JP4408275B2 - Cu-Ni-Si alloy with excellent strength and bending workability - Google Patents

Cu-Ni-Si alloy with excellent strength and bending workability Download PDF

Info

Publication number
JP4408275B2
JP4408275B2 JP2005283649A JP2005283649A JP4408275B2 JP 4408275 B2 JP4408275 B2 JP 4408275B2 JP 2005283649 A JP2005283649 A JP 2005283649A JP 2005283649 A JP2005283649 A JP 2005283649A JP 4408275 B2 JP4408275 B2 JP 4408275B2
Authority
JP
Japan
Prior art keywords
bending
alloy
strength
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005283649A
Other languages
Japanese (ja)
Other versions
JP2007092135A (en
Inventor
直文 前田
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37978181&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4408275(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2005283649A priority Critical patent/JP4408275B2/en
Publication of JP2007092135A publication Critical patent/JP2007092135A/en
Application granted granted Critical
Publication of JP4408275B2 publication Critical patent/JP4408275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は銅合金に関し、より詳細にはコネクタ、端子、リレ−、スイッチ等の導電性ばね材に用いられる銅合金に関する。   The present invention relates to a copper alloy, and more particularly to a copper alloy used for conductive spring materials such as connectors, terminals, relays and switches.

近年の電子機器の軽薄短小化に伴い、端子、コネクタ等の小型化、薄肉化が進み、使用される電子材料用銅合金には以前にも増して、強度と曲げ加工性が要求されている。この要求に応じ、従来のりん青銅や黄銅といった固溶強化型銅合金に替わりCu−Ni−Si系のコルソン合金やチタン銅といった析出強化型銅合金が使用され、その需要は増加しつつある。析出強化型銅合金の中でもCu−Ni−Si系合金は高強度と比較的高い導電率を兼備する合金系であり、その強化機構は、Cuマトリックス中にNi−Si系の金属間化合物粒子が析出することにより強度を向上させたものである。
一般に強度と曲げ加工性は相反する性質であり、Cu−Ni−Si系合金においても、高強度を維持しつつ曲げ加工性を改善することが従来から望まれてきた。
As electronic devices have become lighter, thinner and shorter in recent years, terminals and connectors have become smaller and thinner, and copper alloys for electronic materials used are required to have higher strength and bending workability than ever before. . In response to this requirement, instead of the conventional solid solution strengthened copper alloys such as phosphor bronze and brass, precipitation strengthened copper alloys such as Cu—Ni—Si based Corson alloy and titanium copper are used, and the demand is increasing. Among precipitation-strengthened copper alloys, Cu-Ni-Si-based alloys are alloy systems that have both high strength and relatively high electrical conductivity, and the strengthening mechanism consists of Ni-Si-based intermetallic compound particles in the Cu matrix. The strength is improved by precipitation.
Generally, strength and bending workability are contradictory properties, and it has been conventionally desired to improve bending workability while maintaining high strength even in a Cu-Ni-Si alloy.

曲げ加工性改善の方法として特許文献1ではCu−Ni−Si系合金系にCoを添加し、溶体化条件を調整することで曲げ加工性を改善している。しかし、添加元素を増やす事は製造コストを増加させる恐れがあった。一方、結晶方位を制御する事で、曲げ加工性を改善する方法が、特許文献2で開示されている。この発明では、(200)面、(220)面、(311)面のX線回折強度をI(200)、I(220)、I(311)として次式を満たす様な集合組織が形成されると曲げ加工性が改善されるとしている。
(I(200)+I(311))/I(220)≧0.5
As a method for improving the bending workability, Patent Document 1 improves the bending workability by adding Co to the Cu—Ni—Si based alloy system and adjusting the solution conditions. However, increasing the additive element may increase the manufacturing cost. On the other hand, Patent Document 2 discloses a method for improving the bending workability by controlling the crystal orientation. In this invention, a texture satisfying the following formula is formed with the X-ray diffraction intensities of the (200) plane, (220) plane, and (311) plane being I (200) , I (220) , I (311). As a result, bending workability is improved.
(I (200) + I (311) ) / I (220) ≧ 0.5

特開平5−179377号公報JP-A-5-179377 特開2000−80428号公報JP 2000-80428 A

しかし、I(200)、I(311)は再結晶時の粒径粗大化により増大すること、I(220)は冷間圧延の加工度上昇により増大することを考慮すると、上式を満足するには結晶粒径の粗大化と冷間圧延の加工度低減が必要であり、これは強度低下を引き起こす。そのため、強度低下を引き起こす結晶粒径の粗大化や冷間圧延の加工度低減などの製造工程の調整を必要とせずに曲げ加工性を改善できる方法が望まれていた。 However, considering that I (200) and I (311) increase due to grain size increase during recrystallization, and I (220) increases due to an increase in the degree of cold rolling, the above equation is satisfied. Requires coarsening of the crystal grain size and reduction of workability of cold rolling, which causes strength reduction. Therefore, there has been a demand for a method that can improve the bending workability without requiring adjustment of the manufacturing process such as the coarsening of the crystal grain size causing the strength reduction and the reduction of the workability of the cold rolling.

本発明は、上記課題を解決することを目的とする。具体的には製造工程を調整し、集合組織を制御することで、高強度を維持しつつ、曲げ加工性が良好なCu−Ni−Si系合金を提供することを課題とする。 The present invention aims to solve the above problems. Specifically, it is an object to provide a Cu—Ni—Si alloy having good bending workability while maintaining high strength by adjusting the manufacturing process and controlling the texture.

本発明者は、X線ディフラクトメーターを用いたCu−Ni−Si系合金の集合組織の測定結果と曲げ加工性の相関を調査した。その結果、{111}正極点図上において{123}<412>方位を含む2つの領域内のX線強度の極大値を制御することで、曲げ加工性が改善できる事を見出した。すなわち、上記領域内の極大値を一定範囲内に制御したCu−Ni−Si系合金では、強度が同程度で他の集合組織を有するCu−Ni−Si系合金に比べて、耐曲げ割れ性が良好であり、曲げしわが低減される。 The inventor investigated the correlation between the measurement result of the texture of the Cu—Ni—Si alloy using an X-ray diffractometer and the bending workability. As a result, it was found that bending workability can be improved by controlling the maximum value of the X-ray intensity in the two regions including the {123} <412> orientation on the {111} positive electrode diagram. That is, the Cu—Ni—Si based alloy in which the maximum value in the above region is controlled within a certain range is more resistant to bending cracking than the Cu—Ni—Si based alloy having the same strength and other textures. Is good and bending wrinkles are reduced.

(A)本発明は、上記知見に基づくものであり、1.0〜4.5質量%のNiと0.25〜1.5質量%のSiを含有し、残部が銅および不可避的不純物から実質的になり、{111}正極点図において、以下の(1)〜(2)の範囲のX線ランダム強度比の極大値が2.0以上10.0以下であることを特徴とする集合組織を有する強度と曲げ加工性に優れたCu−Ni−Si系合金である。
(1)α=20±10°、β=90±10°
(2)α=20±10°、β=270±10°
但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸、β:前記回転軸に平行な軸回りの角度とする。
(A) The present invention is based on the above knowledge and contains 1.0 to 4.5 mass% Ni and 0.25 to 1.5 mass% Si, with the balance being copper and inevitable impurities. In the {111} positive electrode diagram, the maximum value of the X-ray random intensity ratio in the following ranges (1) to (2) is 2.0 or more and 10.0 or less. It is a Cu—Ni—Si based alloy having a texture and excellent bending workability.
(1) α = 20 ± 10 °, β = 90 ± 10 °
(2) α = 20 ± 10 °, β = 270 ± 10 °
Where α is an axis perpendicular to the rotation axis of the diffraction goniometer defined in the Schulz method, and β is an angle around an axis parallel to the rotation axis.

(B)更に本発明はMgを0.005〜0.3質量%含有する上記(A)に記載のCu−Ni−Si系合金である。 (B) Furthermore, this invention is a Cu-Ni-Si type alloy as described in said (A) containing 0.005-0.3 mass% of Mg.

(C)更に本発明はZn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Agのうち1種類以上を総量で0.005〜2.0質量%含有する上記(A)、(B)に記載のCu−Ni−Si系合金である。 (C) Further, the present invention further comprises (A), containing 0.005 to 2.0 mass% in total of one or more of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, and Ag. It is a Cu-Ni-Si alloy described in (B).

以上のことから0.2%耐力が同程度のCu−Ni−Si系合金と比べて、本発明例のCu−Ni−Si系合金は、曲げ割れが発生しにくく、しかも、曲げしわも低減されていることから、高強度を維持しながら耐曲げ割れ性および曲げしわが改善された銅合金として端子、コネクタ等の用途に好適である。   From the above, the Cu-Ni-Si alloy of the example of the present invention is less susceptible to bending cracking and has less bending wrinkles than the Cu-Ni-Si alloy having the same 0.2% proof stress. Therefore, it is suitable for applications such as terminals and connectors as a copper alloy having improved bending cracking resistance and bending wrinkles while maintaining high strength.

以下、本発明の成分組成並びに集合組織の規定理由を、その作用と共に詳述する。   Hereinafter, the reasons for defining the component composition and texture of the present invention will be described in detail together with the action thereof.

[NiおよびSi濃度]
Ni及びSiは、時効処理を行うことにより、NiSi金属間化合物として析出する。NiSi粒子の析出は合金の強度を著しく向上させ、析出に伴い母材に固溶したNiおよびSiが減少することから導電性が向上する。ただし、Ni濃度が1.0質量%未満の場合、またはSi濃度が0.25質量%未満の場合は、他方の成分を添加しても所望とする強度が得られない。また、Ni濃度が4.5質量%を超える場合、またはSi濃度が1.5質量%を超える場合は十分な強度が得られるものの、導電性が低くなり、更には強度の向上に寄与しない粗大なNi−Si系粒子(晶出物及び析出物)が母相中に生成し、耐曲げ割れ性、エッチング性及びめっき性の低下を招く。よって、Ni濃度を1.0〜4.5質量%、Si濃度を0.25〜1.5質量%と定めた。
[Ni and Si concentration]
Ni and Si are precipitated as Ni 2 Si intermetallic compounds by performing an aging treatment. Precipitation of Ni 2 Si particles remarkably improves the strength of the alloy, and Ni and Si dissolved in the base material decrease along with the precipitation, thereby improving conductivity. However, if the Ni concentration is less than 1.0% by mass or the Si concentration is less than 0.25% by mass, the desired strength cannot be obtained even if the other component is added. Moreover, when Ni concentration exceeds 4.5 mass%, or when Si concentration exceeds 1.5 mass%, sufficient strength can be obtained, but the conductivity becomes low, and further coarseness that does not contribute to improvement of strength. Ni-Si-based particles (crystallized substances and precipitates) are formed in the matrix phase, which causes a decrease in bending crack resistance, etching properties and plating properties. Therefore, the Ni concentration was set to 1.0 to 4.5 mass%, and the Si concentration was set to 0.25 to 1.5 mass%.

[Mg濃度]
Mgには応力緩和特性および熱間加工性を改善する効果があるが、0.005質量%未満では所望の効果が得られず、0.30%を超えると鋳造性(鋳肌品質の低下)、熱間加工性及びめっき耐熱剥離性が低下する。よって、Mgの濃度を0.005〜0.3質量%と定めた。
[Mg concentration]
Mg has the effect of improving stress relaxation properties and hot workability, but if it is less than 0.005% by mass, the desired effect cannot be obtained, and if it exceeds 0.30%, castability (decrease in casting surface quality) , Hot workability and plating heat-resistant peelability are reduced. Therefore, the Mg concentration is determined to be 0.005 to 0.3% by mass.

[その他の添加物]
Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Agは、Cu−Ni−Si系合金の強度及び耐熱性を改善する作用がある。また、これらの中でZnには、半田接合の耐熱性を改善する効果もあり、Feには組織を微細化する効果もある。更にTi、Zr、Al及びMnは熱間圧延性を改善する効果を有する。この理由は、これらの元素が硫黄との親和性が強いため硫黄と化合物を形成し、熱間圧延割れの原因であるインゴット粒界への硫化物の偏析を軽減するためである。Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Agの濃度が総量で0.005質量%未満であると上記の効果は得られず、総含有量が2.0質量%を超えると導電性が著しく低下する。そこで、これらの含有量を総量で0.005〜2.0質量%と定めた。
[Other additives]
Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, and Ag have an effect of improving the strength and heat resistance of the Cu—Ni—Si based alloy. Of these, Zn also has an effect of improving the heat resistance of the solder joint, and Fe has an effect of refining the structure. Furthermore, Ti, Zr, Al, and Mn have an effect of improving hot rollability. This is because these elements have a strong affinity for sulfur and form a compound with sulfur to reduce the segregation of sulfide to the ingot grain boundaries, which is the cause of hot rolling cracks. When the total concentration of Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, and Ag is less than 0.005% by mass, the above effect cannot be obtained, and the total content is 2.0% by mass. If it exceeds, the conductivity will be significantly reduced. Therefore, these contents are determined to be 0.005 to 2.0 mass% in total.

[集合組織]
一般に集合組織とは加工、熱処理によって形成される結晶方位の統計的な偏りであり、加工条件、熱処理条件に大きく依存している。本発明者らはX線ディフラクトメーター(株式会社リガク製RINT2500)により製造工程の異なるCu−Ni−Si系合金の集合組織を測定し、Cu−Ni−Si系合金の集合組織と曲げ加工性(耐曲げ割れ性および曲げしわ)の関係を調査した。その結果、両者には相関があり、集合組織の中でも{123}<412>方位の形成が耐曲げ割れ性および曲げしわの大きさと密接な関係があることを見出した。なお、{111}正極点図上で{123}<412>方位はα=22°、β=90°およびα=22°、β=270°に対応する。ここで、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸回りの角度、β:前記回転軸に平行な軸回りの角度である。
[Organization]
In general, a texture is a statistical deviation of crystal orientation formed by processing and heat treatment, and greatly depends on processing conditions and heat treatment conditions. The present inventors measured the texture of Cu—Ni—Si alloys having different manufacturing processes using an X-ray diffractometer (RINT 2500 manufactured by Rigaku Corporation), and the texture and bending workability of Cu—Ni—Si alloys. The relationship between (bending crack resistance and bending wrinkles) was investigated. As a result, there was a correlation between the two, and it was found that the formation of the {123} <412> orientation in the texture was closely related to the resistance to bending cracking and the size of bending wrinkles. In the {111} positive electrode diagram, the {123} <412> orientation corresponds to α = 22 °, β = 90 °, α = 22 °, and β = 270 °. Here, α is an angle around the axis perpendicular to the rotation axis of the diffraction goniometer defined in the Schulz method, and β is an angle around the axis parallel to the rotation axis.

{123}<412>方位の強度を抑制することで、耐曲げ割れ性および曲げしわが改善される理由は明確でないが、{123}<412>方位がCu−Ni−Si系合金の圧延変形の安定方位であり、他の結晶方位を持つ場合に比べ、すべり変形がしにくいことが原因の一つと考えられる。α、βの範囲を特許請求の範囲の(1)、(2)の様に定めた理由は、加工、熱処理条件および測定誤差等から{123}<412>方位に対応するX線強度比のピーク位置が変動することを考慮し、決定した。また、強度比の極大値を2.0以上10.0以下に定めた理由を以下に示す。強度比の極大値が2.0未満であると、耐曲げ割れ性は良いが、所望の強度が得られず、曲げしわも大きくなる。これは、極大値が2.0未満となる材料では、曲げ加工性を劣化させる方位の割合が少ないものの、溶体化処理の際、結晶粒径が粗大化するためである。一方、強度比の極大値が10.0を超えると、{123}<412>方位の割合が増加し、曲げ割れが発生しやすくなったり、曲げしわも大きくなったりする。そこで、強度比の極大値を2.0以上10.0以下に定めた。 The reason why the bending crack resistance and the bending wrinkle are improved by suppressing the strength of the {123} <412> orientation is not clear, but the {123} <412> orientation is a rolling deformation of the Cu—Ni—Si based alloy. This is considered to be one of the causes because it is less stable and has less crystallized orientation than other crystal orientations. The reason why the ranges of α and β are defined as in the claims (1) and (2) is that the X-ray intensity ratio corresponding to the {123} <412> orientation is determined from processing, heat treatment conditions, measurement errors, and the like. It was determined in consideration of the fluctuation of the peak position. The reason why the maximum value of the intensity ratio is set to 2.0 or more and 10.0 or less is shown below. When the maximum value of the strength ratio is less than 2.0, the bending cracking resistance is good, but the desired strength cannot be obtained, and the bending wrinkle becomes large. This is because the material having a maximum value of less than 2.0 has a small orientation ratio that deteriorates the bending workability, but the crystal grain size becomes coarse during the solution treatment. On the other hand, if the maximum value of the strength ratio exceeds 10.0, the ratio of {123} <412> orientation increases, and bending cracks are likely to occur or bending wrinkles also increase. Therefore, the maximum value of the intensity ratio is set to 2.0 or more and 10.0 or less.

Cu−Ni−Si系合金の一般的な製造工程は、高周波溶解炉でインゴットを溶製後木炭被覆下で、電気銅、Ni、Si等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延を行い、冷間圧延と熱処理を繰り返して、所望の厚み及び特性を有する条や箔に仕上げる。熱処理には溶体化処理と時効処理がある。溶体化処理では、700〜1000℃の高温で加熱して、Ni−Si系化合物をCu母地中に固溶させ、同時にCu母地を再結晶させる。溶体化処理を、熱間圧延で兼ねることもある。時効処理では、350〜550℃の温度範囲で1h以上加熱し、溶体化処理で固溶させたNiとSiを、NiSiを主体とする微細粒子として析出させる。この時効処理で強度と導電性が向上する。より高い強度を得るために、時効処理前及び/又は時効処理後に冷間圧延を行うことがある。また、時効処理後に冷間圧延を行う場合には、冷間圧延後に歪取焼鈍(低温焼鈍)を行うことがある。 In a general manufacturing process of a Cu—Ni—Si based alloy, after melting an ingot in a high frequency melting furnace, raw materials such as electrolytic copper, Ni, Si, etc. are melted under a charcoal coating to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Thereafter, hot rolling is performed, and cold rolling and heat treatment are repeated to finish a strip or foil having a desired thickness and characteristics. Heat treatment includes solution treatment and aging treatment. In the solution treatment, heating is performed at a high temperature of 700 to 1000 ° C., so that the Ni—Si-based compound is dissolved in the Cu matrix, and at the same time, the Cu matrix is recrystallized. The solution treatment may be combined with hot rolling. In the aging treatment, Ni and Si heated in a temperature range of 350 to 550 ° C. for 1 h or more and solid-dissolved by the solution treatment are precipitated as fine particles mainly composed of Ni 2 Si. This aging treatment improves strength and conductivity. In order to obtain higher strength, cold rolling may be performed before aging treatment and / or after aging treatment. Moreover, when performing cold rolling after an aging treatment, strain relief annealing (low temperature annealing) may be performed after cold rolling.

一連の工程の中で集合組織の制御に重要な影響を及ぼす工程は溶体化処理前の冷間圧延と溶体化処理であった。Cu−Ni−Si系合金の耐曲げ割れ性および曲げしわに悪影響を及ぼす{123}<412>方位は溶体化処理時に形成される集合度の高い再結晶集合組織が最終冷間圧延の際、格子回転により結晶方位が変化することで形成される。即ち、溶体化処理時に形成される再結晶集合組織の集合度を低く抑えることが{123}<412>方位の集合度の抑制に重要であった。再結晶集合組織の集合度は溶体化処理前の加工度および板厚減少率を調整し、溶体化処理を適切に行なうことで2.0〜10.0の範囲に制御できる。以下に溶体化処理前の冷間圧延および溶体化処理の条件を詳述する。   Among the series of processes, the processes that have an important influence on the texture control were cold rolling and solution treatment before solution treatment. The {123} <412> orientation that adversely affects the bending cracking resistance and bending wrinkles of the Cu—Ni—Si based alloy is a recrystallized texture with a high degree of aggregation formed during solution treatment. It is formed by changing the crystal orientation by lattice rotation. That is, it was important to suppress the aggregation degree of the recrystallization texture formed at the time of the solution treatment to suppress the aggregation degree of the {123} <412> orientation. The degree of aggregation of the recrystallized texture can be controlled in the range of 2.0 to 10.0 by adjusting the degree of processing before the solution treatment and the plate thickness reduction rate, and appropriately performing the solution treatment. The conditions for cold rolling and solution treatment before solution treatment will be described in detail below.

(A)溶体化処理前の冷間圧延:溶体化処理前に行われる冷間圧延の加工度は40%以上80%未満で行い、かつ、1回の圧延パスにおける板厚の減少量と初期板厚(熱延後の板厚)の比を板厚減少率とし、これを25%以内とする。冷間圧延加工度が40%未満であると、集合度が2.0未満となり、耐曲げ割れ性は良好であるが、強度が低下し、曲げしわも大きくなる。一方、冷間圧延加工度が80%以上であると、冷間圧延により形成された集合度の高い変形集合組織が、溶体化処理時の再結晶により、再結晶集合組織へと変化し、その後の冷間圧延時の格子回転により{123}<412>方位の集合度が10.0を超える。このため、耐曲げ割れ性が劣化し、曲げしわも大きくなる。また、板厚減少率が25%を超えると、冷間圧延の加工度が規定範囲内であっても、集合度の高い変形集合組織が形成され、集合度が10.0を超えるため、耐曲げ割れ性が劣化し、曲げしわも大きくなる。 (A) Cold rolling before solution treatment: The degree of cold rolling performed before the solution treatment is 40% or more and less than 80%, and the amount of reduction in sheet thickness and the initial stage in one rolling pass The ratio of the plate thickness (plate thickness after hot rolling) is defined as the plate thickness reduction rate, which is within 25%. When the degree of cold rolling is less than 40%, the degree of assembly is less than 2.0 and the bending cracking resistance is good, but the strength is lowered and the bending wrinkle is also increased. On the other hand, when the cold rolling work degree is 80% or more, the deformed texture having a high degree of aggregation formed by cold rolling is changed to a recrystallized texture by recrystallization during the solution treatment, and thereafter The degree of aggregation of {123} <412> orientations exceeds 10.0 due to lattice rotation during cold rolling. For this reason, bending cracking resistance deteriorates and bending wrinkles also increase. Further, if the sheet thickness reduction rate exceeds 25%, even if the cold rolling workability is within the specified range, a deformed texture with a high degree of aggregation is formed, and the degree of aggregation exceeds 10.0. Bending cracking properties deteriorate and bending wrinkles also increase.

(B)溶体化処理:溶体化処理温度は720℃以上900℃未満で行い、処理時間(材料保持時間)は300秒未満とする。処理温度が720℃未満では、固溶するNi及びSiの量が不十分で、時効処理後の強度が低下する。さらに、集合度が10.0を超え、曲げしわが大きくなる。一方、処理温度が900℃以上であると結晶粒の粗大化により、集合度が2.0未満となり、強度が低下し、曲げしわも大きくなる。また、処理時間が300秒以上でも結晶粒が粗大化するため、強度が低下し、曲げしわも大きくなる。 (B) Solution treatment: The solution treatment temperature is 720 ° C. or more and less than 900 ° C., and the treatment time (material holding time) is less than 300 seconds. If processing temperature is less than 720 degreeC, the quantity of Ni and Si which dissolves is inadequate, and the strength after an aging treatment falls. Furthermore, the degree of assembly exceeds 10.0, and the bending wrinkle becomes large. On the other hand, when the treatment temperature is 900 ° C. or higher, the degree of aggregation becomes less than 2.0 due to the coarsening of the crystal grains, the strength decreases, and the bending wrinkle also increases. Further, even when the treatment time is 300 seconds or longer, the crystal grains become coarse, so that the strength is lowered and the bending wrinkles are also increased.

(C)溶体化処理と時効処理の間の冷間圧延(以下、圧延Aとする。)、時効処理後の冷間圧延(以下、圧延Bとする。)、および時効処理:圧延Aおよび圧延Bの加工度、時効処理の温度および時間は本発明の集合組織が得られるならば任意に設定して構わない。また、時効処理に関しては本発明例の合金では時効温度を350℃以上550℃未満とし、時効時間を1時間以上10時間未満とすることが適当である。 (C) Cold rolling between solution treatment and aging treatment (hereinafter referred to as rolling A), cold rolling after aging treatment (hereinafter referred to as rolling B), and aging treatment: rolling A and rolling The processing degree of B, the temperature and time of aging treatment may be arbitrarily set as long as the texture of the present invention can be obtained. Regarding the aging treatment, it is appropriate that the aging temperature is 350 ° C. or more and less than 550 ° C. and the aging time is 1 hour or more and less than 10 hours in the alloy of the present invention.

以下、本発明の特徴及び本発明を実施するための最良の形態をより明らかにするために、実施例を用いて具体的に説明する。実施例の実験は次の2種類の合金を用いて行なった。
合金A:Cu−1.6質量%Ni−0.35質量%Si−0.5質量%Sn−0.4質量%Zn
合金B:Cu−2.5質量%Ni−0.5質量%Si−0.1質量%Mg
Hereinafter, in order to clarify the features of the present invention and the best mode for carrying out the present invention, the present invention will be specifically described with reference to examples. The experiment of the example was performed using the following two types of alloys.
Alloy A: Cu-1.6 mass% Ni-0.35 mass% Si-0.5 mass% Sn-0.4 mass% Zn
Alloy B: Cu-2.5 mass% Ni-0.5 mass% Si-0.1 mass% Mg

高周波誘導炉を用い、内径60mmの黒鉛るつぼ中で、2kgの電気銅を溶解し、Ni、Si、Mg、SnおよびZnを添加して、溶湯成分を調整した。溶湯を1200℃に調整した後、板厚30mm×幅60mm×長さ120mmのインゴットを鋳造した。次に、このインゴットを以下の順に加工・熱処理し、板厚0.3mmの試料を得た。
(1)インゴットを800℃で3時間加熱後、表1の所定の板厚まで熱間圧延した。
(2)熱延材表面の酸化スケールをグラインダーで除去した。
(3)表1に示される所定の条件で冷間圧延し、板厚を1mmに仕上げた。
(4)溶体化処理として表1の所定の温度で30秒間加熱し水中で急冷した。
(5)化学研磨により表面酸化膜を除去した。
(6)板厚0.3mmまで冷間圧延した。
(7)時効処理として水素中で450℃で5時間加熱した。
(8)化学研磨により表面酸化膜を除去した。
Using a high-frequency induction furnace, 2 kg of electrolytic copper was melted in a graphite crucible having an inner diameter of 60 mm, and Ni, Si, Mg, Sn and Zn were added to adjust the molten metal components. After adjusting the molten metal to 1200 ° C., an ingot having a thickness of 30 mm × width of 60 mm × length of 120 mm was cast. Next, this ingot was processed and heat-treated in the following order to obtain a sample having a plate thickness of 0.3 mm.
(1) The ingot was heated at 800 ° C. for 3 hours and then hot-rolled to a predetermined plate thickness shown in Table 1.
(2) The oxidized scale on the surface of the hot rolled material was removed with a grinder.
(3) It cold-rolled on the predetermined conditions shown by Table 1, and finished plate | board thickness to 1 mm.
(4) As a solution treatment, the solution was heated at a predetermined temperature shown in Table 1 for 30 seconds and rapidly cooled in water.
(5) The surface oxide film was removed by chemical polishing.
(6) Cold rolled to a plate thickness of 0.3 mm.
(7) Heated at 450 ° C. for 5 hours in hydrogen as an aging treatment.
(8) The surface oxide film was removed by chemical polishing.

このように作製した試料について、次の評価を行った。
(A)X線ランダム強度比の極大値:X線ディフラクトメーター(株式会社リガク製RINT2500)により、各試料の{111}正極点測定を行い、{111}正極点図を作製した。反射法では試料面に対するX線の入射角が浅くなると、測定が困難になることから、実際に測定できる角度範囲は正極点図上で0°≦α≦75°、0°≦β≦360°となる。本測定では、αとβの回転間隔Δα、Δβを5°として前述の角度範囲内を走査し、16×73=1168点のX線強度を測定した。この際に、集合組織を有しない状態即ち結晶方位がランダムである状態を1として正極点図を規格化した。結晶方位がランダムな状態として、銅粉末試料の{111}正極点測定結果を用いた。なお、X線照射条件はCo管球を使用し、管電圧30KV、管電流100mAとした。図1の(1)および(2)の領域に含まれる50点の中からX線強度の極大値を選択し、合金A、合金Bともに極大値が2.0以上10.0以下の場合を○、それ以外の場合を×と判定した。
The following evaluation was performed about the sample produced in this way.
(A) Maximum value of X-ray random intensity ratio: {111} positive electrode spot measurement of each sample was performed with an X-ray diffractometer (RINT 2500 manufactured by Rigaku Corporation), and a {111} positive electrode dot diagram was prepared. In the reflection method, when the incident angle of X-rays on the sample surface becomes shallow, measurement becomes difficult. Therefore, the range of angles that can be actually measured is 0 ° ≦ α ≦ 75 °, 0 ° ≦ β ≦ 360 ° on the positive dot diagram. It becomes. In this measurement, scanning within the aforementioned angle range was performed with the rotation intervals Δα and Δβ of α and β being 5 °, and the X-ray intensity at 16 × 73 = 1168 points was measured. At this time, the positive point diagram was normalized by assuming that the state having no texture, that is, the state where the crystal orientation was random, as 1. As the crystal orientation was in a random state, the {111} positive electrode point measurement result of the copper powder sample was used. The X-ray irradiation conditions were a Co tube, tube voltage 30 KV, and tube current 100 mA. The maximum value of the X-ray intensity is selected from 50 points included in the regions (1) and (2) in FIG. 1, and the maximum value is 2.0 or more and 10.0 or less for both alloy A and alloy B. ○, otherwise determined as x.

(B)0.2%耐力:引張方向が圧延方向と平行になるようにプレスを用いてJIS13B号試験片を作製し、引張試験を行い0.2%耐力を測定した。合金Aについては、0.2%耐力が650MPaを超える場合を、合金Bについては、0.2%耐力が700MPaを超える場合を強度が良好と判定した。 (B) 0.2% yield strength: A JIS13B test piece was prepared using a press so that the tensile direction was parallel to the rolling direction, a tensile test was performed, and the 0.2% yield strength was measured. For alloy A, the strength was determined to be good when the 0.2% yield strength exceeded 650 MPa, and for alloy B, the 0.2% yield strength exceeded 700 MPa.

(C)耐曲げ割れ性:曲げ軸が圧延方向と平行(BadWay)になるように幅10mm×長さ30mmの短冊試験片を採取した後、W曲げ試験(JIS H 3130)を行い、割れの発生しない最小曲げ半径MBR(Minimum Bend Radius)と板厚tの比MBR/tにより評価した。合金Aについては、MBR/tが0.5以下の場合を、合金Bについては、MBR/tが1.0以下の場合を耐曲げ割れ性が良好と判断した。 (C) Bending crack resistance: After collecting a strip test piece having a width of 10 mm and a length of 30 mm so that the bending axis is parallel to the rolling direction (BadWay), a W bending test (JIS H 3130) was performed to Evaluation was made based on the ratio MBR / t between the minimum bending radius MBR (Minimum Bend Radius) and the thickness t. For alloy A, the case where MBR / t was 0.5 or less, and for alloy B, the case where MBR / t was 1.0 or less were judged to have good bending crack resistance.

(D)曲げしわの幅:W曲げ試験において、最小曲げ半径で曲げ加工された試験片の曲げ凸部表面に観察されるしわのSEM像を写真撮影した後、写真上でしわの幅の測定を行い、試験片内での最大のしわ幅を求めた。これを、各供試材で3つの試験片について行い、平均値をしわ幅とした。合金A、合金Bともに、しわ幅が30μm以下の場合をしわ幅が小さいと判断した。 (D) Bending wrinkle width: In a W bending test, after taking an SEM image of a wrinkle observed on the surface of a bending convex portion of a test piece bent at a minimum bending radius, measurement of the width of the wrinkle on the photograph And the maximum wrinkle width in the test piece was obtained. This was performed on three test pieces for each specimen, and the average value was taken as the wrinkle width. For both Alloy A and Alloy B, the wrinkle width was determined to be small when the wrinkle width was 30 μm or less.

表2は、表1の条件で製造した合金Aの評価結果であり、表3は表1の条件で製造した合金Bの評価結果である。0.2%耐力は合金Bの方が高く、耐曲げ割れ性は合金Aの方が良好であるが、製造条件が特性に及ぼす影響は合金A、Bともに同様である。即ち、表2および表3に示される様に、本発明によれば、高強度を維持しつつ、耐曲げ割れ性が良好で、曲げしわが低減された合金を得ることが出来る。(表1No.1〜7) Table 2 shows the evaluation results of the alloy A manufactured under the conditions of Table 1, and Table 3 shows the evaluation results of the alloy B manufactured under the conditions of Table 1. The 0.2% proof stress is higher in alloy B and the bending crack resistance is better in alloy A, but the influence of manufacturing conditions on the characteristics is the same in both alloys A and B. That is, as shown in Tables 2 and 3, according to the present invention, it is possible to obtain an alloy having good bending cracking resistance and reduced bending wrinkles while maintaining high strength. (Table 1 No. 1-7)

一方、比較例No.8は溶体化前の圧延加工度が発明例に比べて低いことから、集合組織の極大値が2.0未満となり、強度が低下し、耐曲げ割れ性は良好であるが、曲げしわの幅が30μmを超えた。No.9は溶体化前の圧延加工度が発明例に比べて高いことから、集合組織の極大値が10.0を超え、発明例に比べて耐曲げ割れ性が劣り、曲げしわの幅も30μmを超えた。   On the other hand, Comparative Example No. No. 8 has a rolling degree before solution treatment is lower than that of the invention example, so that the maximum value of the texture becomes less than 2.0, the strength decreases, and the bending crack resistance is good, but the width of the bending wrinkle Exceeded 30 μm. No. No. 9 has a higher degree of rolling before solution treatment than the invention example, so the maximum value of the texture exceeds 10.0, the bending crack resistance is inferior to the invention example, and the width of the bending wrinkle is 30 μm. Beyond.

比較例のNo.10は板厚減少率が発明例に比べて高く、集合組織の極大値が10.0を超え、発明例に比べて耐曲げ割れ性が劣り、曲げしわの幅も30μmを超えた。比較例のNo.11は溶体化処理の温度が発明例に比べて低いため、集合組織の極大値が10.0を超えた。この結果、耐曲げ割れ性は良好であったものの、曲げしわの幅が30μmを超え、固溶するNiおよびSi量が少ない事から発明例に比べて強度が劣った。   Comparative Example No. No. 10 had a higher plate thickness reduction rate than the inventive example, the maximum value of the texture exceeded 10.0, the bending crack resistance was inferior to the inventive example, and the width of the bending wrinkle exceeded 30 μm. Comparative Example No. No. 11 has a solution treatment temperature lower than that of the inventive example, and therefore the maximum value of the texture exceeded 10.0. As a result, although the bending cracking resistance was good, the width of the bending wrinkle exceeded 30 μm, and the strength was inferior to that of the inventive examples because the amount of Ni and Si dissolved was small.

比較例のNo.12は溶体化処理の温度が発明例に比べて高く、溶体化の際、結晶粒は粗大化し、集合組織の極大値は2.0未満であった。そのため、耐曲げ割れ性は良好であったが、曲げしわの幅は30μmを超え、発明例に比べて強度が劣った。   Comparative Example No. In No. 12, the temperature of the solution treatment was higher than that of the inventive example. During the solution treatment, the crystal grains were coarsened, and the maximum value of the texture was less than 2.0. Therefore, although the bending crack resistance was good, the width of the bending wrinkle exceeded 30 μm, and the strength was inferior to that of the inventive examples.

規定された{111}正極点図上に規定される(1)、(2)の2つの領域に関する説明図である。It is explanatory drawing regarding two area | regions of (1) and (2) prescribed | regulated on the prescribed | regulated {111} positive electrode point figure.

符号の説明Explanation of symbols

RD 試料の圧延方向
TD 試料の横方向
α シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸
β 前期回転軸に平行な軸

RD Rolling direction of sample TD Transverse direction of sample α Axis perpendicular to rotation axis of diffraction goniometer specified by Schulz method β Axis parallel to previous rotation axis

Claims (3)

1.0〜4.5質量%のNiと0.25〜1.5質量%のSiを含有し、残部が銅および不可避的不純物からなり、{111}正極点図において、以下の(1)〜(2)の範囲のX線ランダム強度比の極大値が2.0以上10.0以下であることを特徴とする集合組織を有する強度と曲げ加工性に優れたCu−Ni−Si系合金。
(1)α=20±10°、β=90±10°
(2)α=20±10°、β=270±10°
(但し、α:シュルツ法に規定する回折用ゴニオメータの回転軸に垂直な軸、β:前記回
転軸に平行な軸)
Containing 1.0 to 4.5 mass% of Ni and 0.25 to 1.5 wt% Si, balance Ri Rana or copper and inevitable impurities, {111} in the pole figure, following ( Cu-Ni-Si excellent in strength and bending workability having a texture, wherein the maximum value of the X-ray random intensity ratio in the range of 1) to (2) is 2.0 or more and 10.0 or less Alloy.
(1) α = 20 ± 10 °, β = 90 ± 10 °
(2) α = 20 ± 10 °, β = 270 ± 10 °
(Where α: axis perpendicular to the rotation axis of the goniometer for diffraction defined in the Schulz method, β: axis parallel to the rotation axis)
Mgを0.005〜0.3質量%含有する請求項1に記載のCu−Ni−Si系合金。 The Cu-Ni-Si-based alloy according to claim 1, containing 0.005 to 0.3 mass% of Mg. Zn、Sn、Fe、Ti、Zr、Cr、Al、P、Mn、Agのうち1種類以上を総量で0.005〜2.0質量%含有する請求項1および2に記載のCu−Ni−Si系合金。

Cu-Ni- of Claim 1 and 2 which contains 0.005-2.0 mass% of 1 or more types in total in Zn, Sn, Fe, Ti, Zr, Cr, Al, P, Mn, and Ag. Si-based alloy.

JP2005283649A 2005-09-29 2005-09-29 Cu-Ni-Si alloy with excellent strength and bending workability Active JP4408275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283649A JP4408275B2 (en) 2005-09-29 2005-09-29 Cu-Ni-Si alloy with excellent strength and bending workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283649A JP4408275B2 (en) 2005-09-29 2005-09-29 Cu-Ni-Si alloy with excellent strength and bending workability

Publications (2)

Publication Number Publication Date
JP2007092135A JP2007092135A (en) 2007-04-12
JP4408275B2 true JP4408275B2 (en) 2010-02-03

Family

ID=37978181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283649A Active JP4408275B2 (en) 2005-09-29 2005-09-29 Cu-Ni-Si alloy with excellent strength and bending workability

Country Status (1)

Country Link
JP (1) JP4408275B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596493B2 (en) * 2008-03-31 2010-12-08 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy used for conductive spring material
JP5339995B2 (en) * 2009-04-01 2013-11-13 Jx日鉱日石金属株式会社 Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
JP5400877B2 (en) 2009-12-02 2014-01-29 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
KR101419147B1 (en) 2009-12-02 2014-07-11 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet and process for producing same
JP4677505B1 (en) 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4601085B1 (en) * 2010-06-03 2010-12-22 Jx日鉱日石金属株式会社 Cu-Co-Si-based copper alloy rolled plate and electrical component using the same
TWI515313B (en) 2010-12-13 2016-01-01 日本精線股份有限公司 A copper alloy fine wire and copper alloy spring and a method of making the same
US20130333812A1 (en) * 2010-12-13 2013-12-19 Tohoku Techno Arch Co., Ltd. Copper alloy and process for producing copper alloy
JP5417366B2 (en) * 2011-03-16 2014-02-12 Jx日鉱日石金属株式会社 Cu-Ni-Si alloy with excellent bending workability
JP5451674B2 (en) 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP4799701B1 (en) * 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
JP5623960B2 (en) * 2011-03-30 2014-11-12 Jx日鉱日石金属株式会社 Cu-Ni-Si based copper alloy strip for electronic materials and method for producing the same
JP5595961B2 (en) * 2011-03-30 2014-09-24 Jx日鉱日石金属株式会社 Cu-Ni-Si based copper alloy for electronic materials and method for producing the same
JP5539932B2 (en) * 2011-08-01 2014-07-02 Jx日鉱日石金属株式会社 Cu-Co-Si alloy with excellent bending workability
JP5039863B1 (en) * 2011-10-21 2012-10-03 Jx日鉱日石金属株式会社 Corson alloy and manufacturing method thereof
JP2020158817A (en) 2019-03-26 2020-10-01 Jx金属株式会社 Cu-Ni-Si BASED ALLOY STRIP EXCELLENT IN STRENGTH AND BENDABILITY IN ROLLING PARALLEL DIRECTION AND ROLLING RECTANGULAR DIRECTION

Also Published As

Publication number Publication date
JP2007092135A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
JP4809602B2 (en) Copper alloy
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP5619389B2 (en) Copper alloy material
WO2013031279A1 (en) Cu-ni-si alloy and method for manufacturing same
JP5466879B2 (en) Copper alloy sheet and manufacturing method thereof
JP2006152392A (en) High-strength copper alloy sheet superior in bendability and manufacturing method therefor
WO2008038593A1 (en) Cu-Ni-Si ALLOY
JP4444245B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment
JP2006283120A (en) Cu-Ni-Si-Co-Cr BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND ITS PRODUCTION METHOD
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP4439003B2 (en) Titanium copper alloy excellent in strength and bending workability and manufacturing method thereof
JP2005060773A (en) Special brass and method for increasing strength of the special brass
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
JP4754930B2 (en) Cu-Ni-Si based copper alloy for electronic materials
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP6111028B2 (en) Corson alloy and manufacturing method thereof
JP6077755B2 (en) Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof
JP2006016629A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY IN BAD WAY
KR100878165B1 (en) Copper-nickel-silicon based copper alloy for electronic material, wrought copper and copper alloy using thereof and electronic device part using therof
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

R150 Certificate of patent or registration of utility model

Ref document number: 4408275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250