the same
RU2413021C1 (en) * 2007-09-28 2011-02-27 Джей Экс Ниппон Майнинг Энд Метлз Корпорейшн COPPER ALLOY Cu-Si-Co FOR MATERIALS OF ELECTRONIC TECHOLOGY AND PROCEDURE FOR ITS PRODUCTION
CN101842506B (en) * 2007-11-01 2012-08-22 古河电气工业株式会社 Copper alloy material excellent in strength, bending workability and stress relaxation resistance, and method for producing the same
EP2221391B1 (en) * 2007-11-05 2014-04-30 The Furukawa Electric Co., Ltd. Copper alloy sheet
JP4653239B2 (en) * 2008-03-31 2011-03-16 古河電気工業株式会社 Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
EP2270242B1 (en) * 2008-03-31 2014-06-04 The Furukawa Electric Co., Ltd. Copper alloy material for electric or electronic apparatuses, method for producing it and component
JP5261161B2 (en) * 2008-12-12 2013-08-14 Jx日鉱日石金属株式会社 Ni-Si-Co-based copper alloy and method for producing the same
JP5441876B2 (en) * 2010-12-13 2014-03-12 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2012160684A1 (en) * 2011-05-25 2012-11-29 三菱伸銅株式会社 Cu-ni-si copper alloy sheet with excellent deep drawability and process for producing same
JP6111028B2 (en) * 2012-03-26 2017-04-05 Jx金属株式会社 Corson alloy and manufacturing method thereof
CN103014410B (en) * 2012-12-24 2015-03-11 山西春雷铜材有限责任公司 Copper alloy and fabrication method thereof
CN104032245B (en) * 2014-06-06 2016-03-30 中国科学院金属研究所 A kind of Ultra-fine Grained high-performance CuCrNiSi alloy slot wedge preparation technology
JP6440760B2 (en) * 2017-03-21 2018-12-19 Jx金属株式会社 Copper alloy strip with improved dimensional accuracy after press working
DE112018002665T5 (en) * 2017-05-25 2020-02-27 Sumitomo Electric Industries, Ltd. Inclined coil spring and connecting element
CN117512395B (en) * 2024-01-04 2024-03-29 宁波兴业盛泰集团有限公司 High-strength middle-conductive copper nickel silicon tin phosphorus alloy strip foil and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319527A (en) * 1995-05-25 1996-12-03 Kobe Steel Ltd Copper alloy, excellent in adhesion of soft solder and plating suitability and easy of cleaning, and its production
JPH1143731A (en) * 1997-07-23 1999-02-16 Kobe Steel Ltd High strength copper alloy excellent in stamping property and suitable for silver plating
JPH11256256A (en) * 1998-03-06 1999-09-21 Kobe Steel Ltd Copper alloy for electric and electronic parts
JP2002180161A (en) * 2000-12-15 2002-06-26 Furukawa Electric Co Ltd:The High strength copper alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016010A (en) * 1976-02-06 1977-04-05 Olin Corporation Preparation of high strength copper base alloy
US4110132A (en) * 1976-09-29 1978-08-29 Olin Corporation Improved copper base alloys
JPS57206540A (en) * 1981-06-12 1982-12-17 Nippon Gakki Seizo Kk Manufacture of parts for spectacle frame
US4594221A (en) * 1985-04-26 1986-06-10 Olin Corporation Multipurpose copper alloys with moderate conductivity and high strength
DE4115998C2 (en) * 1991-05-16 1999-02-25 Diehl Stiftung & Co Process for the production of copper alloys
JP3739214B2 (en) * 1998-03-26 2006-01-25 株式会社神戸製鋼所 Copper alloy sheet for electronic parts
JP2000080428A (en) * 1998-08-31 2000-03-21 Kobe Steel Ltd Copper alloy sheet excellent in bendability
JP3800279B2 (en) * 1998-08-31 2006-07-26 株式会社神戸製鋼所 Copper alloy sheet with excellent press punchability
JP4729680B2 (en) * 2000-12-18 2011-07-20 Dowaメタルテック株式会社 Copper-based alloy with excellent press punchability
KR100513943B1 (en) * 2001-03-27 2005-09-09 닛꼬 긴조꾸 가꼬 가부시키가이샤 Copper and copper alloy, and method for production of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319527A (en) * 1995-05-25 1996-12-03 Kobe Steel Ltd Copper alloy, excellent in adhesion of soft solder and plating suitability and easy of cleaning, and its production
JPH1143731A (en) * 1997-07-23 1999-02-16 Kobe Steel Ltd High strength copper alloy excellent in stamping property and suitable for silver plating
JPH11256256A (en) * 1998-03-06 1999-09-21 Kobe Steel Ltd Copper alloy for electric and electronic parts
JP2002180161A (en) * 2000-12-15 2002-06-26 Furukawa Electric Co Ltd:The High strength copper alloy

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095186A (en) * 2006-09-13 2008-04-24 Furukawa Electric Co Ltd:The Copper-based deposited alloy board for contact material and process for producing the same
WO2008032784A1 (en) * 2006-09-13 2008-03-20 The Furukawa Electric Co., Ltd. Copper-based deposited alloy board for contact material and process for producing the same
JP2008106356A (en) * 2006-09-27 2008-05-08 Dowa Metaltech Kk Copper alloy sheet and its manufacturing method
US9034123B2 (en) 2007-02-13 2015-05-19 Dowa Metaltech Co., Ltd. Cu—Ni—Si-based copper alloy sheet material and method of manufacturing same
WO2009104615A1 (en) * 2008-02-18 2009-08-27 古河電気工業株式会社 Copper alloy material
JPWO2009104615A1 (en) * 2008-02-18 2011-06-23 古河電気工業株式会社 Copper alloy material
JP2009215632A (en) * 2008-03-12 2009-09-24 Furukawa Electric Co Ltd:The Metallic material for electric contact component
WO2009148101A1 (en) 2008-06-03 2009-12-10 古河電気工業株式会社 Copper alloy sheet material and manufacturing method thereof
US8641838B2 (en) 2008-06-03 2014-02-04 The Furukawa Electric Co., Ltd. Copper alloy sheet material and method of producing the same
WO2010047373A1 (en) 2008-10-22 2010-04-29 古河電気工業株式会社 Copper alloy material, electric and electronic parts, and copper alloy material manufacturing method
US8795446B2 (en) 2008-10-22 2014-08-05 Furukawa Electric Co., Ltd. Copper alloy material, electrical or electronic parts, and method of producing a copper alloy material
EP2248922A1 (en) 2009-04-27 2010-11-10 Dowa Metaltech Co., Ltd. Copper alloy sheet and method for producing same
US9994933B2 (en) 2009-04-27 2018-06-12 Dowa Metal Tech Co., Ltd. Copper alloy sheet and method for producing same
WO2011068121A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
WO2011068135A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2011068126A1 (en) 2009-12-02 2011-06-09 古河電気工業株式会社 Copper alloy sheet and process for producing same
WO2012026611A1 (en) 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and method for producing same
WO2012029717A1 (en) 2010-08-31 2012-03-08 古河電気工業株式会社 Copper alloy sheet material and process for producing same
KR20150143893A (en) 2010-08-31 2015-12-23 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material
WO2012150702A1 (en) 2011-05-02 2012-11-08 古河電気工業株式会社 Copper alloy sheet material and process for producing same
KR20140004748A (en) 2011-05-02 2014-01-13 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material and process for producing same
JP2015034336A (en) * 2013-07-11 2015-02-19 古河電気工業株式会社 Copper alloy sheet material and production method thereof

Also Published As

Publication number Publication date
DE112005001197B4 (en) 2016-11-03
TWI371499B (en) 2012-09-01
CN100462460C (en) 2009-02-18
CN1950525A (en) 2007-04-18
KR20070018092A (en) 2007-02-13
US20050263218A1 (en) 2005-12-01
KR100929276B1 (en) 2009-11-27
TW200604354A (en) 2006-02-01
JP4809602B2 (en) 2011-11-09
DE112005001197T5 (en) 2007-04-19
WO2005116282A1 (en) 2005-12-08
MY142123A (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4809602B2 (en) Copper alloy
JP4981748B2 (en) Copper alloy for electrical and electronic equipment
JP4584692B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP4655834B2 (en) Copper alloy material for electrical parts and manufacturing method thereof
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JP5619389B2 (en) Copper alloy material
WO2010064547A1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP4653240B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
WO2009123137A1 (en) Cu-ni-si-co-cr alloy for electronic material
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
WO2009116649A1 (en) Copper alloy material for electric and electronic components
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP2006016629A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY IN BAD WAY
JP4664584B2 (en) High strength copper alloy plate and method for producing high strength copper alloy plate
JP4175920B2 (en) High strength copper alloy
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP4679040B2 (en) Copper alloy for electronic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4809602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350