JP2009215632A - Metallic material for electric contact component - Google Patents

Metallic material for electric contact component Download PDF

Info

Publication number
JP2009215632A
JP2009215632A JP2008062854A JP2008062854A JP2009215632A JP 2009215632 A JP2009215632 A JP 2009215632A JP 2008062854 A JP2008062854 A JP 2008062854A JP 2008062854 A JP2008062854 A JP 2008062854A JP 2009215632 A JP2009215632 A JP 2009215632A
Authority
JP
Japan
Prior art keywords
metal layer
alloy
electrical contact
mass
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008062854A
Other languages
Japanese (ja)
Other versions
JP5854574B2 (en
Inventor
Yoshiaki Kobayashi
良聡 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008062854A priority Critical patent/JP5854574B2/en
Publication of JP2009215632A publication Critical patent/JP2009215632A/en
Application granted granted Critical
Publication of JP5854574B2 publication Critical patent/JP5854574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic material for electric contact component which improves operability of a switch being the electric contact component and has the improved adhesiveness and contact resistance of a noble metal coated layer after a high temperature treatment. <P>SOLUTION: At least two layers of intermediate layers are provided between a conductive base material and a novel metal layer. The conductive base material contains 1.5-4.2 mass% Ni and 0.3-1.4 mass% Si. In the relation of tensile strength among three angles of 0°. 45° and 90° relative to the rolling direction of the conductive base material, the maximum value is ≥600 MPa and the ratio between the maximum and minimum values is ≥85% and ≤100%. The intermediated layers includes a first intermediate metallic layer formed from nickel, cobalt and their alloy successively on the conductive base material in this order from one closer to the conductive base material and a second intermediate metallic layer formed from copper or a copper alloy, wherein the adhesion state of the conductive base material to the novel metal layer is kept after being heated at 300°C for 15 min in the atmosphere and the contact resistance after being heated at 300°C for 15 min in the atmosphere is ≤10 mΩ. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子機器などに用いられる各種スイッチ等の電気接点部品に好適に用いられる電気接点部品用金属材料に関する。   The present invention relates to a metal material for electrical contact parts that is suitably used for electrical contact parts such as various switches used in electronic devices and the like.

スライドスイッチ、タクトスイッチ、多機能スイッチ(例えば多方向スイッチ等)に代表される、各種スイッチ等の電気接点部品には、古くは電気伝導性に優れた銅又は銅合金が利用されてきた。しかし、近年では接点特性の向上の要求が高まり、裸の銅又は銅合金を用いるケースは減少し、銅又は銅合金上に各種表面処理を施した製品が製造・利用されつつある。特に電気接点部品材料として多く利用されているものとして、貴金属被覆が電気接点部に施されるものがある。なかでも、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)、イリジウム(Ir)、ロジウム(Rh)、ルテニウム(Ru)、などの貴金属は、その材料の持つ安定性や優れた電気伝導率を持つことなどから、各種電気接点部品材料として利用されている。   For electrical contact parts such as various switches typified by slide switches, tact switches, and multi-function switches (for example, multi-directional switches), copper or copper alloys having excellent electrical conductivity have been used in the past. However, in recent years, demands for improving contact characteristics have increased, and the number of cases using bare copper or copper alloys has decreased, and products having various surface treatments on copper or copper alloys are being manufactured and used. In particular, as a material that is widely used as an electrical contact component material, there is one in which a noble metal coating is applied to an electrical contact portion. Among them, noble metals such as gold (Au), silver (Ag), palladium (Pd), platinum (Pt), iridium (Ir), rhodium (Rh), ruthenium (Ru), the stability of the material, Because of its excellent electrical conductivity, it is used as a material for various electrical contact parts.

ところで、近年では携帯電話機をはじめとする電子機器には操作用押しボタンスイッチ(例えばテンキー)や多機能スイッチ(例えば4方向スイッチ)が使用されるようになった(特許文献1参照)。このようなスイッチの接点部を構成するバネ部材の基材として、ステンレス鋼、リン青銅、黄銅、純銅などの圧延板をプレス打抜きしたものが用いられている。そして、信頼性を高めるためにAu、Ag、Pdなどのめっきが施されている(特許文献2参照)。   By the way, in recent years, an operation push button switch (for example, a numeric keypad) and a multi-function switch (for example, a four-way switch) have been used for electronic devices such as mobile phones (see Patent Document 1). As a base material of a spring member constituting the contact portion of such a switch, a material obtained by press punching a rolled plate of stainless steel, phosphor bronze, brass, pure copper or the like is used. And in order to improve reliability, plating of Au, Ag, Pd, etc. is given (refer patent document 2).

特開2001−229783号公報JP 2001-229783 A 特開2005−2400号公報JP 2005-2400 A

しかしながら、各特許文献に開示された従来のバネ部材には、スイッチ操作時のストローク感(スイッチを押したという感覚)や、クリック時のソフトさが、スイッチ方向によって異なることがあり、スイッチの操作性が良くないという問題があった。   However, in the conventional spring members disclosed in each patent document, the stroke feeling at the time of switch operation (feeling of pressing the switch) and the softness at the time of clicking may differ depending on the switch direction. There was a problem that the nature was not good.

また、リン青銅、黄銅などの銅合金に銀めっきを施すと、300℃程度の熱処理を施したとき、めっきが剥離するという現象がみられた。これは、例えば50℃以上の高温下において使用される電気接点部品や、例えば半田付け工程や溶融工程(リフロー工程等)のような300℃程度の熱処理を伴う製造工程を経て生産される各種スイッチ等における耐熱信頼性が満足されるものではなく、特に貴金属被覆層の密着性の改善が急務とされていた。   In addition, when silver plating was applied to a copper alloy such as phosphor bronze or brass, a phenomenon was observed in which the plating peeled off when heat treatment at about 300 ° C. was performed. This is an electrical contact component used at a high temperature of, for example, 50 ° C. or more, and various switches produced through a manufacturing process involving a heat treatment of about 300 ° C. such as a soldering process or a melting process (reflow process, etc.). However, the improvement in the adhesion of the noble metal coating layer has been urgently required.

そこで、本発明は、上記課題を解決するため、電気接点部品であるスイッチの操作性を改善し、高温熱処理後における貴金属被覆層の密着性および接触抵抗値が向上する電気接点部品用金属材料を提供することを目的とする。   Therefore, in order to solve the above problems, the present invention provides a metal material for electrical contact parts that improves the operability of a switch that is an electrical contact part and improves the adhesion and contact resistance value of the noble metal coating layer after high-temperature heat treatment. The purpose is to provide.

本発明の第1の解決手段は、銅合金材料を導電性基材とし、かつその最表面の少なくとも一部に貴金属層が被覆された電気接点部品用金属材料であって、前記導電性基材を構成する銅合金は、銅基析出型合金であって、前記導電性基材の圧延方向の引張強さと、圧延方向となす角度が45°方向の引張強さと、圧延方向となす角度が90°方向の引張強さの3つの引張強さの関係について、最大値が600MPa以上、かつ引張強度の最大値と最小値との比が85%以上100%以下であり、前記導電性基材と前記貴金属層との間に、少なくとも2層の中間金属層が設けられ、前記中間金属層は、前記導電性基材に近い順に第1中間金属層および第2中間金属層を含み、前記第1中間金属層は、ニッケルまたはその合金、もしくはコバルトまたはその合金により0.005〜1.0μmの厚さに形成され、前記第2中間金属層は、銅またはその合金により0.005〜1.0μmの厚さに形成されており、300℃15分間の大気中における加熱後に前記導電性基材と前記貴金属層との密着状態が維持され、400℃15分間の大気中における加熱後の接触抵抗値が10mΩ以下であることを特徴としている。   A first solving means of the present invention is a metal material for an electrical contact part in which a copper alloy material is used as a conductive base material and at least a part of the outermost surface thereof is coated with a noble metal layer, the conductive base material Is a copper-based precipitation type alloy, the tensile strength in the rolling direction of the conductive substrate, the tensile strength in the direction of 45 ° and the angle in the rolling direction is 90 °. With respect to the relationship between the three tensile strengths in the direction of tensile strength, the maximum value is 600 MPa or more, and the ratio between the maximum value and the minimum value of tensile strength is 85% or more and 100% or less, At least two intermediate metal layers are provided between the noble metal layer, the intermediate metal layer including a first intermediate metal layer and a second intermediate metal layer in order from the conductive substrate, The intermediate metal layer is nickel or an alloy thereof, cobalt or Is formed to a thickness of 0.005 to 1.0 μm by its alloy, and the second intermediate metal layer is formed to a thickness of 0.005 to 1.0 μm by copper or its alloy, The contact state between the conductive base material and the noble metal layer is maintained after heating in the atmosphere for 5 minutes, and the contact resistance value after heating in the atmosphere at 400 ° C. for 15 minutes is 10 mΩ or less.

本発明の第2の解決手段は、第1の解決手段において、前記貴金属層が、金またはその合金、銀またはその合金、パラジウムまたはその合金、白金またはその合金、ルテニウムまたはその合金のいずれかを含むことを特徴としている。   According to a second solution of the present invention, in the first solution, the noble metal layer is made of gold or an alloy thereof, silver or an alloy thereof, palladium or an alloy thereof, platinum or an alloy thereof, ruthenium or an alloy thereof. It is characterized by including.

本発明の第3の解決手段は、第1または第2の解決手段において、前記貴金属層の厚さは、0.05〜5.0μmであることを特徴としている。   A third solving means of the present invention is characterized in that, in the first or second solving means, the noble metal layer has a thickness of 0.05 to 5.0 μm.

本発明の第4の解決手段は、第1〜第3のいずれかの解決手段において、前記銅基析出型合金は、1.5〜4.2質量%のニッケルと0.3〜1.4質量%の珪素を含むことを特徴としている。   According to a fourth solution of the present invention, in any one of the first to third solutions, the copper-based precipitation type alloy includes 1.5 to 4.2% by mass of nickel and 0.3 to 1.4. It is characterized by containing mass% silicon.

本発明の第5の解決手段は、第4のいずれかの解決手段において、前記銅合金材料は、0.05〜0.2質量%のマグネシウム、0.1〜0.5質量%のスズ、0.1〜1.0質量%の亜鉛、0.05〜0.5質量%のクロムの群から選ばれる、少なくとも1つをさらに含有することを特徴としている。   According to a fifth solution of the present invention, in any one of the fourth solution, the copper alloy material may include 0.05 to 0.2 mass% magnesium, 0.1 to 0.5 mass% tin, It further comprises at least one selected from the group of 0.1 to 1.0% by mass of zinc and 0.05 to 0.5% by mass of chromium.

本発明の第6の解決手段は、第1〜第5のいずれかの解決手段において、前記導電性基材の表面側に設けられる金属層が、めっきにより設けられていることを特徴としている。   A sixth solving means of the present invention is characterized in that, in any one of the first to fifth solving means, the metal layer provided on the surface side of the conductive substrate is provided by plating.

本発明によれば、前記導電性基材を構成する銅合金が銅基析出型合金であり、前記導電性基材の圧延方向の引張強さと、圧延方向となす角度が45°方向の引張強さと、圧延方向となす角度が90°方向の引張強さの3つの引張強さの関係について、最大値が600MPa以上、かつ最小値が最大値の85%以上100%以下であり、300℃15分間の大気中における加熱後に前記導電性基材と前記貴金属層との密着状態が維持され、400℃15分間の大気加熱試験後における接触抵抗値が10mΩ以下となるため、電気接点部品であるスイッチの操作性が改善され、高温熱処理後の貴金属被覆層の密着性および接触抵抗値が向上する電気接点部品用金属材料を得ることができる。   According to the present invention, the copper alloy constituting the conductive base material is a copper-based precipitation type alloy, and the tensile strength in the rolling direction of the conductive base material and the tensile strength in which the angle formed with the rolling direction is 45 °. And the relationship between the three tensile strengths of the tensile strength in the direction of 90 ° with respect to the rolling direction, the maximum value is 600 MPa or more, the minimum value is 85% or more and 100% or less of the maximum value, and 300 ° C. 15 Since the contact state of the conductive base material and the noble metal layer is maintained after heating in the atmosphere for 5 minutes and the contact resistance value after the atmospheric heating test at 400 ° C. for 15 minutes is 10 mΩ or less, the switch is an electrical contact part Thus, it is possible to obtain a metal material for electrical contact parts that improves the adhesion and the contact resistance value of the noble metal coating layer after the high-temperature heat treatment.

本発明の望ましい実施形態を説明する。本発明における電気接点部品用材料とは、特定の形状を有する銅基析出型合金材料(板材、条材、棒材、線材等)の導電性基材に貴金属被覆層が施された電気接点部品用金属材料全般を意味する。   Preferred embodiments of the present invention will be described. The material for electrical contact components in the present invention is an electrical contact component in which a noble metal coating layer is applied to a conductive base material of a copper-based precipitation type alloy material (plate material, strip material, bar material, wire material, etc.) having a specific shape. Means general metal materials.

本発明に用いられるの銅基析出型合金には、ベリリウム銅(例えばC17200、C17530など)、チタン銅(例えばC19900)、クロム銅、鉄添加銅合金(例えばC19400)などが適用できるが、特にニッケル(Ni)と珪素(Si)を含有するコルソン合金は強度および導電性に優れ推奨される。前記コルソン合金において、NiとSiは金属間化合物として析出して強度を高める。   As the copper-based precipitation type alloy used in the present invention, beryllium copper (for example, C17200, C17530, etc.), titanium copper (for example, C19900), chromium copper, iron-added copper alloy (for example, C19400), etc. can be applied. A Corson alloy containing (Ni) and silicon (Si) is recommended because of its excellent strength and conductivity. In the Corson alloy, Ni and Si are precipitated as intermetallic compounds to increase the strength.

貴金属層は、必要に応じて耐食性を上げるための防錆処理や、潤滑性を付与するための処理(例えば有機皮膜の形成)等がされたものでもよく、これらの処理前(例えば有機皮膜の形成前)の最表面に貴金属またはその貴金属を主成分とする合金が現れていることを意味する。   The precious metal layer may be subjected to rust prevention treatment for improving corrosion resistance, treatment for imparting lubricity (for example, formation of an organic film) or the like before the treatment (for example, organic film formation). It means that a noble metal or an alloy containing the noble metal as a main component appears on the outermost surface before formation).

貴金属層は、1層以上形成されていれば良く、例えば銀被覆層上の金被覆層、パラジウム被覆層上の金被覆層など、複数層設けられていてもよいが、層数が多くなると製造工程が煩雑となり、かつ層数を増やす効果が飽和するので、多くとも3層までが好ましい。被覆の形態は、条表面全体が覆われているものや、電気接点材としてプレス形成されたときに接点材として有効に作用する箇所のみ被覆されたものでも良く、例えばストライプ状やスポット状に形成されたものなどが含まれる。   One or more noble metal layers may be formed. For example, a plurality of layers such as a gold coating layer on a silver coating layer and a gold coating layer on a palladium coating layer may be provided. Since the process becomes complicated and the effect of increasing the number of layers is saturated, at most three layers are preferable. The form of the coating may be one in which the entire surface of the strip is covered, or one that is coated only in a location that acts effectively as a contact material when it is press-formed as an electrical contact material. For example, it is formed in a stripe shape or a spot shape. Included.

ここで、電気接点部品が各種スイッチ接点部品のように、平板状の材料を加工して形成することが望ましい形状の場合は、電気接点部品用材料の形状は、条状(リボン状・フープ状とも言う)または板状が好ましく、材料板厚や板幅などは、特に制限なく利用できるが、好ましくは板厚0.03〜0.5mm、板幅3〜200mmが適当である。もしくは広幅に製造した後、スリットを行って必要な幅に切断する方法も可能である。なお、電気接点部品が形状を問わない場合は、電気接点部品用材料の形状も、板材、条材、棒材、線材等の形状を問わない。   Here, when the electrical contact part is a shape that is desirably formed by processing a flat plate material, such as various switch contact parts, the shape of the electrical contact part material is a strip shape (ribbon shape / hoop shape). It is also preferably a plate shape, and the material plate thickness, plate width and the like can be used without particular limitation, but preferably a plate thickness of 0.03 to 0.5 mm and a plate width of 3 to 200 mm are suitable. Or after manufacturing to wide width, the method of cut | disconnecting to a required width | variety by slitting is also possible. In addition, when an electrical contact component does not ask | require a shape, the shape of a material for electrical contact components does not ask | require shapes, such as a board | plate material, a strip, a rod, a wire.

本発明の実施形態に係る電気接点部品用金属材料によれば、銅基析出型合金の導電性基材と、この最表面に形成された貴金属層との間には、2層以上の中間金属層が設けられる。具体的には、基材側からニッケル(Ni)またはその合金もしくはコバルト(Co)またはその合金の第1中間金属層が設けられ、さらにその上層に銅またはその合金の第2中間金属層が設けられる。図1は第1の実施形態に係る電気接点部品用金属材料の一例を示す断面図、図2は第2の実施形態に係る電気接点部品用金属材料の一例を示す断面図である。図1および図2において、1は導電性基材、2は第1中間金属層、3は第2中間金属層、4は貴金属層である。   According to the metal material for electrical contact parts according to the embodiment of the present invention, there are two or more intermediate metals between the conductive base material of the copper-based precipitation type alloy and the noble metal layer formed on the outermost surface. A layer is provided. Specifically, a first intermediate metal layer of nickel (Ni) or its alloy or cobalt (Co) or its alloy is provided from the substrate side, and a second intermediate metal layer of copper or its alloy is further provided thereon. It is done. FIG. 1 is a cross-sectional view showing an example of a metal material for electrical contact parts according to the first embodiment, and FIG. 2 is a cross-sectional view showing an example of a metal material for electrical contact parts according to the second embodiment. 1 and 2, 1 is a conductive substrate, 2 is a first intermediate metal layer, 3 is a second intermediate metal layer, and 4 is a noble metal layer.

導電性基材を構成する銅合金は、1.5〜4.2質量%のニッケル(Ni)と0.3〜1.4質量%の珪素(Si)を含むコルソン系(Cu−Ni−Si系)合金であることが好ましい。また、NiとSiの質量比については、3〜5の範囲が好ましく、3.5〜4.5の範囲がより好ましい。さらに、代表的な析出物であるNiSiの質量比(約4.2)に近いほど好ましい。導電性基材を構成する銅合金を、上記組成のコルソン系合金とすると、導電性、バネ性、耐久性に優れるので、電気接点部品の小形化および薄肉化が図れる。Niが1.5質量%未満(Siが0.3質量%未満)の場合は、導電性基材としての強度が不十分となり、Niが4.2質量%を超える(Siが1.4質量%を超える)と導電性基材に割れが発生しやすくなるため好ましくない。 The copper alloy constituting the conductive substrate is a Corson-based (Cu-Ni-Si) containing 1.5 to 4.2 mass% nickel (Ni) and 0.3 to 1.4 mass% silicon (Si). System) alloys. Moreover, about the mass ratio of Ni and Si, the range of 3-5 is preferable, and the range of 3.5-4.5 is more preferable. Furthermore, the closer to the mass ratio (about 4.2) of Ni 2 Si which is a typical precipitate, the better. If the copper alloy constituting the conductive base material is a Corson alloy having the above composition, it is excellent in conductivity, springiness, and durability, so that the electrical contact component can be reduced in size and thickness. When Ni is less than 1.5% by mass (Si is less than 0.3% by mass), the strength as a conductive substrate becomes insufficient, and Ni exceeds 4.2% by mass (Si is 1.4% by mass). %), It is not preferable because the conductive base material tends to crack.

また、導電性基材の引張強さに関して、以下の関係が成立している。すなわち、(1)圧延方向の引張強さ、(2)圧延方向となす角度が45°方向の引張強さ、(3)圧延方向となす角度が90°方向の引張強さ、の3つの引張強さの関係について、(1)〜(3)の最大値が600MPa以上、かつ(1)〜(3)の引張強度の最大値と最小値との比が85%以上100%以下であることである。なお、引張強度の最大値と最小値との比は、90%以上100%以下が好ましく、95%以上100%以下がさらに好ましい。引張強度の最大値と最小値との比は、電気接点部品用金属材料を電気接点部品として加工する際の機械的異方性と密接に関連し、例えば電気接点部品が多方向スイッチである場合の操作性などに直接影響を与える。このため、引張強度の最大値と最小値との比は、極力100%に近いことが好ましいといえる。この関係を満足しない場合、(1)〜(3)の最大値が600MPa未満となる場合は導電性基材としての強度が不十分となるため好ましくない。また、(1)〜(3)の最大値と最小値との比が85%未満の場合は、電気接点部品が用いられるスイッチの操作性を損ねるだけでなく、例えば半田付け工程や溶融工程(リフロー工程等)のような300℃程度の熱処理を伴う製造工程後に、貴金属層が導電性基材から剥離する割合が急激に高まるため好ましくない。この観点については、本出願人が特願2007−237213において既に提案している。   Moreover, the following relationship is materialized regarding the tensile strength of an electroconductive base material. That is, (1) Tensile strength in the rolling direction, (2) Tensile strength in which the angle with the rolling direction is 45 °, and (3) Tensile strength in which the angle with the rolling direction is 90 °. Regarding the strength relationship, the maximum value of (1) to (3) is 600 MPa or more, and the ratio between the maximum value and the minimum value of the tensile strength of (1) to (3) is 85% or more and 100% or less. It is. The ratio between the maximum value and the minimum value of the tensile strength is preferably 90% or more and 100% or less, and more preferably 95% or more and 100% or less. The ratio between the maximum value and the minimum value of the tensile strength is closely related to the mechanical anisotropy when the metal material for electrical contact parts is processed as an electrical contact part. For example, when the electrical contact part is a multidirectional switch Directly affects the operability of the system. For this reason, it can be said that the ratio between the maximum value and the minimum value of the tensile strength is preferably as close to 100% as possible. When this relationship is not satisfied, when the maximum value of (1) to (3) is less than 600 MPa, the strength as the conductive substrate becomes insufficient, which is not preferable. Further, when the ratio between the maximum value and the minimum value of (1) to (3) is less than 85%, not only the operability of the switch using the electrical contact parts is impaired, but also, for example, a soldering process or a melting process ( Since the rate at which the noble metal layer is peeled off from the conductive substrate is rapidly increased after a manufacturing process involving a heat treatment at about 300 ° C. such as a reflow process, it is not preferable. This point of view has already been proposed by the present applicant in Japanese Patent Application No. 2007-237213.

第1中間金属層の厚さは、0.005〜1.0μmに規定される。これは、0.005μm未満であると、第1中間金属層にピンホールと呼ばれる孔が著しく生じ、そこより浸入した酸素が基材表面を酸化して密着性低下の原因となるためであり、逆に1.0μmを超えると、電気接点部品材料をプレスした際に第1中間金属層にクラックが生じ、結果的に第2中間金属層および貴金属層にクラックが生じてしまうため、クラックから基材成分が拡散して接触抵抗上昇や腐食発生等の問題が起こる。このように、第1中間金属層を上記規定厚さ範囲内に形成することで耐熱密着性向上の効果を発揮するが、0.05〜1.0μmの範囲が好ましく、0.1〜0.5μmの範囲がさらに好ましい。   The thickness of the first intermediate metal layer is specified to be 0.005 to 1.0 μm. This is because if it is less than 0.005 μm, a hole called a pinhole is remarkably generated in the first intermediate metal layer, and oxygen that has infiltrated therefrom oxidizes the substrate surface and causes a decrease in adhesion, On the other hand, if the thickness exceeds 1.0 μm, a crack occurs in the first intermediate metal layer when the electric contact part material is pressed, and as a result, a crack occurs in the second intermediate metal layer and the noble metal layer. Diffusing material components causes problems such as increased contact resistance and corrosion. Thus, although the effect of improving heat-resistant adhesion is exhibited by forming the first intermediate metal layer within the specified thickness range, the range of 0.05 to 1.0 μm is preferable, and 0.1 to 0.00. The range of 5 μm is more preferable.

上記第1中間金属層の表面に形成される第2中間金属層の厚さは、0.005〜1.0μmに規定される。0.005μm未満であると、酸素の捕捉剤として働くCuまたはその合金の量が不十分であり、容易に第1中間金属層の成分を酸化して、耐熱密着性が不十分となる。また、1.0μmを超えると、酸素の捕捉剤量としては十分であるが、加熱時にCuが貴金属接点表面にまで拡散して表面に露出し、表層で酸化物を形成して接触抵抗を増大させてしまうため、不適当である。このように、第2中間金属層を上記規定厚さ範囲内に形成することで耐熱密着性向上の効果を発揮するが、0.05〜0.5μmの範囲が好ましく、0.1〜0.2μmの範囲がさらに好ましい。   The thickness of the second intermediate metal layer formed on the surface of the first intermediate metal layer is specified to be 0.005 to 1.0 μm. If it is less than 0.005 μm, the amount of Cu or an alloy thereof acting as an oxygen scavenger is insufficient, and the components of the first intermediate metal layer are easily oxidized, resulting in insufficient heat-resistant adhesion. Also, if it exceeds 1.0 μm, the amount of oxygen scavenger is sufficient, but when heated, Cu diffuses to the surface of the noble metal contact and is exposed to the surface, forming an oxide on the surface layer and increasing the contact resistance. This is inappropriate. Thus, although the effect of improving heat-resistant adhesion is exhibited by forming the second intermediate metal layer within the specified thickness range, the range of 0.05 to 0.5 μm is preferable, and 0.1 to 0. The range of 2 μm is more preferable.

また、導電性基材の最表面に形成される貴金属層は、貴金属の中でも安定性や低接触抵抗の観点から、金(Au)またはその合金、銀(Ag)またはその合金、パラジウム(Pd)またはその合金、白金(Pt)またはその合金、ルテニウム(Ru)またはその合金のいずれかを含むことが好ましい。特にAu、Ag、Pdまたはこれらを含む以下の合金(Au−Co、Au−Pd、Au−Ag、Ag−Pd、Ag−Cu、Ag−Sn、Ag−Se、Ag−Sb、Pd−Ni)が好ましい。   Further, the noble metal layer formed on the outermost surface of the conductive substrate is gold (Au) or an alloy thereof, silver (Ag) or an alloy thereof, palladium (Pd) from the viewpoint of stability and low contact resistance among noble metals. Alternatively, it is preferable to include any of an alloy thereof, platinum (Pt) or an alloy thereof, ruthenium (Ru) or an alloy thereof. In particular, Au, Ag, Pd or the following alloys containing these (Au—Co, Au—Pd, Au—Ag, Ag—Pd, Ag—Cu, Ag—Sn, Ag—Se, Ag—Sb, Pd—Ni) Is preferred.

これら貴金属層の厚さは、0.05〜5.0μmで規定される。これは、0.05μm未満であると貴金属層にピンホールと呼ばれる孔が生じるため、貴金属層と中間層とで電位差が生じ、腐食が発生して接触抵抗が増大してしまう。逆に5.0μmを超えると、プレス加工や曲げ加工によりめっきに割れが発生しやすくなるため好ましくない。また、高価な貴金属を使用するために製造コスト上昇につながる点でも好ましくない。このように、貴金属層は上記規定厚さ範囲内に形成することで接点部品材料としての効果を十分発揮するが、0.05〜2.0μmであることが好ましく、0.2〜1.0μmで形成するのがさらに好ましい。   The thickness of these noble metal layers is defined by 0.05 to 5.0 μm. This is because if the thickness is less than 0.05 μm, a hole called a pin hole is generated in the noble metal layer, and therefore a potential difference is generated between the noble metal layer and the intermediate layer, and corrosion occurs to increase the contact resistance. On the other hand, if it exceeds 5.0 μm, it is not preferable because cracking is likely to occur in the plating due to press working or bending. Moreover, since expensive precious metals are used, it is not preferable in that the manufacturing cost increases. As described above, the noble metal layer exhibits a sufficient effect as a contact part material by being formed within the specified thickness range, but is preferably 0.05 to 2.0 μm, preferably 0.2 to 1.0 μm. More preferably, it is formed by.

また、導電性基材を構成する銅合金として、1.5〜4.2質量%のニッケル(Ni)と0.3〜1.4質量%の珪素(Si)を含み、残部が不可避的不純物および銅からなるコルソン系(Cu−Ni−Si系)合金のほか、前記銅合金に、さらにマグネシウム(Mg)、スズ(Sn)、亜鉛(Zn)、クロム(Cr)の群から選ばれる少なくとも1つを適量含有させることにより強度を向上させることができる。その含有量はそれぞれ、Mgは0.05〜0.2質量%、Snは0.1〜0.5質量%、Znは0.1〜1.0質量%、Crは0.05〜0.5質量%であることが好ましい。   Moreover, as a copper alloy which comprises an electroconductive base material, 1.5-4.2 mass% nickel (Ni) and 0.3-1.4 mass% silicon (Si) are included, and the remainder is an inevitable impurity. And at least one selected from the group consisting of magnesium (Mg), tin (Sn), zinc (Zn), and chromium (Cr), in addition to a Corson (Cu—Ni—Si) alloy made of copper and copper. The strength can be improved by adding an appropriate amount of one. As for the content, Mg is 0.05-0.2 mass%, Sn is 0.1-0.5 mass%, Zn is 0.1-1.0 mass%, Cr is 0.05-0. It is preferably 5% by mass.

これらの電気接点部品用金属材料の各金属層(第1中間金属層、第2中間金属層、貴金属層等)は、クラッド法やスパッタ・蒸着等による手法で形成することができるが、薄膜でかつ均一に、生産性よく製造するためには、めっき法によって形成することが望ましい。中でも湿式めっき法が最も低コストであり、生産性も良いことから最も望ましい。   Each metal layer (the first intermediate metal layer, the second intermediate metal layer, the noble metal layer, etc.) of the metal material for electrical contact parts can be formed by a clad method, a sputtering method, a vapor deposition method, or the like. In order to produce the product uniformly and with high productivity, it is desirable to form it by a plating method. Of these, the wet plating method is the most desirable because it has the lowest cost and good productivity.

以下に本発明を実施例に基づいてさらに詳細に説明する。なお本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to these.

[実施例1]
(試料の説明)
導電性基材として、厚さ0.1mm、幅180mmのコルソン合金条を用いた。この条に電解脱脂、酸洗の前処理を行った後、めっき構成材を作製し、表1に示す本発明および比較例の電気接点部品用金属材料を得た。表1には、導電性基材の引張強さの最大値、および引張強さの最大値と最小値との比をあわせて示す。引張強さは、板材の圧延方向、圧延方向となす角度が45°方向、圧延方向となす角度が90°方向の3つの方向を引張方向とする引張試験片(JIS Z 2201−5号試験片)を切り出し、JIS Z 2241に準じて引張強さを測定した。また、このように各方向の引張強さを各3本ずつ測定して平均値を算出し、3つの方向の引張強さ(平均値)の最大値および最大値と最小値との比を求めた。
[Example 1]
(Description of sample)
A Corson alloy strip having a thickness of 0.1 mm and a width of 180 mm was used as the conductive substrate. After pre-treatment of electrolytic degreasing and pickling on this strip, a plating component was prepared, and the metal materials for electrical contact parts of the present invention and comparative examples shown in Table 1 were obtained. Table 1 also shows the maximum value of the tensile strength of the conductive substrate and the ratio between the maximum value and the minimum value of the tensile strength. Tensile strength is a tensile test piece (JIS Z 2201-5 No. Specimen) having three directions, the rolling direction of the plate material, the angle formed with the rolling direction is 45 °, and the angle formed with the rolling direction is 90 °. ) Was cut out, and the tensile strength was measured according to JIS Z 2241. In addition, the average value is calculated by measuring three tensile strengths in each direction in this way, and the maximum value and the ratio between the maximum value and the minimum value of the tensile strength (average value) in the three directions are obtained. It was.

ここで、表1に示される導電性基材の組成について示す。組成X,Yは、組成としての比較例である。なお、数字は質量%で、残部は銅(Cu)および不可避的不純物である。
組成A:Cu−2.3Ni−0.55Si−0.15Sn−0.5Zn−0.1Mg
組成B:Cu−3.75Ni−0.9Si−0.15Sn−0.5Zn−0.1Mg
組成C:Cu−2.0Ni−0.4Si
組成D:Cu−3.0Ni−0.65Si−0.1Mg
組成E:Cu−2.5Ni−0.56Si−0.5Zn
組成F:Cu−2.5Ni−0.56Si−0.15Sn−0.5Zn−0.1Mg
組成G:Cu−4.2Ni−1.4Si−0.15Sn−0.5Zn−0.1Mg
組成H:Cu−1.5Ni−0.3Si−0.15Sn−0.5Zn−0.1Mg
組成X:Cu−1.2Ni−0.3Si
組成Y:Cu−4.2Ni−1.6Si
Here, it shows about the composition of the electroconductive base material shown by Table 1. FIG. Compositions X and Y are comparative examples as compositions. In addition, a number is the mass% and the remainder is copper (Cu) and inevitable impurities.
Composition A: Cu-2.3Ni-0.55Si-0.15Sn-0.5Zn-0.1Mg
Composition B: Cu-3.75Ni-0.9Si-0.15Sn-0.5Zn-0.1Mg
Composition C: Cu-2.0Ni-0.4Si
Composition D: Cu-3.0Ni-0.65Si-0.1Mg
Composition E: Cu-2.5Ni-0.56Si-0.5Zn
Composition F: Cu-2.5Ni-0.56Si-0.15Sn-0.5Zn-0.1Mg
Composition G: Cu-4.2Ni-1.4Si-0.15Sn-0.5Zn-0.1Mg
Composition H: Cu-1.5Ni-0.3Si-0.15Sn-0.5Zn-0.1Mg
Composition X: Cu-1.2Ni-0.3Si
Composition Y: Cu-4.2Ni-1.6Si

Figure 2009215632
Figure 2009215632

(試験条件)
上記の電気接点部品用金属材料に関して、耐熱密着性を求めるために、300℃〜450℃の範囲内の加熱温度で15分間の大気加熱試験を実施し、その密着性について、テープ剥離試験(JIS−H8504)における試験を実施した。その耐熱密着性評価、常態と400℃15分間の大気加熱試験後の接触抵抗値測定、プレス性評価について表2に示した。なお、表2には参考として製造コストの比較も◎○△▲×の5段階で表記し、◎ほど良好であることを示しており、△〜◎が実際の量産に有用なレベルを意味する。具体的には、◎はコスト最小値〜最小値の2倍、○はコスト最小値の2倍〜4倍、△はコスト最小値の4〜8倍、▲はコスト最小値の8倍〜16倍、×はコスト最小値の16倍より高いことをそれぞれ意味する。
(Test conditions)
In order to obtain heat-resistant adhesion for the above metal materials for electrical contact parts, an atmospheric heating test for 15 minutes was performed at a heating temperature in the range of 300 ° C. to 450 ° C., and the tape peeling test (JIS) -H8504). The heat resistance adhesion evaluation, the normal state, the contact resistance value measurement after the atmospheric heating test at 400 ° C. for 15 minutes, and the pressability evaluation are shown in Table 2. For reference, Table 2 also shows the comparison of manufacturing costs in five stages, ◎ ○ △ ▲ ×, indicating that ◎ is better, and Δ to ◎ mean levels useful for actual mass production. . Specifically, ◎ is the minimum cost value to twice the minimum value, ◯ is the cost minimum value is 2 to 4 times, △ is the cost minimum value 4 to 8 times, and ▲ is the cost minimum value 8 to 16 times. Double and x mean higher than 16 times the minimum cost.

めっき条件および評価方法を下記に示す。   Plating conditions and evaluation methods are shown below.

(めっき条件)
[Niめっき]
めっき液・・・Ni(NHSOH):500g/l、NiCl:30g/l、HBO:30g/l
めっき条件・・・電流密度:15A/dm、温度:50℃
(Plating conditions)
[Ni plating]
Plating solution: Ni (NH 2 SO 3 H): 500 g / l, NiCl 2 : 30 g / l, H 3 BO 3 : 30 g / l
Plating conditions: current density: 15 A / dm 2 , temperature: 50 ° C.

[Coめっき]
めっき液・・・CoSO:400g/l、NaCl:20g/l、HBO:40g/l
めっき条件・・・電流密度:5A/dm、温度:30℃
[Co plating]
Plating solution: CoSO 4 : 400 g / l, NaCl: 20 g / l, H 3 BO 3 : 40 g / l
Plating conditions: current density: 5 A / dm 2 , temperature: 30 ° C.

[Cuめっき]
めっき液・・・CuSO・5HO:250g/l、HSO:50g/l、NaCl:0.1g/l
めっき条件・・・電流密度:6A/dm、温度:40℃
[Cu plating]
Plating solution: CuSO 4 .5H 2 O: 250 g / l, H 2 SO 4 : 50 g / l, NaCl: 0.1 g / l
Plating conditions: current density: 6 A / dm 2 , temperature: 40 ° C.

[Agめっき]
めっき液・・・AgCN:50g/l、KCN:100g/l、KCO:30g/l
めっき条件・・・電流密度:0.5〜3A/dm、温度:30℃
[Ag plating]
Plating solution: AgCN: 50 g / l, KCN: 100 g / l, K 2 CO 3 : 30 g / l
Plating conditions: current density: 0.5-3 A / dm 2 , temperature: 30 ° C.

[光沢Agめっき]
めっき液・・・AgCN:50g/l、KCN:100g/l、KCO:30g/l、Na:1.58g/l
めっき条件・・・電流密度:1A/dm、温度:30℃
[Glossy Ag plating]
Plating solution: AgCN: 50 g / l, KCN: 100 g / l, K 2 CO 3 : 30 g / l, Na 2 S 2 O 3 : 1.58 g / l
Plating conditions: current density: 1 A / dm 2 , temperature: 30 ° C.

[Pd−Ni合金めっき:Pd/Ni(%) 80/20]
めっき液・・・Pd(NHCl:40g/l、NiSO:45g/l、NHOH:90ml/l、(NHSO:50g/l
めっき条件・・・電流密度:1A/dm、温度:30℃
[Pd—Ni alloy plating: Pd / Ni (%) 80/20]
Plating solution: Pd (NH 3 ) 2 Cl 2 : 40 g / l, NiSO 4 : 45 g / l, NH 4 OH: 90 ml / l, (NH 4 ) 2 SO 4 : 50 g / l
Plating conditions: current density: 1 A / dm 2 , temperature: 30 ° C.

[Pdめっき]
めっき液・・・Pd(NHCl:45g/l、NHOH:90ml/l、(NHSO:50g/l
めっき条件・・・電流密度:1A/dm、温度:30℃
[Pd plating]
Plating solution: Pd (NH 3 ) 2 Cl 2 : 45 g / l, NH 4 OH: 90 ml / l, (NH 4 ) 2 SO 4 : 50 g / l
Plating conditions: current density: 1 A / dm 2 , temperature: 30 ° C.

[Au−Coめっき]
めっき液・・・KAu(CN):14.6g/l、C:150g/l、K:180g/l、EDTA−Co(II):3g/l、ピペラジン:2g/l
めっき条件・・・電流密度:1A/dm、温度:40℃
[Au-Co plating]
Plating solution: KAu (CN) 2 : 14.6 g / l, C 6 H 8 O 7 : 150 g / l, K 2 C 6 H 4 O 7 : 180 g / l, EDTA-Co (II): 3 g / l, piperazine: 2 g / l
Plating conditions: current density: 1 A / dm 2 , temperature: 40 ° C.

[Ruめっき]
めっき液・・・RuNOCl・5HO:10g/l、NHSOH:15g/l
めっき条件・・・電流密度:1A/dm、温度:50℃
[Ru plating]
Plating solution ... RuNOCl 3 · 5H 2 O: 10 g / l, NH 2 SO 3 H: 15 g / l
Plating conditions: current density: 1 A / dm 2 , temperature: 50 ° C.

[耐熱密着性試験]
恒温層(エスペック(株)製 STPH−100)において、300℃、350℃、400℃、450℃のそれぞれについて、15分間の加熱試験を実施後、テープ剥離試験を実施した。テープ剥離試験に用いるテープとして、(株)寺岡製作所製の「#631S」を用いた。試験片サイズは、幅30mm、長さ50mm(長さ方向が導電性基材の圧延方向)とした。評価結果は、○を剥離なし、△を部分剥離、×を全面剥離とした。結果を表2に示す。
[Heat resistance adhesion test]
In a constant temperature layer (STPH-100 manufactured by ESPEC Corp.), a tape peeling test was performed after performing a heating test for 15 minutes for each of 300 ° C, 350 ° C, 400 ° C, and 450 ° C. As a tape used for the tape peeling test, “# 631S” manufactured by Teraoka Seisakusho Co., Ltd. was used. The test piece size was 30 mm in width and 50 mm in length (the length direction is the rolling direction of the conductive substrate). In the evaluation results, “◯” indicates no peeling, “Δ” indicates partial peeling, and “×” indicates peeling. The results are shown in Table 2.

[接触抵抗測定]
4端子法を用いて、被覆初期(常態)のサンプル及び400℃15分間の大気加熱試験後のサンプルについて、それぞれ接触抵抗測定を行った。測定条件は、AgプローブR=2mm、荷重10g(=約0.1N)、10mA通電時の抵抗値を測定した。結果を表2に示す。
[Contact resistance measurement]
Using the four-terminal method, contact resistance measurement was performed on a sample at the initial stage of coating (normal state) and a sample after an atmospheric heating test at 400 ° C. for 15 minutes. The measurement conditions were an Ag probe R = 2 mm, a load 10 g (= about 0.1 N), and a resistance value when 10 mA was energized. The results are shown in Table 2.

[加工性評価]
得られた試料を幅10mm、長さ30mm(長さ方向が導電性基材の圧延方向)に切断後、圧延方向と直角な方向にV曲げ(90°)を行い、頂点部についてマイクロスコープ((株)キーエンス製 VH8000)にて、450倍で観察し、割れの有無を確認した。結果を表2に示す。
[Processability evaluation]
The obtained sample was cut into a width of 10 mm and a length of 30 mm (the length direction is the rolling direction of the conductive base material), and then V-bent (90 °) in a direction perpendicular to the rolling direction. (VH8000 manufactured by Keyence Co., Ltd.) was observed at 450 times, and the presence or absence of cracks was confirmed. The results are shown in Table 2.

Figure 2009215632
Figure 2009215632

本発明の実施例1〜26は、いずれも耐熱密着性、接触抵抗、加工性とも良好となった。これに対して、比較例1は、第1中間金属層が存在しないため、耐熱密着性と接触抵抗が劣った。比較例2は、第2中間金属層が存在しないため、耐熱密着性が劣った。比較例3は、第1中間金属層が薄すぎるため、耐熱密着性と接触抵抗が劣った。比較例4は、第1中間金属層が厚すぎるため、曲げ加工後に割れが発生した。比較例5は、第2中間金属層が厚すぎるため、接触抵抗が劣った。比較例6〜7は、貴金属層が厚すぎるため、曲げ加工後に割れが発生した。比較例8は、導電性基材の3方向の引張強さの最大値と最小値との比が85%未満のため、耐熱密着性、接触抵抗、曲げ加工性のいずれも劣った。比較例9は、導電性基材に含有されるNiの量が少ないため、耐熱密着性、接触抵抗、曲げ加工性のいずれも劣った。比較例10は、導電性基材に含有されるSiの量が多いため、耐熱密着性、接触抵抗、曲げ加工性のいずれも劣った。   In each of Examples 1 to 26 of the present invention, the heat-resistant adhesion, contact resistance, and workability were all good. In contrast, Comparative Example 1 was inferior in heat-resistant adhesion and contact resistance because the first intermediate metal layer was not present. In Comparative Example 2, since the second intermediate metal layer was not present, the heat resistant adhesion was inferior. In Comparative Example 3, the heat resistance adhesion and contact resistance were inferior because the first intermediate metal layer was too thin. In Comparative Example 4, since the first intermediate metal layer was too thick, cracks occurred after bending. In Comparative Example 5, the contact resistance was inferior because the second intermediate metal layer was too thick. In Comparative Examples 6 to 7, since the noble metal layer was too thick, cracks occurred after bending. In Comparative Example 8, since the ratio of the maximum value and the minimum value of the tensile strength in the three directions of the conductive base material was less than 85%, all of heat resistance adhesion, contact resistance, and bending workability were inferior. In Comparative Example 9, since the amount of Ni contained in the conductive base material was small, all of heat resistant adhesion, contact resistance, and bending workability were inferior. In Comparative Example 10, since the amount of Si contained in the conductive substrate was large, all of heat resistant adhesion, contact resistance, and bending workability were inferior.

すなわち、本発明の各実施例は、いずれも耐熱密着性、接触抵抗、加工性に優れ、電気接点部品であるスイッチの操作性が改善され、高温熱処理後における貴金属被覆層の密着性および接触抵抗値が向上した電気接点部品用金属材料であることがわかる。   That is, each example of the present invention is excellent in heat-resistant adhesion, contact resistance, and workability, the operability of the switch as an electrical contact part is improved, and the adhesion and contact resistance of the noble metal coating layer after high-temperature heat treatment It turns out that it is a metal material for electrical contact parts with improved values.

本発明の第1の実施形態に係る電気接点部品用金属材料の一例を示す断面図。Sectional drawing which shows an example of the metal material for electrical contact components which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る電気接点部品用金属材料の一例を示す断面図。Sectional drawing which shows an example of the metal material for electrical contact components which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 導電性基材
2 第1中間金属層
3 第2中間金属層
4 貴金属層
DESCRIPTION OF SYMBOLS 1 Conductive base material 2 1st intermediate metal layer 3 2nd intermediate metal layer 4 Noble metal layer

Claims (6)

銅合金材料を導電性基材とし、かつその最表面の少なくとも一部に貴金属層が被覆された電気接点部品用金属材料であって、
前記導電性基材を構成する銅合金は、銅基析出型合金であって、
前記導電性基材の圧延方向の引張強さと、圧延方向となす角度が45°方向の引張強さと、圧延方向となす角度が90°方向の引張強さの3つの引張強さの関係について、最大値が600MPa以上、かつ引張強度の最大値と最小値との比が85%以上100%以下であり、
前記導電性基材と前記貴金属層との間に、少なくとも2層の中間金属層が設けられ、
前記中間金属層は、前記導電性基材に近い順に第1中間金属層および第2中間金属層を含み、前記第1中間金属層は、ニッケルまたはその合金、もしくはコバルトまたはその合金により0.005〜1.0μmの厚さに形成され、前記第2中間金属層は、銅またはその合金により0.005〜1.0μmの厚さに形成されており、
300℃15分間の大気中における加熱後に前記導電性基材と前記貴金属層との密着状態が維持され、
400℃15分間の大気中における加熱後の接触抵抗値が10mΩ以下であることを特徴とする電気接点部品用金属材料。
A metal material for electrical contact parts, in which a copper alloy material is a conductive base material and at least a part of the outermost surface is coated with a noble metal layer,
The copper alloy constituting the conductive substrate is a copper-based precipitation type alloy,
Regarding the relationship between the tensile strength in the rolling direction of the conductive substrate, the tensile strength in the 45 ° direction with respect to the rolling direction, and the tensile strength in the 90 ° direction with respect to the rolling direction, The maximum value is 600 MPa or more, and the ratio of the maximum value and the minimum value of the tensile strength is 85% or more and 100% or less,
At least two intermediate metal layers are provided between the conductive substrate and the noble metal layer,
The intermediate metal layer includes a first intermediate metal layer and a second intermediate metal layer in order of proximity to the conductive base material. The first intermediate metal layer is made of nickel or an alloy thereof, or cobalt or an alloy thereof by 0.005. The second intermediate metal layer is formed of copper or an alloy thereof to a thickness of 0.005 to 1.0 μm,
After the heating in the atmosphere at 300 ° C. for 15 minutes, the adhesion state between the conductive substrate and the noble metal layer is maintained,
A metal material for electrical contact parts, wherein the contact resistance value after heating in the atmosphere at 400 ° C. for 15 minutes is 10 mΩ or less.
前記貴金属層が、金またはその合金、銀またはその合金、パラジウムまたはその合金、白金またはその合金、ルテニウムまたはその合金のいずれかを含むことを特徴とする、請求項1記載の電気接点部品用金属材料。   2. The metal for electrical contact parts according to claim 1, wherein the noble metal layer includes any one of gold or an alloy thereof, silver or an alloy thereof, palladium or an alloy thereof, platinum or an alloy thereof, ruthenium or an alloy thereof. material. 前記貴金属層の厚さは、0.05〜5.0μmであることを特徴とする、請求項1または請求項2に記載の電気接点部品用金属材料。   The metal material for electrical contact components according to claim 1 or 2, wherein the noble metal layer has a thickness of 0.05 to 5.0 µm. 前記銅基析出型合金は、1.5〜4.2質量%のニッケルと0.3〜1.4質量%の珪素を含むことを特徴とする、請求項1〜請求項3のいずれかに記載の電気接点部品用金属材料。   The copper-based precipitation type alloy includes 1.5 to 4.2% by mass of nickel and 0.3 to 1.4% by mass of silicon, according to any one of claims 1 to 3. Metal materials for electrical contact parts as described. 前記銅合金材料は、0.05〜0.2質量%のマグネシウム、0.1〜0.5質量%のスズ、0.1〜1.0質量%の亜鉛、0.05〜0.5質量%のクロムの群から選ばれる、少なくとも1つをさらに含有することを特徴とする、請求項4記載の電気接点部品用金属材料。   The copper alloy material is 0.05 to 0.2 mass% magnesium, 0.1 to 0.5 mass% tin, 0.1 to 1.0 mass% zinc, 0.05 to 0.5 mass%. The metal material for electrical contact parts according to claim 4, further comprising at least one selected from the group of% chromium. 前記導電性基材の表面側に設けられる金属層が、めっきにより設けられていることを特徴とする、請求項1〜請求項5のいずれかに記載の電気接点部品用金属材料。   The metal material for electrical contact components according to any one of claims 1 to 5, wherein the metal layer provided on the surface side of the conductive substrate is provided by plating.
JP2008062854A 2008-03-12 2008-03-12 Metal materials for electrical contact parts Active JP5854574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062854A JP5854574B2 (en) 2008-03-12 2008-03-12 Metal materials for electrical contact parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062854A JP5854574B2 (en) 2008-03-12 2008-03-12 Metal materials for electrical contact parts

Publications (2)

Publication Number Publication Date
JP2009215632A true JP2009215632A (en) 2009-09-24
JP5854574B2 JP5854574B2 (en) 2016-02-09

Family

ID=41187771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062854A Active JP5854574B2 (en) 2008-03-12 2008-03-12 Metal materials for electrical contact parts

Country Status (1)

Country Link
JP (1) JP5854574B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099574A1 (en) * 2010-02-12 2011-08-18 古河電気工業株式会社 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
JP5676053B1 (en) * 2014-02-05 2015-02-25 古河電気工業株式会社 Electrical contact material and manufacturing method thereof
JP2017078194A (en) * 2015-10-20 2017-04-27 松田産業株式会社 Laminate plating coating material comprising ruthenium
JP2018178237A (en) * 2017-04-21 2018-11-15 松田産業株式会社 Laminated plating-coated material including ruthenium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111364086B (en) * 2020-04-20 2021-07-27 安徽士必达液压器材有限公司 Nano metal ceramic electrodeposition coating of inner hole wall of petroleum drill rod and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221291A (en) * 1982-06-16 1983-12-22 Furukawa Electric Co Ltd:The Silver coated copper material for electrical connection
JPH09209062A (en) * 1996-01-30 1997-08-12 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment, excellent in surface characteristic
JP2005002400A (en) * 2003-06-11 2005-01-06 Toyo Seihaku Kk Spring material made of stainless steel foil, and its production method
JP2006009137A (en) * 2004-05-27 2006-01-12 Furukawa Electric Co Ltd:The Copper alloy
JP2006219733A (en) * 2005-02-14 2006-08-24 Kobe Steel Ltd Copper alloy sheet for electric-electronic component having reduced anisotropy
JP2008095186A (en) * 2006-09-13 2008-04-24 Furukawa Electric Co Ltd:The Copper-based deposited alloy board for contact material and process for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58221291A (en) * 1982-06-16 1983-12-22 Furukawa Electric Co Ltd:The Silver coated copper material for electrical connection
JPH09209062A (en) * 1996-01-30 1997-08-12 Furukawa Electric Co Ltd:The Copper alloy for electronic equipment, excellent in surface characteristic
JP2005002400A (en) * 2003-06-11 2005-01-06 Toyo Seihaku Kk Spring material made of stainless steel foil, and its production method
JP2006009137A (en) * 2004-05-27 2006-01-12 Furukawa Electric Co Ltd:The Copper alloy
JP2006219733A (en) * 2005-02-14 2006-08-24 Kobe Steel Ltd Copper alloy sheet for electric-electronic component having reduced anisotropy
JP2008095186A (en) * 2006-09-13 2008-04-24 Furukawa Electric Co Ltd:The Copper-based deposited alloy board for contact material and process for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012059155; 珍田 聡, 吉岡 修: '銀/ニッケルめっき間の耐熱密着性に及ぼす銅ストライクめっきの効果' 表面技術 Vol.45 No.1, 1994, p.78-p.81, 一般社団法人 表面技術協会 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099574A1 (en) * 2010-02-12 2011-08-18 古河電気工業株式会社 Silver-coated composite material for movable contact component, method for producing same, and movable contact component
US8637164B2 (en) 2010-02-12 2014-01-28 Furukawa Electric Co., Ltd. Silver-coated composite material for a movable contact part, method of producing the same, and movable contact part
JP5705738B2 (en) * 2010-02-12 2015-04-22 古河電気工業株式会社 Silver-coated composite material for movable contact parts, manufacturing method thereof, and movable contact parts
JP5676053B1 (en) * 2014-02-05 2015-02-25 古河電気工業株式会社 Electrical contact material and manufacturing method thereof
WO2015118627A1 (en) * 2014-02-05 2015-08-13 古河電気工業株式会社 Electrical contact material and manufacturing method thereof
CN105940463A (en) * 2014-02-05 2016-09-14 古河电气工业株式会社 Electrical contact material and manufacturing method thereof
JP2017078194A (en) * 2015-10-20 2017-04-27 松田産業株式会社 Laminate plating coating material comprising ruthenium
JP2018178237A (en) * 2017-04-21 2018-11-15 松田産業株式会社 Laminated plating-coated material including ruthenium

Also Published As

Publication number Publication date
JP5854574B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP4834022B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
JP4834023B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
CA2849410C (en) Metal material for electronic component and method for manufacturing the same
JP5284526B1 (en) Metal material for electronic parts and method for producing the same
JP5170864B2 (en) Copper-based precipitation type alloy sheet for contact material and method for producing the same
TWI794263B (en) Terminal material with silver film and terminal with silver film
JP5184328B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
TWI488733B (en) Metal material for electronic parts and manufacturing method thereof
JP5854574B2 (en) Metal materials for electrical contact parts
EP2905356B1 (en) Metal material for use in electronic component
JP2010146925A (en) Contactor material for electric motor and method of manufacturing the same
US10998108B2 (en) Electrical contact material, method of producing an electrical contact material, and terminal
JP2007291510A (en) Silver coated composite material for movable contact and method for producing the same
JP2012049041A (en) Silver coating material for movable contact component and method for manufacturing the same
JP5298233B2 (en) Metal material for electronic parts and method for producing the same
JP6825360B2 (en) Plated copper terminal material and terminals
KR20210116422A (en) Terminal materials for connectors and terminals for connectors
JP2021038417A (en) Connector terminal material and connector terminal
WO2023234015A1 (en) Surface-coated material for electrical contacts, and electrical contact, switch and connector terminal each using same
JP2020163409A (en) Metal plate spring and manufacturing method for the same
JPWO2014091632A1 (en) Method for manufacturing electrode material for thermal fuse
WO2007116717A1 (en) Silver coated composite material for movable contact and method for producing same
JP2020117769A (en) Terminal material for connector, and terminal for connector
JP2020163408A (en) Metal product and manufacturing method for the same
JP2020128575A (en) Terminal material for connector, terminal for connector, and method of producing terminal material for connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R151 Written notification of patent or utility model registration

Ref document number: 5854574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350